
 Open access Book Chapter DOI:10.1007/978-3-540-88479-8_13

Leveraging Applications of Formal Methods, Verification and Validation
— Source link

Martin Wirsing, Matthias Hölzl, Lucia Acciai, Federico Banti ...+14 more authors

Published on: 01 Jan 2008

Topics: Verification and validation and Formal methods

Related papers:

 A Temporal Logic of Nested Calls and Returns

 Formal Methods for Components and Objects

 Applications and case studies

 Learning regular sets from queries and counterexamples

 Analysis of Recursive Game Graphs Using Data Flow Equations

Share this paper:

View more about this paper here: https://typeset.io/papers/leveraging-applications-of-formal-methods-verification-and-
2jz05aj0gt

https://typeset.io/
https://www.doi.org/10.1007/978-3-540-88479-8_13
https://typeset.io/papers/leveraging-applications-of-formal-methods-verification-and-2jz05aj0gt
https://typeset.io/authors/martin-wirsing-1q5tx34dnd
https://typeset.io/authors/matthias-holzl-3imj7c84b0
https://typeset.io/authors/lucia-acciai-3clwpj8whw
https://typeset.io/authors/federico-banti-2meq4s9kcz
https://typeset.io/topics/verification-and-validation-370l8pjp
https://typeset.io/topics/formal-methods-7wam6ooj
https://typeset.io/papers/a-temporal-logic-of-nested-calls-and-returns-7xj1p5adyn
https://typeset.io/papers/formal-methods-for-components-and-objects-1fj4blp0mo
https://typeset.io/papers/applications-and-case-studies-2uhq29r13e
https://typeset.io/papers/learning-regular-sets-from-queries-and-counterexamples-1gn1248tzv
https://typeset.io/papers/analysis-of-recursive-game-graphs-using-data-flow-equations-2agzc7jxxj
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/leveraging-applications-of-formal-methods-verification-and-2jz05aj0gt
https://twitter.com/intent/tweet?text=Leveraging%20Applications%20of%20Formal%20Methods,%20Verification%20and%20Validation&url=https://typeset.io/papers/leveraging-applications-of-formal-methods-verification-and-2jz05aj0gt
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/leveraging-applications-of-formal-methods-verification-and-2jz05aj0gt
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/leveraging-applications-of-formal-methods-verification-and-2jz05aj0gt
https://typeset.io/papers/leveraging-applications-of-formal-methods-verification-and-2jz05aj0gt

SENSORIA Patterns: Augmenting Service Engineering

with Formal Analysis, Transformation and Dynamicity⋆

Martin Wirsing1, Matthias Hölzl1, Lucia Acciai2, Federico Banti2, Allan Clark3,

Alessandro Fantechi2, Stephen Gilmore3, Stefania Gnesi4, László Gönczy5, Nora

Koch1, Alessandro Lapadula2, Philip Mayer1, Franco Mazzanti4, Rosario Pugliese2,

Andreas Schroeder1, Francesco Tiezzi2, Mirco Tribastone3, and Dániel Varró5

1 Ludwig-Maximilians-Universität München, Germany
2 Università degli Studi di Firenze

3 University of Edinburgh, Scotland
4 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” of CNR

5 Budapest University of Technology and Economics

Abstract. The IST-FET Integrated Project SENSORIA is developing a novel

comprehensive approach to the engineering of service-oriented software systems

where foundational theories, techniques and methods are fully integrated into

pragmatic software engineering processes. The techniques and tools of SEN-

SORIA encompass the whole software development cycle, from business and

architectural design, to quantitative and qualitative analysis of system proper-

ties, and to transformation and code generation. The SENSORIA approach takes

also into account reconfiguration of service-oriented architectures (SOAs) and

re-engineering of legacy systems.

In this paper we give first a short overview of SENSORIA and then present a

pattern language for augmenting service engineering with formal analysis, trans-

formation and dynamicity. The patterns are designed to help software developers

choose appropriate tools and techniques to develop service-oriented systems with

support from formal methods. They support the whole development process, from

the modelling stage to deployment activities and give an overview of many of the

research areas pursued in the SENSORIA project.

1 Introduction

Service-oriented computing is a paradigm where services are understood as au-

tonomous, platform-independent computational entities that can be described, pub-

lished, categorised, discovered, and dynamically assembled for developing massively

distributed, interoperable, evolvable systems and applications. These characteristics

have been responsible for the widespread success that service-oriented computing en-

joys nowadays: many large companies invest efforts and resources in promoting ser-

vice delivery on a variety of computing platforms, mostly through the Internet in the

form of Web services. Soon there will be a plethora of new services as required for

e-government, e-business, and e-science, and other areas within the rapidly evolving

Information Society.

⋆ This work has been partially sponsored by the project SENSORIA, IST-2 005-016004.

However, service-oriented computing and development today is mostly done in a

non-systematic, ad-hoc way. Full-fledged theoretical foundations are missing, but they

are badly needed for trusted interoperability, predictable compositionality, and for guar-

anteeing security, correctness, and appropriate resource usage.

The IST-FET Integrated Project SENSORIA addresses the problems of service-

oriented computing by building, from first-principles, novel theories, methods and tools

supporting the engineering of software systems for service-oriented overlay computers.

Its aim is to develop a novel comprehensive approach to the engineering of service-

oriented software systems where foundational theories, techniques and methods are

fully integrated into pragmatic software engineering processes. The SENSORIA ap-

proach to service-oriented software development encompasses the whole development

process, from systems in high-level languages, to deployment and re-engineering, with

a particular focus on qualitative and quantitative analysis techniques, and automatic

transformation between different development artifacts.

However, the broad range and the depth of the methods developed as part of the

SENSORIA project means that it may be difficult for developers to identify the tech-

nique or tool that solves a particular problem arising in the development process, unless

the developers are familiar with the whole range of scientific results of the project. To

ameliorate this problem we are developing a catalogue of patterns that can serve as

an index to our results and that illustrates, in a concise manner, the advantages and

disadvantages of the individual techniques.

The structure of the paper is as follows: after a short overview of the SENSORIA

project we explain the reasons for using patterns to present the SENSORIA results. Pat-

terns are referenced in the usual format, with the pattern name followed by the page

number of the pattern in parenthesis, e.g., Service Modelling describes the pattern

named “Service Modelling” on page 6.

