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Abstract

The lack of word boundaries information has

been seen as one of the main obstacles to

develop a high performance Chinese named

entity recognition (NER) system. Fortunate-

ly, the automatically constructed lexicon con-

tains rich word boundaries information and

word semantic information. However, inte-

grating lexical knowledge in Chinese NER

tasks still faces challenges when it comes to

self-matched lexical words as well as the near-

est contextual lexical words. We present a Col-

laborative Graph Network to solve these chal-

lenges. Experiments on various datasets show

that our model not only outperforms the state-

of-the-art (SOTA) results, but also achieves a

speed that is six to fifteen times faster than that

of the SOTA model.1

1 Introduction

Named entity recognition (NER) aims to locate

and classify certain occurrences of words or ex-

pressions in unstructured text into predefined se-

mantic categories such as the person names, lo-

cations, organizations, etc. NER is an essen-

tial pre-processing step for many natural language

processing (NLP) applications, such as relation

extraction (Bunescu and Mooney, 2005), even-

t extraction (Chen et al., 2015), question answer-

ing (Mollá et al., 2006) etc. In English NER,

LSTM-CRF models (Lample et al., 2016; Ma and

Hovy, 2016; Chiu and Nichols, 2016; Liu et al.,

2018) leveraging word-level representations and

character-level representations achieve the state-

of-the-art results.

In this paper, we focus on Chinese NER. Com-

pared with English, Chinese has no obvious word

boundaries. Since without word boundaries infor-

mation, it is intuitive to use character information

1The code is available at https://github.com/

DianboWork/Graph4CNER

希 尔 顿 北 京 机 场离 开

离开
leave
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Sentence：希尔顿离开北京机场了。(Mr. Hilton has left Beijing airport.)

Matched Lexical Words:  希尔(Hill), 希尔顿(Hilton), 离开(leave), 北京(Beijing), 

北京机场(Beijing Airport) 

Figure 1: An example sentence integrating the near-

est contextual lexical words (red line) and self-matched

lexical words (green line)

only for Chinese NER (He and Wang, 2008; Liu

et al., 2010; Li et al., 2014), although such meth-

ods could result in the disregard of word informa-

tion. However, word information is very useful in

Chinese NER, because word boundaries are usu-

ally the same as named entity boundaries. For ex-

ample, as shown in Figure 1, the boundaries of the

word “�¬::” (Beijing airport) are the same as

the boundaries of the named entity “ �¬::”

(Beijing airport). Therefore, making full use of

word information would help to improve the Chi-

nese NER performance.

There are three main ways to incorporate word

information in NER. The first one is the pipeline

method. The way of pipeline method is to apply

Chinese Word Segmentation (CWS) first, and then

to use a word-based NER model. However, the

pipeline method suffers from error propagation, s-

ince the error of CWS may affect the performance

of NER. The second one is to learn CWS and NER

tasks jointly (Xu et al., 2013; Peng and Dredze,

2016; Cao et al., 2018; Wu et al., 2019). How-

ever, the joint models must rely on CWS annota-

tion datasets, which are costly and are annotated

under many diverse segmentation criteria (Chen

https://github.com/DianboWork/Graph4CNER
https://github.com/DianboWork/Graph4CNER
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et al., 2017). The third one is to leverage an auto-

matically constructed lexicon, which is pre-trained

on large automatically segmented texts. Lexical

knowledge includes boundaries and semantic in-

formation. Boundaries information is provided by

the lexicon word itself, and semantic information

is provided by pre-trained word embeddings (Ben-

gio et al., 2003; Mikolov et al., 2013). Compared

with joint methods, a lexicon is easy to obtain

and additional annotation CWS datasets are not re-

quired. Recently, Zhang and Yang (2018) propose

a lattice LSTM to integrate lexical knowledge in

NER. However, integrating lexical knowledge in-

to sentences still faces two challenges.

