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Abstract Clinicians decisions are becoming more and

more evidence-based meaning in no other field the big

data analytics so promising as in healthcare. Due to the

sheer size and availability of healthcare data, big data

analytics has revolutionized this industry and promises

us a world of opportunities. It promises us the power

of early detection, prediction, prevention and helps us

to improve the quality of life. Researchers and clini-

cians are working to inhibit big data from having a

positive impact on health in the future. Different tools

and techniques are being used to analyze, process, accu-

mulate, assimilate and manage large amount of health-

care data either in structured or unstructured form. In

this paper, we would like to address the need of big
data analytics in healthcare: why and how can it help
to improve life?. We present the emerging landscape
of big data and analytical techniques in the five sub-

disciplines of healthcare i.e.medical image analysis and

imaging informatics, bioinformatics, clinical informat-

ics, public health informatics and medical signal ana-

lytics. We presents different architectures, advantages
and repositories of each discipline that draws an inte-
grated depiction of how distinct healthcare activities
are accomplished in the pipeline to facilitate individual

patients from multiple perspectives. Finally the paper
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ends with the notable applications and challenges in

adoption of big data analytics in healthcare.

Keywords Big Data Analytics · , Medical Image

Processing and Imaging Informatics · Bioinformatics

and Genomics · Clinical informatics · Public Health

informatics · Medical Signal Analytics

1 Introduction

Due to the sheer size and availability of multidimen-

sional data, the rate of technological innovation have

the huge potential to make a an extra ordinary im-

pact on our daily life in different disciplines especially

in healthcare sector. The rapidly growing and exploited

data will refer to introduce a new gigantic term known

as big data. Uncovering information from such com-

plicated nature of data is often complex process. The
development and analysis of tools and methods for anal-
ysis of such large quantities of data provides us with an
opportunity to make the transition into this new era far

easier. Having data-driven, real-time insights accessible

to the organization through analytics can be a critical

enabler for executing the organization strategies. Big

data analytics greatest asset is its possibilities and its
need to find new ways to provide the services that we
are looking for.

Unlike other field, big data analytics is so promis-

ing in healthcare sector and received much more at-
tention in the last few years. Clinicians decisions are
becoming evidence-based, meaning that they are rely-

ing more on large swathes of research and clinical data
as opposed to solely their schooling and professional
opinion. Big data in terms of healthcare is defined as

the name given to larger and complex electronic health-

care datasets that are problematic or almost impossible
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to manage by employing common traditional methods,

tools or software [83,204,17]. Big data in healthcare is

generated by healthcare record (such as patients record,

disease surveillance, hospital, medicine, health manage-

ment, doctor, clinical decision support or feedback of

patient [36,65,81,82]) and clinical data (like imaging,

personal, financial record, genetic and pharmaceutical

data and Electronic Medical Records (EMR) etc. [259,
183]). The generation and management of these enor-
mous healthcare records is considered to be very com-

plex thus, big data analytics is introduced [278,272].

With the rise of technological innovation and person-

alised medicine, big data analytics has the potential

to make a huge impact on our life i.e. how it helps to

predict, prevent, manage, treat and cure disease. Fur-

thermore, it helps, government agencies, policy maker

and hospital to manage resources, improving medical

research, planning preventative methods and managing

epidemic.

With the advancement in information technology

and emergence of digitized computerized systems, hard

copy medical data is tend to move towards Electronic

Health Records (EHR) and Electronic Medical Records
(EMR) systems. These systems generated exponential
growth of data [237,212]. Health data is not only col-
lected from clinical record, tele-monitoring or medical

tests but there are also a larger number of healthcare

apps. These apps have tremendous amount of subscrip-

tions. According to the Ericsson Mobility Report of

2018, in Q4 of 2017, there were a total of 7.8 billion

mobile subscriptions, with 53 million new subscriptions

added during the quarter as the growth of people on this

planet subscribe new and valuable data about health

and well-being everyday. These apps contain volumi-

nous data due to the world of social media. There are

more than two billions people who use internet for the

purpose of mailing, downloading, surfing, blogging and
entertainment etc. This amount of data also tend to
move towards the concept of big data. Fig. 1 depicts

the ecosystem of healthcare assisted by big data and

cloud computing approaches.

Moving towards the five characteristics of big data

in healthcare sector, Volume refers to the medical record

of personal data, clinical data, radiology images, genet-

ics and population information, resource intensive ap-

plications like 3D imaging genomics and biological se-
quences. Likewise rapid increase in diseases and medi-
cations produce exponential growth of data that is to be

stored, manipulate and managed. For the effective cap-

turing, management and manipulation of data, mod-

ern techniques like advances in data management, cloud

computing and visualization etc. play a vibrant role for

healthcare systems. Volume is rapidly increasing in bio-

Fig. 1 Healthcare Ecosystem assisted By big data and Cloud
Computing [168]

medical informatics like Proteomics DB [275] contains

data volume of 5.17 TB covering 92% of human genes

information explained in Swiss-Prot database. Vast amount

of volume is produced from medical images like Visible

Human Project comprehends female data-sets of 39 GB

[3]. It is estimated that volume of big data in healthcare

increased to 35 zeta-bytes by 2020 [102,214].

Variety in healthcare divulges that there is a gigan-

tic amount of healthcare record either it is structured,

unstructured or semi structured. There is a verity of

unstructured healthcare record generated daily like pa-

tient information, doctor notes, prescriptions, clinical or

official medical records, images of MRI, CT and radio

films etc. Furthermore, structured and semi structured

verity regarding to EMS and EHS comprises actuarial

data, electronic apps and automated databases infor-
mation like physician name, hospital name, treatment
reimbursement codes, patient name, address etc., infor-
mation of electronic billings and accounting and some

of the clinical and laboratory instrument reading obser-

vations. For the conversion of unstructured data into

structured data-sets, data analytics provides different

facilities; one of them is natural language processing in
health fidelity.

Another important characteristic is velocity that can

be at rest or motion pace. At rest velocity, healthcare

record encompasses doctor or nurse notes, scripts, docu-
mentary files, renders record, X-ray films etc. Moreover,
medium velocity healthcare data includes blood pres-

sure readings, measurement of daily diabetic glucose

by insulin pumps and EKGs etc. However, sometimes

high velocity is required, as it become a staple of life or

death. This type of data embroils on real time data like

monitoring of inside heart, anesthesia and trauma for
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blood pressure, room operations, detecting infections or

diseases like cancer etc. at early stage.
Value describes how much data is beneficial or hcare

ecosystem. For example raw data like paper prescrip-

tions, official record or patient information is less valu-

able than diagnostics record, medicines and laboratory

instruments reading record. Veracity tells the reliability

or understandability of healthcare record that explains

the capturing of diagnosis, procedures, treatments etc.

and to verifying the information of patient, hospital and

reimbursement code etc. Different domains of health-

care and medical care propose in the literature. This

review paper discusses five sub-disciplines (i.e., medical

image processing and imaging informatics, bioinformat-

ics, clinical informatics, public health informatics, med-

ical signal analytics) that directly or indirectly involve

in healthcare and bio-medical [213,211]. Before present-

ing the literature review, we present the theoretical in-

formation of big data and data analytics in Section 2.

Different architectures of big data analytics deployed

in the domain of healthcare are explaining in Section 3.

We also present the advantages of big data to health-

care in Section 4 that give the insights how healthcare

can be improved by big data analytics. Then we move

towards the literature review for which we have pro-

posed a review methodology for the selection of articles

explained in Section 5. Based on the review method-

ology, the big data in five sub-disciplines of healthcare
(i.e., medical image processing and imaging informat-
ics, bioinformatics, clinical informatics, public health
informatics, medical signal analytics) comprehensively

explain in Section 6. We also summarize our main find-

ings in Section 7. Then, Section 8 presents the notable

applications of healthcare analytics based on the main

findings. Section 9 discusses the challenges and open
research issues. Finally the Section 10 draws conclusion
of this paper.

2 Background of Big Data and Data Analytics

The concept of big data was introduced in 1990’s by

Cox and Ellsworth [51], when they considered visualiza-

tion as a Big Data problem. The significant academic

references of big data in computer science was first dis-

covered by Weiss and Indurkhya [274]. In 2000, Diebold

[67] introduced big data in statistics/econometrics when
they referred to exploited quality information. The con-
cept was enriched by Douglas Laney at Gartner in an

unpublished 2001 research [155]. In short, the term Big

data is attributed to Weiss and Indurkhya, Diebold,

and Laney.Big data is the name given to the larger and

enormous data-sets that are usually complex so that

traditional information processing techniques are not

enough to deal with them. Mostly the difficulties or

challenges regarding to big data are how to capture,
store, share and analyze data, how to visualize, update
or query information privacy. From the view of Radar

[191], Big Data deals with the huge amount of data that

is not fit into the conventional databases thus alterna-

tive way is chosen to extract and process the data from

it. According to ZDNet 1 big data involves techniques

and procedures for the creation, formation, manipula-

tion and organization of larger data-sets and facilities

offering for its storage. Techopedia 2 demarcatdes that

unstructured large complex data that is processed by

massive parallelism on readily-available hardware be-

cause relational database engines are unable to process

that data. Literature divulges that big data is larger

data sets, enormous growth of data, massive data, un-

structured or complex data [242,77,45,100,80].

Basically main characteristics of big data are com-
plexity and massive size [202,21,22]. However, big data

is deliberated by three characteristics known as 3Vs

volume, variety and velocity [273,172,223]. Two addi-

tional characteristics are extended to make 5Vs prop-

erties of big data as depicted in Fig. 2. These addi-

tional characteristics are value and veracity [77,230,

231]. Volume leads to the size or quantity of stored and
generated data. When the volume of data is large it be-
comes big data [169,168]. Variety is the type or nature

of data when grouped from several sources. Data is var-

ied in terms of format like CSV, text or Excel format

in which data stored in a database. Likewise various

forms of data also vary such as video, audio, SMS or

PDF data [168]. This verity is also one of the decisive
characteristic of big data. Velocity specifies the speed
of data at which it is generated or processed. Value de-

scribes how much data is beneficial or valuable. The

big data and the value is strongly co-related as stor-

age of raw data is useless and inoperable. Huge data

is valuable due to the costs and benefits while collect-

ing and evaluating data [168]. The term veracity is the

quality of data understand-ability. In other words reli-

ability, quality and accuracy of big data depend on the

veracity property because it prevents dirty data.

Data analytics is the amalgamation of two words

where data refers to raw facts, figures and information

and analytics means use of several tools to analyze data

although data is small or big. Analytics is a canopy and

umbrella term for all data analysis applications [273].

