\ \. Supplementary materials for this article are available online. Please click the Technometrics link at http://pubs.amstat.org.

Leveraged Gauge R&R Studies

Ryan BROWNE, Jock MACKAY, and Stefan STEINER

Business and Industrial Statistics Research Group
Department of Statistics and Actuarial Sciences
University of Waterloo
Waterloo, N2L 3G1, Canada
(rpbrowne @ gmail.com)

To assess measurement system variation, we propose an alternative to the standard gauge reproducibility
and repeatability (GR&R) study. The new plan, called a leveraged GR&R Study, is conducted in two
stages. In the baseline stage, we select a sample of parts that are measured once only each using a fixed
number of operators. Then we deliberately select extreme parts for the second stage where each operator
measures each selected part a number of times. We demonstrate the advantages of the leveraged over the
standard plan by comparing the standard deviations of the estimators of the parameters of interest. For
a fixed number of operators and total number of measurements, we recommend leveraged plans with a
baseline size that is roughly half the total number of measurements. We also recommend that the number
of parts selected for the second stage be set to an integer multiple of the number of operators and that each
of these parts be measured two or three times by each operator. This article has supplementary material

online.
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1. INTRODUCTION

Operators are often thought to be a substantial source of vari-
ability in a measurement system. Each operator is assumed to
have a different mean when repeatedly measuring the same part
so that there are relative biases among the operators. In this
article, we consider extending previous work on leveraging by
(Browne, MacKay, and Steiner 2009a, 2009b) to the assessment
of a measurement system with multiple operators. We use the
multiple operator terminology, but the extension is also applica-
ble when there are multiple parallel gauges in the system with
no operator effects.

The most common measurement assessment plan for a sys-
tem which includes operators is called a gauge reproducibility
and repeatability (GR&R) study as described in Automotive In-
dustry Action Group (2003). With a GR&R, we can partition
measurement variation into two sources: repeatability and re-
producibility. Repeatability is the variation associated with re-
peatedly measuring the same part with the same operator. Re-
producibility is the variation attributable to differences among
operators.

To assess the repeatability and reproducibility of a measure-
ment system, we repeatedly measure a number of parts with m
different operators. For a measurement Y; from the jth operator,
j=1,...,m, on arandomly selected part, we adopt the model

Y= pj+P+E, (1)

where (; is the mean for operator j, P is a random variable
whose distribution describes the possible true values of the part
characteristic, and E represents the random measurement error.
The random variables P and E are assumed to be independent
and normal with means 1, and 0 and standard deviations o),
and oy, respectively. We can only estimate ; + up, SO we set
up=0.

The operator effects p; can be modeled as random or fixed.
A random effects model describes the situation where the mea-
surement system is used by a large number of operators and
only a sample of these operators are used in the assessment
study. Burdick, Borror, and Montgomery (2005), Montgomery
and Runger (1993a), and Wheeler and Lyday (1984) use a ran-
dom effects model in the analysis of a GR&R study. We rec-
ommend assuming fixed effects for operators when only a few
operators use the measurement system in production. One ar-
gument in favor of fixed effects comes from Dolezal, Bur-
dick, and Birch (1998). They noted that a GR&R study is
required every time the production process changes and oc-
casionally for routine measurement assessment. The time be-
tween assessments can be short, making it realistic that only
a few operators use the measurement system during the time
between studies. They also note that if a mixed model (opera-
tors with fixed effects) better represents the measurement sys-
tem, using a random effects model (operators with random ef-
fects) will result in unnecessarily accounting for extra variabil-
ity.

With operators having fixed effects, we need to define care-
fully the parameters of interest. Suppose we have m operators
each with a fixed effect quantified by the mean w; in Equa-
tion (1). To define reproducibility, let

1 & .
ol = — ;(MJ’ - )

where 7z = ) (u;/m). The parameter o, captures the variation
due to differences among the m operator means (i.e., the effects

© 2010 American Statistical Association and

the American Society for Quality
TECHNOMETRICS, AUGUST 2010, VOL. 52, NO. 3
DOI 10.1198/TECH.2010.09037

294


http://pubs.amstat.org
mailto:rpbrowne@gmail.com
http://www.amstat.org
http://www.asq.org
http://pubs.amstat.org/loi/tech
http://dx.doi.org/10.1198/TECH.2010.09037

LEVERAGED GAUGE R&R STUDIES

of relative bias), but is not a variance in the usual sense. Next,
we define

2 2 2
Ope =0, +0g, 3)
atz = O';g + 002, “4)
050 =02+ U;. (5)

The parameter o), is the variation seen in measurements made
by any single operator on a sample of parts from the process.
The parameter o; represents the total variation seen in the
process if each operator measured the same proportion of parts
in regular production. Finally, the parameter oy, represents the
total variation seen in the measurement of any particular part
if each operator is used with the same intensity. If each oper-
ator has the same mean, then o, = 0 and we can interpret og,
and o; defined in Equation (1) as standard deviations. Using
manufacturing jargon, o, represents the overall measurement
variability, o, the repeatability, and o, the reproducibility. We
assume oy is the same for each operator and part. By adopt-
ing Equation (1), we also assume overall process stability, i.e.,
that all of the parameters are constant over the time needed to
conduct the assessment.

