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Abstract Given a cell phone image of a building we ad-

dress the problem of place-of-interest recognition in urban

scenarios. Here, we go beyond what has been shown in ear-

lier approaches by exploiting the nowadays often available

3D building information (e.g. from extruded floor plans)

and massive street-level image data for database creation.

Exploiting vanishing points in query images and thus fully

removing 3D rotation from the recognition problem allows

then to simplify the feature invariance to a purely homoth-

etic problem, which we show enables more discriminative

power in feature descriptors than classical SIFT. We rerank

visual word based document queries using a fast stratified

homothetic verification that in most cases boosts the correct

document to top positions if it was in the short list. Since we

exploit 3D building information, the approach finally out-

puts the camera pose in real world coordinates ready for

augmenting the cell phone image with virtual 3D informa-

tion. The whole system is demonstrated to outperform tra-

ditional approaches on city scale experiments for different
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sources of street-level image data and a challenging set of

cell phone images.

Keywords Location recognition

1 Introduction

In recent years, due to the ubiquitousness of cell phones

and cameras, the demand for real-time localization and aug-

mentation of virtual (3D) information arose and several

systems have been proposed to solve the location recog-

nition problem (Robertson and Cipolla 2004; Schindler et

al. 2007; Wu et al. 2008b; Irschara et al. 2009; Zhang and

Kosecka 2006; Zhu et al. 2008; Cao and McDonald 2009;

Zamir and Shah 2010; Knopp et al. 2010) or the closely re-

lated image retrieval problem (Sivic and Zisserman 2003;

Nistér and Stewénius 2006; Jegou et al. 2008; Philbin et

al. 2007; Perdoch et al. 2009). A commonly used scheme

that we also follow extracts local features (e.g. Lowe 2004;

Bay et al. 2008) from a collection of reference images,

vector-quantizes the feature descriptors to visual words and

stores images as documents of these words in a database.

Then for a query image techniques from web text search are

applied to find the closest documents in the database, fol-

lowed by a reranking of the result list based on geometric

constraints.

We specifically look at the problem of place-of-interest

recognition and camera pose estimation in urban scenarios,

where we want to see how far we can get with visual infor-

mation only. However, in contrast to general object recog-

nition or image retrieval scenarios that cannot assume much

about geometry and image content, we propose a tailored

solution to the localization problem from cell phone images

in a city (see Fig. 1). Here, often

mailto:gbaatz@inf.ethz.ch
mailto:kevin.koeser@inf.ethz.ch
mailto:marc.pollefeys@inf.ethz.ch
mailto:dmchen@stanford.edu
mailto:radek.grzeszczuk@nokia.com
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Fig. 1 A cell phone picture is taken to localize the user and to re-

trieve point-of-interest information from the database. We assume to

know the camera’s focal length and that we can identify the vertical

and horizontal facade direction by means of vanishing points to allow

for rotation invariant recognition

– massive amounts of calibrated street level data are avail-

able for training1

– rough 3D city models exist2

– facades are planar and structures are vertically and hori-

zontally aligned

– the camera’s focal length is known approximately

By projecting the offline training views to the facades’

surfaces, we can completely factorize out rotation from the

recognition problem (in photometric matching and geomet-

ric verification). This enables the storage of gravity-aligned

orthophotos (facade parts) in the database as opposed to

densely sampling the space of all possible viewing poses.

Query images can be transformed accordingly by finding the

vertical and horizontal vanishing points of the given build-

ing. For recognition, matching and verification this reduces

the problem to finding purely homothetic transformations,

i.e. a scale and 2D offset on the building’s surface. We show

that this increases the discriminative power as compared to

previous approaches on the one hand and allows to replace

the computationally expensive verification of estimating an

affine model or a homography now by simply estimating

just three position related parameters. For this we propose

a novel stratified homothetic parameter estimation, i.e. we

perform three subsequent 1D estimates for distance, hori-

zontal and vertical offset with respect to the building sur-

1Nowadays several sources of image data taken from vehicles exist,

e.g. Google’s “Street View” or Microsoft’s “Streetside”. We use Earth-

mine’s “3D street level imagery” for database creation and Navteq’s

“Enhanced 3D City Models” for testing.

2In this contribution we use extruded building outlines from San-

born data (cf. to http://www.sanborn.com/products/citysets.asp), but

such information is also available from OpenStreetMap (cf. to

http://www.openstreetmap.org).

face. Here the algorithm was designed in a way that e.g.

window-to-window matches support the correct distance es-

timate through their scale ratio even if the match is from a

different window instance on the facade’s window grid. Af-

ter having obtained the distance from the facade, horizontal

and vertical offsets can be computed in the same way and

we observe that using this reranking strategy is very effec-

tive in boosting the correct document to the first positions of

the tested short list. As a side effect, we obtain the 6 DOF

camera pose in world coordinates.

The key novel contributions are the orthophoto represen-

tation in the database allowing also for a more discriminative

feature descriptor (upright SIFT), the fast homothetic verifi-

cation scheme and the exploitation of 3D building geometry

so as to provide an absolute camera pose. While these have

been sketched already in a preliminary version presented at

a conference (Baatz et al. 2010), here we provide a more

detailed presentation of the voting scheme, add extensive

evaluations on the homothetic transform and parameter es-

timation as well as we provide many examples and analyze

the failure cases. In the next section we will relate the ap-

proach to previous work, before we go into details of the

overall system and demonstrate its performance on different

sources of cell phone and street level data.