The first challenge is to integrate self-matched

lexical words. A self-matched lexical word of

a character is the lexical word that contains this

character. For instance, “�¬::::” (Beijing Air-

port) and “::::” (Airport) are the self-matched

words of the character “:::” (airplane). “»�”

(leave) is not the self-matched word of the char-

acter “:” (airplane), since “:” (airplane) is not

contained in the word “»�” (leave). The lexical

knowledge of self-matched word is useful in Chi-

nese NER. For example, as shown in Figure 1, the

boundaries and semantic knowledge of the self-

matched word “�¬::” (Beijing Airport) can

help the character “:”(airplane) to predict an “I-

LOC” tag, instead of “O” or “B-LOC” tags. How-

ever, due to the limits of the word-character lattice,

the lattice LSTM (Zhang and Yang, 2018) fails to

integrate the self-matched word “�¬::” (Bei-

jing Airport) into the character “:” (airplane).

The second challenge is to integrate the nearest

contextual lexical words directly. The nearest con-

textual lexical word of a character is the word that

matches the nearest past or future subsequence in

the given sentence of this character. For instance,

the lexical word “»�” (leave) is the nearest con-

textual word of the character “�” (-ton), since

the word matches the nearest future subsequence

“»�” of the character, while “�¬” (Beijing)

is not the nearest contextual lexical word of this

character. The nearest contextual lexical words

are beneficial for Chinese NER. For example, as

shown in Figure 1, by directly using the semantic

knowledge of the nearest contextual words “»�”

(leave), an “I-PER” tag can be predicted instead

of an “I-ORG” tag, since “���” (Hilton Hotel-

s) cannot be taken as the subject of the verb “»

�” (leave). However, a lattice model (Zhang and

Yang, 2018) only implicitly integrate the knowl-

edge of the nearest contextual lexical words via

the previous hidden state. The information of the

nearest contextual lexical word may be disturbed

by other information.

To solve the above challenges, we propose a

character-based Collaborative Graph Network, in-

cluding an encoding layer, a graph layer, a fu-

sion layer and a decoding layer. Specifically,

there are three word-character interactive graphs

in the graph layer. The first one is the Contain-

ing graph (C-graph), which is designed for inte-

grating self-matched lexical words. It models the

connection between characters and self-matched

lexical words. The second one is the Transition

graph (T-graph), which builds the direct connec-

tion between characters and the nearest contextual

matched words. It helps to handle the challenge

of integrating the nearest contextual words direct-

ly. The third one is the Lattice graph (L-graph),

which is inspired by the lattice LSTM (Zhang and

Yang, 2018). L-graph captures partial information

of self-matched lexical words and the nearest con-

textual lexical words implicitly by multiple hops.

These graphs are built without external NLP tools,

which can avoid error propagation problem. Be-

sides, these graphs complement each other nicely

and a fusion layer is designed for collaboration be-

tween these graphs.

We test our model with various Chinese NER

datasets. our model not only significantly outper-

forms the existing state-of-the-art (SOTA) model

but also is six to fifteen times faster than the speed

of the SOTA model.

In summary, our main contributions are as fol-

lows:

• We propose a Collaborative Graph Network

to integrate lexical knowledge directly and

efficiently for Chinese NER.

• To solve the challenges of integrating self-

matched lexical words and the nearest con-

textual lexical words, we propose three word-

character interactive graphs. These inter-

active graphs can capture different lexical

knowledge and are built without external

NLP tools.

• We achieve the state-of-the-art results in var-

ious popular Chinese NER datasets, and our

model achieves a 6-15x speedup over the ex-

isting SOTA model.
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2 Related Work

NER. There is rich literature on NER. This in-

cludes statistic methods, such as SVM (Isozaki

and Kazawa, 2002), HMMs (Bikel et al., 1997)

and CRF (Lafferty et al., 2001), suffering from

feature engineering. There are also a number of

recent neural network approaches applied to NER,

such as (Collobert et al., 2011; Huang et al., 2015;

Lample et al., 2016; Ma and Hovy, 2016; Chiu

and Nichols, 2016; Liu et al., 2018; Akbik et al.,

2018; Jie et al., 2019; Akbik et al., 2019). Com-

pared with English, Chinese is not featured with

obvious word boundaries, but it is important to

leverage word boundaries and semantic informa-

tion in Chinese NER. Many works use word seg-

mentation information as extra features for Chi-

nese NER, such as (Peng and Dredze, 2015; He

and Sun, 2017a; Zhu and Wang, 2019). Peng and

Dredze (2016), Cao et al. (2018) and Wu et al.