We then introduce several patterns ranging from the early design stage to deploy-

ment: Service Modelling, Service Specification and Analysis, Functional Service Ver-

ification, Sensitivity Analysis, Scalability Analysis, Declarative Orchestration, Declar-

ative Service Selection, and Model-Driven Deployment. The last section summarises

other results of the SENSORIA project and concludes.

2 The SENSORIA Project

SENSORIA is one of the three Integrated Projects of the Global Computing Initiative of

FET-IST, the Future and Emerging Technologies action of the European Commission.

The SENSORIA Consortium consists of 12 universities, three research institutes and

four companies (two SMEs) from seven countries6.

6 LMU München (coordinator), Germany; TU Denmark at Lyngby, Denmark; Cirquent GmbH

München, S&N AG, Paderborn (both Germany); Budapest University of Technology and Eco-

nomics, Hungary; Università di Bologna, Università di Firenze, Università di Pisa, Università

di Trento, ISTI Pisa, Telecom Italia Lab Torino, School of Management Politecnico di Milano

(all Italy); Warsaw University, Poland; ATX Software SA, Lisboa, Universidade de Lisboa

(both Portugal); Imperial College London, University College London, University of Edin-

burgh, University of Leicester (all United Kingdom).

Fig. 1. SENSORIA approach: high-level models in UML4SOA are transformed into mathemat-

ical models based on the foundational calculi; qualitative and quantitative analsys can then be

performed on these models.

2.1 The SENSORIA Approach

SENSORIA is focusing on global services that are context adaptive, personalisable, and

may require hard and soft constraints on resources and performance, and takes into

account the fact that services have to be deployed on different, possibly interoperating,

platforms, to provide novel and reusable service-oriented systems.

To this end, SENSORIA is generalising the concept of service in such a way that

– it is independent from the particular global computer and from any programming

language;

– it can be described in a modular way, so that security issues, quality of service

measures and behavioural guarantees are preserved under composition of services;

– it supports dynamic, ad-hoc, “just-in-time” composition;

– it can be made part of an integrated service-oriented approach to business mod-

elling.

The results of SENSORIA include a comprehensive service ontology, and mod-

elling languages for service-oriented systems based on UML [32] and SCA [21,40]. We

have also defined a number of process calculi for service-oriented computing, such as

SCC [6], a session-oriented general purpose calculus for service description; Sock [26],

a three layered calculus inspired by the Web Services protocol stack; and COWS [30],

the Calculus for the Orchestration of Web Services.

These foundational process calculi serve as a base for higher-level formalisms to

specify and analyse service-oriented systems, such as process calculi and languages for

coordination, quality of service and service-level agreements [10,13], or type systems

for services, e.g., for data exchange [31] or resource usage [3].

Fig. 2. SENSORIA tools, see [39] for the current list.

SENSORIA is also addressing the important areas of languages, frameworks, tools

and techniques for qualitative and quantitative analysis. Qualitative analysis methods

are successfully applied, e.g., to the areas of cryptography, security and trust [4,35,37],

whereas calculi, logics and methods for quantitative analysis such as StoKlaim [16],

MoSL [15], and PEPA [27] can be used in areas such as scalability or performance

analysis [7].

Further work of SENSORIA concerns service contracts for checking the compliance

of protocols and for automatic discovery and composition [8,9], new techniques for

specifying and verifying the dynamic behaviour of services, including spatial logics

and the verification of fault-tolerant systems [11,25], and programming- and modelling-

level approaches to software architectures [22].

Moreover, SENSORIA is proposing a model-driven approach for service-oriented

software engineering [41,32] that starts from high-level specifications in languages like

SRML or UML4SOA and uses model transformation techniques [17,2] to generate both

suitable input for the analysis tools, and executable services.

The development of mathematical foundations and mathematically well-founded

engineering techniques for service-oriented computing constitutes a main research part

of SENSORIA. Another important research direction focuses on making these founda-

tions available for designers and developers by creating systematic and scientifically

well-founded methods of service-oriented software development (cf. Fig. 1). The pro-

posed approach is to build high-level models, e.g., in UML4SOA which can then be

transformed into mathematical models based on the foundational calculi. Because of

the precise definition of these calculi it is then possible to perform qualitative and quan-

titative analysis on the transformed models in order to gain valuable information about

the quality, security, and performance of the system in the early stages of system de-

velopment. Since the results of static analysis are transformed into annotations for the

original high-level model, the designer does not have to be concerned with the for-

malisms used in the analysis process.

To facilitate the practical application of the results, SENSORIA is developing a

service-based suite of tools (cf. Fig. 2) that support the new language primitives, the

Q
u

a
li

ta
ti

v
e

 a
n

d
 Q

u
a

n
ti

ta
ti

v
e

 A
n

a
ly

s
is

Service-Oriented Modeling

Model-driven

Development

R
e
-E

n
g

in
e
e
ri

n
g

L
e
g

a
c
y
 S

y
s
te

m
s

Core Calculi for Service Computing

Model-driven
Deployment

Legacy System Global ComputerGlobal Computer

Fig. 3. SENSORIA research themes

analysis techniques, re-engineering of legacy software into services [14] and other as-

pects of service development and deployment [23,34]. The tool suite gives continuous

feedback on the usefulness and applicability of the research results; it is also a starting

point for the design of new industrial support tools for service-oriented development.

Another main element of SENSORIA is the set of realistic case studies for differ-

ent important application areas including telecommunications, automotive, e-university,

and e-business. Most of the case studies are defined by the industrial SENSORIA part-

ners to provide continuous practical challenges for the new techniques of Services En-

gineering and demonstrate the research results.

The interplay of the different research themes and activities of SENSORIA are illus-

trated in Fig. 3: Service-oriented modelling provides specifications and models which

are transformed by model-driven development into the core calculi for service comput-

ing. Model-driven deployment is used for implementing services on different platforms.

Legacy systems can be transformed into services using systematic re-engineering tech-

niques. Qualitative and quantitative analysis back the service development process and

provide the means to guarantee functional and non-functional properties of services and

service aggregates.

The impact of SENSORIA on the development of services will be to bring mathemat-

ically well-founded modelling technology within the reach of service-oriented software

designers and developers. By offering these techniques and tools, we hope to allow

adopters to move to a higher and more mature level of SOA software development.

In particular, we hope to contribute to an increased quality of service of SOA applica-

tions, measured both in qualitative and quantitative terms. As SENSORIA methods are

portable to existing platforms, application of these methods is possible while keeping

existing investments.

