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1 Introduction

The economics profession lacks standard models of the impact of debt accu-

mulation on the behaviour of key macroeconomic variables, such as interest

rates and consumption. This paper takes a small step towards filling this

gap, developing a model of the dynamic response of an exchange economy

to income shocks in an incomplete market setting. Introducing constraints

on leverage we are able to capture, in a modern modelling framework, a

dependence of real interest rates on sectoral balance sheets driven by pre-

cautionary saving. This allows us to address questions, neglected in recent

literature, about the relationship between aggregate leverage, consumption

and real interest rates.

This modelling exercise is motivated by the combination of growing debt

to income ratios and falling short term real interest rates of the past third of

a century. This growth in debt is highlighted by the recent Geneva report on

the global economy (Buttiglione et al. [2014]). Their Figure 4.1 shows that

the ratio of US non-financial debt to income nearly doubled over twenty five

years, from approximately 125% of GDP in 1981 to 240% of GDP in 2009

(in the aftermath of the global financial crisis) and has remained at this high

level over the subsequent five years. Globally (their Figure 1.1) non-financial

debt to income ratios climbed from 165% of GDP in 2001 and continued to

rise after the global financial crisis to reach 210% of GDP in 2013.

Over the same period global three month real interest rates have fallen

markedly, from a peak of over 5% in 1982 to -2% in 2013 (IMF [2014]) Fig-

ure 3.2)).1 (Blanchard et al. [2014]) discuss three explanations of this decline

in the natural or equilibrium real rate of interest: higher global savings,

1according to this same measure real short term rates were also negative during the
1970s, in the range -1% to -3%
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lower investment and a shift in portfolio preferences from riskier to safer as-

sets. While referring to possible increases in precautionary saving because of

greater income uncertainty, they do not mention the mechanism that emerges

in our modelling where higher sectoral leverage increases precautionary sav-

ing and reduces real interest rates.

Our model has two sectors: a leveraged borrowing sector and a lending

sector that owns the debt claims issued by the borrowing sector. This al-

lows us to embed precautionary saving of the kind familiar from standard

microeconomic literature in a general macroeconomic equilibrium, yielding

simple and intuitive if somewhat counterfactual predictions. In our model

the optimal choices of consumption mean that shocks that increase leverage

result in declines in real interest rates that reduce the burden of debt repay-

ment on the borrowing sector. This decline of real interest rates, together

with relatively modest reductions of consumption, is the mechanism through

which the borrowing sector ‘deleverages’, reducing the ratio of debt to income

towards a desired target level.

In the interests of tractability we impose some strong modelling assump-

tions. Decision making in each of the two sectors is captured by a single

infinitely lived representative agent with preferences represented by a stan-

dard discounted expected utility function. The model is though intended

to capture the behaviour of large number of atomistic households within

each sector, so the representative agents take no account of the impact of

altering consumption on the real real rate of interest (households are price

takers). Time is continuous and there is a single non-storable good that may

be costlessly exchanged between the sectors. The model is non-monetary

with the real interest rate adjusting instantaneously to ensure goods market

equilibrium. Expected output of each sector is a constant (i.e. this is a pure
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exchange economy with no capital accumulation or labour input).

Following the example of Clarida [1990] we incorporate heterogeneity by

assuming that agents have different time discount rates, relatively high in

the impatient (borrowing) sector and relatively low in the patient (lending)

sector. Shocks are increments to a diffusion process that directly raise the

output of one sector and correspondingly reduce the output of the other sec-

tor. Shocks to income are uninsurable (our incomplete market assumption).

Borrowing is subject to an exogenous leverage constraint. Real interest rates

adjust instantaneously to achieve goods market clearing (so in this model

there is no role for money or monetary policy).

In this setting the consumption decisions of the borrowing sector are the

outcome of two conflicting incentives: the desire to consume earlier rather

than later in time; and the desire to save in order to reduce debt and so

be better able to manage future income fluctuations. The lending sector in

contrast always seeks to consume later rather than earlier. Net savings are

further affected by the income effects of (temporary) interest rate fluctua-

tions. When interest rates are comparatively low this raises the income and

savings of the borrowing sector and lowers the income and savings of the

lending sector.

The outcome is a general equilibrium ‘buffer stock’ model, much like that

which emerges from standard microeconomic models of precautionary saving

by individual households. The impatient borrowing sector seeks to move to-

wards a target or buffer leverage ratio; but with the nuance that fluctuations

of interest rates take place to ensure a mutually consistent general equilib-

rium outcome so that when leverage is high interest rates and income on

debt are low, and the patient lending sector is willing to decumulate its debt

holdings in order to maintain consumption.
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This is the solution to a relatively standard stochastic optimal control

problem. We are able to obtain (and numerically solve) an ordinary differ-

ential equation for the consumption of the impatient borrowing sector as a

function of the single state variable (leverage) and the Fokker-Planck equa-

tion that characterises the dynamics of the state variable over time.2 Real

interest rates and consumption of the patient lending sector then emerge

from market clearing conditions. We are able to show that there is only one

solution to these equations consistent with the requirement that the lever-

age constraint is never reached (if it was to be reached then the impatient

household would be subject to an infinite local volatility of consumption,

something ruled out by the assumption of a standard expected discounted

utility function).

While our contribution is solidly in the modern tradition of representa-

tive agent modelling with forward looking expectations, we revive themes

from much older literatures. We are able to discuss the consequences of the

distribution and composition of wealth for the dynamics of consumption and

interest rates highlighted, for example, by both the Austrian School (von

Böhm-Bawerk [1959],Von Mises [1963]) and by Metzler [1951]. We show,

in particular, that a sectoral shock to income and accompanying increase

in leverage can be absorbed without substantial declines in consumption

through a temporary decline in the real rate of interest. This market mecha-

nism effectively protects households against such shocks even when financial

markets are incomplete so these shocks cannot be directly insured. Such ad-

justment may however be prevented if, as suggested in the overlapping gen-

erations model of ‘secular stagnation’ proposed by Eggertsson and Mehrotra

2The Mathematica notebook used for numerical computation of this solution and the
creation of our Figures 1-9, together with a freestanding .cdf with no requirement for a
Mathematica license that can be used to explore the impact of changing model parameters,
are downloadable from www.leveragecycles.lboro.ac.uk.
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[2014], the zero lower bound on nominal interest rates prevents the required

adjustment of real interest rates.