(2019) propose joint models to train NER together

with CWS. Our work is inspired by lattice LST-

M (Zhang and Yang, 2018), which can integrate

lexicon in NER.

Graph convolutional networks. There are a

number of recent graph convolutional network

(GCN) architectures (Kipf and Welling, 2017;

Hamilton et al., 2017; Veličković et al., 2018; Qu

et al., 2019) for learning over graphs. Our work

is closely related to the graph attention network-

s (GAT), introduced by Veličković et al. (2018),

leveraging masked self-attention layers to assign

different importance to neighbouring nodes. In re-

cent years, there is more and more literature about

the application of GCN in NLP (Bastings et al.,

2017; Marcheggiani and Titov, 2017; Zhang et al.,

2018; Yao et al., 2019; Wang et al., 2018; Mishra

et al., 2019; Cao et al., 2019; Zhang et al., 2019).

Cetoli et al. (2017) use GCN to investigate the role

of the dependency tree in English named entity

recognition. However, most of the works (Bast-

ings et al., 2017; Marcheggiani and Titov, 2017;

Cetoli et al., 2017; Zhang et al., 2018) heavily re-

ly on the dependency tree to construct a single

graph, which suffer from error propagation. To

capture different semantic and boundaries infor-

mation, we propose a Collaborative Graph Net-

work consisting of three automatically constructed

graphs, which can avoid error propagation prob-

lem naturally. To our best knowledge, we are

the first to introduce GAT and automatically con-

structed semantic graphs to Chinese NER tasks.

3 Approach

In this section, we first introduce the construction

of graphs to integrate self-matched lexical words

and the nearest contextual lexical words into sen-

tences. We then introduce the architecture of Col-

laborative Graph Network as a core for solving

Chinese NER tasks.

3.1 The Construction of Graphs

To integrate self-matched lexical words and the n-

earest contextual lexical words, we propose three

word-character interactive graphs. The first is

the word-character Containing graph (C-graph),

which is to assist the character to capture the

boundaries and semantic information of self-

matched lexical words. The second is the word-

character Transition graph (T-graph). The func-

tion of T-graph is to assist the character to capture

the semantic information of the nearest contextu-

al lexical words. The third is the Lattice graph

(L-graph). Zhang and Yang (2018) propose a lat-

tice structure, nested in the LSTM (Hochreiter and

Schmidhuber, 1997), to integrate lexical knowl-

edge. We free the lattice structure from the LSTM

and adopt it as the third graph.

These three graphs share the same vertex set,

but the edge sets of the three graphs are completely

different. The vertex set is made up of the charac-

ters in the sentence and the matched lexical words,

for example, as shown in Figure 1, the vertex set is

V={�, �,..., �, ��, ���, ..., �¬::}.
To represent the edge set, adjacency matrix needs

to be introduced. The elements of the adjacency

matrix indicate whether pairs of vertices are adja-

cent or not in the graph. Since the edge sets of

the three graphs are totally different, the adjacen-

cy matrices of these three graphs are introduced

below:

希 尔 顿 休 斯 顿 机 场离 开

休斯顿机场
Houston airport

休斯顿
Houston

机场
Airport

希尔顿
Hilton

了

离开
leave

希尔
Hill

Figure 2: Word-Character Containing graph
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Word-Character Containing graph

With the C-graph, the characters in the sentence

can capture the boundaries and semantic informa-

tion of self-matched lexical words. As shown in

Figure 2, if a lexical word i contains a character j,

the (i, j)-entry of the C-graph corresponding ad-

jacency matrix AC will be assigned a value of 1.