2.2 A Pattern-Based Approach to Service Engineering

The SENSORIA project is investigating many issues of engineering SOAs. One of the

challenges is to make the research results available in a way that is useful not only as the

basis for future research but also for software developers seeking to apply the research

results. To this end we are developing a pattern language that describes which problems

are addressed by the various SENSORIA tools and techniques, how they solve the prob-

lems they address, and which forces determine whether a technique is appropriate for a

given situation or not.

The SENSORIA patterns are not limited to implementation issues, they encompass

a wide range of abstraction levels, from implementation-oriented patterns in the spirit

of [24] to architectural or process patterns. We structure the patterns in a way that ap-

proximately follows the “Pattern Language for Pattern Writing” presented in [33], but

add some pattern elements that seem to be helpful for describing patterns specifically

related to service-oriented software engineering. For readers familiar with the pattern

community, it should be noted that we use the pattern format as an expository tool; our

patterns are not necessarily obtained by “mining” existing applications for patterns.

Several elements have to be contained in each pattern: a pattern name; a context

in which the pattern is applicable; a concise description of the problem solved by the

pattern; the forces that determine the benefits and drawbacks of using the pattern; the

solution proposed and the consequences resulting from the use of the solution. Further-

more each pattern has to be accompanied by examples. Several optional sections can

be used to clarify the pattern, e.g., related patterns, code or model samples, or tools to

support the pattern. For space reasons we have omitted some of the mandatory elements

from some of the patterns in this paper.

3 Service Modelling

Context. Systems built on SOAs add new layers of complexity to software engineer-

ing, as many different artifacts must work together to create the sort of loosely coupled,

adaptive, fault-tolerant systems envisioned in the service domain. It is therefore impor-

tant to apply best practices already in use for older programming paradigms to services

as well; in particular, modelling of systems on a higher level of abstraction should be

used to get a general idea of the solution space. Modelling services should be possible

in a language which is both familiar to software architects and thus easy to use, but also

contains the necessary elements for describing SOA systems in a straightforward way.

You are designing a system which is based on a SOA. The system is intended to

offer services to multiple platforms and makes use of existing services and artifacts

on multiple hosts which must be integrated to work together in order to realise the

functionality of the system.

Problem. When designing SOA systems, it is easy to get lost in the detail of technical

specifications and implementations. Providing an overview of the service oriented ar-

chitecture to realise is therefore crucial for effective task identification, separation, and

communication in large projects. In this context, using a familiar, easy-to-understand,

and descriptive language is a key success factor.

Forces.

– The amount of specifications and platforms in the SOA environment makes it diffi-

cult to get a general idea of the solution space.

– Modelling the whole system in an abstract way gives a good overview of the tasks to

be done, but does not directly yield tangible results. For small systems and projects,

it is necessary to tailor this modelling task or even to skip it altogether.

– The model must be updated to reflect the architecture if it changes during imple-

mentation, or new requirements appear.

– The model is platform independent, and may be used to generate significant parts

of the system. In case the system’s target platform is not fixed or may experience

changes, the workload involved in system re-implementation can be reduced con-

siderably.

– Having a global architectural view eases the task of understanding the SOA envi-

ronment considerably. This fact is of major significance if the SOA environment is

to be extended by another team of software engineers or at a later date.

– The envisioned target platform(s) and language(s) should be supported by the mod-

elling approach such that code generation may be used.

Solution. Use a specialised (graphical) modelling language to model the system and

employ these models as far as possible for generating the system implementation.

There are several languages which might be employed for this kind of task. One of

the most widespread languages in the software engineering domain for modelling tasks

is the Unified Modelling Language (UML). As UML itself however does not offer

specific constructs for modelling service-oriented artifacts, it needs to be extended us-

ing its built-in profile mechanism. One profile for service oriented architectures is the

UML4SOA profile [32], which enables modelling of both the static and the dynamic

aspects of service-oriented systems. UML4SOA features specialised constructs for ser-

vices, service providers and descriptions in its static part, as well as service interactions,

long-running transactions, and event handling in its dynamic part. UML4SOA is also

part of a model driven development approach for SOA, MDD4SOA, which in turn of-

fers tools for generating code from UML4SOA models.

Consequences. A positive result of modelling a service-oriented system in a high-level

way is that it gives a better idea of how the individual artifacts fit together. This is

of particular importance in larger projects and for communication between developers

and/or the customer. By using transformations, the models can also be employed for

generating skeletons to fill with the actual implementation. However, the effort involved

in creating readable models should not be underestimated. Also, care should be taken to

only model aspects relevant on the design level instead of implementing the complete

system on the modelling level.

A problem arising when specifying systems by models and applying model transfor-

mations to generate implementation fragments is the problem of model/implementation

divergence. Therefore, special care must be taken that models are kept consistent with

the implementation.

Fig. 4. UML4SOA activity diagram example

Tools. The use of a UML profile has the advantage that all UML CASE tools that

support the extension mechanisms of the UML can be used, i.e. there is no need for

the development of specific and proprietary tools. The UML4SOA profile may be pro-

vided already for the UML tool of choice, or may be defined by the means provided

by the platform. In the SENSORIA project, the UML4SOA profile was defined for the

Rational Software Modeler (RSM) and MagicDraw. MDD4SOA provides executable

transformations for models from both UML tools to code skeletons of various target

platforms, including the Web service platform and the Java platform. The transformers

are integrated into the Eclipse environment.

Example. We illustrate the process by modelling an excerpt of a service-oriented eU-

niversity system: the management process of a student thesis, which is specified from

the announcement of a thesis topic by a tutor to the final assessment and student notifi-

cation. Figure 4 shows part of the orchestration process, namely the registration of the

thesis and the compensation in case of cancellation.

The UML2 activity diagram shows several stereotypes from the UML4SOA profile:

– A scope is a UML StructuredActivityNode that contains arbitrary ActivityNodes,

and may have an associated compensation handler.

– Specialised actions have been defined for sending and receiving data. In particular,

a send is an UML CallBehaviourAction that sends a message; it does not block.

A receive is a UML AcceptCallAction, receiving a message, which blocks until a

message is received.

– Service interactions may have interaction pins for sending or receiving data. In

particular, lnk is an UML Pin that holds a reference to the service involved in the

interaction, snd is a Pin that holds a container with data to be sent, and rcv is a Pin

that holds a container for data to be received.

– Finally, specialised edges connect scopes with handlers. For example, compensa-

tion is a UML ActivityEdge to add compensation handlers to actions and scopes.