2 Previous Work

Location recognition at the city scale is closely related to

image search and large scale object recognition for which

a huge amount of previous work exist. A commonly used

approach builds on top of the bag-of-features approach of

Sivic and Zisserman (2003) and the vocabulary trees (VT)

of Nistér and Stewénius (2006). In the image retrieval sce-

nario, usually the camera intrinsics and object geometry are

unknown. It can therefore be difficult to find strong geomet-

rical constraints for filtering the initial visual-word based re-

sults, although recent approaches look at (locally) consistent

orientations and feature shapes (Jegou et al. 2008; Philbin et

al. 2007; Perdoch et al. 2009) and exploit the fact that pic-

tures are usually not taken upside down. Location recogni-

tion approaches (Zhu et al. 2008; Zhang and Kosecka 2006;

Irschara et al. 2009) usually know the intrinsic parameters

of the camera, but do not exploit dense 3D models of the

scene since these are difficult to obtain for larger environ-

ments.

The closest earlier works to ours are probably by Robert-

son and Cipolla (2004), Wu et al. (2008b) and Schindler et

al. (2007). The first one uses vanishing points, but works

purely in 2D with local patch matching on a relatively small

set of images (<100) and does not obtain 6 DOF pose in the

city coordinate system since 3D information is missing. The

concept of vanishing point rectification in general is well

http://www.sanborn.com/products/citysets.asp
http://www.openstreetmap.org
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Fig. 2 Left: Panoramic image

near the San Francisco Ferry

Building grabbed by Vehicle.

Right: Extruded building outline

of Ferry Building

known, e.g. rectifying features according to vanishing points

has been presented recently and independently of our work

in Cao and McDonald (2009), where the authors however

focused on single images. Exploiting 3D geometry on the

other hand has been proposed in Köser and Koch (2007) and

Wu et al. (2008a), however these approaches require depth

information for both images to be matched. Building on top

of that, Wu et al. (2008b) uses 3D information from local re-

constructions of streets of houses for database creation, but

can only handle query images taken at fronto-parallel per-

spective relative to the building and cannot cope with out-

of-plane rotations. In the field of systems using image data

only Schindler et al. (2007) presented a large scale recogni-

tion system with impressive results also based upon a vocab-

ulary tree. However, only 2D image data is used and in our

experiments we show that in urban scenarios with mainly

building facades, 3D rotation invariant matching and recog-

nition outperforms 2D methods.

While the trend in the last years went towards building

increasingly larger databases and generating even synthetic

views to densely sample the space of all different viewpoints

(Irschara et al. 2009), we go into a different direction and

represent only the building facades (upright orthophotos).

Also related to this Schindler et al. (2008) worked on de-

tecting repeated elements on planar facades. The goal was

however not large scale recognition but to extract periodic

textures and to obtain the lattice parameters by clustering

descriptors. In contrast, our work does not rely on repeated

patterns but rather uses vanishing points and building geom-

etry to rectify the image data. An interesting effect of this

rectification is that it enables the usage of upright features,

for which the feature orientation is obtained from vertical

building axes, avoiding multiple descriptors for the same

keypoint, avoiding potential bias of standard SIFT descrip-

tors towards the bins of canonical orientations and allows

distinguishing local structures differing by rotation. It has al-

ready been observed in face recognition (Dreuw et al. 2009)

that exploiting the knowledge of aligned patches and reduc-

ing the invariance requirements can increase the recogni-

tion performance. Already for the SURF detector (Bay et

al. 2008), rotation invariance could be disabled, however

this was mainly motivated by performance reasons, while

we show that leveraging rotation information helps recogni-

tion.

3 Offline Creation of the Recognition System

3.1 Data Acquisition and Selection

For creating the database we exploit two sources of infor-

mation (see Fig. 2):

– Calibrated image data: Panoramic images captured by

a vehicle driving systematically through the streets. For

each of these images camera position and orientation is

known from GPS and sensor data.

– 2D Building floorplans as available from land registration

or fire insurance companies as well as building heights.

The 2D maps can be extruded to piecewise planar 3D

models approximating the buildings (see Fig. 2) and each

of these buildings is assigned a place-of-interest ID.

For the dataset of San Francisco, panoramic images have

been taken roughly every 10 meters and 14896 places of in-

terest have been covered.

3.2 Sparse Representation of all Places-of-Interest in a City

Given that we know the 3D building geometry, we can re-

project the panoramic images onto the 3D models. Assum-

ing planar lambertian surfaces, these should give rise to the

same textured 3D model (apart from image resampling), so

there is a huge redundancy in the captured panoramic im-

ages. While it might be beneficial to fuse multiple views of

the same features, we leave the optimal redundant sampling

of the facades from multiple overlapping panoramas for fu-

ture work. Instead, we improve both memory requirements

and execution speed by eliminating the redundancy as fol-

lows: For each place of interest (POI), we find the panoramic

images within 50 m distance to the building outline and ex-

tract perspective images with a 60◦ field of view every 20◦.