希 尔 顿 休 斯 顿 机 场离 开

休斯顿机场
Houston airport

休斯顿
Houston

机场
Airport

希尔顿
Hilton

了

离开
leave

希尔
Hill

Figure 3: Word-Character Transition graph

Word-Character Transition graph

The T-graph is to assist the character to capture

the semantic information of the nearest contextual

lexical words. As shown in Figure 3, if a lexi-

cal word i or a character m matches the nearest

preceding or following subsequence of a character

j, the (i, j) or (m, j)-entry of the T-graph corre-

sponding adjacency matrix AT will be assigned a

value of 1. Moreover, for capturing the contex-

t relation between lexical words, if a lexical word

i is the preceding or following context of another

lexical word k, we will assign “AT
ik = 1”. Note

that the T-graph is the same with the word cutting

graph which is used in Chinese Word Segmenta-

tion.

希 尔 顿 休 斯 顿 机 场离 开

休斯顿机场
Houston airport

休斯顿
Houston

机场
Airport

希尔顿
Hilton

了

离开
leave

希尔
Hill

Figure 4: Word-Character Lattice graph

Word-Character Lattice graph

Zhang and Yang (2018) propose a lattice structure

LSTM to exploit lexical knowledge for Chinese N-

ER. A lattice structure can capture the information

of the nearest contextual lexical words implicitly

and capture some information of self-matched lex-

ical words. As shown in Figure 4, if a character m

is the nearest preceding or following character of

a character j, the (m, j)-entry of the L-graph cor-

responding adjacency matrix AL will be assigned

a value of 1. Moreover, if a character j matches

the lexical word i first character or end character,

we will assign “AL
ij = 1”.

3.2 Model

A character-based Collaborative Graph Network

includes an encoding layer, a graph layer, a fu-

sion layer, and a decoding layer. The encoding

layer is to capture contextual information of the

sentence and to represent the semantic information

of lexical words. The graph layer is based on GAT

(Veličković et al., 2018) for modeling over three

word-character interactive graphs. A fusion lay-

er is used for fusing different lexical knowledge

captured by these three graphs. Finally, a standard

CRF (Lafferty et al., 2001) model is used for de-

coding labels.

Encoding

The input of the model is a sentence and all lex-

ical words that match consecutive subsequences

of the sentence. We denote the sentence as

s = {c1, c2, ..., cn}, where ci is the i-th char-

acter, and denote the matched lexical words as

l = {l1, l2, ..., lm}. By looking up the embedding

vector from a pre-train character embedding ma-

trix, each character ci is represented as a vector,

which denotes as xi.

xi = ec(ci) (1)

ec is a character embedding lookup table.

To capture contextual information, A bidirec-

tional LSTM (Hochreiter and Schmidhuber, 1997)

is applied to {x1, x2, ..., xn}. By concatenat-

ing the left-to-right and right-to-left LSTM hid-

den states, we obtain the contextual representation

H = {h1, h2, ..., hn}.

~hi =
−−−−→
LSTM(xi, ~hi−1) (2)

~hi =
←−−−−
LSTM(xi, ~hi+1) (3)

hi = ~hi ⊕ ~hi (4)

To represent the semantic information of lexi-

cal words, we look up word embeddings from a
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…
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Sentence:  希尔顿离开北京机场了。
Translation：Mr. Hilton has left Beijing Airport.

… …

… …

Figure 5: Main architecture of a Collaborative Graph Network for integrating lexical knowledge in Chinese NER.

The left side shows the overall architecture, including an encoding layer, a graph layer, a fusion layer, and a

decoding layer. On the right side, we show the details of graph attention networks over three word-character

interactive graphs. We use blue to denote the characters in the sentence and use green to denote the matched

lexicon words.

pre-train word embedding matrix, and each lexi-

cal words li is represented as a semantic vector,

which denotes as wvi.

wvi = ew(li) (5)

ew is a word embedding lookup table. We concate-

nate the contextual representation and the word

embeddings as the output of this layer, denoting

it as Nodef .