The paper is organised as follows. Section 2 locates our work in relation

to previous literature. Section 3 sets out our model, distinguishing the base-

line deterministic special case and outlining our solution method. Section 4

presents numerical calculations of our solution and investigates the result-

ing dynamics of interest rates and consumption. Section 5 summarises and

concludes. An Appendix provides technical details of our solution.

2 Related literature

Our analysis relates to four distinct strands of the literature. One is recent

work on equilibrium models of international investment and saving imbal-

ances (and associated growth of debt) and of the level of global real interest

rates. Caballero et al. [2008] assume a fall in the level of ‘pledgability’ of pro-

ductive assets in one country (R interpreted as emerging market countries)

relative to that of productive assets in the other country (U interpreted as

advanced countries such as the US). A reduction in pledgability in (R) (which

they suggest was triggered by the Asian crisis) leads to a fall in global real

interest rates and the emergence of a current account surplus in R and per-

manent current account deficit in U (as savers in R acquire assets from U).

Caballero and Krishnamurthy [2009] offer an alternative explanation in

which demand for safe assets reduces global real interest rates. They assume

stochastic shocks to asset values that cannot be diversified away by lending

and borrowing between countries (a slightly different incomplete markets

assumption than we make because we focus on income shocks). With the

further assumption of an exogenous stochastic inflow of investment funds
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and exogenous deterministic withdrawal of external investment they show

how an increase in demand for safe assets from overseas investors pushes

down domestic interest rates, reduces the premia on risky assets held by US

investors, and leads to greater leverage by the intermediaries that issue US

financial securities.

Our work is complementary, focussing on the dynamic response of debt

and real interest rates to shocks in the presence of leverage constraints rather

than on trends in the level of debt and real interest rate. The observed com-

bination of trend increases in debt and trend decline of real interest rates can

emerge in our setting (this does not require market incompleteness or indeed

income uncertainty), when the initial leverage of our impatient households is

initially much lower than the desired target level. We do not however claim

that our assumed differences in preferences is an entirely adequate expla-

nation of global imbalances, these require fuller explanation possibly with

reference to institutional, cultural and political as well as economic mecha-

nisms.

A second recent strand of literature, like us, investigates the dynamic re-

sponse of the macroeconomy and financial markets to shocks assuming agent

heterogeneity and incomplete financial markets.3 Amongst several contri-

butions He and Krishnamurthy [2013] model risk premia on financial assets

assuming a representative financial intermediary and representative final in-

vestor. They demonstrate how an equity constraint on the financial inter-

mediary can result in jumps in required returns on risky assets following a

3There is also a longstanding literature exploring the macroeconomic and general equi-
librium implications of market incompleteness (see amongst others Magill and Shafer
[1991], Magill and Quinzii [1994, 1996]). Much of this literature explores relatively general
abstract specifications and investigates variety of other issues, including the existence and
uniqueness of equilibrium, Pareto optimality and efficiency and potential departures from
fundamentals (‘bubbles’) in the prices of financial assets and explanations of the equity
premium puzzle.
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negative shock to asset values. Another line of work has explored how changes

in monetary conditions and collateral valuations can create a ‘leverage cy-

cle’ (see for example Geanakoplos [2009] and Geanakoplos [2010]). Adrian

and Boyarchenko [2013] show how a ‘value at risk’ constraint can amplify

shocks through financial intermediaries leverage adjustments. Brunnermeier

and Sannikov [2014] who model the decisions of equity constrained ´experts’,

who have a comparative advantage in managing productive assets and who

trade both financial and productive assets with unconstrained households.

They demonstrate how falls in expert net worth result in sales of the produc-

tive asset to households. This mechanism can lead to crisis episodes, with

persistent declines in both output and investment. Isohätälä et al. [2014]

obtain similar persistency in a model with shocks to cash flows rather than

asset productivity. Cash flow shocks that substantially increase leverage lead

relatively productive firms to rent out their capital stock to relatively less

productive households. If uncertainty of cash flows or the costs of recapital-

isation are sufficiently large then the resulting response to shocks can again

be very persistent. A mechanism very similar to our own appears in the Eg-

gertsson and Mehrotra [2014] overlapping generations model in which there

are three household sectors, the young who seek to borrow in anticipation of

income when they are older, and the middle-aged and the old who recieve

income and pay back debt. A ‘leverage shock’ in the form of a exogenous

reduction in the borrowing limit on the young leads to a reduction in the

demand for loans and requires a reduction in the real interest rate to restore

goods market equilibrium (they go on to analyse how this can in turn lead to

persistent goods and labour market disequilibrium because of the zero lower

bound on nominal interest rates and wage rigidities.

Our predictions about dynamic behaviour are rather different from much
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of this recent literature. Rather than persistency, we find instead that the

dynamic response of real interest rates and leverage to income shocks exhibits

a relatively rapid return to steady state. The decline of real interest rates

driven by precautionary saving allows reduction of the leverage of impatient

households towards desired target levels. This market response to shocks

turns out to be quite effective in compensating for market incompleteness

i.e. the absence of any direct mechanism for insuring against macroeconomic

disturbance.