We prune those that look away from the POI or see it at a

very oblique angle. The others are selected or rejected so

as to represent all the POI surface subject to minimal over-

lap and maximal orthophoto resolution, when projecting the

view onto the facade (see Fig. 3). We obtain 58601 perspec-

tive images with a 1024 × 1024 resolution on the San Fran-

cisco dataset.
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Fig. 3 Bird’s eye view of Ferry

Building. Portions of the

panoramic images that are used

to sparsely cover all facades of

the POI are highlighted

Fig. 4 Left: Building geometry projected into an image. Right: Two

orthophotos generated from this image with overlaid geometry. The

axes show the known scale in meters. As the building height might be

inaccurate we add a safety margin to incorporate also facade parts that

are slightly higher than predicted by the building height. We assume

that having some sky on the frontal view will not hurt recognition,

because usually there are no features on it

3.3 Geometric Rectification

Using the building height information we extrude the build-

ing outlines to 3D. We then project the reference images

onto these 3D surfaces and render synthetic orthoviews (see

Fig. 4). For each of the planar facade parts we generate

orthophotos and use GPU-SIFT3 to extract DoG keypoints

and SIFT descriptors. Generally, for descriptor computation,

previous approaches estimate keypoint orientations from the

local gradient histogram. Rotating the local patch however

in a way that the dominant peak is in the zero degree di-

rection potentially makes the descriptors less discriminative,

since all of them might have now significant mass in the

zero degree descriptor bins and purely rotated local patches

can no longer be distinguished. Instead, we project the grav-

ity direction onto the facade and align the keypoints with

this direction (upright SIFT). Effectively, by computing a

gravity-compatible orthophoto, we remove all effects of 3D

3C. Wu: “SiftGPU” (Version 0.5.360) http://cs.unc.edu/ccwu/siftgpu.

rotation and perspective from the image data.4 Matching

such features reduces the 6 DOF perspective recognition

problem to a homothetic problem involving only scale and

offset ambiguities in the 2D plane.

3.4 Vocabulary Tree Indexing

Based upon the extracted descriptors we use hierarchical k-

means clustering to learn a vector quantization and build a

visual vocabulary. We choose a random subset of 16M de-

scriptors from the whole set of about 130M. We build a tree

with the following parameters: split factor k = 10, depth

d = 6 which leads to one million leaf nodes.

We choose the bags of visual words to consist of all the

features stemming from one perspective image. In that way,

we avoid very small bags of words corresponding to small

rectified patches. We then index these bags of words using

an inverted file system (IFS) for fast retrieval.

4Apart from non-planarities and image resolution issues due to inter-

polation.

http://cs.unc.edu/ccwu/siftgpu
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Fig. 5 Top row. Left: Query

image with detected line

segments. Middle and right:

Lines belonging to the same

vanishing point have been given

the same color. Each image

shows only the lines

corresponding to one pair of

orthogonal vanishing points.

Bottom row: Two rectifications

of the query image according to

the two chosen pairs of

vanishing points

4 Recognition of Places of Interest

The incoming query image is assumed to be taken by a cell

phone for which a rough estimate of the orientation (e.g.

landscape versus portrait) is usually available from the cell

phone’s sensors, so that we can correctly assign vanishing

points to real-world directions. We also expect that the fo-

cal length of the cell phone’s camera is known (as typi-

cally provided in the EXIF data of jpeg files or from the

phone manufacturer), so that we can reason about orthogo-

nality of directions in 3D space (see Sect. 4.1 for more de-

tails). With increasing computational power of mobile de-

vices, some of the steps required for recognition could be

run on the cell phone, e.g. to save bandwidth by transmitting

only a set of sparse descriptors (Chandrasekhar et al. 2009;

Takacs et al. 2010). However, in our implementation we fo-

cus on the general recognition system and not on a specific

mobile device implementation. Consequently, the image is

transmitted to a backend server where further processing is

performed, before the results are returned to the mobile de-

vice.

4.1 Removing 3D Rotation Effects from Query Image

We detect line segments in the image using a method5 based

on Kosecka and Zhang (2002), estimate vanishing points as

intersections of these lines, followed by a subsequent re-

finement step. Since the camera calibration is known, we

can backproject the presumed vanishing points to rays in 3D

5D. Hoiem: “Finding Long, Straight Lines” http://www.cs.illinois.edu/

homes/dhoiem/software/index.html.

space, which should be orthogonal. Every pair of points that

does not fulfill this orthogonality constraint is no longer con-

sidered for rectification.

In case there are still multiple pairs of vanishing points

left, we try to reduce the number of candidate pairs further.

We estimate the importance of a plane by taking into ac-

count the number of lines on it and the closeness of lines

corresponding to different vanishing points. We stretch the

lines by 15% on both ends and then count the number of in-

tersecting lines. For the plane with the highest number and

all those within 95% of it, we generate an orthoview while

discarding all the other planes.

We rectify the image by applying a homography that

maps the vanishing points to vertical respectively horizon-

tal infinity (see Fig. 5). Here, we choose the vanishing point

which (interpreted as a ray) is closest to the known gravity

vector to become vertical and the other one to become hori-

zontal.

