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Abstract 

 

We previously proposed that portfolio theory and mean-variance 

optimization be augmented to incorporate investor aversion to 

leverage, and illustrated optimal levels of portfolio leverage. We 

suggest here a new specification for leverage aversion, which may 

better capture the unique risks of leverage. We also introduce 

mean-variance-leverage efficient frontiers, comparing them with 

conventional mean-variance efficient frontiers, and develop the 

mean-variance-leverage efficient region, which shows that leverage 

aversion can have a large impact on portfolio choice. 
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Leverage Aversion, Efficient Frontiers, and the Efficient Region 

Bruce I. Jacobs and Kenneth N. Levy 

 

In Jacobs and Levy (2012), we proposed that portfolio theory and mean-

variance utility (Markowitz 1952) be augmented to incorporate investor 

aversion to leverage. Mean-variance optimization determines optimal security 

weights by considering portfolio expected return and variance of portfolio 

return. To the extent that leverage increases a portfolio’s volatility (the square 

root of variance), mean-variance optimization captures some of the risk 

associated with leverage. But it fails to capture other components of risk that 

are unique to using leverage, including the risk of margin calls and forced 

liquidations (possibly at adverse prices), losses beyond the capital invested, and 

the risks and costs of bankruptcy. 

For an investor with no tolerance for leverage, optimal mean-variance 

portfolios are unleveraged (“long-only”), and mean-variance optimization is 

appropriate. But, for an investor able to tolerate leverage, using mean-variance 

optimization is equivalent to assuming that the investor has an infinite 

tolerance for leverage or, stated differently, has no aversion to leverage. In 

practice, however, investors are leverage averse. For example, if offered a choice 

between a portfolio having a particular expected return and variance without 

leverage and another portfolio that offers the same expected return and 

variance with leverage, investors would prefer the portfolio without leverage. 

The conventional mean-variance utility function cannot distinguish between 

these two portfolios because it does not represent an important aspect of 

investor behavior, namely, investor aversion to leverage. 

When investors employ leverage, they generally constrain it in an ad hoc 

manner; that is, they choose a level of leverage with which they feel comfortable 

and impose it on the portfolio. Jacobs and Levy (2012) suggested determining 
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the optimal level of leverage by using a utility function that includes an explicit 

leverage tolerance term in addition to the traditional volatility tolerance term. 

That article provided one way to specify the leverage tolerance term and 

illustrated optimal portfolio leverage levels when both volatility and leverage 

aversion are included in the utility function.  

In this article, we provide an alternative specification of the leverage 

tolerance term, which may better capture the unique risks of leverage. We 

introduce mean-variance-leverage efficient frontiers and compare them with 

conventional mean-variance efficient frontiers. We also develop the concept of a 

mean-variance-leverage efficient region. An analysis of the mean-variance-

leverage efficient frontiers and the efficient region shows that leverage aversion 

can have a large impact on portfolio choice. 

 

Specifying the Leverage Aversion Term 

The leverage aversion term that augments a mean-variance utility 

function can be specified in different ways. Jacobs and Levy (2012) suggested 

the following: 
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where P  is the portfolio’s expected active return relative to benchmark, 2

P  is 

the variance of the portfolio’s active return,   is the portfolio’s leverage, and c 

is a constant defined below.1 With this specification, risk tolerance essentially 

changes from a one-dimensional attribute (as in mean-variance optimization) to 

a two-dimensional attribute, with the first dimension being the traditional risk 

tolerance, renamed as volatility tolerance V , and the second dimension being 

leverage tolerance, L . We used a squared term for leverage so that both risk 

components would have similar functional forms. Leverage was defined as: 
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where ih  is the portfolio holding weight of security i  for each of the N securities 

in the selection universe.2 

To investigate this utility function, illustrative ranges for the tolerances 

were determined. As one reference point, a value of 0V   corresponds to an 

investor who is completely intolerant of active volatility risk. Such an investor 

would choose an index fund. As another reference point, a value of 1V   

causes quadratic utility of return to be equivalent to log-utility of wealth, a 

utility function often used in the finance literature (Levy and Markowitz 1979). 

Thus, we chose [0,2].V   For illustrative purposes, we chose L  to span the 

same range as .V  

A constant c  was selected that would result in the two risk terms 

(volatility risk, 2 ,P  and leverage risk, 2c ) having similar orders of magnitude. 