To quantify the contribution of the measurement system to
the total variation, we use the ratio y = og,/0; that corre-
sponds to the usual performance measure in the random effects
model. Note that 0 < y <1 and the smaller the value of y,
the smaller is the contribution of the measurement system to
the overall variation. The commonly adopted cut-off values (see
Automotive Industry Action Group 2003) used to determine if a
measurement system is acceptable are y = 0.10 and y = 0.30.
Any reasonable system has y < 0.5.

When trying to improve a measurement system, a metric that
compares the reproducibility and repeatability is of interest. We
use A = o2 /agZO, which is the ratio of variation due to the rel-
ative bias among the operators and overall measurement vari-
ation as defined in Equation (5). Note that A uses variances
whereas y is based on standard deviations. We choose this scale
so that 0 <X <1 and A = 0.5 corresponds to equal contribu-
tions from the repeatability and reproducibility. We treat y as
the primary parameter while A is of secondary interest since the
main purpose of the assessment is to validate the measurement
system as a whole.

The standard measurement system assessment plan (see
Dolezal, Burdick, and Birch 1998; Automotive Industry Ac-
tion Group 2003; Burdick, Borror, and Montgomery 2003) is to
sample k parts at random from the process and then have each of
the m operators measure each part n times for a total of N = kmn
measurements. We denote the standard plan by SP. In practice,
it is common to use use two or three operators (m = 2, 3), each
of which measure the same k = 10 parts two or three (n =2, 3)
times for a total of 40 to 90 measurements. The analysis of the
data and the corresponding estimates and confidence intervals
for y and X are based on analysis of variance (ANOVA) using a
model with fixed operator effects (Burdick, Borror, and Mont-
gomery 2005, section 6.9). Here we use maximum likelihood
estimation and look at asymptotic standard errors of the estima-
tors. These standard errors are directly related to the length of
confidence intervals, assuming the asymptotic approximations

apply.
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In this article, we introduce a two-stage leveraged plan (LP)
where we first select a baseline sample of parts that are mea-
sured only once. Then we deliberately select extreme parts from
the baseline to re-measure in the second stage. We demonstrate
the advantages of the LP over the SP by comparing the asymp-
totic standard deviations of the estimators for y and A. The
article has the following format. In Section 2, we explain the
leveraged plan in detail and present the likelihood and Fisher
information for the parameters of interest. We also give an ex-
ample to illustrate how to estimate these parameters and obtain
approximate standard errors. In Section 3, we compare the effi-
ciency of the LP and SP. In Section 4, we propose good designs
for leveraged plans. Finally, in Section 5, we draw conclusions
and discuss possible extensions of leveraging.

2. LEVERAGED PLAN

A leveraged measurement system assessment is conducted in
two stages:

Stage 1. Sample (b x m) parts at random from the process
to obtain a baseline. Then allocate b different parts to each of
the m operators which measure the allocated parts once. In this
stage, no part is measured twice. We denote the initial measured
value from part i and operator j as y;o fori=1,...,band j =
1,...,m.

Stage 2. From the baseline sample, select k parts using the
observed measured values. We denote the k selected parts by R
which is a subset of {(1, 1), (1, 2), ..., (b, m)} with k elements.
To improve the estimation of y and A, sample these parts so that
the initial measurements are extreme relative to their operator
average, i.e., choose parts with large values of [y;jo —¥.jo| where
V.jo = %Zle vijo- Then use the k selected parts in a standard
plan. That is, each of the m operators measures each of the k
parts n times to give the additional data {y;, (i,j) € R, [ =
I,...,m,and h=1,...,n}. Note that y;;; is the hth measured
value by operator / on the ith part measured by operator j in the
baseline.

For example, in a leveraged plan with b = 10,m =3,k =6,
and n = 2, we first sample 30 parts at random from the process
and allocate 10 parts to each of the three operators. The opera-
tors measure each of their 10 assigned parts once. Then, one
possibility is to pick the parts with the minimum and maxi-
mum initial measurement from each operator. In Stage 2, these
k = 6 parts are used in a standard plan where each opera-
tor measures each part twice (n = 2). This plan has a total
of 10 x 3 + 6 x 3 x 2 = 66 measurements. In general, the
total number of measurements in the leveraged plan is N =
m(b + nk).