Our profile also contains elements for event- and exception handling; they are not

included here for lack of space. For a complete overview see [32].

4 Service Specification and Analysis

Context. You are designing a service-oriented system that has to operate in an open-

ended computational environment. The system is supposed to rely on autonomous and

possibly heterogeneous services, hence different services may be implemented by dif-

ferent languages. Information about actual implementation of some services may be not

accessible and only the services interactive behavior is known.

Problem. Specify a service-oriented system and verify that it guarantees some desirable

behavioural properties.

Forces.

– Process calculi have been proved able to define clean semantic models and lay

rigorous methodological foundations for service-based applications and their com-

position.

– Process calculi enjoy a rich and elegant meta-theory and are equipped with a large

set of analytical tools, such as e.g. typing systems, behavioural equivalences and

temporal logics, that support reasoning on process specification.

– The additional cost and development effort incurred by using process calculi is only

justified for systems with particularly high quality or security requirements.

– The use of process calculi requires highly trained personnel.

Solution. Use a service-oriented process calculus for formally specifying the system

under consideration. Analyse the formal specification of the system by using suitable

analytical tools.

Consequences. Process calculi, being defined algebraically, are inherently composi-

tional and, therefore, convey in a distilled form the paradigm at the heart of service-

oriented computing. On the other hand, a formal specification of service-oriented sys-

tems based on process calculi permits using powerful analysis tools to guarantee rele-

vant properties.

Various kinds of typing systems, behavioural equivalences and temporal logics can

be defined in order to deal with specific aspects of service-oriented systems. Thus, from

time to time, the appropriate kind of reasoning mechanisms to work with should be

chosen/defined depending on the property one intends to guarantee. As an example,

to ensure that a system respects the expected behaviours, type systems can work in a

complete statical manner or combine static and dynamic checks.

On the negative side, an analytical tool designed for a process calculus, in general,

cannot be directly applied to a different one but has to be properly tailored.

Example. Two examples of process calculi suitable for modelling service-oriented sys-

tems are CaSPiS [5] and COWS [28]. Two classes of properties that, for example, can

be verified on top of specifications defined by using the above calculi are progress (e.g.

a client does not get stuck because of inadequate service communication capabilities)

and confidentiality (e.g. critical data can be accessed only by authorised partners). Both

properties can be verified by using the type systems introduced in [1], for CaSPiS, and

in [29], for COWS, respectively.

Consider now a bank account service scenario where a client can ask for his bal-

ance. Specifically, upon receiving a balance request, the bank account service waits

for the client’s credentials and sends either the requested balance or an error message,

depending on the validity of the credentials.

Code Example. Consider the following CaSPiS specification of the scenario:

BA = bank account.(c : credts).if is valid(c) then 〈balance〉 else 〈err〉

C = bank account.〈cred〉.
(

(b : int). ↑ 〈true, b〉 + (e : err). ↑ 〈false, 0〉
)

Sys = C | BA

where err is a message with associated type err and the validity of credentials is

checked by means of an auxiliary function, is valid, that is private to the service

bank account.

According to the safety result in [1], client progress is guaranteed in Sys. Indeed,

supposing that bank account has associated type ?credts.(τ. !int + τ. !err), it can be

inferred that client C is well-typed. More precisely, C’s protocol has associated type

!credts.(?int+ ?err), which is compliant with bank account’s type. Therefore, the

whole system Sys is well-typed.

Consider now the new system Sys′ defined below, where client C ′ does not comply

with bank account communication protocol:

C ′ = bank account. 〈cred〉. (b : int). ↑ 〈true, b〉

Sys′ = C ′ | BA .

C ′’s protocol has associated type !credts.?int, which clearly does not comply with

bank account’s type. Therefore, client progress is not guaranteed in Sys′. Actually,

Sys′ can reduce to [(b : int). ↑ 〈true, b〉|||〈err〉], where client protocol (b : int). ↑
〈true, b〉 is stuck.

The same scenario can be specified by using COWS as follows:

BA = ∗ [xclient, xcredts] bank account • balance req?〈xclient, xcredts〉.
[p, o] (p • o!〈is valid(xcredts)〉

| p • o?〈true〉. xclient
• balance resp!〈balance〉

+ p • o?〈false〉. xclient
• balance resp!〈err〉)

C = bank account • balance req!〈client, cred〉 | [x] client• balance resp?〈x〉

Sys = C | BA .

The type system for COWS introduced in [29] permits expressing and forcing poli-

cies regulating the exchange of data among interacting services and ensuring that, in

that respect, services do not manifest unexpected behaviours. This permits checking

confidentiality properties, e.g., that client credentials are shared only with the bank ac-

count service. The types can be attached to each single datum and express the policies

for data exchange in terms of sets of partners that are authorised to access the data.

Thus, the credentials cred, communicated by C to BA, gets annotated with the policy

{bank account}, that allows BA to receive the datum but prevents it from transmitting

the datum to other services. The typed version of C is defined as follows

bank account • balance req!〈client, {cred}{bank account}〉
| [x] client• balance resp?〈x〉

Once the static type inference phase ends, the BA’s variable xcredts gets annotated with

the policy {bank account}, which means that the datum that dynamically will replace

xcredts will be used only by the partner bank account. In this way, the communication

can safely take place.

Suppose instead that service BA (accidentally or maliciously) attempts to reveal the

credentials through some “internal” operation such as pint
• o!〈{xcredts}r〉, for some

set r such that pint ∈ r. Then, as result of the inference, we would get declaration of

variable xcredts annotated with r′, for some set r′ such that r ⊆ r′. Now, the commu-

nication would be blocked by a runtime check because the datum sent by C would be

annotated as {cred}{bank account} while the set r′ of the receiving variable xcredts is

such that pint ∈ r ⊆ r′ 6⊆ {bank account}.

Related Patterns. The Functional Service Verification pattern is often useful to verify

services specified according to this pattern.

5 Functional Service Verification

Context. You are designing a service-oriented system that has to operate in an open-

ended computational environment. The system should perform its tasks and should not

manifest unexpected behaviours in each state of the environment.

Problem. Current software engineering technologies for service-oriented systems re-

main at the descriptive level and do not support formal reasoning mechanisms and ana-

lytical tools for checking that systems enjoy desirable properties.

Forces.