In particular, c  was chosen to be the cross-sectional average of the variances of 

the securities’ active returns. That is, 
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where 2

i  is the variance of the active return of security i . Because portfolios in 

practice generally have leverage levels ranging from zero to about two (very 

highly leveraged portfolios are relatively few in number, but can be large in 

asset size), the product 2c should be of a similar order of magnitude to 2 ,P  so 

that similar values of V  and L  lead to similar levels of disutility. 

Using the constant c  to specify the leverage tolerance term has certain 

intuitive appeal. In addition to resulting in similar orders of magnitude for the 

volatility and leverage terms, the use of active returns in computing c  is 
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congruent with the use of active returns in the computation of portfolio 

expected active return and variance. Moreover, from an implementation 

perspective, the use of a constant means that the utility function can, if 

desired, be restated as a quadratic optimization problem, which is 

advantageous because quadratic solvers are readily available. 

However, the unique risks of leverage may relate more to a portfolio’s 

total volatility than to the volatility of its active returns. That is, the risk that 

portfolio losses will trigger a margin call or exceed the capital invested depends 

on the portfolio’s total volatility. Furthermore, this leverage dimension of risk 

will not be constant, but will vary across different portfolios having different 

volatilities. 

 

Specification of the Leverage Aversion Term Using Portfolio Total 

Volatility 

We introduce here another possible specification of an augmented mean-

variance utility function that includes a leverage aversion term: 

 
2 2 21

2
.

1

2
P P T

LV

U   
 

     (4) 

where 2

T  is the variance of the leveraged portfolio’s total return. This leverage 

aversion term assumes that the risks of leverage rise with the product of the 

variance of the leveraged portfolio’s total return and the square of leverage. 

This specification may better capture the portfolio’s risk of margin calls and 

forced liquidations. 

If i  is the expected active return of security ,i ib  is the weight of security 

i in the benchmark, ix  is the active weight of security i  (and by definition 

i i ix h b  ), 
ij  is the covariance between the active returns of securities i  and 
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,j  and ijq  is the covariance between the total returns of securities i  and ,j  

then Equation (4) can be written as: 
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Using Equation (2), and since i i ih b x  , Equation (5) becomes: 
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Equation (6) is the utility function to be maximized. In practice, the utility 

function in Equation (6) is more difficult to optimize than that in Equation (1) 

because   is a function of the s,ix  so the leverage risk term requires powers up 

to and including the fourth order in the ix  terms. We show below a method to 

solve for optimal portfolios using this utility function. 

 

Optimal Portfolios with Leverage Aversion Based on Portfolio Total 

Volatility 

To examine the effects of leverage aversion using this new specification, 

we used the enhanced active equity (EAE) portfolio structure, as in Jacobs and 

Levy (2012). An EAE portfolio has 100% exposure to a underlying market 

benchmark while permitting short sales equal to some percentage of capital 

and use of the short-sale proceeds to buy additional long positions. For 

expository purposes, we assumed the strategy is self-financing and entails no 

financing costs.3 An enhanced active 130–30 portfolio, for instance, has 

leverage of 60% and an enhancement of 30%. 

We found EAE portfolios that maximize the utility function represented 

by Equation (6) for a range of volatility and leverage tolerance pairs (V, L), 
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subject to standard constraints. The standard constraint set for an EAE 

portfolio is 
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Equation (7) says the sum of security active underweights relative to 

benchmark (including short positions) equals the sum of security active 

overweights—the full investment constraint. Equation (8) says that the sum of 

the product of security active weights and security betas equals zero; that is, 

the net (long-short) portfolio beta equals the benchmark beta. In addition to 

these standard constraints, we constrained each security’s active weight to be 

between -10% and +10%. 

We maximized the utility function in Equation (6) using a fixed-point 

iteration. To explain this procedure, we rewrite Equation (6) as the following set 

of two equations:  
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 (9) 

We chose an initial estimate of 2 ,T  and used this as a constant to 

maximize the utility function in Equation set (9). This maximization provided 

estimates of the six , which were used to compute a new estimate of 2

T  using 

the second equation in Equation set (9). With the new estimate of 2 ,T  we 

repeated the optimization to find new estimates of the six . This iteration was 

repeated until successive estimates of 2

T  differed by a de minimis amount. 
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 Using the same data (for stocks in the S&P 100 Index) and estimation 

procedures used in Jacobs and Levy (2012), and the same range of leverage 

and volatility tolerances, we derived the enhancement surface for the optimal 

levels of portfolio leverage using the new specification of leverage aversion. The 

optimal levels of enhancement were slightly higher than, but substantially 

similar to, those of the earlier specification. The appendix explains the reasons 

for the small differences in the optimal levels of enhancement between the two 

specifications. 