In Stage 1 of the LP, we must select and measure the parts
over a sufficiently long time that we get a meaningful estimate
of o, from the baseline sample. In Stage 2, we recommend re-
peatedly measuring the parts over the range of conditions (time,
environment, etc.) expected to capture the major sources of
measurement variation. We can alter the plan in this stage to
quantify these sources of variation individually if that is deemed
advisable. In this article, we do not consider the effect of lever-
aging on these altered plans. It is also helpful to select parts
with large and small initial measurements to check the linearity
of the measurement system.
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2.1 Likelihood

To obtain the likelihood for the leveraged plan, we start by
finding the likelihood for the repeated measurements on a single
part. For any part (i, j) measured by operator j in the baseline,
the joint distribution of the initial measurement Y;jo and the n
repeated measurements from each of the m operators is

Yi i
Yiu 1

N | ol = 0Lt + pTuna1 | (6)
Yijmn Mm

where p = 01,2 /01]25,, I, is an identity matrix with dimension g,
and J, is a square matrix of ones with dimension g.

The distribution of the repeated measurements {Y;j11, Yij12,
..., Yijmn} on a single part, conditional on the initial measure-
ment Yjjo = yjjo, is

Yi w1+ pyijo — 1j)

Yio =vijo | ~N ®1,,

Yijmn Hm + p(YijO - Mj)

Z =05 (L= p) Iy + o) [+ (D)

where the Kronecker product ® stacks n copies of the vector u
in a single vector and 1, is a column vector of ones with g rows.
It is important to note that this conditional distribution depends
only on the value of the initial measurement and not on how
the part was selected. To understand this result, imagine after
the initial measurements are made, all bm parts in the baseline
are re-measured n times by each operator. You are given the
initial, but not the additional measurements. Then, for each part,
the previous conditional distribution in Equation (7) will apply.
Selecting any subset of parts does not change the conditional
distribution as long as the selection is based on the given initial
values. The order of making the additional measurements and
selecting the parts to be re-measured does not matter.

The covariance matrix X in Equation (7) has a special form
that allows us to obtain the following, using well known prop-
erties (Dillon and Goldstein 1984):

1
-1 _
o2, (1 — p)(1 4 mnp)

{[1 + (mn - 1)p]lmn - p-’mn}7

|1 = 05" (1= p)"™" (1 + mnp).

Using these properties of X, we can write the conditional
likelihood (conditional on y;jo) for the repeated measurements
on each selected part. It is convenient to reparametrize the like-

lihood in terms ofg = (1, U2, ..., )" and
2 2 2 d OPZ (8)
o,,=0,+0 an p= .
P8 14 g 2 2
oy + 04

We assume in Equation (1) that the measurements for one part
are independent of the measurements from another. The condi-
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tional likelihood for all k parts in Stage 2, each with nm mea-
surements, is the product of the individual likelihoods. The con-
ditional log-likelihood is

L(1, 0,y plyijos (ir)) € R)

mnk 5 mnk k
= —Tlogapg - log(1 — p) — 3 log(1 + mnp)

1 1
2 al,zg(l —p)(1 4+ mnp)
x {(1 + mnp)G(p) +mnH(p, p)}, )
where
m n
G(p) = Z ZZ(ZUM - Z@/--)z,
(ij)eR I=1 h=1
H(u, p) = ) [z — pzol’,
(i,j))eR
with zjo = yijo — > Zjm = Yy — i, and Zy. = ;L x

D11 2 k-

We next find the likelihood of the baseline data. In the base-
line, each of the m operators measures b different parts for to-
tal of b x m measurements. Assuming these parts are selected
at random from the process, the marginal log-likelihood of the
baseline data is

1 m b
Cyy {Z Z(Yijo —¥j0)

5 bm 2
(1, 0p0) = = ) loga,, —
rg j=1 i=1

+bY (o - u,»)Z}, (10)

j=1

where y.jo = % Zle yijo is the average of the baseline measure-
ments for operator j. Finally, the (unconditional) log-likelihood
for the LP is

2

(14, 0. p) =11 (1. 0p) + a1, 0. plyio. (i) €R). (1)

To get the maximum likelihood estimates (MLE’s) of p, ong,
and p, we maximize Equation (11). Solutions can be found nu-
merically. Then to get the MLE’s for y and A, we apply the
appropriate transformations to give

~_ C)-()—i_(l ﬁ)gpg ~_ o,
TN we, M M aeer
1 124 o g

where we substitute it into Equation (2) to estimate G2. R code
to maximize the likelihood and generate approximate standard
errors is available at http://www.bisrg.uwaterloo.ca/ .