– The functionalities required of a service must be verified at design time.
– Properties to be insured by services should be expressed at a higher level of abstrac-

tion and therefore be independent from the technical details of the implementation.
– Logics have been since long proved able to reason about complex software sys-

tems as service-oriented applications are. In particular temporal logics have been

proposed in the last twenty years, as suitable means for specifying properties of

complex systems owing to their ability of expressing notions of necessity, possibil-

ity, eventuality, etc.
– The additional cost and development effort incurred by verification may only be

justified for systems with particularly high quality or security requirements.
– Logic-based verification can only be performed by highly qualified developers.

Solution. Use a logical verification framework for checking functional properties of

services by abstracting away from the environments in which they are operating. In

particular, specify the properties of interest by using a temporal logic capable of captur-

ing specific aspects of services, e.g. the logic SocL [20]. Define a formal specification

of the system under consideration by using a process calculus, e.g. COWS [28], and, on

top of this specification, define more abstract views by appropriately classifying system

actions. Finally, verify the formulae over the abstract views of the system by using a

model checker, e.g. the on-the-fly model checker CMC [20].

Consequences. The fact that the verification of properties is done over the abstract

views of the system has many important advantages. On the one hand, it enables defin-

ing and working with many different abstract views of a system, thus reducing the

complexity of the model of the system to be analysed. On the other hand, it enables

defining service properties in terms of typical service actions (request, response, can-

cel, . . .) and in a way that is independent of the actual specification of the service, both

with regards to the process calculus used and with regards to the actual actions’ names

used in the specification. As a further consequence, it permits to identify classes of

functional properties that services with similar functionalities must enjoy.

Example. Consider the following general properties that express two desirable at-

tributes of services:

– responsiveness: the service under analysis always guarantees a response to each

received request;

– availability: the service under analysis is always capable to accept a request.

Consider now a bank service scenario where a client can charge its credit card with

some amount. Specifically, consider a client that tries to charge his credit card 1234

with two different amounts, Euros 100 and 200, by performing two requests in paral-

lel. An abstract view of the above system can be obtained by properly identifying the

system actions corresponding to requests, responses and failure notifications of the in-

teraction between the bank service and the client, and by specifying the system states

where the service is able to accept a request. This way, the two general properties can

be verified over the abstract system specification.

Code Example. The two properties presented in the previous section can be expressed

as SocL formulae as follows:

– responsiveness: AG(accepting_request(charge))

– availability: AG[request(charge,$id)]

AF{response(charge,%id)

or fail(charge,%id)} true

where charge indicates the interaction between the bank service and the client, while

the variable id is used to correlate responses and failure notifications to the proper

accepted requests.

A COWS specification of the scenario is

let

Bank = * [CUST] [CC] [AMOUNT] [ID]

bank.charge?<CUST,CC,AMOUNT,ID>.

[p#][o#] (p.o!<>

| p.o?<>. CUST.chargeOK!<ID>

+ p.o?<>. CUST.chargeFail!<ID>)

Client = bank.charge!<client,1234,100,id1>

| (client.chargeOK?<id1>.nil

+ client.chargeFail?<id1>.nil)

| bank.charge!<client,1234,200,id2>

| (client.chargeOK?<id2>.nil

+ client.chargeFail?<id2>.nil)

in

Bank() | Client()

end

Once prompted by a request, the service Bank creates one specific instance to serve

that request and is immediately ready to concurrently serve other requests. Two differ-

ent correlation values, id1 and id2, are used to correlate the response messages to the

corresponding requests. Notably, for the sake of simplicity, the choice between approv-

ing or not a request for charging the credit card is here completely non-deterministic.

An abstract view of the system can be obtained by applying the following rules:

Abstractions {

Action charge<*,*,*,$1> -> request(charge,$1)

Action chargeOK<$1> -> response(charge,$1)

Action chargeFail<$1> -> fail(charge,$1)

State charge -> accepting_request(charge)

}

The first rule prescribes that whenever the concrete actions bank.charge!<cli

ent,1234,100,id1> and bank.charge!<client,1234,200,id2> are ex-

ecuted, then they are replaced by the abstract actions request(charge,id1) and

request(charge,id2), respectively. Variables “$n” (with n natural number) can

be used to defined generic (templates of) abstraction rules. Also the wildcard “*” can be

used for increasing flexibility. The other rules act similarly. Notably, communications

internal to the bank service are not transformed and, thus, become unobservable.

Related Patterns. The Service Specification and Analysis pattern is often useful to

specify services that should be verified.

Tools. The tool CMC can be used to prove that the bank service specified above

exhibits the desired characteristics to be available and responsive. A prototypical

version of CMC can be experimented via a web interface available at the address

http://fmt.isti.cnr.it/cmc/.

6 Sensitivity analysis

Context. You are analysing a service-oriented system in order to identify areas where

the system performance can be improved with relatively little effort. There are many po-

tential ways in which the system can be modified including optimising software com-

ponents, purchasing new hardware or infrastructure, re-deploying existing hardware

resources for other purposes, and many other possibilities.

Problem. Identify a low-cost method of improving system performance.

Forces.

– The impact of changes on system performance can be hard to predict. Improving the

efficiency of one component will not necessarily lead to an improvement overall.

Optimisations which are applied in the wrong place may even lead to the overall

performance being reduced.

– Some changes are expensive, others cheap. One change might require replacing a

large part of the communication network, another might require rewrites of com-

plex software, whereas one might require only reducing a delay such as a timeout.

– Given the many possible changes one could make it is infeasible to try each of them

and compare the relative increase (or decrease) in performance.

Solution. Develop a high-level quantitative model of the service and experiment on

the model in order to determine the changes which have the greatest positive impact.

Of these, identify those which can be implemented with lowest cost, and carry out

this implementation. The quantitative model can be evaluated using a modelling tool

such as a simulator or a Markov chain solver computing the transient and passage-

time measures which relate to user-perceived performance, together with the use of

parameter sweep across the model to vary activity rates.

Consequences. The analysis has the potential to identify useful areas where optimisa-

tions can be applied. The numerical evaluation may be long-running but it is entirely

automatic. The quantitative evaluation has the potential to generate many analysis re-

sults which need to be considered and assessed by a domain expert.

Example. This pattern is applied in [13] to investigate an automotive accident assis-

tance service. A framework for experimentation and analysis allows many instances

of a Markov chain solver to be executed and the results combined to identify how the

service can most easily meet its required service-level agreement.

Related Patterns. The Service Specification and Analysis pattern is complementary in

the sense that it uses similar methods to analyse behaviour.