Our particular modelling assumptions are drawn from another strand of

literature, examining aggregate saving and consumption in the presence of

non-diversifiable income risk and agent heterogeneity. This is an extensive lit-

erature motivated by the observation that the widely employed assumption in

much macroeconomic modelling of agent homogeneity and complete markets

is clearly rejected at the micro level, both in empirical studies of household

consumption decisions and asset pricing. In an economy with complete state

contingent securities households would be able insure themselves against id-

iosyncratic risk and consumption growth would then (given separability of

consumption from leisure and other possible determinants of marginal util-

ity) be equalized across households. Deaton and Paxson [1994] (and many

others) show that this prediction is strongly rejected by microeconomic data.4

Asset pricing behaviour has also proved difficult to reconcile with complete

market representative agent models (for example the well known equity pre-

mium puzzle of Mehra and Prescott [1985] and other anomalies, see Heaton

4These observations have resulted in an extensive theoretical and empirical literature
examining the implications of incomplete income insurance and and borrowing constraints
for the savings and consumption decisions of individual households. The resulting pre-
cautionary savings can result in sometimes substantial departures from complete market
or certainty equivalent formulations of the household consumption/ saving decision (for
discussion see Browning and Lusardi [1996]). Reviews of this literature are provided by
Carroll [2001] and Meghir and Pistaferri [2011].
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and Lucas [1995] for discussion)

Previous contributions that, like us, examine the aggregate implications

of precautionary saving include Huggett [1993], Aiyagari [1994] and Clarida

[1990]. A major issue in this branch of the literature is that, while the under-

lying model of individual household behaviour with precautionary savings is

well founded, aggregation poses a substantial challenge. This is because of

the need for optimal decision making to track and take account of the entire

distribution of wealth across households.5. Most of this literature takes a

different approach to aggregation than we do, allowing for a continuum of

heterogenous agents (whereas we have only two, patient and impatient) and

analysing the resulting steady state distribution of debt across agents and

resulting (non-stochastic) level of real interest rates (whereas we explore the

dynamics of debt and real interest rates). A further difference is that Huggett

[1993] and Aiyagari [1994] assume that all heterogeneity is entirely ex-post

(arising because of a different history of idiosyncratic income shocks). In this

setting they are able to demonstrate both a reduction in the equilibrium real

rate of interest (as in our modelling this is a consequence of precautionary

saving) and also (in Aiyagari [1994]) a reduction in the stock of productive

capital.6

Our model is closest to the Clarida [1990] investigation of the steady state

cross-country distribution of international debt and current account deficits,

wherein this ex-post heterogeneity is combined with an additional ex-ante

5See Guvenen [2011] for a review and discussion of the different approaches taken to
this aggregation.

6We could amend our model in this direction, by assuming equality in the rates of time
preference in our two sectors (i.e. in our notation rho = ¯rho). In this case, if borrowing
constraints are large relative to income shocks, then the predictions of our model are
qualitatively changed, with households targeting leverage well away from the constrained
levels and income shocks are very rarely large enough to have any large impact on real
interest rates. If on the other hand borrowing constraints are very tight relative to income
shocks then the predicted impact of shocks on real interest rates reemerges.
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heterogeneity in rates of time discount.7

Finally we can relate our work to older classic but less formal literature,

in which the distribution or composition of wealth affect savings and real

interest rates. A separate article could be written tracing these ideas through

the history of economic thought. Our examination of this literature has

turned up two major contributions, echoed in some respects by our modelling.

First, the discussion in the Austrian tradition of the impact of the dis-

tribution of wealth on the real (or in their terminology the ‘natural’) rate of

interest rates, especially by von Böhm-Bawerk [1959]. The principal assump-

tion here (see Von Mises [1963] chapter 19 for a summary) is that relatively

wealthy households are more patient than relatively poor households, and

will therefore save more of their current income. A shift in the distribution

of wealth from less wealthy to more wealthy households will therefore re-

sult in increased savings and a lower natural rate of interest. This is similar

to the predictions of our model, in which patient households are wealth-

ier and where negative income shocks for impatient households, increasing

their leverage and reducing their wealth, increases the relative wealth of pa-

tient households and reduces real interest rates. In our simulations though

the mechanism operates slightly differently, with differences in rates of time

preference generating the greater wealth of the patient sector, not greater

wealth generating a higher rate of time preference. Still, it is clear that we

can reconcile the two analyses, interpreting the Austrian mechanism as an

increase in our model of the expected output of the patient sector (in our

terminology an increase of ā) resulting in both a steady state decline of real

7While relatively uncommon, similar differences in rates of time preferences are assumed
in other contexts, for example recent work on long term discount rates by Jouini et al.
[2010]. This assumption is also explored in textbook discussions of international extensions
of the Ramsey model of capital accumulation and real interest rates (see for example Barro
and Sala-i Martin [1995])
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interest rates and also a transitional period during which leverage adjusts

towards the new steady levels (the reduction in r − ρ reducing the target

leverage of the impatient borrowing sector) and real interest rates are re-

duced by more than the steady state decline. Our results are also consonant

with the Austrian tradition in that we find that a market mechanism (falling

real interest rates) substantially corrects for the incompleteness of markets

i.e. the absence of any insurance of idiosyncratic sectoral income risk.

Second, the widely cited paper of Metzler [1951] combining the Scitovsky-

Pigou-Haberler real balance effect with Keynesian liquidity preference in an

analysis of joint equilibrium in the markets for goods and for financial assets

(i.e. securities and money). A goods market equilibrium schedule (the WW

line in his Figure 1) traces different combinations of real wealth and real

interest rates at which savings equals investment. Real wealth is the sum of

securities (whose value is inversely related to the real interest rate) and real

money (determined jointly by the nominal money stock i.e. monetary policy

and the price level). Equilibrium in securities markets (his Figure 2) then

requires adjustment of the real money stock to the level at which the real

interest rate is consistent with both Keynesian liquidity preference (lower

demand for real money requiring higher interest rates) and the equality of

savings and investment (goods market equilibrium). Metzler also analyses

in his Figure 3 and Appendix the dynamics of adjustment (assuming partial

adjustment of both real interest rates and real money) and discusses in his

Figures 4 and 5 how expansionary monetary policy i.e. open market pur-

chases of securities by the central bank can alter the composition of wealth

(reducing the ratio of securities to money) and hence permanently lower the

real rate of interest. This analysis (of obvious relevance to current policies of

quantitative easing which operate principally by changing the composition
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of private sector wealth) is only indirectly related to our own (our model

has no role for monetary policy but instead offers a more fully stated mech-

anism of dynamic adjustment). The most obvious parallel is that in both

our model and that of Metzler if real wealth is above long term equilibrium

(our target leverage) then to maintain goods market equilibrium the level of

real interest rates must fall below its expected long term level. But in his

fundamentally Keynesian setting (unlike our own) the goods market can be

out of equilibrium during the subsequent period of dynamic transition.