12)

2.2 Fisher Information and Asymptotic Variances

The asymptotic variance—covariance matrix of the maximum
likelihood estimators is the inverse of the Fisher information
matrix. We obtain the Fisher information matrix by summing
several pieces. For each piece, we calculate minus the second
derivatives of the log-likelihood with respect to the parameters
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and then take expectations. We omit the tedious calculations.
The first piece, from the baseline likelihood, is

b
pg Qm Qm
J1 (1, O, P) = ;m—b 0, (13)
0

where I, is the identity matrix with dimension m and 0,, is a
column vector of m zeros. Since information matrices are sym-
metric, we do not show the values below the diagonal. In addi-
tion to the baseline information matrix, we have one matrix for
every part selected to be repeatedly measured in Stage 2. Each
matrix has the same form. Suppose we have part i with initial
measurement y;jo measured by operator j. Then the Fisher in-
formation is

My +Mg 0,
1 mn
D2ij (1, 0y ) = 20k,
Yi.j
1 mnp(mn+l)
2 02, (1-p)(1+mnp) . (14)
lnm(nm+l)(nmp2+l) mn(E[Z, ,/0] 9]
2 (1+mnp)>(1—p)? (I+mnp)(1-p)
where
My = n(1 + mnp)ly —n* pJm,
M) = np@mp — DI —npJom),
L = ¢, Jo) = L,¢; + i1, — ¢je, (15)
o nE[Zij] nmpE(Zi]
- opg(1 — p)(1 + mnp) " Gpg(l — p)(1 4+ mnp) &
Zijo = (Yijo — i)/ opg-

Note that ¢; is a column vector of length /m with all zeros except
for a single one at the jth position and 1,, is a column vector
of m ones.

To get the complete Fisher information, we add the baseline
Fisher information and the Fisher information matrices over all

parts used in Stage 2. We get

T, 030 ) =T1 (1.0 0) + Y Daij (. 0 ).
(ij))eR

(16)

The second term in Equation (16) is a function of S;, the
sum of E[Z;0] over all parts selected for Stage 2 and mea-
sured by operator j in the baseline, j = 1,...,m, and SS =
Z(, »erElZ; jo] At this point, it is important to note that these
expected values depend on how we select the second stage
parts. The likelihood in Equation (11) depends on the initial
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measured values of the parts selected for Stage 2; the informa-
tion in Equation (16) depends on how those parts are selected.
Note that as SS increases (i.e., we select parts that are more ex-
treme for Stage 2) so does the lower-right diagonal entry of the
information matrix.

The Fisher information for (i, A, y) can be written in terms
of J (&, ang, p) and the matrix D, which is the Jacobian of the

transformation from (ﬁ, crng, p) to (ﬁ, XA, ¥). We have

I =22 w-m,) 0,

0'02 20'02
D=0, —2 —33 a7
o r2(-y?) 2y (=)
= Oy?=1? (y?=1?
Then, the Fisher information for (ﬁ LA, Y) s
J(. h, ) =DJ (i, 05, pID'. (18)

In the Appendix, we derive an expression for the asymp-
totic variance covariance matrix of the MLE’s, the inverse of
J(p, A, v), and show algebraically that the asymptotic vari-

ances of and  decrease as SS increases with the other design
parameters S1, ..., Sy, 1, m, k, and b fixed. That is, we get im-
proved precision by selecting more extreme parts. If we select
the k parts for Stage 2 at random, then SS = k. We can guar-
antee that SS > k by selecting parts with relatively extreme ini-
tial values. Generally, we cannot change SS without changing
St,...,Su. One common exception is the balanced LP where
we chose an equal number of parts with large and small initial
values for each operator so that §; =0 foreachj=1,...,m.

To obtain an estimate of the asymptotic variance—covariance
matrix for (i, A, 7) and hence approximate standard errors,
we substitute the MLE’s for the parameters in J(u, A, ) and
then find the inverse numerically. We estimate the quantities
S1,...,S, and SS using the corresponding sample quantities
zijo = (yijo — Ij)/0pe. For a balanced design, we substitute
Si=0foreachj=1,...,m

2.3 An Example

To illustrate how to get estimates, standard errors, and check
model assumptions for a leveraged plan, we consider an arti-
ficial example with m = 3 operators, and b = 11,k = 3, and
n = 3. This means in Stage 1, 33 parts were sampled at random
and distributed equally to the three operators. The baseline data
are presented in Table 1. We selected parts numbered 4, 5, 11
(shown in bold) from operators 1, 2, 3, respectively, because of
their extreme initial measurements. These three parts were then
measured by each operator n = 3 times to yield the additional
data given in Table 2.

