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Levenshtein Distance, Sequence Comparison
and Biological Database Search

Bonnie Berger™, Michael S. Waterman, and Yun William Yu

Abstract— Levenshtein edit distance has played a central
role—both past and present—in sequence alignment in particular
and biological database similarity search in general. We start
our review with a history of dynamic programming algorithms
for computing Levenshtein distance and sequence alignments.
Following, we describe how those algorithms led to heuristics
employed in the most widely used software in bioinformatics,
BLAST, a program to search DNA and protein databases for
evolutionarily relevant similarities. More recently, the advent
of modern genomic sequencing and the volume of data it
generates has resulted in a return to the problem of local
alignment. We conclude with how the mathematical formulation
of Levenshtein distance as a metric made possible additional
optimizations to similarity search in biological contexts. These
modern optimizations are built around the low metric entropy
and fractional dimensionality of biological databases, enabling
orders of magnitude acceleration of biological similarity search.

Index Terms—Levenshtein distance, sequence comparison,
dynamic programming, similarity search, metric entropy.

I. INTRODUCTION

N 1965 V. 1. Levenshtein published “Binary codes capable

of correcting deletions, insertions, and reversals,” a land-
mark paper [1] which in 1966 was translated into Eng-
lish [2] and is his most highly referenced work with over
10,000 citations. His work was based on an earlier paper of
R. W. Hamming [3] that directly came from studying trans-
mission of information and coding theory. Hamming’s meth-
ods handled error correction for one and two incorrect symbols
in the transmission. Relevant to this discussion Hamming
introduced what he called “a geometrical model” for the 2"
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points in {0,1}" space. He introduced a distance or metric
on this space by setting D(x,y) equal to the number of
coordinates where x; # y;. This metric counts the number
of substitutions needed to change x into y (or equivalently
y into x) and is now called Hamming distance. Leven-
shtein’s main interest is extending Hamming’s error correction
results to include the case of allowing single letters to be
inserted or deleted. His metric is the count of the minimum
number of substitutions and single letter insertions or deletions
to change x into y. This metric is known as Levenshtein
distance, and it is clear that computing Levenshtein dis-
tance is more challenging than computing Hamming distance.
Levenshtein also discusses counting reversals by which he
means interchanging the order of two adjacent symbols in one
sequence. In this paper, we will follow the developments of
sequence distance metrics and sequence comparison in the bio-
logical sciences where it has proved to be crucially important.
We will indicate the relevance of the methods of comparison
to biology, including the complexity of computing the compar-
ison statistics. Coding and information theory is not our focus
here but it plays an important role in recent developments.

The advent of digital computers brought attention to a topic
many of us still confront: how to correct spelling errors. Here
is an early approach by Blair from 1960 that will illustrate
the state of the art [4]. He notes that one could construct a
file or vocabulary of all words and check if a typed word
was in the file. If not in the file, it was misspelled although
he points out that context may show a word which is in the
file may not be correct as used in a certain context. His
approach is based on similarity not distance, a distinction
we will encounter later. Blair notes that a dictionary of all
misspelled words is impractical. He instead groups vocabulary
words by an algorithm to compute r-letter abbreviations to an
n-letter word. Motivated by information theory, to compute
his abbreviation he uses both letter position in the word as
well as frequency of errors in that position and word length
to compute similarity. This binning of words greatly shortens
search of the vocabulary. Damerau approaches this problem by
precomputing the vocabulary words as number of characters
and a 28-bit character register [5]. A more modern approach
in 1971 by Harrison already uses hashing [6].

Dynamic programming algorithms to compute Levenshtein
distance and related statistics are versatile and widely used.
They have independently appeared in many places. In the
next section we will present some of those algorithms and
while we will not attempt exhaustively to examine the origins
of the methods, here are some references. In an influential
1983 book about this topic, Sankoff and Kruskal [7] present
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the following list of independent discoveries of dynamic
programming algorithms for sequence comparison ranging
from 1968 to 1975 ([8]-[16]). We add to this list Sellers’
1974 paper [17]. Additionally, in [18] it was shown that edit
distance and alignment similarity are dual; that is, given the
weights for minimum distance alignment, there are weights for
a corresponding similarity alignment and they have identical
optimal alignments. This duality permits us to use distance and
similarity interchangeably, as appropriate. After discussion of
some of these alignment methods, we describe some recent
advances in sequence database searches that run significantly
more rapidly than the standard program BLAST [19], with
little loss of accuracy. The new algorithm is based on metric
entropy and fractal dimension [20].