Tools. The SENSORIA Development Environment hosts formal analysis tools which

allow service engineers to perform parameter sweep across models of services ex-

pressed in the PEPA process algebra [27]. The PEPA model is automatically compiled

into a continuous-time Markov chain and passage-time analysis is performed using the

ipclib analysis tools [12].

7 Scalability analysis

Context. You are a large-scale service provider using replication to scale your service

provision to support large user populations. You need to understand the impact on your

service provision of changes in the number of servers which you have available or

changes in the number of users subscribed to your service.

Problem. Understanding the impact of changes on a large-scale system.

Forces.

– Large user populations represent success: this service is considered by many people

to be important or even vital. Scale of use is a tangible and quantifiable measure of

value and being able to support large-scale use is an indicator of quality in planning,

execution and deployment in service provision. Maintaining a large-scale system

attracts prestige, attention and acclaim.

– Large user populations represent heavy demand. The service must be replicated in

order to serve many clients. Replication represents cost in terms of hosting provi-

sion, hardware and electricity bills. Service providers would like to reduce service

provision while continuing to serve large user populations.

– Modelling would help with understanding the system but large-scale systems are

difficult to model. Conventional discrete-state quantitative analysis methods are

limited by the the size of the probability distribution vector across all of the states

of the system. Discrete-state models are subject to the well-known state-space ex-

plosion problem. It is not possible simply to use a very large Markov chain model

to analyse this problem.

Solution. Develop a high-level model of the system and apply continuous-space anal-

ysis to the model. A continuous-space model can make predictions about a large-scale

system where a discrete-state model cannot.

Consequences. TO DO

Related Patterns. The Sensitivity Analysis pattern is closely related in that it is possible

to use the parameter sweep employed there to perform dimensioning for large-scale

systems (i.e. determining whether a planned system has enough capacity to serve an

estimated user population).

Tools. The SENSORIA Development Environment hosts analysis tools which allow ser-

vice engineers to perform continuous-space analysis on models expressed in the PEPA

process algebra [27]. The PEPA model is automatically compiled into a set of coupled

ordinary differential equations and the initial value problem is evaluated using numeri-

cal integration. This predicts the number of users in different states of using the service

at all future time points. Static analysis, compilation and integration are performed us-

ing the PEPA Eclipse Plug-in Project [36].

8 Declarative Orchestration

Context. You are designing a service-oriented system that has to operate in an open-

ended, changing environment in which the presence of certain services cannot be guar-

anteed. The system should perform its tasks to the maximum extent possible in each

state of the environment, possibly by utilising features of the environment that were not

present when the system was designed.

Problem. Design a service-oriented system that can operate in an open-ended, changing

environment.

Forces.

– A pre-determined orchestration of services cannot adapt to significant, unforeseen

changes in the environment.
– Specifying orchestrations for all possible changes is not feasible in some environ-

ments.
– Not having a pre-determined orchestration makes it more difficult to reason about

the system.
– If the environment is too different from the one for which a system was originally

designed it may no longer be possible to fulfil the system’s function.
– Services have to provide a rich semantic description to be usable for declarative

orchestrations.

Solution. Define an ontology for the problem domain that is rich enough to capture the

capabilities of services. Specify the results of combining several services in a declar-

ative manner, e.g., as plan components or logical implications. Use a reasoning com-

ponent such as an planner, model checker, or a theorem prover to create orchestrations

from these specifications and a description of the current environment.

Consequences. Declarative orchestrations can adapt to large changes in the environ-

ment without manual reconfiguration. They can easily incorporate information about

new kinds of services and use them to fulfil their tasks.

On the negative side, declarative orchestration depends on an expressive domain

model for which the reasoning process is often computationally expensive and time

consuming, and also on the availability of rich semantic descriptions of unknown ser-

vices. It is often difficult to control the behaviour of systems built on top of reasoning

components and to ensure their correctness.

Related Patterns. Unless the environment is extremely unpredictable, a system de-

signed according to Declarative Service Selection can often satisfy similar requirements

while remaining easier to understand and analyse.

9 Declarative Service Selection

Context. You have designed an orchestration for a service-oriented system. During run-

time, a number of services with similar functionality but different cost, reliability and

quality trade-offs are available that can fulfil the requirements of the orchestration.

Problem. Find an optimal combination of services, taking into account the current

situation and user preferences.

Forces.

– The functionality required of the services is determined by the orchestration.

– The services available at run-time are not known during design-time.

– Different services with the same functionality can be differentiated according to

other Quality of Service metrics.

Solution. Define a context-aware soft-constraint system that ranks solution according

to their quality. Model user preferences using a partial order between the criteria de-

scribed by individual soft constraints when possible, otherwise build a more complex

mapping from the values of individual constraints to an overall result that describes

the user preferences. A soft-constraint solver can the compute the optimal combination

of services or a “good enough” combination of services computable in a certain time

frame.

Consequences. The specification of the problem can be given without reference to a

solution algorithm, thus the communication with domain experts and users is simplified.

The computation of the quality of different combinations of services and the preference

given to each individual characteristic are decoupled from each other. A soft-constraint

solver provides a general mechanism to compute the desired combination of services.

On the other hand, the choice of evaluation functions is restricted by the theories that

the soft-constraint solver can process. A general-purpose mechanism such as a solver is

often less efficient than a well-tuned specialised implementation.

10 Model-Driven Deployment

Context. You are designing a service configuration where non-functional requirements

(security, reliable messaging, etc.) play an important role. Models are designed in UML

while the underlying standards-compliant platform have to be parametrised at a very

low abstraction level (e.g. using specific APIs or XML formats).

Problem. There is a big semantical gap between the modelling and deployment con-

cepts. Platforms and concepts are changing rapidly, interoperability is not guaranteed

between low level models.

Forces. A service configuration is typically designed in high level modelling languages

such as UML. The configuration of the underlying implementation platforms, however,

needs the deep technical knowledge of related standards and product specific know-

how. Services have to be redeployed, refactored and moved between runtime environ-

ments. Moreover, non-functional properties should be handled differently for different

classes of users. It should be avoided to have the service designer specify the detailed

technical requirements, he should rather work with predefined profiles.