Nodef = [h1, h2, ..., hn,wv1,wv2, ...,wvm] (6)

Graph Attention Networks over

Word-Character Interactive Graphs

We use Graph Attention Networks (GAT) to mod-

el over three interactive graphs. In an M-layer

GAT, the input of j-th layer is a set of node fea-

tures, NFj = {f1, f2, ..., fN}, together with an ad-

jacency matrix A , fi ∈ R
F , A ∈ R

N×N , where

N denotes the number of the nodes and F is the

the dimension of features at j-th layer. The out-

put of j-th layer is a new set of node features,

NF(j+1) = {f′1, f′2, ..., f′N}. A GAT operation with

K independent attention head can be written as :

f′i =
K

‖
k=1

σ( Σ
j∈Ni

αk
ijW

kfj) (7)

αk
ij =

exp(LeakyReLU(aT[Wkfi‖W
Kfj]))

Σk∈Ni
exp(LeakyReLU(aT[Wkfi‖W

Kfk]))
(8)

where ‖ denotes concatenation operation, σ is a

nonlinear activation function, Ni is the neighbor-

hood of node i in the graph, αk
ij are the attention

coefficients, Wk ∈ R
F ′

×F , and a ∈ R
2F ′

is a

single-layer feed-forward neural network. Note

that, the dimension of the output f′i is KF ′. At

the last layer, averaging will be adopted, and the

dimension of final output features is F ′.

f
final
i = σ(

1

K

K

Σ
k=1

Σ
j∈Ni

αk
ijW

kfj) (9)

To model three totally different word-character

interactive graphs, We build three independen-

t graph attention networks, which are denoted as

GAT1, GAT2, and GAT3. Since three word-

character interactive graphs share the same vertex

set, the input node features of all GAT are matrix

Nodef , which is shown in Equation 6. The output

node features are denoted as G1, G2 and G3,

G1 = GAT1(Nodef , A
C) (10)

G2 = GAT2(Nodef , A
T ) (11)

G3 = GAT3(Nodef , A
L) (12)
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Extra Resource Models
Named Entity Named Mention Overall

P(%) R(%) F1(%) P(%) R(%) F1(%) F1(%)

Automatic word seg Peng and Dredze (2015) 74.78 39.81 51.96 71.92 53.03 61.05 56.05

Word Seg Data Peng and Dredze (2016) 66.67 47.22 55.28 74.48 54.55 62.97 58.99

Automatic word seg He and Sun (2017a) 66.93 40.67 50.60 66.46 53.57 59.32 54.82

Other data He and Sun (2017b) 61.68 48.82 54.50 74.13 53.54 62.17 58.32

Word Seg Data Cao et al. (2018) 59.51 50.00 54.43 71.43 47.90 57.53 58.70

Automatic word seg Zhu and Wang (2019) - - 55.38 - - 62.98 59.31

Lexicon Zhang and Yang (2018) - - 53.04 - - 62.25 58.79

Lexicon Ours 67.31 48.61 56.45 75.15 62.63 68.32 63.09

Table 1: Main results on Weibo NER

where Gk ∈ R
F ′

×(n+m), k ∈ {1, 2, 3}. We keep

the first n columns of these matrices and discard

the last m columns, because only character repre-

sentations are used to decode labels.

Qk = Gk[ : , 0:n], k ∈ {1, 2, 3} (13)

Fusion Layer

A fusion layer is used to fuse different lexical

knowledge captured by word-character interactive

graphs. The input of the fusion layer is the contex-

tual representation H and the output of the graph

layer Qi, i ∈ {1, 2, 3}. The equation of the fusion

layer is introduced below:

R = W1H + W2Q1 + W3Q2 + W4Q3 (14)

where W1, W2, W3 and W4 are trainable matri-

ces. Via a fusion layer, we obtain a matrix R,

R ∈ R
F ′

×n, which is a new sentence representa-

tion integrating the contextual information as well

as the lexical knowledge of self-matched lexical

words and the nearest contextual lexical words.

