
F. Oquendo (Ed.): ECSA 2007, LNCS 4758, pp. 263–270, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Leveraging Architecture Patterns to Satisfy Quality
Attributes

Neil B. Harrison and Paris Avgeriou

Department of Mathematics and Computing Science, University of Groningen,
Groningen, The Netherlands

harrisne@uvsc.edu, paris@cs.rug.nl

Abstract. Architectural design has been characterized as making a series of
decisions that have system-wide impact. These decisions have side effects
which can have significant impact on the system. However, the impact may be
first understood much later; when the system architecture is difficult to change.
Architecture patterns can help architects understand the impact of the
architectural decisions at the time these decisions are made, because patterns
contain information about consequences and context of the pattern usage.
However, this information has been of limited use because it is not presented
consistently or systematically. We discuss the current limitations of patterns on
evaluating their impact on quality attributes, and propose integrating the
information of patterns’ impact on quality attributes in order to increase the
usefulness of architecture patterns.

Keywords: Software Architecture, Architecture Patterns, Quality Attributes.

1 Introduction

One of the most challenging aspects of software design is creating a system that
provides the quality attributes needed by the users. Quality attributes are
characteristics of the system that are non-functional in nature. Typical quality
attributes include reliability, usability, and security.

Because quality attributes are system-wide, their implementation must also be
system-wide: satisfaction of a quality attribute requirement cannot be partitioned into
a single module or subsystem. Thus, a system-level vision of the system is required in
order to ensure that the system can satisfy its quality attributes. One of the primary
purposes of the architecture of a system is to create a system design to satisfy the
quality attributes. Wrong architectural choices can cost significant time and effort in
later development, or may cause the system to fail to meet its quality attribute goals.

Designing an architecture so that it achieves its quality attribute requirements is
one of the most demanding tasks an architect faces [3]. One reason is that the
architect needs a great deal of knowledge about the quality attributes and about
approaches to implementing systems that satisfy them. Yet there are many quality
attributes; the ISO 9126 standard lists six primary and 21 secondary quality attributes
[14]. In addition, quality attributes often interact – changes to the system often have

264 N.B. Harrison and P. Avgeriou

repercussions on quality attributes elsewhere. Broad knowledge about how to manage
tradeoffs among arbitrary quality attributes does not yet exist [2]. Requirements may
not be sufficiently specific and are often a moving target. Finally, the consequences of
decisions made are often overlooked [4]. As a result, architectural rework is common.

Architecture patterns are a viable approach for architectural partitioning, and have
a well-understood impact on quality attributes [20]. However their application has
been rather limited due to a number of factors [11]. We propose the systematic use of
architecture patterns to help the architect satisfy quality attributes, and thus reduce the
risk of later rework. We demonstrate that patterns can help the architect understand
the impact architectural decisions that might be overlooked. We explore why patterns
have been limited in large-scale industrial application. As an initial step to overcome
this limitation we have analyzed several architecture patterns with respect to their
impact to key quality attributes, as a means to leverage the knowledge in the patterns.

2 Architectural Decisions

The process of architectural design has been characterized as making a series of
decisions that have system-wide impact. Most architectural decisions have multiple
consequences, or as Jansen and Bosch put it, result in additional requirements to be
satisfied by the architecture, which need to be addressed by additional decisions [15].
Some are intended, while others are side effects of the decision.

Some of the most significant consequences of decisions are those that impact the
quality attributes of the system. Garlan calls them key requirements [10]. This impact
may be the intent of the decision; for example, one may choose to use a role-based
access control model in order to satisfy a security quality attribute. Other impacts may
be side effects of different decisions. For example, the architect may adopt a layered
architecture approach, which decomposes the system into a hierarchy of partitions,
each providing services to and consuming from its adjacent partitions. A side effect of
a layered architecture is that security measures can be easily implemented.