II. BIOLOGICAL SEQUENCE COMPARISON

Many problems in computational biology can be recast
as string problems. Here, we focus on biological sequence
comparison and similarity search, but for a broader overview
of computational genome analysis, we refer the reader to [21].
Additionally, for a more in depth dive into string analysis,
Gusfield’s book is an excellent place to start [22].

A. Dynamic Programming Algorithms for
Sequence Comparison

Given two biological sequences (strings of DNA
nucleotides or protein amino acids) of length n, the basic
problem of biological sequence comparison can be recast as
that of determining the Levenshtein distance between them.
Biologists prefer to use a generalized Levenshtein distance
where instead of simply counting the number of substitutions,
insertions, and deletions, each operation will have a different
cost depending on where in the string it is applied; i.e.
common substitutions will have a lower cost than uncommon
ones [23]. This generalization allows the Levenshtein distance
to better serve as a proxy for the evolutionary distance
between two sequences. Inserted or deleted letters (indels) are
critical in biological sequence analysis and are also scored in
the algorithms.

The full list of operations needed to transform one string
into another then corresponds to a low-cost evolutionary path
between the two. The dynamic programming (DP) algorithms
we discuss here not only compute the Levenshtein distance but
also output that list of operations. These are represented in the
form of a pairwise ‘alignment,” which inserts gap characters
corresponding to insertion or deletion so that the transformed
strings have Hamming distance equal to the Levenshtein
distance between the original strings.

TAAACGTCGT -=> TAAACGTCGT-

AAACGTCGTA —-=>

When only single-letter insertions and deletions are allowed
the algorithms take time O(n?) to compute a matrix from
which the optimal alignments can be extracted. It is not
difficult to construct two sequences where the set of optimal
alignments grows exponentially. In [24] this difficulty is han-
dled by a declumping technique that recursively extracts those

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

alignments along with all within a specified distance, where
no pair of aligned letters appears on more than one alignment.
For general indel length scoring, the algorithms take time
O(n?3). If the indel weights are an affine function of indel
length, then there is an O(n?) algorithm that is widely used.

In biology, powerful inferences are made by comparing
many sequences, say m sequences of length n, and the
dynamic programming algorithms scale with time and storage
O(n™), so the algorithms that are already time expensive for
two sequences become impractical. In a study of regulatory
sequences where the patterns are short and often different
between sequences, [25] construct a table of all k-letter
sequences and for each of the n sequences each k-word (also
sometimes known in the field as a k-mer [26] or k-tuple [27])
receives a score of the best occurrence of that k-word in
a specified neighborhood, for example with 2 mismatches
of the k-word. This 1984 paper was the first use of word
neighborhoods in biological sequence analysis.

BLAST is a highly cited program to search DNA and pro-
tein databases for evolutionarily relevant similarities of a target
sequence to large databases of sequences. In fact for database
search with BLAST, the program name has become a verb,
as in “Just BLAST it.” The dynamic programming algorithm
for this task is called local alignment and is often called
the Smith-Waterman (S-W) algorithm [28]. This algorithm
takes O(n?) time to accomplish this task and BLAST greatly
reduces this search time with some possible loss in accuracy.
BLAST uses the S-W dynamic programming algorithm as
a subroutine in restricted regions of potentially significant
matching. Before saying more about BLAST, we need to look
more carefully at dynamic programming sequence alignment.

Levenshtein distance is a good proxy for the local mutations
evolution uses to transform one string into another. However,
much larger scale operations such as translocations (two
distinct chromosomes mutate by exchanging parts), duplica-
tions, or deletions of long substrings also take place. To use
a word processing analogy; biology occasionally cuts, copies,
and pastes entire paragraphs. Luckily, large-scale changes hap-
pen rarely enough (relative to a three billion base pair human
genome) that biologists choose to consider these phenomenon
separately from the mutational changes caused by local edits.
However, it is the presence of these large-scale changes that
leads to the local alignment problem. Rather than the already
expensive task of computing alignment between two strings,
we now wish to find all the pairs of substrings, one taken
from each string, that are both long and have low Levenshtein
distance. Below, we show two different pairs of long local
alignments of a single pair of strings.