Table 1. Baseline (Stage 1) data

Baseline observations ;o

j i=1 2 3 4 5 6 7 8 9 10 11 3.0
1 —153 —135  —2.05 2.12 062  —203 —024 —122  —0.53 171 —035  —0.44
2 —134 036  —0.81 0.62 -1.78 111 —1.12 1.63 0.67 157  —025 0.06
3 1.58 0.55 1.56 0.80 181  —0.22 0.16 027  —053  —037 1.93 0.69
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Table 2. Stage 2 data

Repeated measurements for part (i, j)

“4,1) (5,2) (11,3)

Repeats Repeats Repeats
Operator 1 2 3 1 2 3 1 2 3
1 2.08 2.08 2.10 —191 —1.89 —192 1.80 1.77 1.77
2 224 219 222 —1.71 —1.81 —1.68 1.87 191 1.89
3 233 234 244 —1.67 —1.66 —1.62 2.02 197 1.95

The maximum likelihood estimates from Equation (11) for
(p1, m2, 43, agg, p) are (—0.021, 0.113, 0.218, 1.425, 0.999).
Using the transformations in Equation (12), the maximum like-
lihood estimates for (y, A) are (0.087,0.876). We can obtain
standard errors by applying Equation (18) and substituting the
MLE’s. Here, the standard errors for y and XA are 0.0120 and
0.0331, respectively. So, in this example, the measurement sys-
tem variation is small with respect to the total variation in
the process. An approximate 95% confidence interval for y
(= 0g40/01) is 0.087 £ 0.024 and since A= 0.876, a substan-
tial proportion of the measurement system variation is due to
relative biases among the operators.

To check the model fit, we created a quantile—quantile (QQ)
plot of the 33 baseline residuals defined as y;jo — ¥.jo- This plot
is shown in the left panel of Figure 1. The right panel shows the
baseline residuals by operator, which can be used to check the
assumed constant standard deviation o, among the three oper-
ators. These two plots show no evidence to suspect the model.

To further check the model fit, we created a normal QQ
plot of the 27 Stage 2 residuals defined as yj, — ;5. where
Viji. = % > n—1 Yijin- This is shown in the left panel of Figure 2.
The right panel shows the Stage 2 residuals plotted by opera-
tor that provides a second check of constant variance across the
operators. Figures 1 and 2 give conflicting information regard-
ing the assumption that oy, is constant across operators and this
illustrates how hard it is to compare standard deviations with a
few degrees of freedom. Also, the residuals in Figure 1 include
the dominant part-to-part variation which may completely mask
any differences in o, among operators as suggested in Figure 2.
We can also look informally for evidence of part-by-operator

Baseline QQ Plot
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|
(o)

-2
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o

-2 -1 0 1 2

Theoretical Quantiles
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interaction by plotting the Stage 2 residuals by part with a sep-
arate plotting symbol for each operator. We do not include this
plot here.

3. COMPARISON OF LEVERAGED
TO STANDARD PLAN

To demonstrate the value of the leveraged plan we resort to
simulation. We compare the LP to the SP when there are m =
3 operators and the total number of measurements is N = 60
and 90.

1. For N = 60, with m = 3 operators, we compare the fol-
lowing two plans

e SP with k=10 and n = 2 (a commonly used plan in
practice)

e LP with b =11, k=3, and n = 3 (as recommended
in Section 4)

2. N =90, with m = 3 we compare

e SP with £ =10 and n = 3 (a commonly used plan in
practice)

o LP with b= 18, k=6, and n = 2 (as recommended
in Section 4).

To select the parts for Stage 2 of the LP with k = 3, we take the
largest part from operator 1, the smallest from operator 2, and
the largest from operator 3. When k = 6, we use the largest and
smallest part from each operator.

To compare the SP and LP, we vary A and y, but fix 0[2 =1
and the composition of w1, 2, u3. That is, for each simula-
tion run we set 002 = 2 and then set ur =0, u; = —u3

and p3 = %002. We need to fix the composition because
there are an infinite number of possibilities for a particular

value of 03. For example, u equal to (—1.225,0, 1.225) or
(—1.000, —0.366, 1.366) will yield the same value of 2. If o>
and @& = %27’:1 w; remain constant and we select the same
number of parts from each operator in the baseline study, the
asymptotic standard deviations of y and A, found in the in-
verse Fisher information, are the same no matter the compo-
sition of .

Baseline Residuals by Operator

[e)
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[e)
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Figure 1. Model assessment using baseline data. The left panel shows a normal QQ plot of the baseline residuals y;jo — ¥.jo and the right

panel shows these residuals by operator.
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Repeat Residuals by Operator
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Figure 2. Model assessment using second stage data. The left panel shows a normal QQ plot of the second stage residuals yjj, — y;j. and the

right panel shows these residuals by operator.