The big data analytics is the process of analyzing large
voluminous data using different strategies. As afore-
mentioned big data is integrated from multiple sources,

1 Http://www.zdnet.com/blog/virtualization/what-is-big-
data/1708
2 Https://www.techopedia.com/definition/27745/big-data
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Fig. 2 5V’s Characteristics of Big Data

thus big data analytics is used to explore how to extract

valuable and hidden patterns and connections from this

integrated data. In other words, big data analytics is

simply analysis of data with the intention of extracting
information and supporting conclusion making from the
inclusive procedure of scrutinizing, modeling, cleansing,
and transforming of Big data.

Data analytics can be analyzed by three general
methods: descriptive, predictive and prescriptive ana-
lytics [86,29]. Descriptive analytics deals with the con-

densation of big data into smaller meaningful informa-

tion. Predictive analytics is the data reduction analytics

that predicts the future analysis by deploying a diver-

sity of machine learning, statistical, modeling and data

mining techniques to study latest recent and historical

data. Prescriptive analytics is basically the predictive

analytics that is used to take action and make the busi-

ness decision.

Most extensively used approaches for predictive and

descriptive analytics on big data are based on either

supervised, unsupervised, or hybrid machine learning.

An exponential time increase in data has made it dif-

ficult to extract valuable information from this data.

Despite the strong performance of traditional methods,

their predictive power is limited as traditional analysis
only deals with primary analysis whereas data analyt-
ics deals with secondary analysis. Data mining involves

the digging or mining of data from many dimensions

or perspectives through data analysis tools to find pre-

viously unknown patterns and associations from data

that may be used as valid information [215,186,210,
185]. Moreover, it makes use of this extracted informa-
tion to build predictive models. It has been deployed
intensively and extensively by many organizations, es-

pecially in the healthcare sector.

Data mining is not a magical wand but in fact a big

powerful tool that does not discover solutions without

guidance. Data mining is convenient for the succeeding

purposes:

– Exploratory data analysis to examine the data cor-

pus to summarize their main characteristics.
– Descriptive modeling to segregating the data into

clusters based on their properties.

– Predictive modeling to forecasting information from

existing data.

– Discovering pattern to find patterns that occur fre-

quently.

– Content retrieval to discover hidden patterns.

Several techniques deploy for reduction, optimiza-

tion or regression analysis etc. for big data. On account
of the voluminous amount of big data; its dimensional-
ity is reduced by linear mapping approaches like Prin-
cipal Component Analysis (PCA) [120], Singular Value

Decomposition (SVD) [253]. Some non linear mapping

methods for dimensonality reduction are Kernel Princi-

pal Component Analysis (KPCA) [234], Sammons map-

ping [228,62],Laplacian eigenmaps [18].

Mathematical optimization is another analytics tool

that involve multi-objective and multi-modal optimiza-

tion approaches like pareto optimization [195,121], evo-

lutionary algorithms [64,11]. Extracting meaningful in-

formation and cluster development and analysis is achieved

by various clustering algorithms like Clustering LARge

Applications (CLARA) [142] and Balanced Iterative

Reducing using Cluster Hierarchies (BIRCH) [289] etc.

3 Architectures For Big Data Analytics

Our anticipated general framework of big data analyt-

ics for healthcare is an abstraction of several concep-

tual steps that describe the generic functionalities of

the domain. The first step in the framework is data

collection, in which health and the clinical data is col-
lected from internal or external sources. Verity of data
includes Electronic Healthcare Records (EHRs), clini-
cal images and health monitoring devices logs etc. After

the collection of data, next step is Data processing in
which healthcare data is stored, extract and load in
the data ware houses, middle-ware or in traditional for-

mats like CSV, tables etc. Data transformation is the

next step in which data is transform, aggregate and

loaded in database file systems like Hadoop cloud or

in a Hadoop distributed file systems (HDFS). Analyt-

ical phase is used to examine the big data using big

data tools and platforms like Hadoop, Mapreduce, Hive,

Hbase, Jaql, Avro and several others. Finally the out-

put is generated in the form of reports and queries using

data mining and OLAP tools. The self explanatory gen-

eral and conceptual architecture are depicted in Fig. 3

and Fig. 19.
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Fig. 3 Conceptual Journey of Data to Information in Big
Data Analytics Environment

Based on the domain abstraction and identification,

there are several definitions of big data architectures
proposed and developed by researchers for big data an-
alytics. Some the important architectures are Hadhoop,
MapReduce [63], Streaming graph [248], Fault tolerant

graph etc. We present some of the renowned architec-

tures along with its core component comprehensively

in detail. One of the major framework on Apache plat-

form is Hadoop developed by Doug Cutting and Apache
Lucene. It is a collection of open-source software util-
ities used for distributed computation, processing and

storage of huge data sets or big data. Two architectures

or core component of Hadoop are:

– Hadoop Distributed File System (HDFS)

– MapReduce

Succeeding Fig. 5 and Fig. 6, depicts the core compo-

nents and basic framework Apache Hadoop.

3.1 Hadoop Distributed File System (HDFS)

HDFS [244] is the master-slave architecture intended

to run on the commodity hardware. It provide great
throughput access to application data. It allows the un-
derlying storage for the Hadoop cluster and enhances

healthcare data analytics system by segregating huge

expanse of data into smaller one and disseminated it

across various servers/nodes. The architecture of HDFS

is divided into Name-node and Data-node where Name-

node is master and Data node is slave. Documents are
stored in the data node having size of 64M that can not
be changed. Following Fig. 7 illustrates the architecture

of HDFS. According to Fig. 7, Client is a HDFS user.

Name-node is responsible to manage the name space

in the file system. It stores and maintains the files and

folders into a file system tree .The Data node is the
place where the real data is saved and handles.

3.2 MapReduce

Mapreduce is the another cornerstone of Apache Hadoop

that is developed in 2004 when Google published a the-

sis [63]. MapReduce is a standard functional program-

ming model that process and analyze . It breaks task

into sub-tasks , gathering its outputs and analyze ef-

ficiently large datasets in parallel mode. Data analysis

and processing employed two steps namely, Map phase

and Reduce phase.

The architecture of MapReduce operation is split

into three main components: Client, Job-Tracker and
Task-Tracker. Client submit its job to the Job-Tracker
in the form of JAR file. Job-Tracker maintains all the

jobs that are executed on the MapReduce thus act as

master service. Task-Tracker executes the jobs that are

assigned by Job-Tracker thus act as slave service. Fig. 8

demonstrates the generic architecture of MapReduce

operation.

3.3 Apache Hive

Apache Hive [39] is a Structured Query Language (SQL)

based Extract Transform Load (ETL) and dataware
house on Hadoop plateform. It is a run time Hadoop
provision framework that works on Hive Query Lan-
guage (HQL) that converts SQL queries into MapRe-

duce jobs. The main operations performed by Hive are

data encapsulation, analyzing, adhoc querying and sum-

marizing large data-sets. Apache Hive have four major

components: Hive Clients, Services, Processing frame-
work and Distributed Storage. Hive client like Thrift
Clients, JDBC Clients, ODBC Clients etc. can be writ-

ten in any supportive language like C++, Java, Python

etc.Services are used to perform queries. Services of

Hive may include command line interface (CLI), Web

interface (WI), Hive server, driver, meta-store etc. Queries

are processed, executed and managed using internal
Hadoop MapReduce framework. Finally the distributed
data is deposited in HDFS. The core components are

revealed in Fig. 9.

3.4 Apache HBase

Apache HBase works on non-SQL and non-relational

approach. It is a database management approach using

column oriented structure lies on the top of HDFS. It
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Fig. 4 Architecture of Big Data Analytics Platform

Fig. 5 Core Components of Hadoop

Fig. 6 Framework of Hadoop

used the key/value data that perform read/write oper-

ations on large HDFS database. Apache Hbase is cat-

egorized into three main components: HMaster Server,
HBase Region Server, and Zookeeper. HMaster Server is

Fig. 7 Architecture of HDFS

Fig. 8 MapReduce Architecture

the main component that manages and monitors HBase

Region Servers, perform database operations using DDL

to create, update and delete tables. Hbase tables are

divided into several regions that are manage, handle

and execute operations through Hbase Region Servers.

Hbase is a distributed system that is coordinate by
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Fig. 9 Hive Architecture

Zookeeper. The components of Apache HBase are de-

picted in Fig. 10.

Fig. 10 Hbase Architecture

3.5 Presto

Presto is a distributed structured query language en-

gine that is used to analyzed the large amount of data

ranging from in size from gigabytes to petabytes. The

architecture of Presto is composed of coordinators and
workers. User queries are submitted to the Coordinator
that is accountable for planning, executing, scheduling

and parsing the queries of Workers. The architecture is

explained from the succeeding Fig. 11.

3.6 Mahout

Mahout is an apache scheme, objective is to produce

unrestricted applications of disseminated and accessible

machine learning algorithms that supports healthcare

data analytics on Hadoop systems. It is designed to

support big data analytics that provide free application

Fig. 11 Presto Architecture

on Hadoop platform like applications of distributed and
accessible machine learning algorithms.

3.7 Avro

Avro assists serialization and data encoding that ad-

vances structure of data by identifying data types, mean-
ing and scheme. It has the functionalities of serializa-
tion and versioning control features. Avro configuration
is illustrated from the Fig. 12.

Fig. 12 Avro Architecture

4 Advantages of Big Data to Healthcare

How big data analytics can improve healthcare? Simple

answer to this question is: Analyzing big data can aid

healthcare stakeholders to deliver efficient procedures

and insights into the patients and their health. Numer-

ous benefits can be obtained with big data analytics.



8 Arshia Rehman et al.

Main source of healthcare data are: EHR (Electronic

Health Records), LIMS (Laboratory Information Man-

agement system), Pharmacy, MDI (Monitoring and di-

agnostic instruments), Finance (Insurance claim and

billing) and hospital resources. With the advancement

of data acquisition devices and analytics techniques,

data source are getting enriched with newer forms of

data i.e. hospitals start to collect Genetic information
in EHR as well. Within this vast variety of patient
data lies the valuable insights for both patient as well

as organizations, which, when applied judiciously can

bring in wonderful results. Potential benefits includes

advanced patient care:

Quality of Care: EHR helps in assembling de-

mographic and medical data such as clinical data, lab

test, diagnoses, and medical conditions. By discovering

associations and patterns within this data, helps health-

care practitioners to provide quality care, save lives and

lower costs.