AACGCAAAAACGTCGTCGTTT --> CGCAAAAACGT, CGTCGTCGT

PR

TTCGTCGTCGTAAAACGTTAA --> CGTAAAA-CGT, CGTCGTCGT

This problem is known as local alignment. When we state
in the introduction that S-W solves local alignment optimally,
we mean that the algorithm is guaranteed to return all such
pairs of substrings in (asymptotically optimal) O(n?) time and
space for strings of length n. The way S-W achieves this
solution is depicted in Figure 1. Solving this problem with
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Fig. 1.  Smith-Waterman algorithm. Start with a scoring matrix. As an
example, consider the alignment of two strings GCA and AGCT, where
correctly aligned letters give a score of +1, substitutions a score of —1, and
insertions or deletions a score of —2. The matrix is filled in recursively, with
base case of 0’s in the leftmost column and top row. Moving to the right
in the matrix corresponds to an insertion of a character from the left string,
moving down corresponds to an insertion of a character from the top string,
and moving diagonally down and to the right corresponds to either a correctly
aligned letter or a substitution. A cell need only consider the three cells above
and to the left of it. The score in a cell is the maximum score that can be
achieved by coming from one of those three cells, with a floor of 0. After
filling in the matrix, we need only scan the matrix for high scores, and then we
can reconstruct the optimal path by tracing back from the maximum scoring
cells. In this example, the optimal local alignment is GC to GC.

distance is obviously problematic as identical sequences have
0 distance whatever their length. Thus similarity is the key to
the S-W solution as is the floor value of 0 which allows local
alignments to begin and end anywhere.

B. Fast Heuristics for Pairwise Sequence Comparison

While S-W is optimal for local alignment of two sequences,
the quadratic runtime is too slow for many applications.
Several heuristics to speed up pairwise local alignment were
introduced in 1983 and 1985, and incorporated in the FASTA
and FASTP software [29], [30], culminating in 1990 with
the publication of BLAST (Basic Local Alignment Search
Tool) [19].

Although the S-W scoring matrix efficiently codes for
the highest scoring local alignments ending in every par-
ticular position, which is necessary to guarantee optimality,
the bioinformatician generally cares about only the highest
scoring alignments overall, rather than the highest-scoring
alignments at every specific position. Thus, much of the
information in the S-W scoring matrix is extraneous and can
be safely discarded—or, more helpfully, never computed. The
original program BLAST took advantage of this observation
in a two step procedure. It is important to note that the
underlying problem is to find significant matches of a query
sequence in a large database of sequences. Critical to the
process is the ability to compute the statistical significance
of the S-W alignment score using the Gumbel extreme value
distribution or Poisson approximation [31], [32], producing
an ‘E-value’, which is interpreted roughly as the probability
that a random string of that given length would produce a
score that high. With this in hand, the algorithm takes each
k-word of the query. Note that for protein sequences with a
20 letter alphabet, the word neighborhood surrounding each
k-word is very large. Step one of the algorithm is to calculate
all k-words which would constitute a statistically significant
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match, greatly reducing the computing time compared to the
method of [25]. The next step is to search the large database
for exact matches to this collection of statistically significant
k-words. Finally extensions of found matchings are performed.
Part of the advantage of this approach is that the neighborhood
calculations need only be done for the query sequence.

For example, in the earlier example of a local alignment
of two strings, let our query sequence be AACGCAAAAACGT
ceTceTTT, which has the following 6-mers: {AACGCA, ACGCAAR,
CGCAAA, GCAAAA, CAAAAA, AAAAAC, AAAACG, AAACGT, AACGTC,
ACGTCG, CGTCGT, GTCGTC, TCGTCG, GTCGIT, TCGTTT}. Exact
matches are very often statistically significant, though in
principle, anything in the word neighborhood (e.g. caaaan ->
caaaac) could be significant, depending on the generalized
edit distance used. Then in order to find high-scoring local
alignments, we need only find exact matches in the target
seqeunce TTCGTCGTCGTAAAACGTTAA to significant matches in
the word neighborhood of the query, and then perform S-W
around those matches.