3 The model

3.1 Assumptions

There are two sectors (these could be income groups within a country, differ-

ent countries, or regions within a country) each consisting of a large number

of identical households. Within each sector every household receives the same

income, has the same preferences and so makes the same consumption deci-

sions. This therefore allows us to work with a representative household for

each sector. Households maximise the expected discounted utility of their

future consumption stream c. Normalising the ‘mass’ of households in each

sector to unity, and using a bar over variables and parameters to distin-

guish the more patient sector from the less patient, the objective function for

representative households in each sector is then to maximise respectively:

ˆ ∞

τ=t

e−ρ(τ−t)u(c) dτ and (1a)

ˆ ∞

τ=t

e−ρ̄(τ−t)ū (c̄) dτ (1b)

where ρ̄ < ρ.
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The instantaneous output (endowment) of each household in the two

sectors is given respectively by:

a dt+ s dz and (2a)

ā dt− s dz (2b)

i.e. expected output per unit time is fixed at a and the only uncertainty is

an idiosyncratic diffusion process (sdz) fully diversified at the global level.

The goods market always clears, so:

c+ c̄ = a+ ā. (3)

Households can borrow in order to smooth output shocks or to bring

forward consumption. Accumulated (net) borrowing gives rise to the sole

asset in the economy, debt claims w denominated in units of the single good,

which we assume are claims of the impatient sector on the patient sector

(the claims of the patient sector on the impatient sector are then given by

w̄ = −w). The interest rate on these claims is given by r. The level of

consumption is determined given the current wealth level w. The change in

these claims therefore satisfies the stochastic differential equation:

dw = (a+ rw − c) dt+ s dz = (−ā+ rw + c̄) dt− s dz (4)

Completing the model specification, we assume that there are limits on

borrowing

w∗ < w < w̄∗ (5)

with −w∗ > 0 representing the maximum borrowing of the impatient sector

and w̄∗ > 0 the maximum borrowing of the patient sector.
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The model is parsimonious with only two standard instantaneous utility

functions (u (c), ū (c̄)) and seven other parameters (a, ā, ρ, ρ̄, w∗, w̄∗, and

s).

3.2 Solving the model

Here we provide an overview of the solution of the model, emphasising the

supporting economic intuition and comparing the stochastic specification s >

0 with the deterministic baseline s = 0. Technical details regarding the

solution are described in the Appendix. With s = 0 we have a standard

deterministic model to which the maximum principle would normally be

applied yielding a semi-closed form solution. With s > 0 the model can

be solved using dynamic programming; the solution however is no longer

closed form, rather it is characterised by a second-order ordinary differential

equation for c (w) which must be solved numerically.

Given that there are a large number of households each takes r as given

in their optimisation. In the s → 0 limit of our stochastic model we then

have a textbook deterministic model, in which consumption in the impatient

sector is described by a standard Euler equation:

ċ = (r − ρ)

[

−
u′′(c)

u′(c)

]−1

. (6)

ρ > r > ρ̄ and so consumption of impatient households declines continuously

over time at a rate that depends on the interest rate r and the intertempo-

ral elasticity of consumption (−u′′ (c)/u′ (c))−1 while consumption of patient

households increases.

Introducing non-zero noise, the corresponding equation describing the

time-evolution of consumption of patient households is the stochastic differ-
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ential equation or SDE:

dc =

{

(r − ρ)

[

−
u′′(c)

u′(c)

]−1

+
1

2
s2
[

−
u′′′(c)

u′′(c)

]

c′(w)2

︸ ︷︷ ︸
precautionary saving term

}

dt+ sc′(w) dz

︸ ︷︷ ︸

from income uncertainty

(7)

In the stochastic case s > 0 there are two additional terms which do not

appear in the deterministic Euler equation. The additional term in dt, for any

given level of interest rates r and consumption c (w), is additional precaution-

ary saving that reduces the rate of decline in consumption of the impatient

household compared to the deterministic case. The second additional term

is the diffusion in dz representing the impact of income uncertainty on the

level of consumption.

The dependency of consumption c (w) on the state variable (the level of

wealth w) is then described by the following second-order ordinary differential

equation:8

(ρ− r) u′ (c) = (a+ rw − c) u′′ (c) c′ +
1

2
s2
[

u′′′ (c) (c′)
2
+ u′′ (c) c′′

]

(8)

The global interest rate r is the only market price and this adjusts to ensure

goods market clearing given by (3). This requires (as shown in the Appendix)

that:

r(w) =

[

−u′′(c)
u′(c)

]−1

ρ+
[

− ū′′(c̄)
ū′(c̄)

]−1

ρ̄
[

−u′′(c)
u′(c)

]−1

+
[

− ū′′(c̄)
ū′(c̄)

]−1 −
1

2
s2c′

2

[

−u′′′(c)
u′′(c)

]

+
[

− ū′′′(c̄)
ū′′(c̄)

]

[

−u′′(c)
u′(c)

]−1

+
[

− ū′′(c̄)
ū′(c̄)

]−1 (9)

In the deterministic case (s = 0) the global interest rate is simply a weighted

average of the time preferences of the two households (so ρ > r > ρ̄). In

8This equation is a transformation of the equation of optimality, or Hamilton-Jacobi-
Bellman equation, which characterises the consumption policy that maximises the ex-
pected discounted utility objective equation (1a). See Appendix for details.
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the stochastic case (s > 0) there is an additional term, the second expression

on the rhs of eq. (9) generated by the desire for precautionary saving. This

lowers the real rate of interest downwards to restore goods market clearing.