4.2 Retrieving Candidate Matches

On these rectified images, we then compute upright SIFT

features. Following the approach of Sivic and Zisserman

(2003), the features are quantized into visual words using

the vocabulary tree and the inverted file is used to retrieve a

list of all images having at least one of those words in com-

mon. The list is then reranked according to the L1-norm of

histogram differences, such that images with a visual word

distribution similar to the query move closer to the top. The

top c candidates (e.g. c = 50) are further examined by geo-

metric verification while the remaining ones are discarded.

http://www.cs.illinois.edu/homes/dhoiem/software/index.html
http://www.cs.illinois.edu/homes/dhoiem/software/index.html
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4.3 Geometric Verification Voting Scheme

So far, ranking only used frequencies of visual words for

POI identification. As usual, geometrical verification of the

feature configurations can be used to improve the rank-

ing. Unlike previous approaches, which usually perform

RANSAC with an affine or epipolar geometry model, we

leverage the fact that we are solving a homothetic problem.

Since we are matching the rectified query image (up-

right orthophoto) to the most promising geometry-aligned

database images (also upright orthophoto), the difference

between the images are only in scale and offset (related to

camera distance and position with respect to the facade).

First we observe that for all true correspondences

{(Sfacade,j , Squery,j )} the scale ratios ρi := σquery,i/σfacade,i

of corresponding DoG keypoints should be equal. Please

note that an approximate consistency of scale ratios has been

proposed as a geometric verification heuristics for general

scenes by Jegou et al. (2008), however, now in the homoth-

etic verification a constant scale ratio complies exactly with

the model.

Still, due to a noisy feature scale estimate from the de-

tector, the ratio of the query feature scale and the facade

feature scale can still deviate slightly from the true image

scale ratio. When swapping the roles of the images, the same

argument applies for the inverse ratios, since the problem

is symmetric. Consequently, we transfer it to the logarith-

mic domain, and require the differences of logarithmic scale

ratios to agree up to a threshold log t that depends on the

expected scale estimation uncertainty of the SIFT detector

(e.g. log t = 0.15):

| logρi − logρj | ≤ log t . (1)

In order to determine the scale ratio ρ∗ with the most sup-

port, we find the argmax of the function from kernel density

estimation (Bishop 2006):

ρ∗ = arg max
ρ

∑

i

e
−

(ρ−ρi )
2

2σ2 , (2)

with σ = log t . This can be viewed as a continuous version

of histogram binning or of a 1D-Hough transform (Duda and

Hart 1972). All the datapoints within a certain distance of ρ∗

(e.g. 2σ ) are considered inliers.

Using the estimated scale ratio, we transform the feature

coordinates of both images to a common scale. Since we

know the true scale of the database image, we can have all

the coordinates expressed in meters. Truly matching feature

points now differ only by a global translation. The x and y

components of this translation are estimated independently.

We define the coordinate differences ξi := xquery,i −xfacade,i

and νi := yquery,i −yfacade,i . As before, true correspondences

should exhibit a consistent coordinate difference:

|ξi − ξj | ≤ d and |νi − νj | ≤ d . (3)

Since all of the coordinates are expressed in terms of a

known unit, we can again derive in a principled way a rea-

sonable value for translation tolerance d , completely inde-

pendently of image resolutions (e.g. d = 0.3 m). We vote for

x- and y-displacement separately using the same scheme as

before (without transforming to log-space). The intersection

of the two resulting inlier sets constitutes the final inlier set

of the geometric verification (see Fig. 6) and its cardinality

is used to generate a new ranking of all the candidates under

consideration.

This scheme has several advantages over previous ap-

proaches: RANSAC on top of an essential matrix, affine or

projective transformation estimates 5, 6 or 8 parameters re-

spectively. In contrast, our approach only needs to determine

three degrees of freedom total, which means that the search

space has a lower dimension. On top of that, each degree

of freedom is estimated separately, thus further reducing the

search space, which increases reliability and efficiency. In

fact, we can afford exhaustively testing every hypothesis

rather than sampling just some of them.

Every feature correspondence provides three constraints

(scale, x- and y-coordinate). Thus, a single correspon-

dence is enough to generate a complete hypothesis. Ear-

lier, RANSAC-based approaches usually ignore scale and

require outlier-free subsets of 5, 3 or 4 correspondences re-

spectively. In order to hit such a set reliably, one needs to

draw a number of samples which is essentially exponential

in the number of required correspondences.

Finally, even wrong correspondences can still contain

partial information about the solution. For instance, consider

facades with many repeated window elements: if one win-

dow in the query image is (mistakenly) matched to the win-

dow below in the database image, this correspondence will

vote for the right scale ratio and for the correct x-coordinate.

4.4 Pose Estimation from 2D-2D Correspondences

Since we used vanishing points to rectify the original query

image, we obtain the camera orientation with respect to the

facade directly from the vanishing points. As the rectified

image plane is parallel to the facade, the only remaining pa-

rameters are those obtained in the previous section: Since

we know the facade texture in meters the scale ratio can di-

rectly be used to compute a (perpendicular) distance posz of

the camera from the facade. Assuming the camera is cali-

brated with focal length 1 pixel and principal point at zero,

then

posz = resfacade · σfacade/σquery, (4)
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Fig. 6 (Color online) Illustration of our voting scheme. Top row:

Raw correspondences. Second row: Scale inliers. The plot on the right

shows the distribution of scale ratios (log scale). Blue dots represent

individual scale ratios, the red line marks the maximum and the two

green lines show the range of inliers. Middle row: X-inliers. In the

plot, note the secondary local maxima occurring at a regular interval.

