
Leveraged Vector Machines

Yoram Singer

Hebrew University

singer@cs.huji.ac.il

Abstract

We describe an iterative algorithm for building vector machines used in

classification tasks. The algorithm builds on ideas from support vector

machines, boosting, and generalized additive models. The algorithm can

be used with various continuously differential functions that bound the

discrete (0-1) classification loss and is very simple to implement. We test

the proposed algorithm with two different loss functions on synthetic and

natural data. We also describe a norm-penalized version of the algorithm

for the exponential loss function used in AdaBoost. The performance of

the algorithm on natural data is comparable to support vector machines

while typically its running time is shorter than of SVM.

1 Introduction

Support vector machines (SVM) [1, 13] and boosting [10, 3, 4, 11] are highly popular and

effective methods for constructing linear classifiers. The theoretical basis for SVMs stems

from Vapnik's seminal on learning and generalization [12] and has proved to be of great

practical usage. The first boosting algorithms [10, 3], on the other hand, were developed

to answer certain fundamental questions about PAC-learnability [6]. While mathemati

cally beautiful, these algorithms were rather impractical. Later, Freund and Schapire [4]

developed the AdaBoost algorithm, which proved to be a practically useful meta-learning

algorithm. AdaBoost works by making repeated calls to a weak learner. On each call the

weak learner generates a single weak hypothesis, and these weak hypotheses are combined

into an ensemble called strong hypothesis. Recently, Schapire and Singer [11] studied a

simple generalization of AdaBoost in which a weak-hypothesis can assign a real-valued

confidence to each prediction. Even more recently, Friedman, Hastie, and Tibshirani [5]

presented an alternative view of boosting from a statistical point of view and also described

a new family of algorithms for constructing generalized additive models of base learners
in a similar fashion to AdaBoost. The work of Friedman, Hastie, and Tibshirani generated

lots of attention and motivated research in classification algorithms that employ various

loss functions [8, 7].

In this work we combine ideas from the research mentioned above and devise an alternative

approach to construct vector machines for classification. As in SVM, the base predictors

that we use are Mercer kernels. The value of a kernel evaluated at an input pattern, i.e.,

the dot-product between two instances embedded in a high-dimensional space, is viewed

as a real-valued prediction. We describe a simple extension to additive models in which the

prediction of a base-learner is a linear transformation of a given kernel. We then describe

an iterative algorithm that greedily adds kernels. We derive our algorithm using the expo

nentialloss function used in AdaBoost and the loss function used by Friedman, Hastie, and

Tibshirani [5] in "LogitBoost". For brevity we call the resulting classifiers boosted vector

machines (BVM) and logistic vector machines (LVM). We would like to note in passing

Leveraged Vector Machines 611

that the resulting algorithms are not boosting algorithms in the PAC sense. For instance,

the weak-Iearnability assumption that the weak-learner can always find a weak-hypothesis

is violated. We therefore adopt the terminology used in [2] and call the resulting classifiers

leveraged vector machines.

The leveraging procedure we give adopts the chunking technique from SVM. After present

ing the basic leveraging algorithms we compare their performance with SVM on synthetic

data. The experimental results show that the leveraged vector machines achieve similar

performance to SVM and often the resulting vector machines are smaller than the ones

obtained by SVM. The experiments also demonstrate that BVM is especially sensitive to

(malicious) label noise while LVM seems to be more insensitve. We also describe a simple

norm-penalized extension of BVM that provides a partial solution to overfitting in the p

resence of noise. Finally, we give results of experiments performed with natural data from

the DCI repository and conclude.

2 Preliminaries

Let S = ((Xl, yd, . .. ,(xm, Ym)) be a sequence of training examples where each instance

Xi belongs to a domain or instance space X, and each label Yi is in {-I, +1}. (The

methods described in this paper to build vector machines and SVMs can be extended to

solve multiclass problems using, for instance, error correcting output coding. Such methods

are beyond the scope of this paper and will be discussed elsewhere). For convenience, we

will use iii to denote (Yi + 1) /2 E {O, I}.

As is boosting, we assume access to a weak or base learning algorithm which accepts as

input a weighted sequence of training examples S. Given such input, the weak learner

computes a weak (or base) hypothesis h. In general, h has the form h : X -+ ~. We

interpret the sign of h(x) as the predicted label (-1 or + 1) to be assigned to instance X,

and the magnitude Ih(x)1 as the "confidence" in this prediction.