BLAST introduced many other computational optimizations
to the pairwise sequence comparison problem. There are
however many reviews already of BLAST and its variants
[33]-[35], so we will not go into detail here. However, some
of the other salient features include biology-specific augmen-
tations. For example, there are many low-complexity repetitive
regions in biological sequences; while strictly speaking, local
alignments of low-complexity regions may be high scoring,
they tend to pollute the results with many almost equivalent
alignments. These low-complexity regions are important for a
variety of neurodegenerative diseases [36], but have histori-
cally been problematic to characterize via alignment. Due to
these many improvements, BLAST has been one of the prime
workhorses of bioinformatics for decades, and was, as of a
2014 study, the 12th highest cited paper in any scientific field
of all time [37].

Note, however, that with BLAST, we have begun to break
the symmetry of the two sequences to be aligned. Although
our goal is still to find optimal local alignments between
two sequences, the algorithm performs the word-neighborhood
search around only the query sequence. This can reduce the
total amount of computation when we sequence the genome
of a new species and wish to determine how it compares to
another related species [38]; the word-neighborhood filtering
is only done once. One important natural generalization of
this problem is the multiple sequence alignment problem,
where we have a collection of related genomes or proteins
that we wish to simultaneously align to determine homology
(similarity) [39], [40]. Here, though, we specifically consider
the asymmetric alignment problem: biologists often have a
specific (often short) query sequence that they wish to compare
against a collection of many other existing sequences in a large
database. BLAST is fast enough to serve in this function,
but in so doing, it must perform a linear loop over each of
the sequences that it scans in the database to find matching
k-mers (although we used the more generic terminology
‘k-word’ earlier, ‘k-mer’ is the term bioinformaticians have
settled on; k is typically 8-16 for nucleotide comparisons
and 3-7 for amino acid comparisons.) However, the asymmetry
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between query and database can be further exploited to reduce
runtime by preprocessing the database. One of the early
examples of this was in 2002, when BLAT (BLAST-like
alignment tool) [41] was introduced to speed up search by pre-
indexing the database sequences for k-mers. Though BLAT
is designed mostly as a BLAST-replacement, it presages the
preprocessing-heavy techniques we will cover in the remaining
sections of this paper.

C. Shotgun Assembly vs. Alignment

The advent of ‘shotgun’ genomic sequencing technologies
brought with it many text processing challenges. Shotgun
sequencing is defined by not ‘reading’ the entire chromosome
in one go; rather, it produces noisy data on ‘reads’, or
random overlapping substrings of the chromosomal sequence
[42]-[44]. The task of genome ‘assembly’ is to reconstruct
the original genomic sequence from these random noisy
substrings, generally by aligning and merging overlapping
fragments [45]. It is closely related to the shortest common
superstring problem [46], [47], though often the most likely
sequence is not always the shortest superstring. Genome
assemblers date back to the early 1980s [48] and have
seen continual development and research in the last several
decades [49]-[56]. It is not quite the sequence search or align-
ment problem, and so we do not focus on it in this review,
but it is an important problem in its own right, making
use of a whole host of algorithmic tools, including de
Bruijn graphs [57], the Burrows-Wheeler Transform [58], the
FM-index [59], and more [26].

However, given the successful assembly of the genome of a
species—famously, some notable ones including the bacterium
Haemophilus influenzae, yeast, fruit fly, and of course human
genomes [60]-[64]—it is no longer necessary to perform a
full assembly to analyze the genome of an individual member
of the species. Instead, biologists use the already assembled
genome as a template and align (or ‘map’) each of the reads
to a similar location in that template. By keeping track of
the variations from that template, it is possible to produce
the genome of an individual at much lower cost [52], [65].
With personal and clinical genomics becoming ever more
routine [66]-[69], mapping and and sequence comparison are
very much in the limelight.