In the comparison, we use MLE for the leveraged plan and
ANOVA (Burdick, Borror, and Montgomery 2005) for the stan-
dard plan. We quantify the difference between the plans using
the ratio of standard deviations of the estimators for y and A
from the two plans. To calculate this ratio, we simulated 1000
repeats at a variety of y and XA values. We restricted attention
to 0 < y < 0.5 since it would be unusual to see a measurement
system with y > 0.5. Then, to create Figure 3, we smoothed the
simulated values across the parameter space.

Figure 3 shows that with N = 60 the LP is substantially and
uniformly more efficient than the SP for estimating the para-
meter of primary interest y. If we have a good measurement
system with y < 0.1, the LP is 1.6 to 2 times more efficient in
estimating y. Conversely, the SP has a lower standard deviation
for A than the LP. The parameter A is of secondary importance
since if y is small the measurement system is acceptable re-
gardless of the X value. Figure 4 compares the LP and SP when
the total number of measurements is N = 90. Now the advan-
tage of the LP over the SP for estimating y is increased. The
LP is two times more efficient than the SP almost everywhere.
The advantage of the SP in estimating X is reduced as well. We
see similar results for other values of N and m. See the online
supplemental material for more examples.

stdev(yLp)/stdev(ysp)

_//
s /
| oe o
- _O'@ / /Q

I I I I
02 04 06 08

0.2 0.3 04 05

0.0 0.1

A

We show in the Appendix that the asymptotic variance of x
decreases as we select more extreme parts, i.e., as SS increases.
In the previous comparisons, we see that the SP does better than
the LP in estimating A. This occurs because, in the SP, we have a
greater number of parts measured by all three operators, which
more than offsets the value of leveraging.

In summary, by using a leveraged plan, we make substantial
improvement in estimating the primary parameter of interest y
with no extra measurements. The only additional costs are the
slightly more complex plan and the extra computational burden
to find the MLE’s and their standard errors.

4. LEVERAGED PLAN DESIGN

In this section, we present some general guidelines for choos-
ing a leveraged plan (i.e., choosing values for b, k, and n) when
the total number of measurements is N = 60 or 90 and there are
m = 3 operators. We based our guidelines on designs that have
the smallest asymptotic standard deviation of y calculated us-
ing the Fisher information. To find the preferred plans with N
and m fixed, for each point in the region y € (0.01, 0.50) and
A € (0, 1), we calculate the asymptotic standard deviations for
all possible designs. Note that when k is not a multiple of 2m

stdev() p)/stdev(rgp)

1>~

7

hN

02 04 06 08

0.2 03 04 05

0.0 0.1

A

Figure 3. The ratios of standard deviations for the estimators of y (left panel) and A (right panel) from the leveraged plan (N = 60,

b =11,k =3,n=73) and standard plan (N =60,k =10, n =2).
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Figure 4. The ratios of standard deviations for the estimators of y (left panel) and A (right panel) from the leveraged plan (N = 90,

b =18,k =6,n=2) and standard plan (N =90, k= 10,n = 3).

(= 6), the set R of parts selected for Stage 2 cannot be balanced
across the operators. In that case, to select the parts, we arbitrar-
ily cycle through the operators taking the largest from the first,
the smallest from the second and so on. We present the results
of the search in Table 3.

The optimal designs in Table 3 change slowly with A and y.
In practice, choosing an optimal design is not possible because
of the dependency on the unknown parameters. We can sug-
gest a criteria that summarizes the performance of a design
over a range of reasonable values of y and A. However, any
such criteria will be difficult to justify. In Table 3, we note
in all cases the baseline size (b x m) is around half the total
number of measurements N and the number of repeated mea-
surements 7 is two or three. To explore this observation further,

Table 3. The LP designs (b, k, n) with the smallest asymptotic
standard deviation of y given A, y when m =3 and
N =60 (left) and N = 90 (right)

A V&S (b, k,n) Y€ (b, k, n)
0.1 (0.01,0.50)  (10,5,2) 0.01 (16,7,2)
0.02,0.26)  (15,5,3)

(0.27,0.50)  (16,7,2)

0.2 (0.01,0.50)  (10,5,2) (0.01,0.09)  (16,7,2)
(0.10,0.29)  (15,5,3)

(0.30,0.50)  (16,7,2)

0.3 (0.01,0.42)  (10,5,2) (0.01,0.19)  (16,7,2)
(0.43,0.50)  (12,4,2) (0.20,0.28)  (15,5,3)
(0.29,0.50)  (16,7,2)