To build vector machines we use the notion of confidence-rated predictions. take for base

hypotheses sample-based Mercer kernels [13], and define the confidence (i.e., the magni

tude of prediction) of a base learner to be the value of its dot-product with another instance.

The sign of the prediction is set to be the label of the corresponding instance. Formally,

for each base hypothesis h there exist (Xj,Yj) E S such that h(x) = YjK(Xj, x) and

K(u, v) defines an inner product in a feature space: K(u, v) = 2:::~1 ak'lfJk (U)'Ij;k (v).
We denote the function induced by an instance label pair (Xj, Yj) with a kernel K by

</>j (x) = yjK (Xj, x). Our goal is to find a classifier f(x), called a strong hypothesis in the

context of boosting algorithms, ofthe form f(x) = 2::::=1 atht(x) + /3, such that the signs
of the predictions of the classifier should agree, as much as possible, with the labels of the

training instances.

The leverage algorithm we describe maintains a distribution Dover {I, ... , m}, i.e. , over

the indices of S. This distribution is simply a vector of non-negative weights, one weight

per example and is an exponential function of the classifier f which is built incrementally,

1 m

D(i) = Z exp (-Yd(Xi)) where Z = L exp (-Yd(Xi)) .

i=l

(1)

For a random function 9 of the input instances and the labels, we denote the sample ex

pectation of 9 according to D by ED(g) = 2::::1 D(i)g(Xi, Yi). We also use this notation

to denote the expectation of matrices of random functions. We will convert a confidence

rated classifier f into a randomized predictor by using the soft-max function and denote it

by P(Xi) where

p exp (f(Xi))

(Xi) = exp (f(Xi)) + exp (- f(Xi))

1

1 + exp (-2f(Xi)) .
(2)

612 Y. Singer

3 The leveraging algorithm

The basic procedure to construct leveraged vector machines builds on ideas from [11, 5] by

extending the prediction to be a linear function of the base classifiers. The algorithm works

in rounds, constructing a new classifier It from the previous one It-I by adding a new

base hypothesis ht to the current classifier, It- Denoting by Dt and Pt+1 the distribution

and probability given by Eqn. (1) and Eqn. (2) using It and It+l' the algorithm attempts to

minimize either the exponential function that arise in AdaBoost:

m m

Z = 2: exp (-ydt(Xi)) = 2: exp (-Yi(ft-l (Xi) + atht(Xi) + f3t))

i=1 i=1
m

'" 2: Dt(i) exp (-Yi(atht(Xi) + f3t)) , (3)

i=1

or the logistic loss function:

m

(4)
i=1
m

i=1
m

- 2: (fh log(Pt+1 (Xi)) + (1 - ih) log(1 - Pt+1 (Xi))) (5)

i=1

We initialize lo(x) to be zero everywhere and run the procedure for a predefined num

ber of rounds T. The final classifier is therefore IT(X) = '£'['=1 (atht(x) + f3t) =

f3 + '£'['=1 atht(x) where f3 = '£t f3t . We would like to note parenthetically that it

is possible to use other loss functions that bound the 0-1 (classification) loss (see for in

stance [8]). Here we focus on the above loss functions, Land Z. Fixing It-I and ht, these

functions are convex in at and f3t which guarantees, under mild conditions (details omitted

due to lack of space), the uniqueness of at and f3t .

On each round we look for the current base hypothesis ht that will reduce the loss function

(Z or L) the most. As discussed before, each input instance X j defines a function <Pj (x)
and is a candidate for ht(x). In general, there is no close form solution for Eqn. (3) and (5)

and finding a and f3 for each possible input instance is time consuming. We therefore use a

quadratic approximation for the loss functions. Using the quadratic approximation, for each

<Pj we can find a and f3 analytically and calculate the reduction in the loss function. Let

\7 Z = (~~, ~~) T and \7 L = (~~, ~~) T be the column vectors of the partial derivatives

of Z and L w.r.t a and f3 (fixing It-I and ht). Similarly, let \72 Z and \72 L be the 2 x 2

matrices of second order derivatives of Z and L with respect to a and f3. Then, quadratic

approximation yields that (a,f3)T = (\72Z)-1 \7Z and (a,f3)T = (\72L)-1 \7L. On

each round t we maintain a distribution D t which is defined from It as given by Eqn. (l)

and conditional class probability estimates Pt(Xi) as given by Eqn. (2). Solving the linear

equation above for a and f3 for each possible instance is done by setting h t (x) = <Pj (x),
we get for Z

(6)

and for L

(7)

Leveraged Vector Machines

~--- -
:~_------,7"--~~~'i====~

Figure 1: Comparison of the test error as

a function of number of leveraging rounds

when using full numerical search for a and

f3, a "one-step" numerical search based on a

quadratic approximation of the loss function,

and a one-step search with chunking of the

instances.