Disease Prevention: Spending more on health

does not guarantee health system efficiency. The invest-

ment in prevention can help to reduce the cost as well

as improve health quality and efficiency. Health systems

face considerable challenges in endorsing and protect-

ing health at a time when the burden on finances and

resources is substantial in many countries. The early

detection and prevention of disease plays a very impor-

tant role in reducing deaths as well as healthcare costs.

Thus, the core question are: How can we diminish the

level of ill health in the population? And how can we

prevent the disease to occur based on early symptoms
of patient?

Efficiency: Managing healthcare data using tradi-

tional analytical tools is nearly impossible due to the
diversity and volume of data. Healthcare stakeholders

use big data as a part of their business intelligence strat-
egy to examine historical patient admission rates and
to analyze staff efficiency.

Disease Cureness:Healthcare practices have largely
been reactive where the patient has to wait until the on-

set of disease after which treatment is prescribed which
hopefully leads to a cure.However, no two persons in
the world would have the same in genetic sequence.
Furthermore, environmental factors associated with the

onset of the disease are not known., which is the motive

why particular medication seems to work for few peo-

ple but not for others. Since there are millions of things

to be considered in a single genome, it is almost im-

possible to study them comprehensively. On the other

hand, big data in healthcare have been revolutioniz-

ing the expanse of genomics medicine. Big data analyt-

ics can extract hidden patterns, unknown correlations,

and insights by exploring large data-sets. Scientists are

banking on big data to discover the cure for cancer.

Cost: Healthcare cost can be cut down by analyz-

ing bid data i.e. predictive analytics can helps to detect

disease at early stage. Moreover, big data also reliefs in

reducing medication errors by advancing economic and

administrative performance, and reduce re-admissions.
For example, patient groups effected by a disease and
are treated with different drug regimens can be com-
pared to determine which treatment plans work best

for the same of similar disease which result in saving
resources and money.

Finding diseases cure: A particular medication

seems to work for a few people but not for others, and
there are numerous things to be discovered in a sin-

gle genome. It isn’t feasible to observe all of them in

element. however big statistics can help in uncovering

unknown correlations, hidden styles, and insights by us-

ing analyzing large sets of statistics. through applying

machine getting to know, big facts can have a look at

human genomes and find the correct remedy or drugs

to deal with cancer.

5 Review Methodology

The review methodology is the systematic process of

finding the relevant literature from different sources.

The main objectives of review methodology are:

– To deploy the definitions and concepts of Big data

in healthcare.

– To explore the five sub-disciplines (i.e., medical im-

age processing and imaging informatics, bioinfor-

matics, clinical informatics, public health informat-

ics, medical signal analytics [208,215]) that directly
or indirectly involve in healthcare and bio-medical.

– To illustrate the repositories and complex datasets

of five sub disciplines.

– To determine the big data analytical architectures

and techniques in healthcare.

– To discuss the potential advantages and applications

of big data in healthcare.

– To present the open challenges and research issues

of big data in healthcare and the strategies tackling

the challenges facing in the domain.

he main steps of review methodology are informa-

tion sources, selection criteria, and search and selection

procedure. Information Sources : The first step in the

systematic process of research methodology is to col-

lect the relevant articles. To search the relevant articles

we used Google Scholar. We scanned the references to

present a thorough review. Selection Criteria: In second
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step, we selected the literature on the basis of following

inclusion-exclusion criteria:

– Studies were based on articles and reviews

– Studies written in English language

– Studies related to the big data analytics in health-

care

– Studies published from 2000 to 2019

Search and selection procedure: In the third step, we

search the studies from the information sources contain-
ing the keywords of big data, big data analytics, health-
care, biomedical and healthcare analytics. As mentioned

earlier, our goal is to expand the research in health-

care using five sub-disciplines, we used the additional

keywords: medical, medical image processing imaging

informatics, bioinformatics, clinical informatics, public

health informatics, medical signal analytics. On the ba-
sis of initial search criteria, 47,130 papers were found
thus we scrutinized the title, keywords and abstract and

exclude 28,280 papers. We also perform the screening

on the basis of full text reading and exclude 18,020 pa-

pers that are irrelevant to the big data or healthcare

domain. We ended with 830 papers that are included

in this review paper.

The abstract symbols are used to present schematic

process of review methodology in Fig. 13.

6 Key Application in Healthcare

Health professionals, just like business entrepreneurs,

are capable of collecting massive amounts of data and

look for best strategies to use these numbers to re-

duce costs of treatment, predict outbreaks of epidemics,
avoid preventable diseases and improve the quality of
life in general.

Different domains of healthcare and medical care

had been proposed in the literature. The general overview,

analysis and examples of big data in healthcare analyt-
ics was presented in the studies of Raghupathi [204] and
Ward et al. [272]. The meaning of big data in health-

care was presented in the literature reviews of Baro et

al. [17] and Wamba et al. [261]. In 2017, Zhang and

Li [290] presented the literature review of specialized

healthcare and HIV self-management. Jacofsky [132]

discussed the pitfalls of analytics related to the physi-
cians from metadata sets in healthcare. Another case
study of healthcare analytics was presented in 2018

by Wang et al. [269] that presented IT-enabled pro-

cedures, advantages, and capabilities of big data ana-

lytics. Galetsi and Katsaliaki [84] reviewed the articles

of big data analytical techniques for healthcare from

2000-2016.

Fig. 13 Schematic Process of Review Methodology

In this review, we will discuss five sub-disciplines
(i.e., medical image processing and imaging informatics,

bioinformatics, clinical informatics, public health infor-

matics, medical signal analytics) that directly or indi-

rectly involve in healthcare and bio-medical. As men-

tioned earlier, we will cover the literature from 2000-

2019 that will provide the comprehensive evaluation of

big data techniques in healthcare domains. The litera-
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ture review of five sub-disciplines of healthcare are ex-

plained comprehensively in the following subsections.

6.1 Medical Image Processing and Imaging Informatics

Medical image processing and imaging informatics are

the main applications that play a vital role in health-

care and bio-medical. One of acceptable use of med-

ical imaging is to detect diseases like tumors detec-

tion of brain and lungs, artery stenosis detection, or-

gan delineation detection, aneurysm detection and the

diagnosis of spinal deformity and so on. Image process-

ing and machine learning techniques were deployed in

these applications for the accurate and effective use of

computer-aided medical diagnostics and decision mak-

ing. In complex healthcare and bio-medical, informa-

tion is generated, managed, analyzed, exchanged, and

represented imaging information using imaging infor-
matics [243,209,184].

After the brief introduction, we will elaborate the
related work of medical imaging and informatics, tech-

niques and applications deployed in big data healthcare.

Medical imaging is used in image acquisition. Mag-

netic Resonance Imaging (MRI), Computed Tomogra-

phy (CT), photo-acoustic and ultrasound images are

used for single dimensional medical data like visualiz-

ing the structure of blood vessels [90,209,216]. How-
ever for multidimensional medical data like 3d ultra-
sound, functional MRI (fMRI), Positron-emission to-

mography (PET) etc. are used as shown in Fig 14 3.

There are publicly available medical images reposito-

ries that contains medical images of patients in dif-

ferent sizes and modalities depicted in the Table 1.

Shackelford [239] used fMRI images and single nu-

Fig. 14 Popular Image Modalities in Healthcare Like CT,
MRI, PET images

3 Available at: http://www.en.nuk.usz.ch/expert-
knowledge/PublishingImages/pages/pet-
center/PETMR.png

cleotide polymorphism (SNP) for the classification of

schizophrenia and healthy subjects. They retrieved 87%

classification using hybrid machine learning method.

Chen et al. [47] introduced a computer-aided decision

support system for the treatment of patients with trau-

matic brain injury (TBI). They predict the intracranial

pressure (ICP) level from CT scans images. They com-

bined CT scans images for features extraction, medi-
cal records and patients demographics. They achieved
70.3% accuracy, 65.2% sensitivity and 73.7% specificity

correspondingly.

Yao et al. [282] introduced a system for retrieval

of medical images based on Hadoop. They applied the
local binary pattern algorithm and Brushlet transform

for feature extraction of medical images. They imple-

mented MapReduce for storing features in HDFS. They

reported highest precision rate of 95.04% and recall of

92.21% on brain CT images. They concluded that re-

trieval efficiency of medical images were improved but

retrieval time decreased.

Jai-Andaloussi et al. [133] employed the MapRe-

duce for computation and HDFS for storage in content-

based image retrieval systems. They used mammogra-

phy image database and applied Bi-dimensional Em-

pirical Mode Decomposition with Generalized Gaus-

sian Density functions (BEMD-GGD) method and Bi-

dimensional Empirical Mode Decomposition with Huang-

Hilbert Transform (BEMD-HHT) method. They used
Kernal Linear Discriminant (KLD) and euclidean dis-
tance. They produced promising results to prove the hy-
pothesis that MapReduce technique can be effectively

employed for content-based medical image retrieval.

Dilsizian and Siegel [68] worked on cardiac imaging
and medical data by integrating several techniques like

data mining, AI, and parallel computing. Their system
use AI and big data for the diagnostic imaging of 55
participating sites from the group of formation of op-
timal cardiovascular utilization strategies. The system

result decreased from 10% to 5% in such case.

Istephan et al. [131] conducted a feasibility study in
the epilepsy domain. They used the distributing com-

putation of hadoop clusters. The framework deals with
the structured and unstructured medical data.

6.2 Bioinformatics

Bioinformatics is a discipline of sciences which deals

with mathematical, computerized and IT-based meth-

ods, techniques, algorithms and software tool for cap-

turing, storing, analyzing, compiling, simulating and

modeling information of life science and biological data.

Role of big data in bioinformatics is to provide effi-

cient data manipulation tools for investigation in order

http://www.en.nuk.usz.ch/expert-knowledge/PublishingImages/pages/pet-center/PETMR.png
http://www.en.nuk.usz.ch/expert-knowledge/PublishingImages/pages/pet-center/PETMR.png
http://www.en.nuk.usz.ch/expert-knowledge/PublishingImages/pages/pet-center/PETMR.png
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Table 1 Medical Image Repositories

Databases Images Patients Data Size Modalities Applications
Image CLEF
Database 1

306,549 – 316 GB CT,MRI, PET,
Ultrasound

Modality Classification , Visual Image Annota-
tion, Scientific Multimedia Data Management

Digital Mammogra-
phy database 2

9,428 2620 211 GB DX Computer Algorithm research development for
screening

Cancer Imaging
Archive Database 3

244,527 1010 241 GB CT, DX, CR image validation of drug response, detection
and classification of Lesion, Diagnostic Image
Decision etc.