2.1 Unforseen Consequences

One of the key challenges in dealing with consequences is the vast amount of
knowledge required to understand their impact on all the quality attributes. Bachmann
et al note that the list of quality attributes in the ISO 9126 standard is incomplete, and
that one must understand the impact on even the undocumented quality attributes [2].
Tyree et al note that traditional architecture methods do not focus on the rationale for
an architectural decision and the options considered [21]. Kruchten notes that the
reasoning behind a decision is tacit knowledge, essential for the solution, but not
documented [19]. The result is that consequences of decisions may be overlooked.

Overlooking issues is a significant problem in architecture. In a study of
architecture evaluations, Bass et al [4] report that most risks discovered during an
evaluation arise from the lack of an activity, not from incorrect performance of an
activity. Categories of risks are dominated by oversight, including overlooking
consequences of decisions. Many of the overlooked consequences are associated with

 Leveraging Architecture Patterns to Satisfy Quality Attributes 265

quality attributes. Their top risk themes included availability, performance, security,
and modifiability.

 Missing the impact on quality attributes at architecture time has an additional
liability. Because quality attributes are system-wide capabilities, they generally
cannot be fully tested until system testing [7]. Consequences that are overlooked are
often not found until this time, and are expensive to fix.

3 Architecture Patterns

Patterns are solutions to recurring problems. A software pattern describes a problem
and the context of the problem, and an associated generic solution to the problem. The
best known software patterns describe solutions to object-oriented design problems
[9], but patterns have been used in many aspects of software design, coding, and
development. Patterns have been written for software architecture, and can be used in
numerous software architecture methods [3] [5] [8] [15] [20].

Patterns have been shown to be a useful and potentially important vehicle for
capturing some of the most significant architectural decisions [11]. One of the biggest
difficulties of documenting architectural decisions is the capturing of rationale and
expected consequences of a decision. This is where patterns are particularly strong,
because the consequences of using the architecture pattern are part of the pattern.

The result of applying a pattern is usually documented as “consequences” or
“resulting context” and is generally labeled as positive (“benefits”) or negative
(“liabilities”). Each benefit and liability is described in some detail.

The payoff of using patterns can be great. When an architect uses a pattern, he or
she can read the pattern documentation to learn about the side effects of the pattern.
This reduces the chance of the architect failing to consider important consequences.
This relieves the architect of the burden of being expert in all the quality attributes.

An important advantage of pattern-based architecting is that it is an integral part of
most current architecture methods. It fits into the step of ADD that selects
architectural patterns and tactics to satisfy the drivers (see [3] for further details.) The
Siemens’ Views method [13] and the Rational Unified Process 4+1 Views [17] [18],
use various strategies, such as patterns, to resolve issues identified in the views.

3.1 Limitations of Patterns in Identifying Consequences

The use of patterns in identifying and dealing with consequences is, however,
currently significantly limited. The chief limitation is that patterns’ information on
consequences is incomplete, not searchable or cross-referenced, and in general not as
easy to use as it should be. Furthermore, it is difficult to learn about pattern
interactions: how patterns may jointly impact quality attributes. These are the
difficulties we focus on in this work.

Another difficulty is that pattern consequences are most often qualitative, not
quantitative. Some quantification of architecture patterns’ impact on quality attributes
has been done using a graded scale [20]. This is insufficient, since an architect needs
to have rigorous analysis results of quality attributes to make informed decisions.

266 N.B. Harrison and P. Avgeriou

Even qualitative information is problematic: consequences are of different strengths
but no such comparative information is given. We begin to address this in this work.

Another issue is that patterns contain proven, but general solutions. Architecture is
concerned with specific, but tentative decisions. As such, the pattern use must be
tailored to the specific system – the architect must evaluate the consequences of a
pattern in the context of its proposed use. Several architecture patterns, particularly
those in Buschmann et al [8], include common variants of the patterns that provide
more specific solutions. However, the variants have not been extensively documented,
and have little information on consequences. So the user is left to determine whether
the consequences of a pattern still apply to a pattern variant under consideration.