613

Note that the equations above share much in common and require, after pre-computing

P(Xi), the same amount of computation time.

After calculating the value of a and f3 for each instance (x j , Y j), we simply evaluate the

corresponding value of the loss function, choose the instance (Xj> , Yj» that attains the

minimal loss, and set ht = <pj>. We then numerically search for the optimal value of a
and f3 by iterating Eqn. (6) or Eqn. (7) and summing the values into at and f3t. We would

like to note that typically two or three iterations suffice and we can save time by using the

value of a and f3 found using the quadratic approximation without a full numerical search

for the optimal value of a and f3. (See also Fig. 1.) We repeat this process for T rounds

or until no instance can serve as a base hypothesis. We note that the same instance can be

chosen more than once, although not in consecutive iterations, and typically only a small

fraction of the instances is actually used in building f. Roughly speaking, these instances

are the "support patterns" of the leveraged machines although they are not necessarily the

geometric support patterns.

As in SVMs, in order to make the search for a base hypothesis efficient we pre-compute and

store K(x, x') for all pairs x i- x' from 8. Storing these values require 1812 space, which

might be prohibited in large problems. To save space, we employ the idea of chunking

used in SVM. We partition 8 into r blocks 81,82 , ..• ,Sr of about the same size. We

divide the iterations into sub-groups such that all iterations belonging to the ith sub-group

use and evaluate kernels based on instances from the ith block only_ When switching to a

new block k we need to compute the values K(x, x') for x E 8 and x, E Sk. This division

into blocks might be more expensive since we typically use each block of instances more

than once. However, the storage of the kernel values can be done in place and we thus save

a factor of r in memory requirements. In practice we found that chunking does not hurt

the performance. In Fig. 1 we show the test error as a function of number of rounds when

using (a) full numerical search to determine a and f3 on each round, (b) using the quadratic

approximation ("one-step") to find a and f3, and (c) using quadratic approximation with

chunking. The number of instances in the experiment is 1000, each block for chunking is

of size 100, and we switch to a different block every 100 iterations. (Further description of

the data is given in the next section.) In this example, after 10 iterations, there is virtually

no difference in the performance of the different schemes.

4 Experiments with synthetic data

In this section we describe experiments with synthetic data comparing different aspects

of leveraged vector machines to SVMs. The original instance space is two dimensional

where the positive class includes all points inside a circle of radius R, i.e., an instance

(UI, U2) E 1R? is labeled +1 iff ui + u~ ~ R. The instances were picked at random

according to a zero mean unit variance normal distribution and R was set such exactly half

of the instances belong to the positive class. In all the experiments described in this section

we generated 10 groups of training and test sets each of which includes 1000 train and test

examples. Overall, there are 10,000 training examples and 10,000 test examples. The

614

.•
' J» - .
._\
.~ - -

• O M

• ! , .. - -

-_.'--

I - I -D .. SVM i

~
I

!

V
. --

•• i·

~ .. 5 • , ... -

Y. Singer

Figure 2: Performance comparison of SVM and BVM as a function of the training data

size (left), the dimension of the kernels (middle), and the number of redundant features.

' 0

~ t ea t ot .. ~II 0 "" • I '

~
• IMI
~ L'"
- . . svu

• •• /;I

..

Figure 3: Train and test er

rors for SVM, LVM, and

BVM as a function of the

label noise.

average variance of the estimates of the empirical errors across experiments is about 0.2%.

For SVM we set the regularization parameter, C , to 100 and used 500 iterations to build

leveraged machines. In all the experiments without noise the results for BVM and LVM

were practically the same. We therefore only compare BVM to SVM in Fig. 2. Unless said

otherwise we used polynomials of degree two as kernels: K(X,' x) = (x· x' + 1)2 . Hence,

the data is separable in the absence of noise.

In the first experiment we tested the sensitivity to the number of training examples by omit

ting examples from the training data (without any modification to the test sets). On the left

part of Fig. 2 we plot the test error as a function of the number of training examples. The

test error of BVM is almost indistinguishable from the error of SVM and performance of

both methods improves very fast as a function of training examples. Next, we compared

the performance as a function of the dimension of polynomial constituting the kernel. We

ran the algorithms with kernels of the form K(X,' x) = (x · x' + l)d for d = 2, ... ,8.