 

Efficient Frontiers with and without Leverage Aversion 

Figures 1 and 2 illustrate, in a two-dimensional volatility risk-return 

framework, how consideration of leverage aversion can affect the investor’s 

choice of optimal portfolio. Figure 1, for example, plots the efficient frontiers 

(the optimal portfolios) for four cases. The frontiers are computed as discussed 

in the previous section, with the fourth frontier computed without the 10% 

constraint on active security weights. The portfolios on these frontiers offer the 

highest expected active return at each given level of volatility (whether 

measured as variance or as standard deviation of active return). The frontier in 

each separate chart is mapped out by varying the level of volatility tolerance 

from zero to two while holding the level of leverage tolerance constant.  

In all the cases illustrated in Figure 1, the efficient frontier begins at the 

origin, which corresponds to the optimal portfolio when volatility tolerance is 

zero. In such a situation, the investor cannot tolerate any active volatility, so 

the optimal portfolio is an index fund, which provides zero standard deviation 

of active return and thus zero expected active return. As the investor’s volatility 

tolerance rises, the optimal portfolio moves out along the efficient frontier. 

The first panel of the figure illustrates the efficient frontier when leverage 

tolerance is 0, meaning the investor is unwilling, or unable, to use leverage, 
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hence holds a long-only portfolio. As the investor’s tolerance for volatility 

increases, the optimal portfolio moves out along the frontier, taking on higher 

levels of standard deviation of active return in order to earn higher levels of 

expected active return. These portfolios take more concentrated positions in 

higher-expected-return securities as volatility tolerance increases. The efficient 

frontier when leverage (including shorting) is not permitted can be derived from 

either a conventional mean-variance optimization or from a mean-variance-

leverage optimization with zero tolerance for leverage. As noted on the figure, 

every portfolio along the frontier is a “100-0” portfolio, meaning it is invested 

100% long, with no short positions. 

The second panel illustrates the efficient frontier when the investor’s 

leverage tolerance is 1. It is derived from a mean-variance-leverage 

optimization, where leverage entails a disutility, as specified in Equation (4). 

Again, the investor with no tolerance for volatility risk would hold the index 

fund located at the origin. But as investor tolerance for volatility increases, the 

optimal portfolio moves out along the efficient frontier, achieving higher levels 

of expected return with higher levels of volatility. 

As the plot indicates, increasing volatility is accompanied by increasing 

leverage. The optimal portfolio ranges from a 100-0 long-only portfolio to a 130-

30 enhanced active portfolio. For the investor with a leverage tolerance of 1, 

any of these portfolios can be optimal, depending on volatility tolerance. Higher 

risk-return portfolios can be achieved with less concentration of positions when 

leverage is allowed than when leverage is not allowed. 

The third panel illustrates the efficient frontier for an investor with 

infinite leverage tolerance. As discussed earlier, mean-variance optimization 

implicitly assumes an infinite tolerance for leverage—that is, no aversion to 

leverage—so it provides the same result as mean-variance-leverage 

optimization with infinite leverage tolerance. In this case, as the investor’s 

volatility tolerance increases, the optimal portfolio goes from zero leverage to 
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enhanced active portfolios of 200-100 to 400-300, etc. For the investor with 

infinite leverage tolerance, leverage does not give rise to any disutility, so this 

investor takes on much more leverage than the investors in the prior examples 

and achieves higher expected returns along with higher standard deviations of 

return, albeit with increasing leverage risk. 