They correspond the repeating window structure. Fourth row: Y-inliers.

Again, there are local maxima following a regular pattern, but they are

less pronounced. Bottom row: Final inliers. They are computed as the

intersection of the x- and y-inliers. Also note that there are no false

positives left
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where resfacade represents the resolution of the orthophoto

in pixel/meter. The cell phone’s posx-offset (parallel to the

facade) can directly be computed from the feature position

posx = resfacade · (xfacade − σfacade/σquery · xquery), (5)

and posy in an analogous way. The local camera orientation

with respect to the wall is simply the inverse vanishing point

rotation. Finally, the relative coordinates with respect to the

Fig. 7 The two patches in the top region of the image differ mostly

by a 90◦ rotation. When such patches are rotated into a canonic orien-

tation (as is done in traditional SIFT), the resulting descriptors cannot

be distinguished. When the descriptor/patch is extracted with respect

to gravity direction the patches differ significantly

facade can be converted to absolute world coordinates using

the facade’s pose in the world.

5 Experiments

5.1 Upright SIFT Versus Traditional SIFT

As can be seen schematically from Fig. 7 the traditional

SIFT approach is unable to distinguish between patches that

differ only by their orientation (since it is designed to be

invariant to rotation). In order to test whether the SIFT de-

scriptor’s discriminative power improves if we do not rotate

it into the dominant gradient orientation a simple experiment

has been run (see Fig. 8) on the image sequences for descrip-

tor evaluation provided by Mikolajczyk and Schmid (2005).

Here we warp all 5 images of such a sequence to the first

image, so that orientations are the same for corresponding

SIFT keypoints.6 Features at the same position ±50% fea-

ture size, same scale ±20% and same orientation ±30◦ are

assumed to be a geometrical ground truth correspondence,

other features are assumed to be not in correspondence. By

comparing every descriptor of image 1 to every descriptor

in the other images we generate the precision-recall diagram

for the three sequences bark, wall and graffiti (see Fig. 8) as

6For this experiment, we used A. Vedaldi and B. Fulkerson’s vlfeat

(v0.94 available from http://vlfeat.org) for detector and descriptor.

Fig. 8 Upright-SIFT vs. traditional SIFT with orientation estimation:

All 5 images of the wall, graffiti and bark sequences (Mikolajczyk and

Schmid 2005) are warped to the first image of their sequence before

DoG keypoints are extracted. We now compare the descriptiveness

of upright-SIFT (with zero-orientation) and standard SIFT which es-

timates orientation from the local gradient histogram (Lowe 2004).

For a given precision (fraction of correct matches within all obtained

matches) we get a higher recall rate (fraction of correct matches with

respect to the set of geometrical ground truth correspondences)

http://vlfeat.org
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Fig. 9 Left: Histogram of orientation errors from vanishing points in degrees (bars) and cumulative distribution (curve), histogram scaled to the

range [0,1]. Right: Some rectified cell phone images

has been done in Mikolajczyk and Schmid (2005). Note that

this experiment compares upright SIFT to traditional SIFT

in general and is independent of the recognition pipeline that

we propose.

In all of these sequences upright produces a significantly

higher precision for a given recall fraction of the geomet-

rical ground truth matches. A possible explanation is that

when rotating the SIFT descriptor to the dominant orienta-

tion some gradient orientation histogram entries are more

likely to obtain responses than others (e.g. those of the dom-

inant orientation). On top of that traditional SIFT cannot

distinguish local regions that mostly differ by a rotation

whereas this is possible using upright SIFT (see also Fig. 7).

5.2 Vanishing Point Detection

For 31034 Earthmine images, we ran the vanishing point

detection algorithm. In order to measure the error, we com-

puted the angles between the directions that were found and

the horizontals/verticals of known building surfaces. The

distribution of these angles is shown in Fig. 9. 75% of the

time, the vanishing points are estimated correctly up to 2

degrees, the median error is 0.9◦.

5.3 Geometric Verification

We compared the performance of our proposed voting

scheme to that of the traditional approach (RANSAC with

a homography or an affine model). The nine image pairs

shown in Fig. 10 were used. First, they were rectified au-

tomatically based on vanishing points. In the resulting im-

ages, we clicked manually correspondences to determine

the ground truth homography which maps one image to the

other. Then we extracted upright SIFT features in vanishing-

point rectified images and computed putative correspon-

dences based upon descriptor similarity as in Lowe (2004).

These correspondences were separated into inliers and out-

liers according to the ground truth homography. Borderline

correspondences were discarded entirely.

By removing an appropriate number of inliers and/or out-

liers, we generated correspondence sets with any desired

outlier ratio. For every outlier ratio from 0%–100%, we ran

both our voting algorithm and the following three variants

of RANSAC 1000 times each.