The results are depicted in the middle plots of Fig. 2. Again, the performance of BVM and

SVM is very close (note the small scale of the y axis for the test error in this experimen

t). To conclude the experiments with clean, realizable, data we checked the sensitivity to

irrelevant features of the input. Each input instance (Ul' U2) was augmented with random

elements U3," . ,Ul to form an input vector of dimension l. The right hand side graphs of

Fig. 2 shows the test error as a function of 1 for 1 = 2, ... , 12. Once more we see that the

performance of both algorithms is very similar.

We next compared the performance of the algorithms in the presence of noise. We used ker

nels of dimension two and instances without redundant features. The label of each instance

was flipped with probability E. We ran 15 sets of experiments, for € = 0.01, ... , 0.15. As

before, each set included 10 runs each of which used 1000 training examples and 1000 test

examples. In Fig. 3 we show the average training error (left), and the average test error

(right), for each of the algorithms. It is apparent from the graphs that BVMs built based

on the exponential loss are much more sensitive to noise than SVMs and LVMs, and their

generalization error degrades significantly, even for low noise rates. The generalization er

ror ofLVMs is, on the other hand, only slightly worse than the that of SVMs, although the

Leveraged Vector Machines

.~ -LW

----_. ---

~ -
LW

615

~ - ~ - .. - .. ----
Figure 4: The training error, test error, and the cumulative Ll norm (L~'=l la~ I) as a

function of the number of leveraging iterations for LVM,BVM, and PBVM.

only algorithmic difference in constructing BVMs and LVMs is in the loss function. The

fact that LVMs exhibit performance similar to SVM can be partially attributed to the fact

that the asymptotic behavior of their loss functions is the same.

5 A norm-penalized version

One of the problems with boosting and the corresponding leveraging algorithm with the

exponential loss described here, is that it might increase the confidence on a few instances

while misclassifying many other instances, albeit with a small confidence. This often hap

pens on late rounds, during which the distribution D t (i) is concentrated on a few examples,

and the leveraging algorithm typically assigns a large weight to a weak hypothesis that does

not effect most of the instances. It is therefore desired to control the complexity of the lever

aged classifiers by limiting the magnitude of base hypotheses' weights. Several methods

have been proposed to limit the confidence of AdaBoost, using, for instance, regulariza

tion (e.g., [9]) or "smoothing" the predictions [11]. Here we propose a norm-penalized

method for BVM that is very simple to implement and maintains the convexity properties

of the objective function. Following the idea Cortes and Vapnik's of SVMs in the non-

separable case [1] we add the following penalization term: ,0 exp (L;=1 latlP) . Simple

algebric manipulation implies that the objective function at the tth round for BVMs with

the penalization term above is,

m

Zt = I: Dt(i) exp (-Yi(atht(xi) + f3t» +,t exp{latIP) . (8)

i=l

It is also easy to show that the penalty parameter should be updated after each round is:

,t = ,t-l exp(lat-lIP)/Zt-l. Since Zt < 1, unless there is no kernel function better
than random, ,t typically increases as a function of t, forcing more and more the new

weights to be small. Note that Eqn. (8) implies that the search for a base predictor ht

and weights at, f3t on each round can still be done independently of previous rounds by

maintaining the distribution D t and a single regularization value 't. The penalty term for

p = 1 and p = 2 simply adds a diagonal term to the matrix of second order derivatives

(Eqn. (6» and the algorithm follows the same line (details omitted). For brevity we call

the norm-penalized leveraging procedure PBVM. In Fig. 4 we plot the test error (right),

training error (middle), and Lt latl as functions of number of rounds for LVM, BVM,

and PBVM with p = 1 ,0 = 0.01. The training set in this example was made small on

purpose (200 examples) and was contaminated with 5% label noise. In this very small

example both LVM and BVM overfit while PBVM stops increasing the weights and finds

a reasonably good classifier. The plots demonstrate that the norm-penalized version can

safeguard against overfitting by preventing the weights from growing arbitrarily large, and

that the effect of the penalized version is very similar to early stopping. We would like