The last panel is identical to the third, except that it removes the 10% 

constraint on individual security active weights. Because there is no disutility 

to leverage, and no constraint on individual position sizes, the optimal 

portfolios all hold the same proportionate active security weights but apply 

increasing levels of leverage as volatility tolerance increases. Because each 

portfolio is just a levered version of the same set of active positions, and 

because we have assumed the EAE structure provides costless self-financing 

(i.e., short proceeds are used to finance additional long positions), the efficient 

frontier is simply a straight line. In this case, ever higher levels of leverage are 

used to achieve ever higher expected returns along with higher standard 

deviations of return. As with the third panel, the same efficient frontier is 

derived whether the investor uses conventional mean-variance optimization or 

mean-variance-leverage optimization, since no disutility is associated with 

leverage. 
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Figure 1. Optimal Leverage for Various Leverage Tolerance (L ) Cases 

 

 

Efficient Frontiers for Various Leverage Tolerance Cases 

Figure 2 displays five different efficient frontiers on one chart. Each 

frontier corresponds to a different level of leverage tolerance within the leverage 

tolerance range of 0 to 2. Here zero leverage tolerance again represents an 
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investor unwilling or unable to use leverage, and higher efficient frontiers 

correspond to investors with greater tolerances for leverage. 

It might at first appear from the figure that the highest level of leverage 

tolerance results in the dominant efficient frontier; that is, the higher leverage 

that results allows the investor to achieve higher returns at any given level of 

volatility.4 But one must consider the leverage tolerance levels associated with 

each efficient frontier. When leverage aversion is considered, it becomes 

apparent that each frontier consists of the set of optimal portfolios for an 

investor with the given level of leverage tolerance. 

For example, consider the three portfolios represented by the points 

labeled A, B and C in Figure 2 (whose characteristics are provided in Table 1). 

Portfolio A is the optimal portfolio for an investor with a leverage tolerance of 1 

and a volatility tolerance of 0.24. This is a 125-25 portfolio with a standard 

deviation of active return of 5% and an expected active return of about 3.93%. 

Portfolio B, by contrast, is the optimal portfolio with the same standard 

deviation as portfolio A, but corresponding to an investor leverage tolerance of 

2, rather than 1. Portfolio B dominates portfolio A in an expected active return-

standard deviation framework, because it offers a higher expected return at the 

same level of standard deviation. But it is only optimal for an investor with a 

leverage tolerance of 2 and volatility tolerance of 0.14; it is suboptimal for an 

investor with a leverage tolerance of 1. Portfolio B represents a 140-40 

enhanced active portfolio; it entails significantly more leverage than the 125-25 

portfolio at point A. The disutility of incurring that additional leverage more 

than offsets the benefit of the incremental expected return for the investor with 

less tolerance for leverage.  

Finally, consider portfolio C, which is the optimal portfolio with an 

expected active return of about 3.93% (the same as portfolio A) for an investor 

with a leverage tolerance of 2. This portfolio also dominates portfolio A in an 

active return-standard deviation framework, because it offers the same 
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expected return at a lower standard deviation. While portfolio C is optimal for 

an investor with a leverage tolerance of 2 and a volatility tolerance of 0.09, it is 

suboptimal for an investor with a leverage tolerance of 1 for the same reason 

that portfolio B is suboptimal: it entails more leverage than portfolio A, 135-35 

versus 125-25. Again, the disutility of the additional leverage more than offsets 

the benefit of the lower volatility for the investor with less tolerance for 

leverage. 

Figure 2 demonstrates that conventional mean-variance optimization and 

efficient frontier analysis are inadequate to identify truly optimal portfolios 

when investors use leverage and are averse to leverage risk. Rather, the 

efficient frontier differs for investors with different tolerances for leverage, and 

mean-variance-leverage optimization must be used to solve for optimal 

portfolios. 

For each of the five efficient frontiers in Figure 2, volatility tolerance 

ranges from 0 (the origin) to 2 (the rightmost point on each frontier). A curve 

connecting these endpoints would identify portfolios optimal for investors with 

a volatility tolerance of two and leverage tolerances ranging from zero to two. 

For such investors, the optimal portfolio along this curve will depend on the 

leverage tolerance of each particular investor. (Note that, because different 

security active weight constraints become binding as one moves along each of 

the constant leverage tolerance frontiers, a curve connecting the endpoints 

would not be smooth.) 

With volatility tolerance of 0 and any level of leverage tolerance, an 

investor would choose the portfolio located at the origin—an index fund. With 

leverage tolerance of 0, an investor would choose from the lowest frontier 

shown the portfolio congruent with the investor’s volatility tolerance. With a 

leverage tolerance of 2, an investor would choose from the highest frontier 

shown the portfolio congruent with the investor’s volatility tolerance. The 

optimal portfolio for an investor with any pair of leverage tolerance and 
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volatility tolerance values between 0 and 2 will lie somewhere within the 

perimeter defined by the leverage and volatility tolerance frontiers of 0 and 2. 