With Next-Generation Sequencing (NGS) technologies, read
lengths became shorter (50-200 letters, or base pairs) yet
more frequent [70]. This development makes read mapping
a highly asymmetric variant of the standard sequence com-
parison problem. We now have billions of short reads that all
need to be aligned to a single (relatively) static genome [71].
Additionally, BLAST and S-W are both capable of finding
local alignments that are of much greater Levenshtein distance
than we normally expect during NGS read-mapping; since read
mapping is generally performed for sequences from the same
species, not only are variations and mutations rarer, but we
also readily accept not finding any reasonable alignment for a
subset of the reads, labelling those reads ‘unmappable’ [72].
This combination of characteristics permits the development
of a number of other read-mapping specific optimizations to
the sequence comparison problem.
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Classic methods for read mapping are indeed still versions
of sequence similarity search like BLAST, but take advan-
tage of a stable database and do significantly more clever
preprocessing of it, in the form of suffix trees [73], [74],
the FM-index [59], [75], and hash tables [76], [77]. The two
most popular Illumina short-read mappers are BWA (Burrows-
Wheeler Aligner) [78] and Bowtie 2 [79], though others
such as SNAP [80] are also popular for specific settings.
All of these methods gain considerable speed over their more
general purpose sequence comparison brethren by indexing
all the k-mers of the target genome in a fast, compressed data
structure (through e.g. the FM-index or a hash table), so when
a query read is input, they simply have to match k-mers in the
query read to k-mers in the genome to find a starting point for
a local alignment. Additionally, because read mapping admits
lower sensitivity than sequence comparison search (it is not
a travesty if a few reads do not get mapped), many mappers
also employ a less sensitive ‘seed-and-extend’ strategy instead
of a full local alignment: e.g. some early mappers (such as
Bowtie 1 [81]) ignored insertions and deletions because those
are expensive to include, although some mappers do provide
the option of performing a full Smith-Waterman alignment
(e.g. BWA-SW [78]).

We note here that there are several variants of the read
mapping problem. The most common is ‘best-mapping’, which
seeks to find the highest scoring local alignment of the entire
read to the genome. Alternately, the ‘all-mapping’ task can
be thought of as a threshold variant of the task, where given
a threshold, we seek to find all local alignments of the read
with score above that threshold. Finally, the ‘any-mapping’
task seeks only to find a single local alignment of the read
above that threshold. We note that the all-mapping task is
most similar in spirit to the sequence comparison task covered
in the last section. Importantly, while we have presented
the sequence comparison component of read mappers, read
mapping is not a simple database search for approximately
matching strings. Instead, modern read mappers will often
make use of additional information about the genome sequenc-
ing machine’s confidence in its nucleotide measurements to
build a probabilistic model of best matches. For more details
on the vast field of read-mapping algorithms, we refer the
reader to several other surveys [26], [82], [83].

III. RETURN TO METRIC ROOTS

Much of our story in the previous section has had to do
with specialization of methods to the particular bioinformatics
variants of similarity search. Along the way, the mathe-
matical generality of Levenshtein edit distance and Smith-
Waterman local alignment has given way to fast heuristics
based on matching k-mers. Especially once it came time
for read mapping, the algorithms gained effectiveness par-
tially through assumptions (both implicit and explicit) on the
nature of particular sequencing technologies—indeed, as 3rd
generation sequencing technologies (e.g. Pacbio [84], Oxford
Nanopore [85], 10x [86]) become available, new mappers have
been developed specifically for them [87]-[90].

However, Loh, Baym, and Berger [91] introduced another
family of methods that leveraged the compressive structure of
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biological sequences (due to evolution) to reduce computation.
In a later paper, also from Berger’s group, Yu et al. [20]
observed and formalized that when data has low fractal
dimension (defined below) [92], [93], one can often preprocess
a database such that a sequence comparison query against
it takes O(S) time, where S is the metric covering number
of the database, a quantity closely related to both the metric
(Kolmogorov) entropy [94]-[96] and Shannon entropy [97] of
the database. We now discuss this result and how it can be used
to accelerate general similarity search in many applications,
from sequence comparisons to protein structure to mapping
reads to astronomical spectra [91], [98]-[100].

A. Metric Entropy and Fractal Dimension

A metric space (X, d) is any set of points X on which we
define a distance function d : X x X — R that satisfies the
three metric properties; i.e. for any z,y,z € X

1) dz,y) =0 <= x=y

2) d(z,y) = d(y,x)

3) d(x, z) < d(z,y) + d(y, ).

Consider a set A C X, where (X, d) is a metric space. Let
B(p,r) = {z € X|d(z,p) < r} be a metric ball of radius r
around a point p.