An important source of unforeseen consequences is the interaction of multiple
decisions. Multiple patterns may have overlapping consequences, or patterns and
decisions not based on patterns may have overlapping consequences.

4 Analysis of the Impact of Patterns on QAs

In order for patterns to become a truly powerful architecture tool, it must be possible
to find which patterns impact certain quality attributes, compare and contrast their
impacts, and discover their interactions. To this end, we are analyzing the impact of
patterns on quality attributes, and organizing this analysis in a way that is accessible
and informative. This work is a companion to quantifying the impact of patterns on
quality attributes: it adds a qualitative dimension by examining the nature of how a
pattern impacts a particular quality attribute; not just how much.

We began by selecting a standard definition of quality attributes to be used in the
study. We used the ISO quality model [14], which contains functionality, reliability,
usability, efficiency, maintainability, and portability. We initially confined ourselves
to the primary attributes, with the exception of functionality, where we selected the
security sub-attribute. We added a property, implementability, as a measure of the
difficulty of implementing the pattern.

 We then selected the best-known architecture patterns, those from Buschmann et
al [8]. We used the consequences in the book for our analysis of consequences. While
the book gives several variants of the patterns, we limited this analysis to the “pure”
form of each pattern – the variants will be investigated in our future work.

In the analysis of the consequences, we designated strengths as “strength” or “key
strength,” and liabilities as either “liability” or “key liability,” based on the
importance of the impact. If the impact on the quality attribute might be sufficient
reason by itself to use or avoid the pattern, it was designated as “key.” This
differentiation supports architectural reasoning: used in the context of a project’s
architectural drivers, a key strength tends to enable fulfillment of an architectural
driver, while key liability will severely hinder or perhaps prevent its fulfillment. We
differentiated normal versus key impacts based on the severity described in the
documentation. Where it was unclear, consequences were weighed against each other,
and judgment was applied. Not every pattern had both key strengths and liabilities.

At least two to three sentences are needed to express each impact fully. Because of
space limitations, we abbreviated the impacts to just a short sentence.

 Leveraging Architecture Patterns to Satisfy Quality Attributes 267

Table 1. Patterns’ Impact on Usability, Security, Maintainability and Efficiency

Usability Security Maintainability Efficiency

Layers Neutral Key Strength:
Supports
layers of
access.

Key Strength:
Separate
modification and
testing of layers, and
supports reusability

Liability:
Propagation of
calls through
layers can be
inefficient

Pipes and
Filters

Liability:
Generally not
interactive

Liability:
Each filter
needs its own
security

Strength: Can modify
or add filters
separately

Strength: If one
can exploit parallel
processing
Liability: Time and
space to copy data

Blackboard Neutral Liability:
Independent
agents may be
vulnerable

Key Strength:
extendable
Key Liability:
Difficult to test

Liability: Hard to
support parallelism

Model View
Controller

Key Strength:
Synchronized
views

Neutral Liability: Coupling of
views and controllers
to model

Liability:
Inefficiency of
data access in view

Presentation
Abstraction
Control

Strength:
Semantic
separationo

Neutral Key Strength:
Separation of
concerns

Key Liability: High
overhead among
agents

Microkernel Neutral Neutral Key Strength: Very
flexible, extensible

Key Liability: High
overhead

Reflection Neutral Neutral Key Strength: No
explicit modification
of source code

Liability: Meta-
object protocols
often inefficient

Broker Strength:
Location
Transparency

Strength:
Supports
access control

Strength:
Components easily
changed

Neutral: Some
communication
overhead

4.1 Implications of Analysis

A few patterns have conflicting impacts on a quality attribute. The Blackboard pattern
has both a positive and negative impact on maintainability, and efficiency is both a
strength and a liability in the Pipes and Filters pattern. This shows the complex nature
of quality attributes: the categories above should be broken down in more detail (see
future work.) However, they also indicate that a pattern can have complex
consequences. In these cases, the designer must consider multiple different impacts.