Both volatility tolerance and leverage tolerance must be specified to determine 

the optimal portfolio for a given investor. 

Figure 2. Efficient Frontiers for Various Leverage Tolerance (L ) Cases
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Table 1. Portfolio Characteristics 

 L  V  EAE%* P  
P  

A 1.00 0.24 125-25 5.00 3.93 

B 2.00 0.14 140-40 5.00 4.39 

C 2.00 0.09 135-35 4.21 3.93 

 * Rounded to the nearest percent. 

 
 

The Efficient Region 

Figure 3 illustrates the efficient frontiers for various combinations of 

leverage and volatility tolerance when there is no constraint on the security 

active weights. Here the curve linking the optimal portfolios for an investor with 

a volatility tolerance of 2 is smooth (unlike in Figure 2). Furthermore, both the 

standard deviations of active return and the expected active returns range 

higher than in Figure 2. Figure 3 also shows efficient frontiers for investors 

with volatility tolerances of 1.5, 1.0, 0.5, 0.2, 0.1, and 0.05. As volatility 

tolerance declines from 2, the frontiers shift to the left and downward. In the 

limit, when volatility tolerance is 0, the optimal portfolio lies at the origin (an 

index fund). Depending on the investor’s leverage and volatility tolerances, the 

optimal portfolio will lie somewhere in the two-dimensional efficient region 

shown. Once again, the critical roles of both leverage and volatility tolerance 

are apparent.  
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Figure 3. Efficient Frontiers for Various Leverage (L ) and Volatility ( V )  

Tolerance Cases with No Security Active Weight Constraint 

 

Conclusion 

 Conventional portfolio theory and mean-variance optimization need to be 

augmented to incorporate leverage aversion. We propose that a leverage 

aversion term using the variance of the portfolio’s total return be incorporated 

in the investor’s utility function. We use this specification to show the effects of 

leverage aversion on the efficient frontier. 
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Conventional mean-variance optimization considers only portfolio 

expected return and risk as measured by portfolio volatility. It assumes that 

investors have infinite tolerance for leverage. In a mean-variance framework, 

highly leveraged portfolios are preferred because they offer the highest expected 

active return at each level of active risk. 

Leverage, however, entails its own unique set of risks distinct from the 

risks posed by volatility; these include the risk of margin calls and forced 

liquidations (possibly at adverse prices), losses beyond the capital invested, and 

the risks and costs of bankruptcy. Investors, in addition to being volatility-

averse, are leverage-averse. They do not have an infinite tolerance for leverage. 

The highly leveraged portfolios that result from conventional mean-variance 

optimization entail too much leverage risk for leverage-averse investors. 

We show that, when leverage aversion is included in portfolio 

optimization, lower mean-variance-leverage efficient frontiers with less leverage 

are optimal. The frontier that is optimal for a particular investor depends upon 

that investor’s leverage tolerance. The optimal portfolio on that frontier for that 

investor depends upon that investor’s volatility tolerance. 

We develop a two-dimensional mean-variance-leverage efficient region. 

The location of a given investor’s optimal portfolio within that region depends 

on the investor’s leverage and volatility tolerances. The critical roles of both 

leverage tolerance and volatility tolerance are apparent. 

 

 

_____________________________ 
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Appendix: Comparison of the Enhancement Surfaces Using Two Different 

Specifications 

As in Jacobs and Levy (2012), we chose 100 100  pairs of values for the 

tolerances (V, L) to cover the illustrative range [0.001, 2] for a total of 10,000 

optimizations. Tolerances for volatility and leverage can be greater than 2, and 

as leverage tolerance approaches infinity, the optimal portfolio approaches that 

determined by a conventional mean-variance utility function. 

To estimate the required inputs for Equation (6)—security expected active 

returns, covariances of security active returns, and covariances of security total 

returns—we used daily return data for the constituent stocks in the S&P 100 

Index over the two years (505 trading days) ending on 30 September 2011. For 

estimating security expected active returns, we used a random transformation 

of actual active returns while maintaining a skill, or information coefficient 

(correlation between predicted and actual active returns), of 0.1, representing a 

manager with strong insight. For a description of the estimation procedure 

used, see Jacobs and Levy (2012). We assumed the future covariances were 

known, so we calculated them based on the actual daily active returns and the 

actual daily total returns respectively. 