Equations (8), (9) and (3) together yield a somewhat complicated look-

ing (but fairly easily numerically solved) ordinary differential equation for

c (w). This ODE is second-order and two boundary conditions are required

for solution. We establish the existence of unique solution by considering

the behaviour of the steady state or ‘ergodic’ probability density function

f(w) of w. In these sort of stochastic models the ergodic density is usually

identified with the steady state cross sectional density of the state variables

for a large population of (independent) households all governed by the same

dynamic stochastic equations of motion. However for our model this is not

an appropriate interpretation because we assume all households are hit by

the same shocks, so at any point in time all households in a given sector

have the same wealth. Instead this ergodic distribution should be thought

of as the time-independent or unconditional distribution of w obtained by

sampling the economy at a random points of time.

This ergodic distribution can be obtained from the Kolmogorov forward

equation, also known as the Fokker-Planck equation, giving the time-dependent

probability density function conditional on initial state of w. In the station-

ary limit, it reduces to the following first order ordinary differential equation9

for the ergodic density f(w):

0 = [a+ r(w)w − c(w)]f(w)−
1

2
s2f ′(w), (10)

where f is subject to the normalisation condition,
´ w̄∗

w∗
f(w) dw = 1. Our

9In general, the left-hand side is a non-zero constant, however, when there are no sink
or source states, that constant is zero.
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Appendix discusses the corresponding time dependent equation f(w, t) which

is what we actually solve for in our numerical coding.

To obtain boundary conditions for c, eq. (8), we require that the house-

holds never attain the boundaries w∗, w̄∗ which means that

f(w∗) = f(w̄∗) = 0. (11)

These conditions ensure that while households may approach the boundaries

for maximum borrowing, they never actually reach these states10. If instead

the boundaries were attainable, then once on the boundary the household

could no longer smooth consumption, and the infinite local variance in in-

come creates an unlimited penalty in terms of the objective eq. (1a) i.e. the

optimisation is no longer well defined.

Normalisation and eq. (11) would appear to give three conditions for a

first order ODE, eq. (10). However, in the Appendix, we show that the zero

density boundary condition is equivalent to

c′(w∗) = c′(w̄∗) = +∞, (12)

so that the boundary condition for the ergodic density in fact implies the

boundary conditions for c. The above eq. (12) together with the normalisa-

tion for f totals three conditions for the third order ODE system that eqs. (8)

and (10) form, making the problem fully determined.

In addition, as we show in the Appendix, asymptotically the functions c,

10A boundary state could also be unreachable if the noise vanishes at that point; this is
not the case here as the standard deviation s is constant.
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r, and f behave as

c(w) = c0 + c1(w − w∗)
1

2 + o((w − w∗)
1

2 ), (13a)

r(w) = −
1

4
s2

1

|w∗|
(w − w∗)−1 + o((w − w∗)−1), (13b)

f(w) = f0(w − w∗)
1

2 + o((w − w∗)
1

2 ), (13c)

where c0 is consumption at w∗, and c1 and f0 are constants chosen so that

the above c satisfies eq. (8) to leading order, and that f is normalised to

unity, while the value of c0 is chosen so that eq. (12) is satisfied. Note from

eq. (13b) the interest rate must tend to minus infinity as w → w∗. Analogous

formulae and results hold at the upper boundary.

4 Numerical solution

We have calculated numerical solutions of the stochastic version of the model

in the case of iso-elastic instantaneous utility.11

The parameter assumptions are as follows (using a bar to indicate pa-

rameters of the households in the patient sector):

11A numerical solution for both c(w) and f(w, t) subject to the boundary conditions
at w = w∗ and w = w̄∗ are obtained using the pseudospectral Chebyshev collocation
method in conjunction with Newton iterations. Although more commonly encountered in
the context of partial differential equations, the methods can be employed to solve systems
of ordinary differential equations as well. For reference, see e.g. Quarteroni and Valli [2008]
.
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Parameter Impatient sector Patient sector

Rate of time preference ρ = 0.05 ρ̄ = 0.03

Inverse intertemporal elasticity of

substitution

ε = 1.5 ε̄ = 1.5

Expected output per annum a = 1 ā = 1

Standard deviation of output per

annum

0 ≤ s ≤ 0.5

Leverage constraint w ≥ w∗ = −5 w ≤ w̄∗ = +5

Figures 1-9 report our numerical solutions with these assumed parameters

(for some figures we use only the single value s = 0.2). Figure 1 shows the rate

of interest r(w) as a function of w for different levels of income uncertainty

s. The inset to the figure shows a magnified section r(w) near w∗. Close to

the leverage constraint the real interest rate falls well below the rate of time

preference of the patient sector (ρ̄ = 0.03) and when the leverage constraint

is very close actually becomes negative (thus creating a positive income for

the borrowing impatient sector).

Figure 2 shows the expected level of saving (a+ rw− c(w)) as a function

of w. It can be seen that for very low levels of wealth the precautionary

motive leads to positive saving as the indebted households seek to reduce

their leverage and increase w. For higher levels of wealth then the time

preference dominates and there is dissaving.

Figure 3 shows the level of consumption c(w) as a function of w. Con-

sumption, as expected, increases with wealth. Close to the leverage con-

straint for the impatient sector, consumption of the patient sector rises
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Figure 1: Interest rate r as function of wealth w.
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sharply and consumption of the impatient sector fall sharply, due to the

joint impact of lower interest rate and the prudential saving of the impatient

sector seeking to keep away from the leverage constraint. The decline of con-

sumption is however relatively modest, compared to the fall of the interest

rate shown in Figure 1.12

Figure 4 shows the ergodic density for different values of the standard

deviation of income s. For low levels of s, 5% of annual income a, the

ergodic density is concentrated near the maximum level of borrowing, the

figure suggests that the density lies almost entirely between w = −4 and

w = w∗ = −5. As s increases the density both shifts to the right and widens.

For higher values of s, the figure runs up to 50% of annual income a, but

12A technical issue explored in the inset to the figure, is the accuracy of the asymptotic
expansion for c(w) Eq. 13a applied when w is close to w∗. The logarithm of c is as predicted
linear in (w − w∗) with a slope of −1/2 and this approximation is accurate well beyond
the range at which the asymptotic expansion is used for numerical calculation.
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Figure 4: Probability density f as a function of wealth w and noise s.

even with this highly uncertain level of income is concentrated in the range

w = 0 to w = w∗ = −5.