Definition 3.1: The internal covering number N (A) is

the fewest number of points ai,...,a,, € A such that the
balls B(ay,€),...B(ay,€) cover A.
Note that it is also possible to define an external covering
number where the ball centers are not necessarily in A, but
can be drawn from any point in X . However, for our purposes,
the internal covering number, where the ball centers a; € A,
is easier to work with.

Definition 3.2: The metric (Kolmogorov) entropy N (A)
is the largest number of points aq,...,a, € A one can find
in A that are e-separated, that is d(a;,a;) > € for all ¢ # j.

It is easy to see that N§™t(A) < Nit(A) < Net(A); that
is to say, the metric entropy at ¢ and 2¢ bound the internal
covering number on both sides, so these concepts are roughly
equivalent. As an aside, we use notation and definitions
from Tao [96], [101] above. Note that some other sources
define metric (Kolmogorov) entropy as log N¢"*(A) [95],
to match more closely the standard definitions of Shannon
entropy.

Kolmogorov entropy was first defined in the context of
dynamical systems to quantify the amount of information
needed to predict the future state of a trajectory to within
e-sided hypercubes [94], [95]. However, it can be intuitively
understood as the amount of information needed to specify
the location of a point @ € A to within tolerance ¢ when
given knowledge of the set A. Given a minimum cardinality
internal covering B(ay,€),..., B(an,€) of A, we can specify
a’s position to within error ¢ by producing a; such that
a € B(ai,e€). Thus, it takes log N (A) bits of information
to specify a’s position.

Thus one might ask, why define metric entropy without
the logarithm? Consider the following: let X be the space
of strings over a fixed alphabet with the Levenshtein distance
as metric. Then given two strings 1 and x5, we can encode
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z9 in terms of x; via the pairwise alignment, which we
will denote via xo — x1—i.e. we keep a list of the ordered
insertions, deletions and substitutions needed to convert
to 9. For strings ©; = AAAACCCC and x5 = AAACCCTG,
xo —x1 = {(del, *,4), (sub, C,7), (ins, G, 8) }. Each edit can
be encoded in O(logn), where n is the maximum of the
lengths of z; and z2, bits of information because the choice of
indel or substitution takes constant additional information once
the position in the string is specified. Let the Shannon entropy
H (x1) of a string be the number of bits of information needed
to specify that string (bounded above by 2n for a 4-letter
alphabet). Given an encoding as an edit list, the Shannon
entropy H({x2 — x1}) can be bounded by the number of
edits times the logarithm of the string length. This implies
that the Shannon entropy of the concatenation of two strings
H({x1,22}) < H(x1) + H(xo — 21).

Hence, for |A| < oo, H(B(a;,e) C A) < |B(a;,e) C
Alelog(n) + H(a;). That is to say, we can encode the entire
metric ball by encoding the center element, and then encoding
the list of edits needed to form the other objects within the
ball—note that depending on the distribution within the ball,
the optimal encoding need not use the center as reference,
but that still provides a useful upper bound. Given a suitable
uniformity assumption on the number of elements within each
of the balls of an internal cover on A (i.e. all balls have
size 6(K), for some constant /) and the lengths of the a;’s
(all bounded by n), this analysis shows that the covering
number is proportional to the Shannon entropy of the dataset.
As such, defining metric entropy without the logarithm makes
it (roughly) proportional to the Shannon entropy under these
circumstances. We will soon see that when these conditions
are satisfied, a straightforward cluster-based similarity search
has runtime roughly linear in the metric entropy, or covering
number (Figure 2.).

For the coming analysis, we will also need an additional
tool from fractal geometry [92].

Definition 3.3: The fractal (Minkowski) dimension

log(N;"(4))

log(1/e)
However, for a finite set of points, the Minkowski dimension
is always 0. Therefore, we also define the following.