0.4 0.01,0.22)  (10,5,2) (0.01,0.38)  (16,7,2)
(0.23,0.50)  (12,4,2) (0.39,0.50)  (18,6,2)

0.5 (0.01,0.50)  (12,4,2) (0.01,0.26)  (16,7,2)
(0.27,0.50)  (18,6,2)

0.6 (0.01,0.50)  (12,4,2) (0.01,0.06)  (16,7,2)
(0.07,0.50)  (18,6,2)

0.7 (0.01,0.50)  (12,4,2) (0.01,0.40)  (18,6,2)
(0.41,0.50)  (20,5,2)

0.8 (0.01,0.50)  (12,4,2) (0.01,0.04)  (18,6,2)
(0.05,0.50) (20, 5,2)

0.9 (0.01,0.50)  (14,3,2) (0.01,0.50)  (22,4,2)
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we consider the two leveraged plans (b =11,k =3,n=3) and
(b =18,k =6,n=2) because they match designs featured in
Table 3 and have k equal to an integer multiple of the number
of operators. This choice of k allows an equal number of parts
measured by each operator in the baseline to be represented in
Stage 2. Figure 5 shows the asymptotic standard deviation of y
for these two plans versus the optimal designs given in Table 3
over the parameter space. For either plan, there is, at most, a
10% increase in the asymptotic standard deviation for y from
using the suggested LP design compared to the optimal design
(which depends on the unknown parameters). Note also that the
loss in efficiency is pronounced only when 2 is close to 1.

We also investigated how these two plans behave when the
operator effects are not equally spaced. Because we select the
same number of parts for each operator from the baseline, we
can show that the estimators from these plans do not depend on
how the operator effects are distributed to make up 002.

We get similar results for other values of N and m. Thus,
to summarize, we have the following guidelines for selecting a
leveraged plan when only a few operators make regular use of
the measurement system and the total number of measurements
N available is roughly specified:

e Involve all m operators.

e In Stage 1, select b x m parts at random from the process
where b x m is close to N/2. Each operator measures b
different parts.

e In Stage 2, select an equal number of extreme parts from
each operator based on the initial measurements to give a
total of k parts. Since each of these parts will be measured
two or three times by each operator, select k so that 2mk
or 3mk is approximately N/2.

For example, suppose we have resources to make roughly
N = 50 measurements and there are m = 2 operators. A near
optimal plan is to select b = 12 so that the baseline has 24 parts.
Then select the parts with the largest and smallest initial mea-
sured values from each operator so that k = 4. In Stage 2, each
operator measures each of these parts n = 3 times for an over-
all total of 48 measurements. For estimating y, this plan will
be far better than the 12 part SP with each operator measuring
each selected part twice.
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Figure 5. The standard deviation of the LP estimator from two designs b = 11, k = 3, n = 3 (left panel) and b = 18, k = 6, n = 2 (right panel)
divided by the standard deviation of the optimal plan given N = 60 (left panel), 90 (right panel), p and m = 3.

We provide R code for the analysis and design for leveraged
GR&R studies at http://www.bisrg.uwaterloo.ca.

5. DISCUSSION AND CONCLUSIONS

There many different ways to implement leveraging. When
selecting parts for Stage 2, we suggest picking an equal num-
ber of extreme parts from each operator, and if k/m is even,
choosing an equal number of large and small parts from each
operator, i.e., if m = 3 and k = 3, we can pick the largest part
from operators 1 and 3 and the smallest from operator 2. An
alternative is to pick the most extreme parts across all opera-
tors, for example if m = 3 and k = 3, we can pick the three
parts with the largest values of |y;o — ¥.jol- This allows for the
possibility that all the parts for the Stage 2 can be measured by
the same operator in the baseline. Choosing an even number of
parts from each operator ensures balance, but the chosen parts
are not likely to generate the largest value of S, i.e., the most
extreme measurements overall.

There are many alternative LP designs. In our suggested plan
in the previous section, for m = 3 and b = 10, in the baseline
stage we randomly selected 30 parts and allocate 10 to each op-
erator. Another way to define the baseline is to randomly select
10 parts and have each operator measure each part once. This
also gives a total of 30 measurements. Then, we might define
the extreme parts for Stage 2 as having large or small averages
(across operators). Qualitatively, it is clear that if we compare
this version of an LP with the version suggested in Section 2,
the information about A will be increased at the expense of in-
formation about y because we have fewer parts but more mea-
surements from the different operators on the same part. We
prefer the LP as suggested in Section 2 because our main goal
is estimation of y.