Figure 5 and Figure 6 show versions of Figures 4 and then Figure 1,

using a rescaled measure of wealth with zero mean and a standard deviation

of unity. The purpose of these figures is to demonstrate a key feature of

our model, that households target a buffer of leverage (w − w∗) relative to

the leverage constraint (w∗) and this buffer is approximately linear in the

standard deviation of income shocks. As a consequence, once this buffer stock
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Figure 5: Wealth probability density as a function of normalized wealth.

behaviour is taken into account the predictions of our model about wealth

and interest rate dynamics turn out to be relatively insensitive to income

uncertainty.13

Figure 5 shows the rescaled ergodic density function f(w) (the pdf relative

to the mean) is relatively little affected by the standard deviation of income

s. Using this same rescaling of wealth, the interest rate function r(w) (and

consumption c(w), though this is not shown here) vary only slightly with

changes in the standard deviation of income s. Note also that for all values

of s shown here, from 5% to 50% of annual income, a sharp fall in r occurs

once wealth w declines to about 1.2 to 1.6 standard deviations below its

mean.

Figures 7 to 8 illustrate the impulse-response dynamics of wealth and

13the simulator downloadable from our research web pages shows that these predictions
are similarly insenstive to the magnitude of the leverage constraint w∗
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Figure 6: Interest rate as a function of normalized wealth.

interest rates following a fall in wealth to 1.5 standard deviations below its

mean (these Figures assume that the standard deviation of income is 20%

of annual income i.e. s = 0.2). All impulse response data is computed by

solving the time-dependent probability distribution f(w, t) conditional on

the initial w, described in the Appendix. Note that these impulse responses

can be interpreted either as the response of wealth and real interest rates

following a series of income shocks which increase leverage relative to the

desired target level or as the response following a one-off increase in the

leverage constraint that is not expected to change any more in the future.

In both cases the buffer of leverage above the constraint is reduced and is

then subsequently rebuilt, through lower real interest rates and also reduced

consumption.

Because this is a stochastic model the dynamics are not a single line,

rather starting from this initial point, the future evolution of wealth is a
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Figure 7: Selected wealth percentiles as functions of time.

density function that gradually spreads out from the initial starting point.

The heavy line in Fig. 7 and 8 show the median (50th percentile) of the

distribution. Below this the figure shows the 5th and 25th percentiles, above

this the 75th and 95th percentiles.

Figure 7 shows that to begin with, following a fall in wealth, with the

density of w (f(w, t)) adjusts fairly rapidly towards the long run ergodic

density f(w), so by the end of the second year (t = 2) the median has closed

to within one standard deviation of its steady state level. Overtime the

rate of adjustment slows down, it takes until about the end of the fourth

year (t = 4) before the median is within half a standard deviation of its

steady state level, and by about year twenty (t = 20) no difference can be

seen in this chart between the median and its steady state level. There is a

similar pattern of adjustment for the other percentiles, fast to begin with and

gradually slowing down. The adjustment of the higher percentiles is rather
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slower than the lower percentiles, taking until around year 30 before there is

no further visible change in the 95th percentile of the distribution.

Figure 8 shows the corresponding impulse response for real interest rates,

if wealth falls to 1.5 standard deviations below its mean. Because of the

highly non-linear dependency of interest rates r(w) on wealth w (Figure 1),

the rate of adjustment of interest rates varies substantially over time, ex-

tremely rapid during the first year (up to t = 1), slowing substantially over

the next three years (until t = 4) and then only gradually correcting back

to the long run ergodic density, and with no visible further time dependence

after twenty years (t = 20).

Finally Figure 9 reports the cumulative density of r, presented with a log

scale on the vertical axis to make it easy to read off the different percentiles

of the steady state density. This Figure is a convenient summary of the

frequency of episodes in which real interest rates fall below any particular

level and how this frequency varies with the standard deviation of income
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shocks. Focussing on the vertical line at r = 0 it can be seen that when

s = 0.05 this corresponds to a cumulative density of about 0.2%, i.e. the

negative real interest rates are observed only 0.2% of the time. This compares

to the baseline of s = 0.2 where negative real interest rates occur a little over

1% of the time and to the upper value of s = 0.5 when negative real interest

rates occur around 3% of the time.

This figure can also be read horizontally as well as vertically. For example

the horizontal dotted line in the figure at a height of F (r) = 0.05, shows the

5th percentile of the distribution for different value of s. For our baseline

choice of s = 0.2 this is at about 2.5% – i.e. about one twentieth of the

time real interest rates will be below 2.5% – compared to a median value of

around 3.7%. As this figure shows increasing the value of s has little impact

on the median but has a quite substantial impact on the lower percentiles

of the distribution, with 5th percentile falling to around 1.4% as s rises to
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0.5%.

5 Summary and conclusions

Amongst the most striking trends in the global macroeconomy over the past

thirty five years have been the substantial increases of both private and

public sector debt and the simultaneous decline in global real interest rates

(Buttiglione et al. [2014], IMF [2014]). This paper examines the consequences

of such increases in leverage for the dynamic response of consumption and

real interest rates to shocks.

We analyse consumption and real interest rate dynamics in a stylized

model of macroeconomic exchange with two household sectors (one patient,

the other impatient) motivated to save income as a precaution against the

risk that a series of income shocks might push their leverage towards exoge-

nously imposed maximum limits. The outcome is precautionary saving and

buffer stock wealth management by our two representative households, paral-

leling the well established buffer stock wealth management and precautionary

saving by individual households at the microeconomic level.

In our setting financial markets are incomplete (there is no insurance

against income shocks so debt must do ‘double duty’, allow households opti-

mally to allocate their consumption over time and to manage income shocks).

Despite this market incompleteness, market exchange allows households to

avoid substantial variation in levels of consumption (Figure 3). Impatient

households avoid fluctuations in consumption by targeting a buffer of unused

leverage, consuming less than their expected net income if leverage (negative

wealth) is above this target level (the positive expected saving to the left of

our Figure 2). General equilibrium then requires that total consumption, by
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the two households, equals total income (for simplicity we make this total

income constant, i.e. negative income shocks to one sector are always offset

by positive income shocks to the other sector) in turn requiring sometimes

substantial but short lived falls in real interest rates (Figure 1) that effec-

tively transfer income from the patient households holding debt claims to the

impatient households issuing debt claims.