The context of the application affects the importance of the consequences. For
example, the efficiency strength of Pipes and Filters to exploit parallel processing
may not be achievable in some single thread systems. This also highlights how best to
use the information: one uses the information as a starting point for more in-depth
analysis and design. This is particularly true for the liabilities, as illustrated below.

268 N.B. Harrison and P. Avgeriou

Table 2. Patterns’ Impact on Reliability, Portability, and Implementability

Reliability Portability Implementability

Layers Strength: Supports
fault tolerance and
graceful undo

Strength: Can
confine platform
specifics in layers

Liability: Can be difficult to
get the layers right

Pipes and
Filters

Key Liability: Error
handling is a problem

Key Strength: Filters
can be combined in
custom ways

Liability: Implementation of
parallel processing can be
very difficult

Blackboard Neutral: Single point
of failure, but can
duplicate it

Neutral Key Liability: Difficult to
design effectively, high
development effort

Model View
Controller

Neutral Liability: Coupling
of components

Liability: Complex structure

Presentation
Abstraction
Control

Neutral Strength: Easy
distribution and
porting

Key Liability: Complexity;
difficult to get atomic
semantic concepts right

Microkernel Strength: Supports
duplication and fault
tolerance

Key Strength: Very
easy to port to new
hardware, OS, etc

Key Liability: Very complex
design and implementation

Reflection Key Liability:
Protocol robustness
is key to safety

Strength: If you can
port the meta-object
protocol

Liability: Not well supported
in some languages

Broker Neutral: Single point
of failure mitigated
by duplication

Key Strength:
Hardware and OS
details well hidden

Strength: Can often base
functionality on existing
services.

We have used this information in evaluating the architecture patterns in a few
industrial systems. While this work is early, our studies indicate that such evaluations
can be very useful. The process consists of identification of the patterns in the
architecture, and examining their impact on the important quality attributes of the
system. In one case, we reviewed an architecture which used the Pipes and Filters
pattern. A key liability of this pattern is reliability; it is difficult to implement error
handling. This became a drill-down point in the review, and we investigated error
handling in more depth. In another case, we observed the Layers pattern in a time-
critical system. In order to deal with the fact that the Layers pattern has a performance
liability, the designers allowed certain functions at the lowest layers to be called from
the highest layer. Such “breakages” of a pattern should be designated as areas for
careful testing, because they are intentional deviations from a proven design.

Early experience suggests that it supports lightweight architecture. It adds some
rigor to architecture without extensive documentation and reviews. It strikes a
“middle ground” between the extremes of no architecture and highly formalized
architecture.

 Leveraging Architecture Patterns to Satisfy Quality Attributes 269

5 Related Work

Several quality attribute centered software architecture methods take an intuitive
approach, including the QASAR method [5] and the attribute driven design (ADD)
method [3]. Use of architecture patterns is also intuitive, and fits well in these models.
In addition, the architecture pattern quality attribute information formalizes
architecture patterns and their consequences, relieving the architect of some of the
burden of ferreting out the consequences of architectural decisions.

Bachmann et al describe a knowledge framework designed to help architects
make specific decisions about tradeoffs that impact individual quality attributes
[2]. It focuses on individual quality attributes independently, while the pattern
approach focuses more on interactions among patterns and quality attributes. It
might be said that the knowledge framework favors depth, while the pattern-driven
approach favors breadth. In this sense, it is likely that these two research efforts
are complementary.

In the general model of architecture [12], the information is useful in the
Architectural Synthesis activity, but is most valuable in the Architectural
Evaluation activity. Architecture evaluators can use it to help them detect risks of
omission [4].

6 Future Work

We have shown an initial analysis of a few architecture patterns identified to date,
namely those found in Buschmann et al [8]. We are beginning to analyze others; most
are described in Avgeriou and Zdun [1]. We have also begun analyzing the
subcategories of quality attributes given in the ISO quality standard [14].