Public Lung Image
Database 4

28,227 119 28 GB CT Screening Images for identification of lungs can-
cer

MS Lesion Segmenta-
tion 5

145 41 36 GB MRI 3D MS Lesion Segmentation Techniques devel-
opment and comparison

ADNI Database 6 67,871 2851 16GB MRI, PET Alzheimers disease progression
1 http://www.imageclef.org/2013/medical
2 http://marathon.csee.usf.edu/Mammogr aphy/Database.html
3 https://public.cancerimagingarchive.net/ ncia/dataBasketDisplay.jsf
4 https://eddie.via.cornell.edu/crpf.html
5 http://www.ia.unc.edu/MSseg/download .php
6 http://adni.loni.ucla.edu/data-samples/acscess-data/

to analyze biological information of patient. Hadoop
and MapReduce are currently used extensively used for
bioinformatics analytics.

Basically, bioinformatics is the combination of biol-

ogy and computer science [192]. The biological analysis
system analyzes variations at the molecular level. The
bioinformatics consists of a variety of data types like
Genomics (Genes sequencing), RNA, DNA, Proteomics

(protein sequencing), gene ontholgoy, protein-protein

interaction, pathway data, association network of the

disease gene and a network of human disease as shown

in Fig 15. With the current trends in personalized care,
there is an increasing demand to analyze massive size of
personalized patient data in a manageable time frame.

Fig. 15 Bioinformatics Types

The size of bioinformatics’ data is increasing expo-

nentially day by day. For example, a single human’s

sequence of the genome is almost up to 200 GB . A

database produced by European Bio-informatics Insti-

tution (EBI) has getting double volume after each year

[141]. Genomics or Genome sequencing data is cur-

rently being annotated as big data of bioinformatics

problem because human genomics consists of 30,000 to

35,000 genes [154,72]. Genomics data is usually the data

related to gene sequencing, DNA sequencing, genotyp-

ing and gene expression etc.[42,203] Gene is made of
DNA comprising 3 billion pairs of four building blocks
or bases known as Adenine, Thymine, Cytosine and

Guanine. The single genome has the size of about 3

GB. Genome analysis employing micro-arrays has been

profitable in examining traits across a population and

widely contributed in treatments of several complicated

diseases like bipolar disease, hypertension, rheumatoid
arthritis, diabetes, muscular degeneration, coronary heart
disease and Crohns disease etc. [147]. This genomics in-

formation tends to move towards big data analytics.

In bioinformatics, protein sequencing and protein-

protein interaction are sophisticated problems in func-
tional genomics. This is due to huge number of enor-

mous features in feature vector that is not only cost
effective and complex analysis, but also reduces accu-
racy. Thus feature selection of big data problem is over-
come by the method proposed by Bagyamathi et al [13].

They combined improved harmony search algorithm to

improve the accuracy and feature selection. Likewise,

another feature selection methodology was introduced

by Barbu et al. [16]. They reduced the dimensional-

ity of an instance using annealing technique for big

data learning. Similarly, adaptiveness or behavior of big

data is predicted by Incremental learning approach. For

this purpose, Zeng et al. [288] implemented incremental

http://www.imageclef.org/2013/medical
http://marathon.csee.usf.edu/Mammogr
http://www.ia.unc.edu/MSseg/download
http://adni.loni.ucla.edu/data-samples/acscess-data/


12 Arshia Rehman et al.

Table 2 Bio-informatics Databases

Database Database
Type

Size Description

European Molecular Biology
Laboratory (EMBL) [139]

DNA
Sequences

185000 organisms EMBL is the part of an international alliance with DDBJ
(Japan) and GenBank (USA). It is used to analyze collec-
tion of nucleotide sequences and annotation from sources
that are publically available.

Genetic Sequence Data Bank
(GenBank) [27,283]

DNA
Sequence

15000 DNA and
RNA sequences
entries

This database contains nucleotide sequences that provide
information based on functional and physical contexts of
the sequences.

DDBJ [250] DNA
Sequences

1880115 entries
and 1134086245
bases

This dataset is known as All-round Retrieval for Sequence
and Annotation that enable its users to search keywords
from Nucleotide Sequence Database Collaboration

The GDB Human Genome
[160]

Genomics
Database

Public Database of human genes, clones, STSs, polymor-
phisms and maps

SWISS-PROTT [32,31] Protein
Sequences

557012 sequence
entries, compris-
ing 199714119
amino acids

It contains information of protein variety, function and
associated disorders

UniProtKB / TrEMBL Protein
Sequences

Computer-annotated protein sequence database. It con-
tains sequence translation of coding sequences present in
the EMBL/GenBank/DDBJ

PROSITE [128] Protein
Sequences

1329 patterns and
552 profile entries

This database contains meaningful biologically signatures
that described patterns or profiles

PDP [148] Protein
Structure

32500 structures This repository is informative with online reports, sum-
maries, tools and information related to structural ge-
nomics initiatives

BiowareHouse [159] Comprehensive
Database

This detailed repository is the integration of the set of
databases including ENZYME, KEGG, and BioCyc, and
in addition the UniProt, GenBank, NCBI Taxonomy, and
CMR databases, and the Gene Ontology

feature selection method called FRSA-IFS-HIS. They

applied fuzzy rough set theory on Hybrid information

systems and reported better performance in big data

feature selection.

Once the features were extracted and selected, next

step is classification or clustering. Classification is the

supervised learning procedure of finding a model that

describes and discriminates data classes or concepts.

The model is used to predict the class label of test

instances from already trained instances. Among nu-

merous models described in the literature, linear and

non linear density-based classifiers, neural networks, de-

cision trees, support vector machines (SVMs), Naive

Bayes, and K-nearest neighbour (KNN) are the most

often used methods in numerous applications[177,73,8,

180]. In big data analytic, advanced models had been re-

ported in the literature like neural networks approaches,

divide-and-conquer SVM [122], Multi-hyper-plane Ma-

chine (MM) classification model [70] etc. for big data

parallel and distributed learning.

Giveki et al. [92] diagnosed automatic detection of

diabetics using weighted SVM on mutual information

and modified cuckoosearch. They conducted experiment

on diabetics datasets by selecting features from PCA.

Haller et al. [107] classified Parkinson patients by em-

ploying SVM. They performed pre-processing using DTI

fractional anisotropy data and select most discriminated

voxels as features and then classified using SVM. Son

et al. [247] predict the heart failure patients by deploy-

ing SVM. Likewise, Sumit. Bhatia et. al. [25] classified
heart disease by SVM. They selected optimal feature
subset using integer-coded genetic algorithm.

The big data classification and regression is effec-

tively performed using advanced decision tree. In bioin-
formatics, Jerry. Ye et. al.[284] implemented Gradient
Boosted Decision Trees(GBDT) techniques to distribute
and parallelize big data. Calaway et al. [37] estimated

efficiency of decision tree on big data by employing
rxDTree. Hall et al. [106] modified decision tree learning
by generating rules for large training data-set.

Clustering is the unsupervised learning that ana-

lyzes data objects without labeled responses. To han-
dle big data CLARA [142], CLARANS [189] DBSCAN
[79], DENCLUE [119], and CURE [101], k-mode and k-
prototype methods [127], PDBCSCAN [279], IGDCA

[46], methods were used in the literature. Literature di-
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vulges several bioinfoamtics repositories [150] explained

in the Table 2.

Along that there were several techniques and tools

employed in bioinformatics for specific task. One of the

bioinformatics type is microarray data analysis. Tools

used for this type were caCORRECT [249] and om-

niBiomarker [201]. For gene-gene network analysis, Fast-

GCN [162], UCLA Gene Expression, Tool (UGET) [57],

WGCNA [156] tools were used for specific tasks like

finding disease associated with genes, parallelism with

GPU etc. Several tools had been proposed for Pro-

tein -Protein interaction (PPI) that is a complex and

time consuming process. NeMo [219], MCODE [12], and

ClusterONE [187], PathBLAST [144] had been devel-

oped for PPI analysis. For pathway analysis, GO-Elite

[287], PathVisio [130], directPA [281], Pathway Proces-

sor [99], Pathway-PDT [198] and Pathview [166] tools

had been employed.

In Protein-Protein Interaction and Protein Sequence,

Sequencing data was mapped with the specific genomes

for the analysis of various tasks like genotype and ex-

pression variation. As DNA sequencing is produced from

sequencing machines ranges from millions of data there-
fore matching with the genomes is one of major task.
There are several techniques for the matching of DNA
sequence with reference gene. A parallel computing model

for matching genomes is CloudBurst [233]. It use 24 core

clusters for evaluation that is 24 times faster in speed

than single core system. It has the capability of short

read mapping of 7 million reads that improved the scal-
ability of reading huge sequencing data. On the basis
of CloudBurst, Contrail [232] was developed to accumu-
late hefty genomes and for the identification of single

nucleotide polymorphisms (SNP), Crossbow [104] was

prepared.

A proteomic search engine based on Hadoop dis-

tributed framework is Hydra [161] software package.

It is a distributed computing environment that pro-

cess large peptide and spectra databases to support

searching of immense volumes of spectrometry data. It

has the fast processing of performing 27 billion pep-

tide scorings on a 43-node Hadoop cluster in approxi-

mately 40 minutes. Another query engine for bioinfor-

matics and genomics researchers is SeqWare [53] built

on Apache HBase [89]. Th SeqWare has an interactive

interface with genome browsers and tools. It includes
loaded U87MG and 1102GBM tumor databases used
for the comparison with other prototypes.

There are certain tools used for the error identifica-

tion of sequencing data. SAMQA [220] is the error iden-
tification tool that provides a scale-able quality for stan-

dards for large scale genomic data. ART [126] can iden-

tify three types of errors from sequencing data like base

insertion, deletion and substitution. CloudRS [41]is a

parallel algorithm for error correction. It is based on
RS algorithm [94]. For the analysis of data sequencing
and genomic analysis, several frameworks and toolkits

were developed. CloVR [7,75] is a distributed virtual

machine package for sequencing analysis that support

both local and cloud systems. Another virtual machine

tool is CloudBioLinux [149] that provides 135 bioinfor-

matics packages for analysis. Genome Analysis Toolkit

(GATK)[174,9] analyze large sequence and genomics.

It based on MapReduce-based programming framework

that had been used in 1000 Genomes Projects. BlueSNP

[125] analyzed 1,000 phenotypes and find association

based on R package and Hadoop platform.