Decoding and Training

We use a standard CRF (Lafferty et al., 2001) lay-

er to capture the dependencies between successive

labels. Given a sentence s = {c1, c2, ..., cn}, the

input of the CRF layer is R = {r1, r2, ..., rn}, and

the probability of the ground-truth tag sequence

y = {y1, y2, ..., yn} is

p(y|s) =
exp(

∑
i(W

yiri + T(yi−1,yi)))∑
y′ exp(

∑
i(W

y′
iri + T(y′

i−1
,y′

i
)))

(15)

Here y′ is an arbitrary label sequence, Wyi is used

for modeling emission potential for the i-th char-

acter in the sentence, and T is the transition ma-

trix storing the score of transferring from one tag

to another. Viterbi algorithm (Viterbi, 1967) is

used to get the label sequence with the highest s-

core. Given a manually annotated training data

Resource Models P(%) R(%) F1(%)

Che et al. (2013) 77.71 72.51 75.02

Wang et al. (2013) 76.43 72.32 74.32

Gold Seg Yang et al. (2016) 65.59 71.84 68.57

Yang et al. (2016) 72.98 80.15 76.40

Zhu and Wang (2019) 75.05 72.29 73.64

Lexicon
Zhang and Yang (2018) 76.35 71.56 73.88

Ours 75.06 74.52 74.79

Table 2: Main results on OntoNotes. Gold seg means

gold-standard segmentation, which is not available in

the real world.

{(si, yi)}|
N
i=1, we optimize the model by minimiz-

ing the negative log-likelihood loss with L2 regu-

larization. The loss function is defined as:

L = −

N∑

i=1

log(P (yi|si)) +
λ

2
‖Θ‖2 (16)

where λ denotes the L2 regularization parameter

and Θ is the all trainable parameters set

4 Experiments

In this section, we carry out extensive experiments

to investigate the effectiveness of the Collabora-

tive Graph Network.

4.1 Datasets

We evaluate our model on Weibo NER (Peng and

Dredze, 2015; He and Sun, 2017a), OntoNotes

4 (Weischedel et al., 2011), and MSRA (Levow,

2006), where Weibo NER is in social domain,

OntoNotes and MSRA are in the news domain.

On Weibo NER, we use the same training, devel-

opment and test split as Peng and Dredze (2015).

On OntoNotes, we use the same data split as Che

et al. (2013). Since the MSRA dataset does not

have a development set, we randomly select 10%

samples from the training set as the development

set.
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Models P(%) R(%) F1(%)

Chen et al. (2006) 91.22 81.71 86.20

Zhang et al. (2006) 92.20 90.18 91.18

Zhou et al. (2013) 91.86 88.75 90.28

Lu et al. (2016) - - 87.94

Dong et al. (2016) 91.28 90.62 90.95

Cao et al. (2018) 91.73 89.58 90.64

Zhu and Wang (2019) 93.53 92.42 92.97

Zhang and Yang (2018) 93.57 92.79 93.18

Ours 94.01 92.93 93.47

Table 3: Main results on MSRA

4.2 Experimental Settings

In our experiments, We use the same character em-

beddings as Zhang and Yang (2018), which is pre-

trained on Chinese Giga-Word. We use the lex-

icon provided by Li et al. (2018), including 1.3

million Chinese words. We set the dimensionali-

ty of LSTM hidden states to 300 and set the ini-

tial learning rate to 0.001. Since the scale of each

dataset varies, we set different training batch size

for different datasets. Specifically, we set batch

sizes of MSRA, OntoNotes and Weibo NER as

64, 20 and 10. We use stochastic gradient De-

scent (SGD) algorithm to optimize parameters in

OntoNotes and WeiboNER, and use Adam (King-

ma and Ba, 2014) algorithm to optimize parame-

ters in MSRA. We stop the training when we find

the best result in the development set.

4.3 Overall Performance

Weibo NER. Table 1 shows the results on Wei-

bo NER. Zhu and Wang (2019) propose a Con-

volutional Attention Network using segmentation

information, which is the existing state-of-the-art

(SOTA) model. Our model outperforms SOTA

model by 3.78%, 1.07% and 5.34% in F1 score

on Overall, Named Entity, and Nominal Mention.

Zhang and Yang (2018) propose a lattice LSTM

to integrate lexical knowledge. Our model out-

performs the lattice LSTM by 4.3%, 3.41% and

6.07% in F1 score on Overall, Named Entity, and

Nominal Mention.