Definition 3.4: The local fractal dimension at a scale r and
range s is

d(A) = liméi,o

|B(a,r + 5)|/|B(a,r)|
(r+s)/r

Intuitively, we use fractal dimension to describe the intrinsic
scaling behavior of our set A with respect to the number of
points contained in a metric ball as we vary the radius of the
ball. When the fractal dimension is low, that implies that all
of the set A lives close to a low-dimensional manifold, and is
not dense in the space X, allowing us to avoid the curse of
dimensionality which often troubles similarity search [102].

d(A,r,s) = max log

B. Clustered All-Neighbors Similarity Search

Building upon the aforementioned concepts, Yu et al. [20]
introduced to bioinformatics a clustered all-neighbors
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similarity search, which they called ‘entropy-scaling search.’
Entropy-scaling search for queries in biological databases is
often orders of magnitude faster than existing methods.

Consider now a simple organization of the database of items
A into clusters corresponding to a minimal internal covering
of metric balls of fixed radius r around points a1, ...,ag; i.e.
a simple metric search tree [103], [104]. Given a query point
g and a query radius s, we wish to find B(gq,s) C A. By the
triangle inequality, we know that

B(gs)c |

i:d(a;,q)<r+s

Bla;,r).

We can thus find B(q,s) by first searching for ball centers,
and then searching only within nearby balls. Then, given
some uniformity assumptions on the sizes of the clusters
(i.e. that the largest cluster has no more than a constant
multiple of the number of elements of the smallest cluster),
the runtime (in pairwise comparisons) of a clustered all-
neighbors similarity search is:

output size

s+ 92r d(A,s,s+2r)
T ()

O S
<~

metric entropy

scaling factor

When the local fractal dimension is small, the runtime is
dominated by the metric entropy of the database, which is
much less expensive than a naive analysis of metric search
trees would suggest [20]. We visualize this property in a
cartoon of low fractal dimension in 2D at the scale of the
search (Figure 2).

This result immediately lends itself to application for not
only finding all strings in a database within some Levenshtein
distance of a query string, but indeed similarity search in
any metric space with low fractal dimension, which biological
data exhibits [20]. However, this analysis is predicated upon
having a metric distance. Unfortunately, the E-values that are
the primary output of BLAST are not metrics. Still, because
they are derived from S-W alignment scores, themselves
often based on Levenshtein distance, we can work around
the lack of an exact Triangle Inequality by simply setting
the initial ball center search to a small constant-factor wider
radius around the query sequence. In so doing, at the cost of
some expensive preprocessing, it is possible to achieve orders
of magnitude acceleration of BLAST variants—including
genomic, protein, and metagenomic sequence comparison—
when the database is much larger than the query sequence [20],
[91], [98] (See http://cb.csail.mit.edu/cb/gems/ for some open
source software examples). Notably, as this approach is built
around preprocessing the database, it is designed to acceler-
ate existing similarity search tools, taking advantage of the
optimizations existing methods have built for the sequence
comparison primitive. For the problem of read all-mapping,
which is based directly around Levenshtein distance, the same
approach is simpler to analyze and achieves in practice 10x to
4,700x runtime improvement of existing read mappers [99].
Similar results built upon on this work can be shown for
hierarchical metric search trees [100] and in other non-
sequence applications, such as stellar spectra [100] and small

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

Fig. 2. Cartoon illustration of coverings and low fractal dimension. In this
example, points and balls are in a 2D space. The metric ball covers are the
gray circles, the green triangle represents a search query g, the inner red
circle is B(q, s), and the outer red circle corresponds to B(q, s + r). The
red circles illustrate the desired search radius for similarity search and the
needed wider search radius for finding any ball that might contain a point in
the desired search radius. The number of metric ball coverings represent the
covering number of the data, which is proportional to the Shannon entropy.
The low fractal dimension is intuitively understood as there not being too
many neighboring balls surrounding the one containing the query, and thus
the covering looks tree-like. The theory generalizes to points in a high-
dimensional space for which the balls would be hyperspheres. Figure taken
from [20].

molecule subgraph alignment (demonstrating a 150x speedup
of the last) [20].

IV. CONCLUSION

As bioinformatics data continues to grow in volume and
ease of acquisition, it is essential to develop more sophisticated
algorithms for data processing [105]. Levenshtein published
his landmark paper over half a century ago [1], forming the
foundation of sequence comparison search. Although some
modern bioinformatics heuristics using k-mer matching have
partially supplanted the direct optimization of Levenshtein
distance through dynamic programming, his formulation of
metric string distance remains relevant to this day and a source
of inspiration for active research.
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