6.3 Clinical Informatics

The clinical laboratory is a major source of data related

to patients’ diseases and health issue. There is approxi-
mately 80% unstructured data like clinical documents,
radiology, pathology, patient discharge summaries, di-
agnostic testing reports, X-ray and radio-logical images

and transcribed notes etc. as shown in Fig 16. Clini-

cal informatics is the study of Information Technology

(IT) and healthcare for organizing the patient’s clinical

data and laboratory test, reports etc. into structured
and computerized form to increase data retrieval and
extraction efficiently that will assist in evaluations and
reports effectively. It divulge the development of elec-

tronic health informatics systems for improvement of

care and management of patients and sharing of data

in seconds using computer and internet. Increasingly

laboratory data is being integrated with other data
of patient in order to improve the diagnostic process
efficiency, and increase its meaningful use to improve

patient outcomes. IT-based systems replace the man-

ual data entry in records, reports, documents; also save

time and cost associated with records, hospital data and

reports on daily bases, like billing and schedules of pa-

tients [1]. However, clinical informatics is currently not
practiced in small clinics, hospitals, laboratories in rural
and county side areas due to implementation of clinical

informatics technology [26]. For boosting the implemen-

tation the Electronic Care Records (EHR) system as a

clinical informatics in the whole government hospitals

in USA, HITEC [28] made some interesting incentives

for the medical organizations, hospital and clinics. That

the doctors and physicians should use EHR systems for

data of patients which they can share with any others

and can provide to patients online and or can access

anywhere.

In big data analytics, the first step is to store and

manage data in some structured form. Clinical data is
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Fig. 16 Unstructured Clinical Informatics

store to observe the information of patients, hospitals
and other relevant structured and unstructured record.

It can be than used to settle on clinical decision, as-
sessing patients and make treatment plans. Data ware-
houses and relational databases are the traditional and

structured methods to store and retrieve data. However,

to use clinical data, it is first transformed and clas-

sified when it is integrated from multiple sources [15,

116]. A detailed systematic review paper is published

in [35] till 2011. We here presents the further related
work. Dutta et al. [74] stored EEG data using Hadoop
and HBase in data warehouses. Jin et al. [135] analyzed

and stored distributed EHR data using big data tools

like Hadoop HDFS and HBase. Similarly, Nguyen et al.

[190] stored signal clinical data using HBase. Jayapan-

dian et al. [134] and Sahoo et al.[227] developed a sys-

tem named ’Cloudwave’ for storing and querying EEG
clinical data that is voluminous. Mazurek [171] stored
unstructured data in Not Only Structured Query Lan-

guage (NoSQL) repositories to provide fast processing

speed and data mining capabilities. For this purpose,

relational and multidimensional technologies were com-

bined with NoSQL.

Clinical data is often retrieved and shared interac-

tively for data integration and knowledge sharing, so
the cloud computing was the usually consider for this

purpose. Bahga and Madisetti [14] proposed a system
based on cloud approach for inter-operable EHRs. Chen
et al.[44] translated the informatics aspects of present
and future using cloud computing. For multi-site clini-

cal traits, the interactions of researchers were enhanced

by the conceptual software architecture developed by

Sharp [241] using cloud approach. Clinical data is ana-

lyzed to predict the disease, risk, diagnosis, and progres-

sion. Literature divulges a lot of data analysis strategies

for the prediction of clinical record. One of the pre-

dictive modeling platform was ”PARAMO” designed

by Ng et al.[188] for analyzing EHR and the genera-

tion and reuse of clinical data. using a Hadoop cluster.

They analyzed the EHR from 5,000 patients to 300,000

patients and reported promising time effective results.

Chawla and Davis [40] formulated the framework for

patient-centered to explained the big data approaches

for personalized medicine. Similarly, the big data for

perioperative medicine were illustrated by Abbott [2].

Zolfaghar et al. [292] implemented big data techniques

for the predictive model. They conducted an experi-
ment on patient data of ”National Inpatient Dataset
and the MultiCare Health System” for the congestive

heart failure. They reported the maximum accuracy

upto 77% and recall upto 61%, respectively. Rangara-

jan et al. [206] proposed data lake architecture that

used HDFS for data storage. Similar health conditions
of patients were clustered using K-means. From each
cluster, the successful recommendation was found by
deploying SVM. Wang and Hajli [267] examined 109

case description of 63 healthcare organizations. They

modeled the big data analytics for business transfor-

mation using RBT theory and capability building view

in the model. Each case occurrences along with pair-
wise connections, constructs and path-to-value chains
were used to find business value.

6.4 Public Health Informatics

Informatics is an ”Applied Information Science”. It syn-
thesizes the practices and theories of information tech-

nology, computer science, management sciences and be-
havioral sciences into concepts, tools and methods for
implementing information systems into health for pub-

lic. Informatics uses to transform raw data into infor-

mation effectively according to requirement of users.

healthcare informatics researches is a scientic attempt

that improve both health service organizations perfor-

mance and patient care outcomes as shown in the fol-
lowing Fig. 17. Public healthcare is determined through

Fig. 17 Healthcare Informatics Researches

Epidemiology. Epidemiology is the study of analyzing
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Table 3 Clinical informatics Databases

Database Database
Type

Description

Texas Inpatient Public Use
Data File (PUDF) 1

Structured
EHR

This dataset contains record of patients, hospitals,admission type/source, claims,
admit day and discharge details. In 2017 dataset contains 699 hospitals, 776,554
base date records, 12,486,488 charges date records in First quarter. In Sec-
ond quarter there were 694 hospitals, 761,921 base date records and 11,985,920
charges date records.

Multi-parameter Intelligent
Monitoring in Intensive
Care II (MIMIC-II) Clinical
Database [226]

Structured
EHR

This dataset encompasses detailed clinical data, including physiological wave
forms and records subsets from minute-by-minute. It contains 32,536 subjects
with 40,426 ICU admissions and 25,328 intensive care unit stays.

Patient Discharge Data By
Admission Type 2

Unstructured Dataset contains the information of inpatient discharges by type of admission
for each California hospital for years 2009-2015 containing 9,322 entries.

Framingham Heart Study
Database 3

Structured
EHR

It is a genetic dataset for cardiovascular diseases like Heart. It include 5,209 men
and women having age between 30 and 62 years. 1948, participants had been
assessed every 2 years

Basic Stand Alone (BSA)
Medicare Claims Public Use
Files (PUFs) 4

Unstructured CSV format that contain non-identifiable claim-specific information and are
within the public domain.

Nationwide Inpatient Sample
5

Structured
EHR

This dataset contains discharge information including diagnosis, procedures, sta-
tus, demographics, cost and length of stay. It comparises 1051 hospitals of 45
states.

i2b2 Informatics for Integrat-
ing Biology & the Bedside 6

Unstructured
Clinical
Data

Clinical notes used for clinical NLP challenges like deidentification, Smoking,
Obesity, Medication, Relations and co-reference challenges

1 http://www.dshs.texas.gov/thcic/hospitals/Inpatientpudf.shtm
2 https://data.chhs.ca.gov/dataset/patient-discharge-data-by-admission-type/resource/460bd2e8-3b0e-4a41-b2a6-1044f7c82178
3 https://epi.grants.cancer.gov/pharm/pharmacoepi.html
4 https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/BSAPUFS/index.html
5 https://www.hcup-us.ahrq.gov/news/exhibit booth/nis brochure.jsp
6 https://www.i2b2.org/

how frequently diseases arise in different groups of peo-
ple and why. Epidemiological information is used to for-
mulate and evaluate techniques to prevent illness. This

information is also serve as a guideline to the manage-

ment of patients in whom disease has already evolved.

Traditionally, epidemiology has been based on data col-

lected by public health agencies through health person-

nel in hospitals, doctors’ offices, and out in the field.

The healthcare mechanism is the usual first line

of reaction to clinical activities, whether of large or

less severity. Informatics are used to figuring out sen-

tinel occasions and leading to analysis can keep away

from doubtlessly devastating effects. An example of re-

sponse is war on cancer announced in 1973 when the

programmers of National Institutes of Health feed the

data from registries to the information system enti-

tled with Surveillance Epidemiology and End Results

(SEER) system. This system provide the information

to the public health planner and epidemiologists to an-

alyze the distribution of cancer throughout the pop-

ulation [109]. After 3 many years of monitoring and

evaluation, Age-adjusted mortality rates as a conse-

quence of cancer were dropping step by step since the

early 1990, with important development in areas in-

cluding lung most cancers reflecting fulfillment in pub-

lic health efforts aimed at controlling precipitants to

the disease [118].

Another example of that capacity can be seen inside
the response to the 2001 bio-terrorism assaults. Dur-

ing September 2001,anthrax spores had been traced to

postal facilities in Trenton, New Jersey and Brentwood,

Washington. Epidemiologists face dadaunting venture:

the new Jersey facility was a facility of 281,387 square

ft, staffed by 250 employees according to shift and pro-
cessing over 2 million items of mail in line with day [294].
Informatics helped to become aware of the those who
could have been exposed to anthrax,monitored the screen-

ing system,and recorded who obtained antibiotics and

distribution of recognized cases and known deaths. Fur-

ther analytical strategies and significant healthcare re-

searches were explained in [262,217].

In latest years, innovative data sources have intro-
duced that are used to collect data in a second from

individuals directly using electronic devices. Social me-

dia change the life of society and make global World.

The exponential amount of data is produced daily. Big

data is produced from Public Health (PH) information

and can be generally characterized as big data. Pub-

http://www.dshs.texas.gov/thcic/hospitals/Inpatientpudf.shtm
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lic healthcare data is collected, analyzed, assured and

accessed so that big data analytics techniques are de-

ployed to extract hidden informative patterns. Public

or social media information is further used to predict,

monitor and diagnosis of diseases i.e. efficient and ef-

fective use of PH data determines the extent to which

societal health concerns can be determined. Literature

divulges several survey papers based on data mining
[115,138], deep learning [207,176] and other [10]. We
here presents some of the public healthcare work using

social media. The data-sets for public healthcare data

corpus are explained in the Table 4.

Young et al.[285] gathered 553,186,016 tweets from

the Twitter. They extracted more than 9,800 keywords

and geographic annotations that contains HIV risk words.

They revealed that social media monitor global HIV

occurrence and concluded that positive correlation of

greater than 0.01 was retrieved between HIV-related

tweets and HIV cases.

Hay et al. [111] facilitated public health surveillance

using online social media combined with epidemiologi-

cal information. They developed atlas for real-time dis-

ease monitoring.

Nambisan et al.[181] detected depression from mes-

sages and tweets of social media thus big data analytic

tools were used to extract the hidden valuable patterns

for detecting mental disorders. They concluded that be-

havioral and emotional patterns in messages showed the

symptoms of depression.