OntoNotes. Table 2 shows the results on

OntoNotes. Compared with lattice LSTM (Zhang

and Yang, 2018), Our model gains a 0.91% im-

provement in F1 score. Compared with the best re-

sult (Yang et al., 2016), our model doesn’t rely on

gold-standard segmentation, which is not available

in the real world. Note that our model even outper-

forms the model proposed by (Wang et al., 2013;

Yang et al., 2016; Zhu and Wang, 2019), which us-

es the information of gold-standard segmentation.

Dataset Ours(s) Lattice(s) Speedup

MSRA 344 13723 ×15

Training OntoNotes 188 2561 ×13

Weibo NER 64 458 ×7

MSRA 52 344 ×6

Testing OntoNotes 27.1 386 ×14

Weibo NER 2.2 23 ×10

Table 4: The performance of models in training and

testing time. Time is measured in seconds. Lattice

means the lattice LSTM (Zhang and Yang, 2018).

MSRA. Results on the MSRA dataset are

shown in Table 3. By leveraging hand crafted

features (Chen et al., 2006; Zhang et al., 2006;

Zhou et al., 2013) and character embeddings (Lu

et al., 2016), statistical models achieve good re-

sults on MSRA dataset. Dong et al. (2016) inte-

grate LSTM-CRF with radical features and Zhang

and Yang (2018) propose a lattice LSTM to inte-

grate lexical knowledge. Our model outperforms

the lattice LSTM by 0.29% in F1 score on MSRA

datasets.

Speed. As an essential preprocessing NLP tool,

NER tasks require high speeds of both training

and testing. Since aligning word-character lattice

structure for batch training is usually non-trivial,

the lattice LSTM (Zhang and Yang, 2018) suffers

from slow speeds in training and testing. Howev-

er, both LSTM and GAT in our model can compute

efficiently by batch training.

For fair comparison, both the lattice LSTM and

our model are implemented under PyTorch2. By

using a single NVIDIA GeForce GTX 1080 Ti G-

PU, We randomly select 10 training and testing e-

poch as samples. The average time of training and

testing is shown in Table 4. Our model can achieve

a 6-15x speedup over the lattice LSTM.

4.4 Effectiveness of Three Word-Character

Interactive Graphs

We conduct ablation experiments to demonstrate

the effectiveness of these three word-character in-

teractive graphs.

Comparison Setting. We design ablation stud-

ies as follow: 1) w/o C: without word-character

Containing graph(C-graph). 2) w/o T: without

word-character Transition graph (T-graph). 3)

w/o L: without word-character Lattice graph (L-

graph). 4)w/o C & T: without C-graph and T-

graph, only keep L-graph. 5)w/o C & L : without

C-graph and L-graph, only keep T-graph. 6) w/o

2https://pytorch.org/

https://pytorch.org/
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Case1

Sentence
&//@��5PÑ�'f:#é�&

&// @Xidian University:#good morning&

Case2

Sentence
~¯TóT�Ñw5���å&

Tencent and Lenovo jointly launched a computer cleaning day&

Matched

lexical word

&��5PÑ�'f(XidianUniversity)���(Xi�an)�

5PÑ�'f(UESTC)��5(An Dian)�5PÑ�(Electronics Technology),

é�(Good Morning)&

Matched

lexical word

~¯(Tencent),Tó(Lenovo),T�(Joint),

Ñw(Launch),5�(Computer),��(Clean)&

Sentence with

gold label

&// (O)@(O)�(B-ORG)�(I-ORG)5(I-ORG)P(I-ORG)

Ñ(I-ORG)�(I-ORG)'(I-ORG)f(I-ORG):(O)#(O)é(O)�(O)&

Sentence with

gold label

~(B-ORG)¯(I-ORG)T(B-ORG)ó(I-ORG)T(O)�(O)

Ñ(O)w(O)5(O)�(O)�(O)�(O)å(O)&

w/o C-graph

predicted label

&// (O)@(O)�(B-LOC)�(I-LOC)5(B-ORG)P(I-ORG)

Ñ(I-ORG)�(I-ORG)'(I-ORG)f(I-ORG):(O)#(O)é(O)�(O)&

w/o T-graph

predicted label

~(B-ORG)¯(I-ORG)T(O)ó(O)T(O)�(O)