The results from this specification were broadly similar to the results 

from using the specification in Jacobs and Levy (2012), which used a constant 

based on an average of individual securities’ active return variances rather 

than the total variance of individual portfolios. At zero leverage tolerance, the 

optimal portfolios lie along the volatility tolerance axis and have no leverage 

and hence no enhancement (“long-only”). At zero volatility tolerance, the 

portfolios lie along the leverage tolerance axis and have no active return 

volatility and hence hold benchmark weights in each security (“index fund”). 

For portfolios above the axes, optimal enhancement is approximately 

independent of volatility tolerance if the latter is large enough. However, the 

optimal enhancement is highly dependent on the level of leverage tolerance 
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chosen. This supports our assertion that leverage tolerance should be 

considered when selecting an optimal portfolio. 

The optimal enhancements using the new specification are slightly 

higher (by less than 5 percentage points) than those derived under the old 

specification. This is not surprising giving the relationship between the two 

specifications. Note that the utility function represented by Equation (4) is 

equivalent to that of Equation (1) if one multiplies the leverage risk term of 

Equation (1) by the ratio: 
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Using the expression for the variance of the portfolio’s total return from 

Equation (5) and also Equation (3), Equation (A1) can be rewritten as: 
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This expression is the ratio of the portfolio total return variance to the average 

(across all securities in the selection universe) of the variance of each stock’s 

active returns. Calculating Equation (A2) across the 10,000 optimal portfolios 

found by using the same constraint set for an enhanced active equity (EAE) 

portfolio and the same sample of S&P 100 stocks as in Jacobs and Levy (2012), 

we found 0.85.R   

As might be expected with a ratio close to 1, the results from 

optimization using Equation (4) were similar to those from using Equation (1). 

The major difference is that the new specification indicates that slightly more 

leverage is optimal than in the earlier specification, within the risk tolerance 

ranges examined. This is because the ratio R is less than 1, implying a lower 

penalty for leverage risk in Equation (4) than in Equation (1). 
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It is difficult to draw general conclusions from this comparison, however, 

because R will vary depending upon the portfolio structure, the level of the 

enhancement, the sample data, etc. In particular, the optimal portfolios in 

Jacobs and Levy (2012) derive from a constant estimated from the average of 

individual securities’ active return variances. The results reflected in this 

article rely on the total return variance of a diversified portfolio. Since total 

return variance is larger than active return variance, this will raise R, while 

portfolio diversification effects will lower R. The net effect depends on the 

particular situation, so R may be greater than or less than one.  
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Endnotes 

                                                           
1
 The use of   

  as the measure of volatility risk assumes that active returns are normally 

distributed and that the investor is averse to the variance of active returns. If the return 

distribution is not normal, displaying skewness or kurtosis (“fat tails”) for instance, or the 

investor is averse to downside risk (semi-variance) or value at risk (VaR), the conclusions of 

this article still hold. That is, the investor should include a leverage aversion term in the utility 
function, along with the appropriate measure of volatility risk, with neither risk term 

necessarily assuming normality. 

Leverage may give rise to fatter tails in active returns. For example, a drop in a stock’s 

price may trigger margin calls, which may result in additional selling, while an increase in a 

stock’s price may lead investors to cover short positions, which can make the stock’s price rise 
even more.  

Also, note that if volatility risk is measured as the variance of total returns (such as for 

an absolute return strategy) rather than the variance of active returns, the conclusions of this 

article still hold.  
2
 When the investor’s leverage tolerance is zero, portfolio leverage, Λ, will be zero. Note that 

since short positions entail unlimited liability, they, like leveraged long positions, expose the 

portfolio to losses beyond the invested capital. Hence, investors with zero leverage tolerance 

would impose a non-negativity constraint on the ih s--that is, a no shorting constraint. 

3 In practice there would be financing costs (such as stock loan fees); furthermore, hard-to-

borrow stocks may entail higher fees. For more on EAE portfolios, see Jacobs and Levy (2007). 
4 Note that the expected active returns shown do not reflect any costs associated with leverage 

related events, such as forced liquidation at adverse prices or bankruptcy. These costs, 
however, are reflected in the disutility implied by the leverage aversion term.  