Tsugawa et al. [256] implemented multiple regres-

sion models to detect the depressive tendencies. They

extracted frequency of words form messages and Twit-

ter from the popular micro-blogging services to detect

depression and achieved a correlation of approximately

0.5. Park et al. [196] analyzed depression of 60 par-

ticipants from their activities on tweeter from senti-

ment words of depressed users. Another contribution

by the same author was to detect the symptoms of

depressive users through Facebook [197]. Choudhury
et al. [61,59] developed a large dataset from Twitter
posts using crowd sourcing methodology. They imple-

mented the probabilistic model to indicate the depres-

sion level form social media. In [58] quantified post-

partum changes and depression of 376 mothers from

Twitter posts. Similarly, same authors in [60] detected

and predicted the onset of post-partum depression of
165 mothers through Facebook shared data. Sadelik et
al. [225] predicted infectious diseases through the so-

cial network. They used 1000 Twitter messages related

to healthcare. They applied statistical models on geo-

tagged postings made on Twitter for prediction of dis-

eases that cause an infection like flu etc. Digital media

is widely used to improve healthcare monitoring and

its effectiveness. Ginsberg et al. [91] used Trends mod-

els and search queries on Google to detect influenza and
flue like diseases. One of the most earlier comprehen-
sive review paper of public healthcare informatics using

social media was presented by Hagg et al. [105]

6.5 Medical Signal Analytics

Nowadays technology is advancing rapidly that pro-
vide effectiveness in every walk of life, especially in
healthcare. Currently, healthcare systems use a variety

of continuous monitoring devices that generate signals.

Physiological signal monitoring devices and Telemetry

devices are pervasive [19] because these devices im-

prove healthcare management and patient healthcare

[30,123]. These devices use discretized or physiological

waveform data and generate alert mechanisms in case

of an overt event. There are certain issues in medical

signals that tend to move towards big data. The most

notable obstacle is volume and velocity of continuous

and high-resolution multitude monitors connected to

each patient. The generated alarm systems are unreli-

able and cause alarm exhaustion for both caregivers and

patients [71,98]. The primary failure of these systems

are due to the relay on single sources of information.

The first step in streaming data analytics in health-
care is to the acquisition of signals. It is usually rare to

store the streaming signals from continuous acquisition

devices. However to access the live streaming data from

devices is one of the foremost tasks for big data analyt-

ics applications. As there are many challenges poses to

healthcare systems during streaming data collection like

network bandwidth, scalability, and cost [173]. Thus

Research communities are developing continuous mon-

itoring technologies [5] to capture live monitor signals.

Next step is to store the signals data from monitor-

ing devices using Big Data analytics tools like HDFS,

MapReduce, and MongoDB [4,143] etc. Medical data

including signals is complex due to interconnected and

interdependent data among several sources. Thus, data

is integrated and aggregation techniques are deployed

for effective performance [229,23]. The workflow of gen-

eralized streaming healthcare is depicted in Fig.18. The

most notable data repositories containing signals infor-

mation in healthcare is explained in Table 5.

After introducing medical signal analytics, we will
present some of the related work of Big Data analyt-

ics in medical signaling. Han et al. [108] developed a

patient care management system using a scalable in-

frastructure. This system combined static and continu-

ous data from monitored ICU devices. It analyzed and

mined medical data in real time.
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Table 4 Public Health Databases

Database Database Type Size Description

Ohio Hospital In-
patient/Outpatient
Database

Public Patients
Records

35 million patient
records per year

This repository contains hospital record such as number
of admissions, discharges, stay length, transfers, number
of patients with specific codes

Behavioral Risk Fac-
tor Surveillance Sys-
tem (BRFSS) [69]

Survey System 50 states data of more
than 400,000 adult in-
terviews each year

This system contains record of mental illness, smoking, al-
cohol, lifestyle (diet, exercise) and diseases (diabetes, can-
cer) etc.

Surveillance Epidemi-
ology and End Re-
sults (SEER) Pro-
gram [112]

Cancer Dataset 7.7M cases and more
than 350,000 cases
are added each year

This program contains survival data from population-
based cancer registries covering approximately 28% US
population.

PatientsLikeMe On-
line Patient Network
Database [245]

Online Pa-
tient Network
Database

more than 200,000
patients and is track-
ing 1,500 diseases

This data corups contains information of disease-specific
functional scores, sympotms etc. through which people
having same symptoms connect with each others.

Human Mortality
Database [276]

Public Mortality 39 countries or areas This database contains information about population and
mortality in detail along with Birth, death, population size
by country.

Table 5 Medical Signal Databases

Database Database
Type

Size Applications

The Multi-parameter Intelli-
gent Monitoring in Intensive
Care II (MIMIC-II) Clinical
Database [226]

Structured
EHR

32,536 subjects with
40,426 ICU admis-
sions and 25,328 ICU
stays

It contains comprehensive clinical data, includ-
ing physiological waveforms and minute-by-minute
records subsets.

MIMIC-III Database [136] hospital
Database

38,597 patients,
49,785 hospital
admissions

This data corpus is inforamative with vital signs,
laboratory measurements,medications, imaging re-
ports, details of observations , fluid balance, diag-
nostic codes, procedure codes, stay length of hos-
pital, survival data, etc.

The ECG-ID Database 1 Signals
Database

90 persons, 310 ECG
recordings

EEG signal recordings each have 10 annotated
beats, digitized at 500 Hz with 12-bit resolution
and recorded for 20 seconds.

CinC Challenge 2000 data
sets [95]

EEG sig-
nal based
database

583 megabytes, 70
records

This dataset contain EEG signals of 70 records,
used 35 records for learning set and 35 for testing

MIT-BIH Polysomnographic
Database [95]

Physiologic
Signals
Database

18 records, each have
4 files

This database is the collection of recordings of mul-
tiple physiologic signals during sleep

EEG Motor Move-
ment/Imagery Dataset
[95]

EEG Signals
Database

109 volunteers,1500
recordings

Two minutes EEG recordings, 64-channel EEG
were recorded using the BCI2000 system

American Heart Association
(AHA) 2

EEG Signals
Database

80 recordings ECG recordings of 80 two-channel records digitized
at 250 Hz per channel with 12-bit resolution with
range of 10 mV.

1 https://www.physionet.org/pn3/ecgiddb/
2 https://www.physionet.org/physiobank/database/ahadb/

Bressan et al. [34] implemented an architecture for

neonatal ICU. It used data of EEG monitors, infusion

pumps and cerebral oxygenation monitors. Their pro-

posed system provide effective decision system for clin-

ics.

Lee and Mark [158]conducted experiment on MIMIC

II database for therapeutic intervention to hypotensive

episodes. Their system predict intensive care based us-

ing blood pressure and cardiac time series data.

Sun et al.[252] also used MIMIC II database to ex-

tract the physiological waveform data along with clini-

cal data. They selected cohorts and find the similarity of

patients from them that is beneficial for healthcare. The

similarity is used for the treatment of similar diseases
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Fig. 18 Generalized Work-Flow of Streaming Healthcare

and deducted effective decisions from them. Another
study on MIMIC II database is to detect the cardiovas-
cular instability in patients at an early stage. For this

purpose Cao et al. [38] developed a system that com-

bined multiple waveform data from MIMIC II corpus.

Roux et al.[157] discussed the neuro-critical care

of the patient’s disorders using different physiological

monitoring systems. They provide a platform for the

researchers with guidelines by examining the potentials

and implications of neuro-monitoring.

Rajan et al. [205] used a multi-channel signal ac-

quisition method for the development of physiological

signal monitoring system using NI myRIO connected

with the wireless network. They also used the Internet
of Things( IOT) techniques for better performance in
healthcare.

Zhang et al. [291] recognized the Lung cancer using

sensor-based wrist pulse signal processing with the tech-
nique of cubic support vector machine (CSVM). They
implemented iterative slide window (ISW) algorithm

for signal segmentation and extract 26 features. Using
these strategies, they achieved 78.13% accuracy. Nanda
et al. [182] distinguished between essential tremor and

Parkinsons tremor using non-invasive recording tech-

niques. They employed Neural Network for the classi-

fication of tremor sEMG signals and achieved 91.66%

accuracy.

7 Key Findings

This survey presents the emerging landscape of big data

and analytical techniques in the five sub-disciplines of

healthcare. We present various domains of healthcare

in which big data technology has played a significant

role in modern-day healthcare revolution, as it has to-

tally changed the perception of people about health-

care activities. Big data analytical techniques deployed
in five sub-disciplines such as, medical image processing
and imaging informatics, bioinformatics, clinical infor-

matics, public health informatics, medical signal ana-

lytics are explained comprehensively that draws an in-

tegrated depiction of how distinct healthcare activities

are accomplished in a pipeline to facilitate individual

patients from multiple perspectives. The existing re-

views did not provide the detailed explanation in mul-

tiple sub-disciplines of healthcare. There is no compre-

hensive evaluation of studies in the existing reviews.

The existing studies discussed the different sources

of healthcare for big data such as pharmaceutical firms,

healthcare providers, diagnostic companies, laborato-

ries, not-for-profit organizations insurance companies

and web-health portals [222,178,254,272,124,33]. The
big data techniques used for the analysis of healthcare
data are machine learning, data mining, cluster analy-
sis, pattern recognition, neural networks, deep leaning

and spatial analysis. Most of the studies processed the

patient data using Hadoop and its tools, but they are

batch processing tools [265,129,264,175,200]. There are

some studies that used newer tools like Spark, Storm
and GraphLab etc. for the processing of real time and
streaming data [200]. Most of the studies discussed the

applications of big data analytics in different fields of

healthcare like personalized medicine, clinical decision

support, clinical operations optimization and cost effec-

tiveness of healthcare. It can be showed that healthcare

analytics improve the quality and early identification of
patients. There are researches related to diabetes, gyne-
cology, oncology, cardiovascular diseases and so on that

enable save time and cost [269,167,277,260,88,76].

With the rapid increase of publications in biomed-

ical and healthcare industry, we have conducted the

detailed review regarding healthcare analytics in five

sub-disciplines. We summarized the usability studies

of each discipline in Table 6, including image visual-

ization, image classification, image retrieval, data and

workflow sharing, data analysis, feature selection, bioin-

foramtics classification and clustering, micro-array data

analysis, protein-protein interaction, pathway analysis,

protein sequencing, query and search engine, error iden-

tification of sequencing data, storage and retrieval of

EHR, treatment recommendation, business transforma-

tion, disease prediction, diagnosis and progression, data

security, infectious disease surveillance, population health

management, mental health management, chronic dis-

ease management, signal acquisition, signal storing from

monitoring devices, signal integration and aggregation

respectively. It is concluded from this survey, that bioin-

formatics is one of primary discipline in which big data



Leveraging Big Data Analytics in Healthcare Enhancement: Trends, Challenges and Opportunities 19

Fig. 19 Deep Learning Architecture for Big Data Analytics

analytics is currently evolved and playing a scientific
role, due to the complex and massive bioinformatics
data. There are a lot of tools, techniques and platforms

for bioinformatics used to analyze biological, genomics,

proteins and gene sequencing data. However, there is

less potential of big data applications in other disci-

plines such as, in medical imaging informatics, clinical

informatics, public health informatics and medical sig-
nal analytics.