Ñ(O)w(O)5(O)�(O)�(O)�(O)å(O)&

with C-graph

predicted label

&// (O)@(O)�(B-ORG)�(I-ORG)5(I-ORG)P(I-ORG)

Ñ(I-ORG)�(I-ORG)'(I-ORG)f(I-ORG):(O)#(O)é(O)�(O)&

with T-graph

predicted label

~(B-ORG)¯(I-ORG)T(B-ORG)ó(I-ORG)T(O)�(O)

Ñ(O)w(O)5(O)�(O)�(O)�(O)å(O)&

Table 6: Case study. w/o C-graph predicted label means without C-graph predicted label, and w/o T-graph predict-

ed label means without T-graph predicted label. We use green to denote the correct labels and use red to denote

the wrong labels.

Models
Dataset

OntoNotes Weibo NER MSRA

Complete model 74.79 63.09 93.47

w/o C 72.24 60.75 93.35

w/o T 71.57 60.94 93.02

w/o L 72.87 60.69 93.21

w/o C & T 70.53 58.51 92.72

w/o C & L 65.81 58.65 91.98

w/o T & L 71.41 58.72 92.80

BiLSTM+CRF 61.84 52.77 88.05

Table 5: Ablation study on reducing word-character in-

teractive graphs, For example, ”w/o C” means remov-

ing word-character containing graph from the complete

model.

T & L : without T-graph and L-graph, only keep

L-graph. 7) BiLSTM+CRF: baseline model.

Comparison Results. Table 5 shows the re-

sults of ablation experiments. We can clearly see

that removing any graph causes obvious perfor-

mance degradation, but the importance of different

graphs varies from dataset to dataset. Specifically,

on OntoNotes and MSRA, ’w/o T-graph’ obtains

worse performance than others, showing that T-

graph is important. However, T-graph performs

poorly without cooperating with other graphs. We

guess that “T-graph” graph can only capture the

information of the nearest contextual lexical word-

s, and it is not enough to rely solely on T-graph.

On Weibo NER, these graphs show equal impor-

tance. Since dialects slangs and irregular phrases

are very common in social domain, we must rely

on C-graph, T-graph, and L-graph jointly to handle

the informal and complex contexts. In conclusion,

from ablation experiments, we can find that each

graph can be implemented independent of the oth-

er, but together they can achieve the best result,

showing that all these three graphs are essential to

our model.

5 Case Study

To show visually that our model can solve the

challenges when integrating self-matched lexical

words and the nearest contextual lexical words, a

case study comparing without C-graph, without T-

graph and the complete model is shown in Table

6. In the first case, there is an entity “��5PÑ

�'f”(Xidian University) with nested “��”

(Xi’an) and “ 5PÑ�'f” (UESTC). These

common entities are all in the lexicon. Without C-

graph, the model can’t integrate the information of

the self-matched lexical word ‘��5PÑ�'

f” (Xidian University) into the characters “ 5”

and “�”. Influenced by another lexical word “5

PÑ�'f” (UESTC), the predicted label of the

character “ 5” is “B-ORG”, and the label of the

character “�” is predicted to be “I-ORG”, affect

by the lexical word “��” (Xi’an). In the second

case, there is an entity “ Tó” (Lenovo), which

can also be a common verb (“Associate”) in Chi-

nese. Without T-graph, the model can’t integrate

the information of the nearest contextual lexical

words “ ~¯” (Tencent) and “T�” (Joint) into

the characters “ T” and “ ó”, so the predicted

labels of the characters “T” and “ ó” are ”O”s.

However, with the help of T-graph, the model can

use the information of the nearest contextual lexi-

cal words “~¯” (Tencent) and “T�” (Joint) to

predict the correct labels.

6 Conclusion

In this paper, we propose a Collaborative Graph

Network for integrating lexical knowledge in Chi-

nese NER. The core of the network is three lexi-

cal word-character interactive graphs. These inter-

active graphs can capture different lexical knowl-

edge and are built without external NLP tools. We

show through various experiments that our model

has complementary strengths to the SOTA model

and these interactive graphs are effective.
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