Typically, industrial measurement systems only have a few
operators, but if we had a context where many operators use
the system, we will prefer a model with random operator ef-
fects. One example, in a medical context, is measuring blood
pressure. Many doctors measure their patient’s blood pressure
using the same process. In this case, with many operators, we
can specify the baseline as b parts measured by b operators (one
part per operator) for a total of b measurements. The baseline

is defined in this way so that the sample average and standard
deviation from the baseline are estimates of the overall aver-
age and standard deviation. Associated with each baseline mea-
surement, we have both the operator and the part number. For
Stage 2 where we select extreme parts, we have several options:

e Leverage by part: in Stage 2 repeatedly measure the cho-
sen extreme parts with m new operators n times each.

For example with k =2, m =3 and n = 2, we might
pick the parts with the overall minimum and maximum ini-
tial measurements in the baseline sample. Then we recruit
three new operators to measure these parts twice each.

e Leverage by operator: select the m operators associated
with the extreme measurements in the baseline. Then, in
Stage 2 these operators measure k new parts n times each.

For example with k =2, m =3 and n = 2, we might
pick the three operators associated with the minimum,
maximum and second largest initial measurements in the
baseline sample. Then, we obtain two new parts for these
three operators to measure twice each.

e Leverage by part and operator: select the operator and part
pairs associated with the extreme measurements in the
baseline. Then in Stage 2, the chosen operators measure
each of the selected parts n times each.

For example, we might pick the parts and operators as-
sociated with the minimum and maximum initial measure-
ments in the baseline sample so that m = 2, k = 2. Then,
the two operators measure these two parts a further three
times each.

We do not compare these possibilities further.

In summary, we give details on how to calculate the likeli-
hood and Fisher information for the parameters of interest in
a leveraged measurement system assessment plan. By tedious
calculation, we show that as the level of leveraging increases,
the asymptotic standard deviations of the MLE’s for A and y
decrease. We demonstrate the advantages of the LP over the
standard plan using simulation. We show that the standard devi-
ation of the LP estimator for y, the primary parameter of inter-
est, was significantly smaller than the corresponding estimator
in an SP with the same total number of measurements. Con-
versely, the SP estimator for A was shown to have a smaller
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standard deviation than the LP. Good leveraged plans with a to-
tal of N measurements and m operators have bm roughly equal
to N/2 where each operator measures b parts in the baseline.
In Stage 2, select k extreme parts from the baseline so that k
is an integer multiple of the number of operators and mkn is
also roughly N/2 where n, the number of times each operator
measures each selected part in Stage 2, is 2 or 3.

APPENDIX: THE ASYMPTOTIC
VARIANCE—COVARIANCE MATRIX

In this appendix, we derive a detailed expression for the as-
ymptotic variances of the MLE’s for y and XA by simplifying
the result given in Equation (18). The object is to demonstrate
that increasing SS = Z(i’j)eR E[Zizjo], while holding S, ..., S,
fixed, reduces the asymptotic variances of the estimates 7 and
A. That is, we demonstrate algebraically that leveraging is better
than selecting random parts for Stage 2.

We start by showing that the Fisher matrix for (u, ong,
a block matrix form

F= <1]\; g), where B=(0,, v).
Note that the only dependency on SS is through the [2, 2] ele-
ment of the matrix P that is linear in SS. The vector v depends
on Sy, ..., S, andis 0 for the balanced plan. For a general block
matrix, its inverse is can be found in Rao (1973). Applying this
result to F we obtain

p) has

M +K

-1 _
bo [—Q—IB‘M‘

—-M~'BQ!
Q! ’

where
Q=P—_B'M 'B. (A.1)

Now the [2, 2] element of the matrix Q depends linearly on SS.
The matrix D from Equation (17) can be written as

D:< tIl/n E)s

0mx2 T
t t

and T=< i 12).
1 1»

—ET! }

where
E=(w 0,)

The inverse of D is
I
—1
S
A closed form expression for the asymptotic variance of 2
and A can be determined by setting

Ot

mx2

Q! 92 _qlz) and a=vM lw,

1
~ det(Q) <—q12 q11
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and evaluating the product (D')~'F~!D~!. After some simpli-
fication, we obtain an expression for the asymptotic variance of

y as
2
+ a2 —a>
q11

+1+q 1(th1w)] (A.2)

1 f%_zl: qa <tl_l
det(T)? q11 [ det(Q) \ 112

If we increase SS, holding Sy, ..., Sy, n,m, b, and k fixed,
then det(Q) increases and the asymptotic variance of ¥ de-
creases. A similar calculation shows that the asymptotic vari-
ance of A also decreases as SS increases with the other design
parameters held fixed.

SUPPLEMENTAL MATERIALS

Additional comparisons: Additional comparisons of lever-
aged to standard plan with 2 and 4 operators. (sup.pdf)
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