This solution is obtained using standard if somewhat technical assump-

tions and methods. Time t is continuous and income shocks are increments of

a diffusion process sdz. This allows us to characterise solution as a simple sec-

ond order ODE in a single state variable c(w) representing the consumption

of impatient households as a function of their wealth (leverage is negative

wealth) together with an accompanying PDE, the Fokker-Planck equation

for f(w, t) describing the stochastic time evolution of wealth. There is a

unique solution to these equations consistent with the boundary conditions

(expressed via asymptotic expansions) which ensure that the leverage con-

straints are approached but never actually breached.

A notable feature of this solution is that the real interest rates asymptote

towards r = −∞ at the boundary of maximum leverage w = w∗ (the resulting

subsidy to indebted households is needed in order to prevent income shocks

leading to a breach of maximum leverage). The possibility of large negative

interest rates is a more reasonable feature of the model than might at first

be apparent. Negative interest rates arise only very occasionally (indicated

by the cumulative density functions reported in our Figure 9) and, following

large shocks, the long term distribution of leverage and real interest rates is

restored relatively rapidly (Figures 7 and 8).

A second notable feature is that the predictions of this model are not

particularly dependent on either the size of the leverage constraint (w∗) or
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the magnitude of income uncertainty sdz. This is a consequence of buffer

stock wealth management. Households target a buffer of leverage above the

constraint (Figure 4). This means that the absolute value of the constraint

itself does not much matter). The magnitude of this buffer is approximately

linear in s. This means that the dynamics of consumption and real interest

rates in response to shocks (the increments to the diffusion process sdz) are

very much the same for different values of s (Figures 5 and 6).

To what extent can our model be used for addressing current macroeco-

nomic policy concerns? We are deliberately agnostic about the interpretation

of our patient and impatient sectors. One possibility is that these represent

countries, for example the well known global imbalance between high sav-

ing and low saving countries often suggested as an underlying cause of the

increase of global indebtedness. We are cautious about applying our model

too literally in this context. A fuller model of the dynamic response of these

saving imbalances would we believe emerge from considering shocks to rates

of productivity growth rather than to income shocks and making allowance

for responses in real exchange rates. This could be done in a model similar to

our own but would necessitate using more state variables and hence require

a more complicated mathematical model and solution. In the global context

the predictions of our model are also somewhat counterfactual. For exam-

ple, while global real interest rates did indeed fall in the wake of the global

financial crisis of 2008, this has been a continuation of the previous trend

and post-crisis there has been no rapid reduction in leverage or rebound in

global real interest rates.

Still our modelling points to one definite conclusion: high levels of debt

need not be a major macroeconomic problem provided that financial market

prices, in our model the real rate of interest, can adjust freely to reflect indi-
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vidual preferences. Wealth and consumption can then adjust dynamically to

prevent uninsured income shocks leading to substantial declines in consump-

tion. An obvious direction for future research, building on our initial effort,

will be to examine how robust this finding is in other more realistic contexts.

This would require extending our modelling in several different directions:

for example to a world of international trade with more than one good and

an endogenous real exchange rate; to allow for storage and for production

and capital investment (work of this kind has been undertaken in the re-

cent literature on leverage cycles, briefly reviewed in our Section 2); to allow

for more realistic treatment of shocks for example disturbances to the an-

ticipated growth of income or autocorrelation of shocks to capture observed

business cycle fluctuations; and most importantly by introducing monetary

exchange and a distinction between real and nominal interest rates. In a

monetary model it is possible that constraints on financial market prices (for

example as in the analysis of ´secular stagnation’ provided by Eggertsson

and Mehrotra [2014] the zero-lower bound on nominal interest rates) could

introduce much more protracted dynamics than in our modelling, hinder a

market adjustment to income or other shocks and explain why in practice

lower real interest rates have not been accompanied by global deleveraging.
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A Appendix: Model Solution

This appendix contains technical details regarding the model solution that

were omitted in the main text. It first discusses the solution of the stochastic

model using dynamic programming. It then discusses the boundary condi-

tions and derives the asymptotic expansions used to implement these condi-

tions. Finally it discusses the solution of the time-dependent Fokker-Plank

equation f(w, t) used for analysing the dynamics of the model.

A.1 Solution of the stochastic problem using dynamic

programming

The goal is to solve for consumption c (w) as function of net lending/borrowing

w The first step is to derive the optimal consumption rule for impatient

household maximises the objective function, eq. (1a) (the derivation for the

patient household entirely parallels that for the impatient household, so is

suppressed here). Let V be the function for which the objective is maximal:

V (w0) = max
c

E

ˆ ∞

0

e−ρtu[c(t)] dt. (14)

We distinguish the wealth and consumption of an individual household

indexed by j (wj, cj) from the wealth and consumption of the representative

agent (w, c). The value function V (wj, w) for the individual agent satisfies

the Hamilton-Jacobi-Bellman equation (the interest rate r is unaffected by

individual household wealth i.e. each household is a price taker in the capital
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market):

ρV (wj, w) = max
c







u (c) +

(

a+ r (w)wj − cj, a+ r (w)w − c

)








Vwj

Vw








+
1

2
s2

(

1, 1

)








Vwjwj
Vwjw

Vwjw Vww















1

1















(15)

Maximising the right-hand side of eq. (15), the first order condition for the

choice of cj is

Vwj
= u′ (cj) = u′

j. (16)

To obtain an ODE for optimal consumption c we differentiate the HJB,

eq. (15), with respect to w and substitute for optimal consumption.

We next proceed to aggregation. In equilibrium, since all households are

alike, wj = w and cj = c i.e. the j subscripts can be dropped. We need

though to consider small departures of consumption out of equilibrium in

order to evaluate the derivatives.