– Homography Ransac: The correspondences were trans-

formed back into the original images. We estimated a ho-

mography and we used 1000 iterations.

– Affine Ransac: The correspondences were transformed

back into the original images. We estimated an affine

transformation (with loose outlier thresholds) and we

used 1000 iterations.

– Homothetic Ransac: We used the original correspon-

dences between the rectified images and estimated a ho-

mothetic transformation from a single correspondence.

The number of iterations was at most 1000. When there

were less than 1000 correspondences, we deterministi-

cally iterated through all of them.

5.3.1 Speed and Complexity

Figure 11 shows a run-time comparison. Homography

Ransac is by far the slowest method. This is because con-

structing the minimal solution from 4 correspondences is

more expensive than the lighter-weight models. Voting is

the fastest.

It is interesting to note that for a low number of corre-

spondences (less than 100), Homothetic Ransac is about as
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Fig. 10 Pairs of images used for testing

Fig. 11 Time required for estimating the transformation

fast as Voting, but gets worse for higher numbers due to its

quadratic runtime. In contrast, Voting has near-linear run-

time, because it is a series of three successive 1D problems,

so it can take advantage of pre-sorting the scalar values to

speed up support calculation.

5.3.2 Qualitative Comparison of Models

In Fig. 12 we analyzed how often a method does not find a

transformation at all. This happens when none of the can-

didate models gets sufficient support.7 Note however, that a

zero probability of failure does not mean “all went well”: It

merely means that the algorithm found a model (with some

support) which may or may not be accurate. There is a trade-

off to be made: Either one is more picky in accepting a so-

lution, which increases the probability of failure, or one is

more tolerant, which decreases not only the probability of

failure, but also the accuracy of the solutions found that way

(see Fig. 13).

Except for image pair “Heineken” (with significant off-

plane structures), Voting succeeded almost always. Homoth-

etic Ransac only fails in 2 out of 9 image pairs, and only at

90% outliers. Homography and Affine Ransac, on the other

hand, start failing much earlier in all pairs: Affine Ransac at

20%–80% outliers and Homography Ransac at 50%–80%.

Figure 13 shows the average reprojection error of the es-

timated transformation. For low outlier ratios, Homography

Ransac performs quite well: In 7 image pairs it is the best of

the 4 methods. For higher ratios however, it becomes very

unstable: Either RANSAC fails to find a solution at all (see

Fig. 12), or the error fluctuates wildly with the mean ex-

ceeding several hundred meters and a standard deviation of

several thousand. This high error could be avoided by in-

creasing the required number of inliers, but that would fur-

ther reduce the chances of finding a solution.

Affine Ransac starts off with a high reprojection error,

which is to be expected since the underlying affine trans-

7We empirically determined optimal inlier thresholds: For a homoth-

etic model we require 3 inliers, for affine 8 and for homography 12.
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Fig. 12 Probability that the

given algorithm does not find a

transformation with sufficient

support

Fig. 13 Average reprojection

error of estimated

transformation (if any). Missing

parts in the curves indicate that

no transformation has been

found. Dotted lines show

standard deviation
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Fig. 14 Number of false

positives plus false negatives

divided by the number of

(putative) correspondences

presented to the algorithm.

Dotted lines show standard

deviation

formation requires loose inlier thresholds to cope with per-

spective effects. On the positive side, it is very insensitive to

varying outlier ratios. For higher outlier ratios, however, it

still fails to find a solution in 7 image pairs.

Homothetic Ransac and Voting perform quite similar. At

low outlier ratios, they are slightly worse than Homography

Ransac. This is most likely due to an imperfect rectifica-

tion or slight radial distortion, which can be better compen-

sated by the homography’s much higher number of degrees

of freedom. However, for increasing outlier counts, Homoth-

etic Ransac and Voting degrade much more gracefully, both

in terms of being able to find a solution and in terms of re-

projection error of that solution.

Since reprojection error as a measure of quality may

not be completely fair towards Affine Ransac (which cannot

model perspective effects well), and in order to fuse quality

and success rate into a single plot, we explored an additional

measure of quality: All of the tested algorithms partition the

correspondences into inliers and outliers. In Fig. 14 we in-

vestigated how well this partition matches the ground truth

classification. This number is important, since the number

of inliers after geometric verification is often used to decide

whether a given pair of images matches or to rerank a list

of possible candidates. More precisely, the figure shows the

fraction of mistakes (false positives plus false negatives) a

given method made. Whenever the method failed to return a

transformation, we assumed a fraction of 1.

Homography and Affine Ransac make many classifica-

tion errors. Especially for high outlier ratios of 70% and

above, the number of misclassifications is very high. But

even for perfect inlier sets, Affine Ransac only recognizes

half of them as such in 7 of 9 images, Homography Ransac

is only slightly better.

Homothetic Ransac and Voting perform much better. For

7 image pairs, the misclassification ratio remains close to

zero for up to 70%–80% outliers. But even for high outlier

ratios, the classification error reaches 100% only rarely (in

1 pair for Voting and in 2 pairs for Homothetic Ransac).

5.3.3 Kernel Density Voting Versus RANSAC

Figure 15 compares the reprojection error of the two meth-

ods. Except for image pair “Ibis”, Voting has an error smaller

or at least similar to Ransac. Also note how Voting has a

smaller standard deviation, which indicates that the results

are more stable across multiple runs.