8 Big Data Analystics Applications

Healthcare sector produces huge amounts of patient

data on a daily basis. Traditionally, most of this data

was used to be in the form of hard copies but, due to

the advancement in data acquisition devices, healthcare

organizations are gathering data electronically. health-

care data analytics has the potential to bring in dra-

matic changes in healthcare industry to smooth the pro-

cess and improving the quality of care. Data analytic

researchers, healthcare providers, government agencies

and the pharmaceutical companies identify range of dif-

ferent ways that big data techniques can help us to

significantly improve patient outcome through policy

making and evidenced based decisions. Below are the

major areas in healthcare sector where big data analyt-

ics has a huge impact:

Strategic Planning: ‘Management is based on early

measure: you cant manage if you cant measure’. Health-

care is a time critical service. Hospitals are struggling

with patient flow. Machine learning and data analytics

plays important role in the prediction of patient flow

and ensuring smooth patient flow as well as reducing

waiting period. Early predicting of hospital visit helps

the management to decide and take the necessary step

to reduce patient waiting time thereby giving timely

treatment. Patient Flow Manager, Q-nomy’s are the ap-

plication that provides a comprehensive graphical view

patient flow information, drawing of inpatient, elective,

emergency, outpatient and other hospital systems. For

example, care mangers can analyze check-up results

among patient in different demographic groups that
help to identify what factors discourage patient from
taking up treatment. The classical example is staff man-
agement: how many clinicians and nurcess staff should

be give at specific time.

For our first example of big data in healthcare, we

will look at one classic problem that any shift manager
faces: how many people do I put on staff at any given

time period? If you put on too many workers, you run
the risk of having unnecessary labor costs add up. Too
few workers, you can have poor customer service out-
comes which can be fatal for patients in that industry.

In other example, we can predict admission trend based

on admission history of last few years i.e. using 10 years

worth of hospital admissions records, which data scien-

tists crunched using time series analysis techniques fol-

lowed by machine learning relevant to predicted future

admissions trends.

Fraud Detection: ‘Suspect, detect and protect’. Fraud,

waste, and abuse have caused significant cost and it

range from honest mistakes that result in erroneous
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Table 6 Comparative analysis of the literature

Healthcare Discipline Big Data Analytical Technique Studies

Medical Image Processing and
Imaging Informatics

Image Visualization [90,164,140,93,286,137]
Image Classification [239,145,152,216]
Image Retrieval [282,133,97,280,170]
Data and Workflow Sharing [20,50,221,221]
Data Analysis [68,170,263]

Bioinformatics

Feature Selection [13,16,288,293,255,165]
Classification [92,25,284,37,107,106,293,56,66]
Clustering [142,189,79,119,279,46,199]
Microarray Data Analysis [249,201,162,57,156]
Protein-Protein Interaction [219,12,187,144]
Pathway Analysis [287,130,281,99,198,166]
Protein Sequencing [233,232,104]
Protein Query and Search Engine [161,53,89]
Error Identification of Sequencing
Data

[220,126,41,94,7,75,149,174,9,125]

Clinical Informatics

Storage of EHR [28,15,116,74,135,190,134,227,171,206]
Retrieval of EHR [96,241]
Interactive data retrieval for Data
Sharing

[64,14,251,14,44,113,270]

Treatment Recommendation [47,43,68,131]
Business Transformation [267,268,269,103,266,146]
Disease Predication, Diagnosis and
Progression

[188,40,2,292]

Data Security [235,246,163,238]

Public Health Informatics

Infectious Disease Surveillance [111,285,87]
Population Health Management [153,52,85,258,110]
Mental Health Management [181,236,49,179]
Chronic disease Management [24,257,151]

Medical Signal Analytics

Signal Acquisition [173,158,5,252,205]
Signal Storing from Monitoring De-
vices

[4,143,108,34,38,157]

Signal Integration and Aggregation [229,23,291,182]

billings, inefficiencies that may result in wasteful diag-
nostic tests, over-payments due to false claims. Personal
data is extremely sensitive due to its profitable value in
black-markets, thus, healthcare industry is 200% more

likely to experience data breaches than any other. With

that in mind, effective detection of frauds is very im-

portant for reducing the cost and improving the quality

of healthcare system. Fraud detection in healthcare is
an important yet difficult problem. Big data has in-
herent security issues and healthcare organization are
more vulnerable than they already are. Many organi-

zations are using analytics to reduce security threats

by analyzing the changes in network traffic, or suspi-

cious behavior that reflects a cyber-attack. WhiteHatAI

Centaur system, NICE ACTIMIZE, NHCAA, SAS, and

Optum etc. are being used for medical claims process-

ing that identifies and detects healthcare fraud, waste,

and abuse before it happens. Likewise, data analytic

can helps to prevent fraud and inaccurate claims in a

systemic, repeatable way by streamlining the process of

insurance claims. For example, the Centers for Medi-

care and Medicaid Services saved over $210.7 million in

frauds in just one year.

Resource Management: ‘How you use a facility,

many factors pushing and pulling’. Big data is making

huge advances in reducing hospital waiting lists. De-

spite expensive efforts by the government and health-

care organizations, waiting times barely changed, with

the median even increasing slightly i.e. Australia has

been trying hard to reduce the waiting list times on its

hospital for more than two decades. Efficient and timely

resource utilization helps to over come the patient flow

and reduces the financial burden on organization. Data

analytics continues to make inroads the manage hospi-

tal resources efficiently with respect to patient flow and

risk. Examples are readmission, ambulance, and bed

utilization etc.

The common example is 30 days patient readmis-

sion or return visit to an emergency department. 30

days readmission identify the patients that have high

possibility to return to hospital with 30 days of dis-

charge. The development of risk prediction model helps

to identify patients who would benefit from the disease

management program in an effort to not only reduce

the patient readmissions but also healthcare cost.
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Personalized Medicine: ‘Disease and its treat-

ment is unique as we are’. The promise of personal-
ized medicine is the shift away from one size fits all

medicine. Through the datafication and genomic fin-

gerprints, much more information of each patient can

be analyzed without requiring multiple rounds of test-

ing. Best treatment can be made on an individual basis

at a faster rate bu using personalized data.

Genomics: ‘The more is the data you have the bet-

ter you can treat’. Human body consists of 30,000 to

35,000 genes [72,48]. From the DNA structure of the
human, it is estimated that there are 23 chromosomes
with the distribution of 3.2 billion base pairs [78,117].

This data increases dramatically to about 200 giga-

bytes. Thus big data analytics is required for genomics

and sequencing practices that are used for the treat-

ment of complex diseases like Crohns disease and age-
related muscular degeneration [147]. The impact of ge-
nomic data analytics has the great potential to improve
healthcare outcomes, quality, and safety, as well as cost

savings.

Disease Prediction and Prevention: ‘Precau-

tion and care can help live longer’ . Many healthcare or-
ganizations, research labs, hospitals are leveraging Big

Data analytics are by changing the models of treat-

ment delivery. Thus Big Data analytics have tremen-

dous applications in the healthcare domain for reducing

cost overhead, detecting and curing diseases, predict-

ing epidemics and enhancing the worth of human life

by averting deaths. Number of projects from ”Google”,
”DeepMind”, ”IBM”, ”Royal Free London NHS Foun-
dation Trust” and ”Imperial College Healthcare NHS

Trust” and others have proved the importance of deep

learning and machine learning for detection, identifi-

cation, diagnostics and predictive analytics. DeepMind

collaborated with Moorfields Eye Hospital to the ana-

lyze anonymized eye scans, searching for early signs of
diseases leading to blindness. There are also projects
signed with the Royal Free London NHS Foundation

Trust and Imperial College Healthcare NHS Trust to

develop new clinical mobile apps linked to EHR.

Big data has transformed healthcare by putting data
to work, revealing clinical and operational insights. The

most applicable applications of IBM are IBM Content

and Predictive Analytics. ”IBM Content and Predictive

Analytics” for healthcare is the first industry-specific

analytics solution to enable organizations to analyze the

past, see the present and predict the future by simulta-

neously. For example, we can predict admission trend

based on admission history of last few years i.e. using 10

years worth of hospital admissions records, which data

scientists crunched using time series analysis techniques

followed by machine learning relevant to predicted fu-

ture admissions trends. One of the major application of

big data analytics in the healthcare domain is medical
image processing. As in healthcare enormous amount of
medical images are produced like X-ray, CT and PET-

CT images, MRI, ultrasound, fluoroscopy and photoa-

coustic imaging. These medical images produced big

data that are used for various purposes like detection,

diagnoses, assessment and decision making of therapy

etc. [218].

Heart is the basic organ of the body. If the heart

stops its working human body does not exist. There

are several disorders of heart among them one is the

heart attack. Big data analytics facilitates to predict

the heart attack at the early stage using early heart at-

tack detection system based on medical biosensor [55,

271] that detect heart attack at the early stage. There

are some online systems [6] and healthcare information

system [193] that provides guidance about heart dis-

eases using IOT and Hadoop techniques.

The brain is the vital organ of the body that con-
trols all the activities of the body just like CPU of the

computer. Thus data mining and data analytics tools
are deployed to detect the brain disorders like Parkin-
son’s brain disease prediction [240,216]. Diabetics is one
of the common diseases in this world. Big data analyt-

ics tools like ‘Hive’ and ‘R’ are used for the analysis

of diabetics using descriptive dataset [224,54]. Efficient
predictive models are established to reveal the data re-

lated to the investigation of diabetics.
There are online applications that are remotely fa-

cilitating the healthcare domain. AmWell, Practo, Portea,

and Isabel etc. are the most popular apps that are used

for various purposes like appointment of doctors at hos-

pitals, clinics etc., patient diagnosis, ordering medicines,

consultation with the doctor remotely for treatment etc

[194]. Summering the applications of big data analytics

in healthcare [204,114], it is beneficial to identify and

diagnose the patient accurately and precisely. It is used

for the prediction and management of health risks and

obesity to efficiently detect the level of frauds. It re-

duced the cost, variations, and elimination of duplicate

care and improper claim submission.