Solution. We propose a multiple-step model driven workflow where separate model

transformations implement the PIM2PSM and PSM2code mappings, as defined in the

MDA approach. Services have to be modelled either in a specialised UML dialect or in a

Domain Specific Editor. First, relevant parts of the model are filtered out and stored in a

simplified representation format (neglecting e.g. tool-specific information). Then differ-

ent Platform Independent Models are created for the different aspects of non-functional

requirements, e.g. security, reliable messaging, component deployment, etc. Up to this

step, platform requirements do not affect the process. Platform Specific Models con-

tain implementation-specific attributes, taken from the PIM and predefined parameter

libraries. Finally, structured textual code (e.g. XML descriptors) is generated.

Consequences. The method has the potential to connect high level models to low level

runtime representations. Transformation chain targets server configurations with exten-

sions for reliable messaging and security.

Example. Examples are the UML4SOA for modelling, VIATRA2 framework for trans-

formation and Apache Axis (using Rampart and Sandesha modules) and IBM Web-

Sphere as relevant industrial platforms. The method is used in different scenarios of the

project.

Tools. The input of transformation is UML2 models in UML4SOA (designed e.g. in

Rational Software Architect (RSA)). The transformation is integrated in the SENSORIA

Development Environment while the output consist of descriptor files and client stubs.

11 Related Work

The idea of using patterns to describe common problems in software design and de-

velopment was popularised by the so-called “Gang of Four” book [24]. Since its pub-

lication a wide range of patterns and pattern languages for many areas of software

development has been published, see, e.g, the Pattern Languages of Programs (PLoP)

conferences and the associated Pattern Languages of Program Design volumes, or the

LNCS Transactions on Pattern Languages of Programming.

The area of patterns for SOA has recently gained a lot of attention, and several col-

lections of design patterns for SOA have been recently published or announced [19,38].

The article [18] provides a short introduction. However these patterns address more

general problems of SOA, while our patterns are focused on the formally supported

techniques provided by SENSORIA. Therefore, our patterns can serve as an extension

of, rather than as a replacement for, other pattern catalogues.

12 Conclusions and Further Work

In this paper, we have presented some results of the IST-FET EU project SENSORIA,

in the form of a pattern language. The patterns address a broad range of issues, such

as modelling, specification, analysis, verification, orchestration, and deployment of ser-

vices. We are currently working on systematising and extending the collection of pat-

terns in these areas, and we will also be developing patterns for areas which are not

currently addressed, e.g., business process analysis and modelling.

This pattern catalogue is a useful guide to the research results of the SENSORIA

project: as already mentioned in Section 2.1, we are investigating a broad range of

subjects and without some guidance it may not be easy for software developers to find

the appropriate tools or techniques.

However, the patterns presented in this paper only present a very brief glimpse at

the research of the SENSORIA project. Important research areas include a new gener-

alised concept of service, modelling languages for services based on UML and SCA,

new semantically well-defined modelling and programming primitives for services, new

powerful mathematical analysis and verification techniques and tools for system be-

haviour and quality of service properties, and novel model-based transformation and

development techniques. The innovative methods of SENSORIA are being demonstrated

by applying them to case studies in the service-intensive areas of e-business, automotive

systems, and telecommunications.

By integrating and further developing these results SENSORIA will achieve its over-

all aim: a comprehensive and pragmatic but theoretically well founded approach to

software engineering for service-oriented systems.

References

1. L. Acciai and M. Boreale. A Type System for Client Progress in a Service-Oriented Cal-

culus. In Concurrency, Graphs and Models, volume 5065 of Lecture Notes in Computer

Science, pages 642–658. Springer, 2008.

2. András Balogh and Dániel Varró. Advanced Model Transformation Language Constructs in

the VIATRA2 Framework. In ACM Symposium on Applied Computing — Model Transfor-

mation Track (SAC 2006), pages 1280–1287, Dijon, France, April 2006. ACM Press.

3. Massimo Bartoletti, Pierpaolo Degano, Gianluigi Ferrari, and Roberto Zunino. Types and

effects for Resouce Usage Analysis. Foundations of Software Science and Computation

Structures, FOSSACS’07, 4423, 2007.

4. Maurice H. ter Beek, Corrado Moiso, and Marinella Petrocchi. Towards Security Analyses of

an Identity Federation Protocol for Web Services in Convergent Networks. In Proceedings

of the 3rd Advanced International Conference on Telecommunications (AICT ’07). IEEE

Computer Society, Los Alamitos, CA, 2007.

5. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and Pipelines for Structured

Service Programming. In Proc. of Formal Methods for Open Object-Based Distributed Sys-

tems (FMOODS2008), volume 5051 of Lecture Notes in Computer Science, pages 19–38.

Springer, 2008.

6. Michele Boreale, Roberto Bruni, Luis Caires, Rocco De Nicola, Ivan Lanese, Michele Loreti,

Francisco Martins, Ugo Montanari, Antonio Ravara, Davide Sangiorgi, Vasco Vasconcelos,

and Gianluigi Zavattaro. SCC: a Service Centered Calculus. In M. Bravetti and G. Zavattaro,

editors, Proceedings of WS-FM 2006, 3rd International Workshop on Web Services and For-

mal Methods, volume 4184 of Lecture Notes in Computer Science, pages 38–57. Springer

Verlag, 2006.

7. Mario Bravetti, Stephen Gilmore, Claudio Guidi, and Mirco Tribastone. Replicating web

services for scalability. In G. Barthe and C. Fournet, editors, Proceedings of the Third Inter-

national Conference on Trustworthy Global Computing (TGC’07), volume 4912 of LNCS,

pages 204–221. Springer-Verlag, 2008.

8. Mario Bravetti and Gianluigi Zavattaro. A Theory for Strong Service Compliance. In Amy

L. Murphy andJan Vitek, editor, Proceedings of COORDINATION 2007, volume 4467 of

Lecture Notes in Computer Science, pages 96–112, Paphos, Cyprus, 2007. Springer.

9. Mario Bravetti and Gianluigi Zavattaro. Contract based Multi-party Service Composition.

In Farhad Arbab and Marjan Sirjani, editors, International Symposium on Fundamentals

of Software Engineering, International Symposium, FSEN 2007, Tehran, Iran, April 17-19,

2007, Proceedings, volume 4767 of Lecture Notes in Computer Science, Iran, Tehran, 2007.

Springer.

10. Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A Constraint-Based Language for Spec-

ifying Service Level Agreements. In R. De Nicola, editor, Proc. of the 16th European Sym-

posium on Programming (ESOP 2007), volume 4421 of Lecture Notes in Computer Science,

pages 18–32. Springer, 2007.