With the above assumptions, the HJB equation for consumption c be-

comes:

[ρ− r(w)]
u′(c)

u′′(c)
= [a+ r(w)w − c]c′ +

1

2
s2
[
u′′′(c)

u′′(c)
c′
2
+ c′′

]

. (17)

In order to solve for r we take the resource constraint c(w) + c̄(w̄) =

a+ ā, differentiate it with respect to w, and substitute using the c differential
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equations, and the fact w = −w̄. This yields

r(w) =

[

−u′′(c)
u′(c)

]−1

ρ+
[

− ū′′(c̄)
ū′(c̄)

]−1

ρ̄
[

−u′′(c)
u′(c)

]−1

+
[

− ū′′(c̄)
ū′(c̄)

]−1 −
1

2
s2

[

−u′′′(c)
u′′(c)

]

+
[

− ū′′′(c̄)
ū′′(c̄)

]

[

−u′′(c)
u′(c)

]−1

+
[

− ū′′(c̄)
ū′(c̄)

]−1 c
′2. (18)

The first term here is the expression for r that applies in the deterministic

case. The second additional term in 1
2
s2c′(w)2 is a correction that depends on

the absolute prudence, −u′′′(c)/u′′(c),−ū′′(c̄)/ū′′(c̄), and absolute risk aver-

sion, −u′′(c)/u′(c),−ū′′(c̄)/ū′(c̄) of the two sectors. Eq. (17) together with

r(w) as given by eq. (18) form an ordinary differential equation from which

aggregate consumption c can be solved.

A.2 Boundary conditions and asymptotic expansions

As our boundary condition, we ask that

lim
w→w∗

f(w) = 0,

effectively requiring that household behaviour is such that it completely

avoids the borrowing limit. We only consider the behaviour at the lower

boundary w∗, and attempt to find the shape of c and f that are consis-

tent with the above. The calculation for the upper boundary is essentially

identical.

A formal solution to the Fokker-Planck equation, eq. (10) gives the ergodic

density

f(w) = C exp

{
2

s2

ˆ w

0

[a+ r(w′)w′ − c(w′)] dw′

}

, (19)

where C is a constant of integration. In order for f(w∗) to be zero, the integral
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in the exponential must tend to −∞ as w goes to w∗. Since the interest rate

is the only quantity in the integrand that is not bounded, we must have that

limw→w∗ r(w) = −∞. A similar argument gives us the boundary condition

c′(w∗) = +∞: On inspection of the expression for r(w), eq. (18), one sees

that the only unbounded term is the one proportional to c′(w) (assuming

non-zero third derivatives of the utility functions), since consumption and its

utility are bounded and −u′′(c)/u′(c) > 0,−ū′′(c̄)/ū′(c̄) > 0 by monotonicity

and concavity of u, ū. Thus, r(w∗) is infinite if and only if c′(w∗) = ∞.

The next task is to find solutions (if any) to eq. (17) satisfying this bound-

ary condition.

We use the method of asymptotic expansions and conjecture that the

solution c has the form

c(w) = c0 + c1(w − w∗)α + o((w − w∗)α), (20)

0 < α < 1, c1 > 0.

The calculation proceeds in following steps: (i) substitute the above trial

form in to eq. (17), expand the resulting equation in powers of w − w∗,

retaining terms with the lowest exponents, (ii) look for α ∈ (0, 1) such that

non-zero c1 exist that makes the lowest order term in the expansion vanish.

As a result, we find that α = 1/2 and

c1 =

√

2

|w∗|

−u′(c)/u′′(c)− ū′(c̄)/ū′′(c̄)

−u′′′(c)/u′′(c)− ū′′′(c̄)/ū′′(c̄)

∣
∣
∣
∣
∣
w=w∗

. (21)

This calculation has assumed that c(w∗) = c0 > 0 but nothing about the

utility function, other than its standard properties (monotonicity, concavity),

that u′′′, ū′′′ are always non-zero (note that this rules out quadratic utilities),
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and that the expression under the square root in eq. (21) is positive.

Finally, we can find the asymptotic behaviour of r and w. Back substitut-

ing the expansion of c, eq. (20), together with α = 1/2 and c1 of eq. (21) into

the expression for r, eq. (18), and again keeping only leading order terms, we

recover eq. (13b) after some straight-forward algebra. To finally obtain the

expansion for f , eq. (13c), one merely needs to substitute the r expansion

into the analytic solution for f , eq. (19). The interest rate term is obviously

the leading order one, the integral in the exponential yields a logarithm, and

we end up with the power law of eq. (13c). The asymptotic expansion can-

not fix the overall normalisation of f , and hence we leave an undetermined

coefficient f0 in the expansion (the value could in principle be found from a

numerical solution if needed).

A.3 Time-dependent Fokker-Planck equation

In order to compute the time-dependent distribution function f(w, t), we

need to solve the Fokker-Planck equation with time derivative term retained.

Writing in terms of the probability current j, this reads

∂tf(w, t) = −∂wj(w, t), (22a)

j(w, t) = [a+ r(w)w − c(w)] f(w, t)−
1

2
s2∂wf(w, t). (22b)

This is to be solved with the boundary and initial conditions

j(w, t)|boundaries = 0 ∀t (23a)

f(w, 0) = finit(w), (23b)
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where finit is some probability distribution function. It is easy to verify

that a solution to eq. (22) exists in the form f(w, t) = Xλ(w)Tλ(t), where

T (t) = exp(−λt) and λ > 0 is a boundary condition dependent constant.

Using well-known Sturm-Liouville theory, it can further be shown that the

general solution to eq. (22) can be expressed as

f(t, w) =
∞∑

i=0

fie
−λitXλi

(w), (24)

where Xλi
, λi satisfy

λiX(w) =

{

[a+ r(w)w − c(w)]X(w)−
1

2
s2X ′(w)

}′

, (25)

λi s.t. Xλi
(w)|w=w∗,w̄∗ = 0, λi > λj ∀i > j (26)

and fi are constants such that initial condition (23b) holds. In addition,

λ0 = 0 and X0(w) is the steady state distribution function.
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