A process for using this data in pattern-based architecture reviews is being
developed and used to collect data.

The interaction of the consequences of patterns has not been explored in detail.
We intend to study which patterns are often used together. This helps identify
potentially conflicting decisions, and help them make tradeoffs about which
patterns to use.

The consequences in patterns are qualitative, but some quantification is useful. It
would be useful to make the rudimentary quantification of the consequences: Key
Strength, Strength, Neutral, Liability, and Key Liability more detailed. Such
quantification is of necessity limited, and must be carefully crafted so as not to give
the false impression that a numerical score of a pattern can replace analysis.

Pattern variants have rich potential. Variants of patterns should be investigated to
understand in more detail how individual variants affect the impact of generic
architecture patterns on the quality attributes. Different pattern variants have
somewhat different strengths and liabilities. This information can be used to help the
architect choose among different variants of patterns.

A table such as the ones above can show only very abbreviated information; more
detailed information is needed. This information might be incorporated into a tool that
functions as an architectural decision support system such as knowledge frameworks
for quality attribute requirements as proposed by Bachmann et al [2].

270 N.B. Harrison and P. Avgeriou

References

1. Avgeriou, P., Zdun, U.: Architectural Patterns Revisited - a Pattern Language. In: 10th
European Conference on Pattern Languages of Programs, Irsee, Germany (July 2005)

2. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures to
achieve quality attribute requirements. In: IEE Proceedings, vol. 152 (2005)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading, MA (2003)

4. Bass, L., Nord, R., Wood, W., Zubrow, D.: Risk Themes Discovered Through
Architecture Evaluations. SEI Report CMU/SEI-2006-TR-012 (2006)

5. Bosch, J.: The Design and use of Software Architectures. Addison-Wesley, London (2000)
6. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C.,

Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg
(2004)

7. Burnstein, I.: Practical Software Testing. Springer, Heidelberg (2003)
8. Buschmann, F., Meunier, R., Rhonert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture: A System of Patterns. Wiley, West Sussex, England (1996)
9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, MA (1995)
10. Garlan, D.: Software Architecture: a Roadmap. In: Proceedings of Future of Software

Engineering, Limerick Ireland (2000)
11. Harrison, N., Avgeriou, P., Zdun, U.: Architecture Patterns as Mechanisms for Capturing

Architectural Decisions. IEEE Software (September/October 2007)
12. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: Generalizing a

Model of Software Architecture Design from Five Industrial Approaches. Journal of
Systems and Software 30(1), 106–126 (2007)

13. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture, pp. 7–8. Addison-
Wesley, Reading, MA (2000)

14. International Standards Organization: Information Technology - Software Product Quality
- Part 1: Quality Model, ISO/IEC FDIS 9126-1

15. Jansen, A.G., Bosch, J.: Software Architecture as a set of Architectural Design Decisions.
In: Proceedings of WICSA 5, pp. 109–119 (November 2005)

16. Klein, M., Kazman, R.: Attribute-Based Architectural Styles. Technical Report CMU/SEI-
99-T2-022 (October 1999)

17. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software 12(6) (1995)
18. Kruchten: The Rational Unified Process: an Introduction, 3rd edn. Addison-Wesley,

Reading (2004)
19. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural

knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, Springer, Heidelberg (2006)

20. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Addison-Wesley, Reading, MA (1996)

21. Tyree, J., Ackerman, A.: Architecture Decisions: demystifying Architecture. IEEE
Software, 19–27 (March/April 2005)

	Leveraging Architecture Patterns to Satisfy Quality Attributes
	Introduction
	Architectural Decisions
	Unforseen Consequences

	Architecture Patterns
	Limitations of Patterns in Identifying Consequences

	Analysis of the Impact of Patterns on QAs
	Implications of Analysis

	Related Work
	Future Work
	References