A possible explanation for the behavior of “Ibis” is the

off-plane sign on the roof which, due to parallax, is classified

as outlier: Voting is more prone to averaging it with the true

correspondences on the facade while Ransac chooses either

one or the other (and more often the facade).

Figure 16 shows how the reprojection error evolves for

various fixed outlier ratios as the total number of corre-

spondences increases. It is interesting to note that the error

changes (usually it decreases). Again, with the exception of
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Fig. 15 Magnified details of

Fig. 13: Average reprojection

error of estimated

transformation. Dotted lines

show standard deviation

Fig. 16 Average reprojection

error of estimated

transformation as a function of

the number of correspondences

for a fixed outlier ratio of 30%

(solid), 50% (dashed) and 70%

(dotted)

“Ibis”, the curves for Voting are generally lower than the

corresponding curve for Ransac.

We conclude that just rectifying the images already al-

lows for faster and more robust methods than the traditional

approaches. But even among the rectified methods, Voting

has a better time complexity than RANSAC and on medium

to large correspondence sets is significantly faster (e.g. 4×

for 350 correspondences). In applications where the trans-



328 Int J Comput Vis (2012) 96:315–334

formation between images is of interest, the built-in aver-

aging of Voting leads to more accurate estimates. While Ho-

mography Ransac may offer some benefits in the low outlier

range, in any case its runtime is far too high, which makes it

unsuitable for an online application such as ours.

5.4 Recognition

In this section we evaluate RANSAC with an affine model

and our stratified voting scheme (plus some intermediate

methods) as part of a recognition pipeline. For the sake of

readability of the figures we had to limit the number of

curves, so we decided not to include RANSAC with a homo-

thetic model because in terms of quality it is very similar to

voting. As our reference implementation we chose only the

affine model because it is common in image search (Perdoch

et al. 2009; Philbin et al. 2007) as it constitutes a good com-

promise between generality and efficiency, i.e. (with loose

thresholds) it is not significantly weaker but more stable to

compute and much faster than a homography.

The different variants of the recognition pipeline used in

our comparison are:

– Affine: This is our reference implementation. The VT and

IFS are trained and built on the raw survey images. As

feature descriptor we use traditional SIFT. For geometric

verification we use the affine model with loose thresholds.

– Masked: Same as before, except that for survey images

we use geometric models to discard all features that do

not lie on a building. This variant uses the same regions of

the original images as the following variants. Its interest

lies in testing how discarding background features affects

recognition.

– Rectified: Survey images are rectified using known 3D

models of the buildings and query images are rectified

using estimated vanishing points. The feature descriptor

is still standard SIFT. Geometric verification is our pro-

posed 3-degrees-of-freedom plane alignment using strati-

fied histogram voting.

– Upright: Survey and query images are rectified as before,

but in addition we use upright SIFT. Geometric verifica-

tion is again 3DOF plane alignment.

We evaluated each of these four implementations on three

different query sets:

– Earthmine: This dataset consists of 31034 Earthmine im-

ages that were not selected for the training set. However,

they stem from the same day and have been taken under

the same conditions as the training set so that they must be

considered as very easy. The images were automatically

chosen such that they point towards a building. Whether

or not this building is partially or completely occluded by

vegetation was not a factor.

Table 1 Frequency of the top-ranked image being correct. For each

dataset the best percentage has been highlighted

Affine Masked Rectified Upright

Earthmine 84.3% 83.0% 82.6% 85.0%

Navteq 33.9% 26.3% 25.2% 38.9%

Cellphone 30.2% 23.2% 25.2% 32.1%

– Navteq: This dataset consists of 182 images, sampled at

angles of 70◦ to 120◦ degrees (with respect to driving di-

rection) and 0◦ to 20◦ (tilt) from panoramic image data

from Navteq, where panoramic images have been chosen

such that buildings could be seen reasonably well. This

data has been taken more than one year later than the

Earthmine training data and with different equipment.

– Cellphone: This dataset consists of 1180 images taken by

various people with different camera phones (Nokia N95,

N97, N900, N86) having between 5 and 8 megapixel res-

olution. During rectification, they have been downsam-

pled to 1–2 megapixel. These images are from pedestri-

ans’ perspective partially under extreme angles and con-

stitute the most challenging dataset.

We examined how frequently a correct building is returned

as one of the top n candidates for n ranging from 1 to 50.

This information was recorded for both the ranking before

and after geometric verification and for all combinations of

implementations and query sets. The results are shown in

Fig. 17. Since we are targeting augmented reality applica-

tions, we are mainly interested in the percentages for the top

ranked image. These numbers are summarized in Table 1.

We observe that the performance is generally better on

the Earthmine query set than on the other two, which is to

be expected since these images have been taken under the

same conditions as the database images.

We notice that Affine generally outperforms Masked. The

difference between the two is that the database for the for-

mer contains features from both buildings and surroundings,

while the latter uses only features from buildings. This in-

dicates that features from the surroundings help recogni-

tion rather than distract. This is probably the main reason

why the pre-verification curves of the other two methods are

lower than Affine. They suffer from the same disadvantage as

Masked: having ignored the features from the surroundings.