616 Y. Singer

SVM LVM BVM RBVM SVM LVM BVM PBVM

#Example
DataSet & Size Size Size Size Error Error Error Error
(Source) #Feature

labor (UC!) 57 : 16 12.5 13.7 16.1 13.6 6.0 14.0 14.0 12.0
echocard. (uci) 74 : 12 7.8 13.0 12.6 12.4 8.6 5.7 10.0 10.0
bridges (uci) 102 : 7 27.2 20.2 18.5 17.9 15.0 15.0 23.0 14.0
hepati tis (uci) 155: 19 41.2 13.5 17.4 14.0 21.3 22.0 22.7 22.0
horse·colic (uci) 300: 23 122.0 13.0 13.0 13.0 14.7 14.7 14.7 13.2

liver (uci) 345 : 6 228.6 11.3 12.8 10.7 33.8 35.6 33.5 35.6
ionosphere (uci) 351: 34 63.4 58.9 67.9 59.1 13.7 13.1 16.9 13.7
vote (uci) 435 : 16 37.0 37.0 41.0 37.0 4.4 5.2 5.9 5.2
ticketl (att) 556 : 78 48.1 84.6 89.3 82.3 8.4 3.3 11.5 5.1
ticket2 (att) 556: 53 52.6 77.1 75.4 74.0 6.6 6.4 8.0 6.4
ticket3 (att) 556 : 61 46.1 76.2 77.8 73.3 6.9 4.9 7.6 6.7
bands (uci) 690: 39 265.5 78.2 76.4 75.6 32.8 33.2 34.3 33.3
breast-wisc (uci) 699: 9 49.3 26.5 24.4 24.0 3.5 3.6 4.1 4.1
pima (uci) 768 : 8 360.7 47.7 30.3 22.8 23.0 22.6 23.2 22.1
german (uci) 1000: 10 485.2 89.8 96.5 87.0 23.5 24.0 23.8 24.1

weather (uci) 1000: 35 562.0 52.0 52.0 52.0 25.9 25.4 25.4 25.4
network (att) 2600: 35 1031.0 42.0 43.0 42.0 24.8 21.2 23.5 21.2
splice (uci) 3190: 60 318.0 153.0 156.0 153.0 8.0 8.4 8.4 8.4
boa (att) 5000: 68 637.0 183.0 178.0 160.0 41.5 40.8 40.8 41.0

Table 1: Summary of results for a collection of binary classification problems.

to note that we found experimentally that the norm-penalized version does compensate for

incorrect estimates of a and fJ due to malicious label noise. The experimental results given

in the next section show, however, that it does indeed help in preventing overfitting when

the training set is small.

6 Experiments with natural data

We compared the practical performance of leveraged vector machines with SVMs on a

collection of nineteen dataset from the UCI machine learning repository and AT&T net

working and marketing data. For SVM we set C = 100. We built each of the leveraged

vector machines using 500 rounds. For PBVM we used again p = 1 and 'Yo = 0.0l. We

used chunking in building the leveraged vector machines, dividing each training set into 10

blocks. For all the datasets, with the exception of "boa", we used lO-fold cross validation

to calculate the test error. (The dataset "boa" has 5000 training examples and 6000 test
examples.) The performance of SVM, LVM, and PBVM seem comparable. In fact, with

the exception of a very few datasets the differences in error rates are not statistically signif

icant. Of the three methods (SVM, PBVM, and LVM), LVM is the simplest to implement

the time required to build an LVM is typically much shorter than that of an SVM. It is

also worth noting that the size of leveraged machines is often smaller than the size of the

corresponding SVM. Finally, it apparent that PBVMs frequently yield better results than

BVMs, especially for small and medium size datasets.

References
[I] Corinna Cones and Vladimir Vapnik. Suppon-vector networks. Machine Learning, 20(3):273-297, September 1995.
[2] N. Duffy and D. Helmbold. A geometric approach to leveraging weak learners. EuroCOLT '99.

[3] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation , 121(2):256-285, 1995.

[4] Yoav Freund and Roben E. Schapire. A decision· theoretic generalization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119-139, August 1997.

[5] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Tech. Repon, 1998.

[6] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. Journal

of the Associationfor Computing Machiner)" 41(1):67-95, January 1994.
[7] John D. Laffeny. Additive models, boosting and inference for generalized divergences. In Proceedings of the Twelfth Annual

Conference on Computational Learning Theor)" 1999.

[8] L. Mason, J. Baxter. P. Banlett, and M. Frean. Doom II. Technical repon. Depa. of Sys. Eng. ANU 1999.

[9] G. Rlitsch, T.Onoda. and K.-R. Miiller. Regularizing adaboost. In Advances in Neural Info. Processing Systems 12,1998.

[10] Roben E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227,1990.
[II] Roben E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions. COLT'98.
[12] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

[13] Vladimir N. Vapnik. The Nature of Statistical Learning Theor),. Springer, 1995.