11. Vincenzo Ciancia and Gianluigi Ferrari. Co-Algebraic Models for Quantitative Spatial Log-

ics. In Quantitative Aspects of Programming Languages (QAPL’07), 2007.

12. Allan Clark. The ipclib PEPA Library. In Mor Harchol-Balter, Marta Kwiatkowska, and

Miklos Telek, editors, Proceedings of the 4th International Conference on the Quantitative

Evaluation of SysTems (QEST), pages 55–56. IEEE, September 2007.

13. Allan Clark and Stephen Gilmore. Evaluating quality of service for service level agreements.

In Luboš Brim and Martin Leucker, editors, Proceedings of the 11th International Workshop

on Formal Methods for Industrial Critical Systems, pages 172–185, Bonn, Germany, August

2006.

14. Rui Correia, Carlos Matos, Reiko Heckel, and Mohammad El-Ramly. Architecture migration

driven by code categorization. In Flavio Oquendo, editor, ECSA’07, volume 4758 of LNCS,

pages 115–122. Springer, 2007.

15. Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti, and Mieke Massink.

Model checking mobile stochastic logic. Theor. Comput. Sci., 382(1):42–70, 2007.

16. Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, and Mieke Massink. STOKLAIM: A

Stochastic Extension of KLAIM. Technical Report 2006-TR-01, ISTI, 2006.

17. Karsten Ehrig, Gabriele Taentzer, and Dániel Varró. Tool Integration by Model Transforma-

tions based on the Eclipse Modeling Framework. EASST Newsletter, 12, June 2006.

18. Thomas Erl. Introducing soa design patterns. SOA World Magazine, 8(6), June 2008.

19. Thomas Erl. SOA Design Patterns. Prentice Hall/Pearson PTR, 2008. To appear.

20. Alessandro Fantechi, Stefania Gnesi, Alessandro Lapadula, Franco Mazzanti, Rosario

Pugliese, and Francesco Tiezzi. A model checking approach for verifying COWS speci-

fications. In J. L. Fiadeiro and P. Inverardi, editors, Proc. of Fundamental Approaches to

Software Engineering (FASE’08), volume 4961 of LNCS, pages 230–245. Springer, 2008.

21. José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A Formal Approach to Service Com-

ponent Architecture. Web Services and Formal Methods, 4184:193–213, 2006.

22. Howard Foster, Jeff Kramer, Jeff Magee, and Sebastian Uchitel. Towards Self-Management

in Service-oriented Computing with Modes. In Proceedings of Workshop on Engineering

Service-Oriented Applications (WESOA07), Vienna, Austria, Vienna, September 2007. Im-

perial College London.

23. Howard Foster and Philip Mayer. Leveraging integrated tools for model-based analysis of

service compositions. In In Proceedings of the Third International Conference on Internet

and Web Applications and Services (ICIW 2008), Athens, Greece, 2008. IEEE Computer

Society Press.

24. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: ele-

ments of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1995.

25. László Gönczy and Dániel Varró. Modeling of Reliable Messaging in Service Oriented

Architectures. In Proc. of the International Workshop on Web Services - Modeling and

Testing, 2006.

26. Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gianluigi Zavattaro.

SOCK: A Calculus for Service Oriented Computing. In Proceedings of ICSOC’06, volume

4294 of Lecture Notes in Computer Science, pages 327–338. Springer, 2006.

27. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University

Press, 1996.

28. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services. In

Proc. of 16th European Symposium on Programming (ESOP’07), volume 4421 of Lecture

Notes in Computer Science, pages 33–47. Springer, 2007.

29. A. Lapadula, R. Pugliese, and F. Tiezzi. Regulating data exchange in service oriented appli-

cations. In Proc. of IPM International Symposium on Fundamentals of Software Engineering

(FSEN’07), volume 4767 of Lecture Notes in Computer Science, pages 223–239. Springer,

2007.

30. Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A Calculus for Orchestration

of Web Services. In R. De Nicola, editor, Proc. of 16th European Symposium on Program-

ming (ESOP’07), volume 4421 of LNCS, pages 33–47. Springer, 2007.

31. Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. Regulating data exchange in

service oriented applications. In F. Arbab and M. Sirjani, editors, Proc. of IPM International

Symposium on Fundamentals of Software Engineering (FSEN’07), volume 4767 of LNCS,

pages 223–239. Springer, 2007.

32. Philip Mayer, Andreas Schroeder, and Nora Koch. A Model-Driven Approach to Service

Orchestration. In Proceedings of the IEEE International Conference on Services Computing

(SCC 2008), IEEE. IEEE, 2008.

33. G. Meszaros and J. Doble. Metapatterns: A pattern language for pattern writing, 1996.

34. Arun Mukhija, Andrew Dingwall-Smith, and David S. Rosenblum. QoS-Aware Service

Composition in Dino. In Proceedings of the 5th European Conference on Web Services

(ECOWS 2007), Halle, Germany, Halle, Germany, 2007. IEEE Computer Society.

35. Flemming Nielson and Hanne Riis Nielson. A flow-sensitive analysis of privacy properties.

In 20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice,

Italy, pages 249–264. IEEE Computer Society, 2007.

36. Web site for the pepa eclipse plugin. http://homepages.inf.ed.ac.uk/

mtribast/plugin/download.html, last accessed 2008-06-24.

37. Christian W. Probst, Flemming Nielson, and René Rydhof Hansen. Sandboxing in myKlaim.

In The First International Conference on Availability, Reliability and Security, ARES 2006,

2006.

38. Arnon Rotem-Gal-Oz. SOA Patterns. Manning, 2009. To appear.

39. Tools integrated into the SENSORIA Development Environment. http://svn.pst.

ifi.lmu.de/trac/sct/wiki/SensoriaTools.

40. Martin Wirsing, Laura Bocchi, Allan Clark, José Luiz Fiadeiro, Stephen Gilmore, Matthias

Hölzl, Nora Koch, and Rosario Pugliese. SENSORIA: Engineering for Service-Oriented

Overlay Computers, chapter 7. MIT, June 2007. submitted.

41. Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias Hölzl, Alexander Knapp, Nora

Koch, and Andreas Schroeder. Semantic-Based Development of Service-Oriented Systems.

In E. Najn et al., editor, Proc. 26th IFIP WG 6.1 International Conference on Formal Meth-

ods for Networked and Distributed Systems(FORTE’06), Paris, France, LNCS 4229, pages

24–45. Springer-Verlag, 2006.