With respect to the pre-verification curves, Rectified does

slightly worse than Masked. On the other hand, the post-

verification curve for Rectified is flatter. This means that rec-

tifying the images may hurt performance in the VT part, but

it allows for a stronger geometric verification (3DOF homo-

thetic vs. affine).

It also paves the way for using upright SIFT. As already

stated before, upright SIFT is more discriminative because

it can distinguish image patches that differ only by a rota-
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Fig. 17 Left column: Frequency of correct building being among top

n candidates. (Dashed lines: before geometric rectification, solid lines:

after.) Middle column: Precision-vs.-recall curve based on the num-

ber of inliers for accepting a candidate answer. Right column: Sample

query images. Top row: Earthmine. Middle row: Navteq. Bottom row:

Cellphone

tion. We see that already the pre-verification curve for our

proposed method (Upright) is higher than for Masked and

Rectified. Combined with the strong 3DOF verification, it

outperforms the other methods on all three datasets with

respect to the top-ranked candidate (see Table 1). On top

of that, this advantage gets bigger on the more challenging

datasets.

We have seen that Affine has the highest pre-verification

curve due to the inclusion of background features. Even

though Upright is the better overall system, combining the

advantages of both methods might yield even better results.

We plan to address this in future work.

We also examined the precision-recall trade-off. The

number of inliers for the top candidate is compared to a
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Fig. 18 Example queries which could not be recognized. Dominant

error sources are illumination, occlusion and distance. We decided to

include such images in the data set since such problems will always

occur in real cell phone based scenarios, where you would not wait for

better weather or until the delivery truck moves away
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Fig. 19 Example queries correctly recognized. We deliberately show also some successful cases where the planarity assumption was not strictly

fulfilled
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Fig. 20 Analysis for three examples of failed recognition. Top Row:

Query cell phone image. Center Row: Closest image (manually cho-

sen) in database. Bottom Row: standard SIFT matching as proposed in

Lowe (2004) on rectified query and database to illustrate the difficulty

already in 2-image feature matching without quantization: Often the

street level window decoration changes for shops (e.g. left). Reflec-

tions in windows are also a major problem, since they change strongly

with viewpoint. Also cars, pedestrians, vegetation and other things can

occlude parts of the facade at the street level. The street level is how-

ever often the disambiguating part of the facade since the higher levels

often only contain grids of windows. For some images the cell phone

query has been taken from the opposite side of the street so the covered

facade parts largely vary between database and query (e.g. right)
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threshold. If the number is below, the system returns “no-

answer”, otherwise it returns the top candidate. By setting

this threshold to lower values, one achieves a higher recall

(how often a query gets a correct answer), but also lower pre-

cision (how often an answer is actually correct). By choos-

ing a higher threshold these spurious matches can be re-

duced at the cost of losing some correct matches as well.

For all three query sets Masked and Rectified share a

similar precision-recall curve with a better precision than

Affine, but a worse recall. For the Earthmine and Cell-

phone datasets, Upright is clearly the better choice, while

for Navteq it depends on how one wants to trade precision

for recall.

In Figs. 18 and 19 a small subset of the cell phone im-

ages is shown. Please note that these sets should resem-

ble an unexperienced user taking a picture of some build-

ing with his or her cell phone in order to obtain location

information. Consequently we included also very difficult

images with bad illumination and weather conditions, oc-

clusions and pictures showing multiple buildings or from

further away.

5.4.1 A Closer Look at Some Unrecognized Images

The dataset is really challenging and contains also images

which are very difficult to uniquely recognize for a trained

local human observer, such as entrances of office towers and

houses in residential area that do not look different from

other houses. On top of that the data set contains images

with bad lighting (sun in the image or image very dark)

and with vegetation occluding large parts of buildings and

queries that look along a street with many facades (not one

big facade but many small ones). Some of these close to im-

possible pictures are displayed in Fig. 18.

Among the images that do not seem so difficult for a hu-

man, we analyze three cases in Fig. 20. Here, due to the

glass facades there are many reflections that change with

viewpoint, and weather/lighting and texture and geometry

has changed locally because the shops changed decoration.

From matching the images against the ground truth database

images we observe that SIFT features alone are not good in

describing the content, which can be seen from the fact that

we obtain no reasonable matches in the two-image corre-

spondence problems without considering descriptor quan-

tization and the whole database pipeline. For such images

other information such as color or text recognition might

help.

6 Conclusion

We presented an approach for recognizing places of inter-

est in cell phone images. By exploiting approximate 3D city

models it was possible to convert street level data to an

orthophoto-like representation of the facades of the city. In

this representation also the gravity direction is known which

enabled the use of upright SIFT features which have been

proven more discriminative than classical SIFT on the stan-

dard feature descriptor test sets as well as in the location

recognition pipeline. The given system can be seen as 3D

rotation invariant matching and allowed for estimating ho-

mothetic transformations between a rectified cell phone im-

age and a building facade, where the parameters scale and

2D offset of the homothetic transformation can be estimated

separately. This allows for an efficient 1D voting scheme re-

lated to kernel density estimation and the resulting reranking

has been shown to be very effective in boosting the true im-

age to a top position in the reranked list.
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