9 Challenges and Open Research Issues

The healthcare sector suffers from multiple challenges,

ranging from new disease outbreaks to preserving an
optimal operational efficiency. To overcome these chal-
lenges, data mining and data analytics in the devel-

opment of applications of healthcare have tremendous

potential, however, success hinges on the availability of

quality data but there is no magic recipe to successfully

apply data analytics methods on any problem. Thus,
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the successful development of data analytics based ap-

plications depends on how data is stored, prepared and

mined. However, chemical analytics poses a series of

challenges when dealing with a enormous amount of

complex data. These challenges involve data complex-

ity, access to data, regulatory compliance, information

security and efficient analytics methods, inter-operability,

manageability, security, development, re-usability, and
maturity.

9.1 Multiple Source Information Management

In healthcare data analytics, the main goal is to an-

alyze the real world medical data to perform predic-

tion or classification task. One of the biggest hurdles in

development of such application depends upon on the

data structure i.e. how medical data is spread across

many sources, how data is stored, prepared and mined.

One of the worst example of lack of data sharing is: a
woman who was was suffering from mental illness and
substance abuse, visited variety of local hospitals more

than 900 times in a period of less than 3 years in Oak-

land, California, USA. It results in heavy cost, extensive

use of hospital resources and more important, harder for

womanto get good care.

Healthcare data is data correlations are leveraging
in longitudinal records i.e. complex, heterogeneous, dis-

tributed and dynamic data i.e. in the US alone, health-

care data extended to 150 exabytes in 2011 and is ex-

pected to reach the zettabyte scale soon. Despite the

rapid increase in EHR adoption, there are several chal-

lenges around making this information useful, readable

and relevant to the physicians and patients who need

it most. One of the key challenges in the healthcare

industry is how to manage, store and exchange all of

this data. Inter-operability is considered to be one of

the solutions to this problem. There exists a poor inter-

operability in EHRs that creates big data analytics chal-

lenging in healthcare. Integration of different data sources

would require developing a new infrastructure where all

data providers can collaborate each other to share. An-

other challenge is data privacy that limits the sharing

of data by blocking out significant patient identifica-

tion information such as MRN and SSN. Healthcare

needs to catch up with other industries that have al-

ready moved from standard regression-based methods
to more future-oriented like predictive analytics, ma-
chine learning, and graph analytics. Big data technolo-

gies like Data ingestion, data modeling, and data visu-

alization are integrated with existing tools to provide a

supported enterprise solution.
Big data management is one of the hard tasks as

there is a big cluster of data that is monitored and

managed. Most patients visit multiple clinics to try to

find a reason for their disease and medical solution for
their illness. To overcome this issue, several manage-
ment tools are integrated that is overwhelming and

cost effective strategy. Proficiently handling large ca-

pacities of medical imaging data and extracting pos-

sibly useful information is another hard task. Hospi-

tals have yet to achieve a level of inter-operability, and

without it, it is almost impossible to improve patient

care. The US Health Department is aiming for inter-

operability between disparate EHRs by 2024. Medical

stakeholders (physicians, administrators, patients etc.)

believe that inter-operability will improve patient care,

reduce medical errors and save costs. Imagine having

the insight and opinions of hundreds of IVF/PGD pa-

tients to assist your decision before undergoing treat-

ment rather than only relying on a physicians recom-

mendations. Due to the importance of data integration,

healthcare organizations are turning to the implementa-

tion of inter-operability. To achieve a high level of inter-

operability, HL7, HIPPA, HITECH and other health

standardization bodies have demarcated several stan-
dards and guidelines to assist organizations to know
whether they meet inter-operability and security stan-
dards. The Authorized Testing and Certifying Body

(ATCB) provides a sovereign, third-party opinion on

EHR. Two types of certification (CCHIT and ARRA)

are used to evaluate the system. The review process

comprises standardized test scripts and exchange tests
of standardized data. Healthcare industry needs to catch
up with other fields that have already progress from
standardization.

9.2 Security and Privacy and Confidentiality

Every stakeholder in the health industry has a role to

play in ensuring the security and privacy of patient in-

formation. It is a shared responsibility. Patient privacy

and information security are fundamental components

of a well-functioning healthcare system that helps to ac-
complish better health outcomes, healthier people, and
smarter spending. For example, a patient may not dis-

close certain information or may ask a physician not

to record his health information due to a lack of trust

and the perception that this information might not be

kept confidential. This attitude puts the patient at risk

and deprives physicians and researchers of important
information as well as putting the organization at risk
in terms of clinical outcomes and operational efficiency

analysis. To reap the benefits, providers and individu-

als must belief that patients health information is kept

private and secure. On the other hand, providers are

facing several challenges in ensuring that privacy and
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security issues are managed at a standard that meets

the patients satisfaction i.e. efficient data analysis with-

out providing access to precise data in specific patient

records. Security and privacy in data analytics poses

several challenges, especially when it draws information

from multiple sources.
The major goal in healthcare is not to protect the

patients privacy rather it is to save lives. The HIPAA

(Health Insurance Portability and Accountability Act)

of 1996 comes to mind when privacy is debated in the

health sector. It delivers legal rights to patients con-

cerning their personally identifiable information and

establishes responsibilities for healthcare providers to

defend and restrict its use or disclosure. With the es-

calation in the amount of healthcare data, data ana-

lytics researchers envisage huge challenges in ensuring

the anonymity of patient information to avoid its use or

disclosure. Limiting data access, unfortunately reduces

information content which might be very important.

Moreover, real data is not static but grows larger and

varies over time and none of the existing techniques

result in any convenient content being released in this

scenario.

9.3 Advanced Analyzing Techniques

Technological advancements (wearable devices, patient-

centered care etc.) are transforming the entire health-

care industry. The nature of health data has progressed,

and currently, EHRs have simplified the data acquisi-

tion process with the help of the latest technology, but

unfortunately, they dont have the ability to aggregate,

transform, or perform analytics on it. Intelligence is re-

stricted to retrospective reporting that is insufficient for

data analysis. A plethora of algorithms, techniques, and

tools are available for the examination of complex data.

Traditional machine learning deploys statistical analy-

sis based on a sample of a total dataset. The use of tra-

ditional machine learning methods for this data is not
efficient and is computationally infeasible. The combi-
nation of the huge volume of healthcare data and com-

putational power lets the analysts to focus on analytics

techniques which are scaled up to accommodate the vol-

ume, velocity, and variety of complex data. During the

last decade, there has been a melodramatic change in

the size and complexity of data thus, several emerging
data analysis techniques have been presented.

Healthcare needs to catch up with other industries

that have already progressed from traditional meth-
ods to advance methods like predictive analytics, deep
machine learning, and graph analytics. Innovative an-
alytics techniques need to be developed to interrogate

healthcare data and gain insight into hidden patterns,

trends, and associations in the data. It deduces relation-

ships without the need for a specific model and enables
the machine to identify the patterns of interest in huge
unstructured data. As one example, a deep learning al-

gorithm that observed data from Wikipedia learned on

its own that California and Texas are both states in the

U.S. It does not have to be modeled to understand the

conception of a country and state, and this is a gigantic

difference between older machine learning and emerging

deep learning methods.

9.4 Data Quality

Gone are the days when healthcare data was small,
structured and collected exclusively in electronic health

records. Due to the tremendous advancements in IT,

wearable technology and other body sensors, data has

become quite large (moving to big data), unstructured

(80% of electronic health data is unstructured), non-

standard as well as in a multimedia format. This variety

in data makes it challenging and interesting for analysis.

Currently, the quality of healthcare data is a cause of

concern for four reasons, incompleteness (missing data),

inconsistency (data mismatch between within same or

various EHR sources), inaccuracy (non-standard, incor-

rect or imprecise data) and data fragmentation. Data

quality involves a group of different techniques, these

being data standardization, verification, validation, mon-

itoring, profiling, and matching. The problem of poor
data in the health industry has reached epidemic pro-
portions and introduces several pernicious effects, par-
ticularly in relation to disease prevention. The problem

with dirty data is mostly related to missing values, du-

plication, outliers and stale records.

Although real-time data monitors (especially in ICUs)

are partially used in most hospitals, real-time data an-

alytics is not in practice. Hospitals are moving to real-

time data collection and in the near future, real-time

data analytics will revolutionize the healthcare indus-

try, enabling such things as the early identification of

infections, the continuous monitoring of the progress

of treatment, and the selection of the right drugs etc.

which could help to reduce morbidity and mortality. To

achieve real-time data processing, we need data stan-

dardization and device inter-operability.

The other common issue is data standardization.
Structuring of only 20 percent of data has shown its im-

portance but on the other hand, clinical notes are still in

practice and created in billions due to the reason that

the physician can best explain the clinical encounter.

Empower physicians as well as maintaining the data

quality is quite challenging. So far, this data is excluded
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from data analytics as its available in the natural lan-

guage and not discrete. Transforming this unstructured

data into a discreet form requires efficient intelligent

technology and it is has been a very difficult problem

for medical IT until now. The only way this unstruc-

tured and nonstandard data can be used is by using

NLP to translate the data using ICD or SNOMED CT

into discrete data.

10 Conclusion

The exponential growth of big data analytics has rapidly
increased that plays a vital role in the progression of
healthcare practices and research. It includes provid-

ing tools to collect, analyze, manage and store a large

volume of structured, unstructured and large complex

data. Big Data has brought a dramatic change in health-

care which reduce the cost of treatment and accelerate

the identification of disease, cancer etc. and improve the
life’s quality. It has been recently applied in aiding in
the process of healthcare personnel, care delivery, early

disease detection, disease exploration, patient care, and

community services.

In this paper, we have discussed the big data analyt-

ics methods, tools, techniques and architectures in the

healthcare domain. We have focused on five major sub-

disciplines of healthcare i.e. medical image processing

and imaging informatics, bioinformatics, clinical infor-

matics, Public Health informatics and Medical Signal

analytics along with techniques, tools, and repositories

deployed in each discipline. These disciplines plays a vi-

tal role in healthcare and bio medical due to the enor-

mous amount of data.
Healthcare providers had no direct incentive in shar-

ing the patient information with each other, that made

it harder to efficiently utilize the power of analytics in

healthcare industry. We can possibly change the way to

healthcare providers use modern advances and sophisti-

cated technologies to pick up understanding from their

clinical, data warehouses, information storehouses for

extracting informative patterns and decision making.

Later on we’ll see the quick, across the board execution

and utilization of Big Data Analytics over the social

insurance association and the medicinal services indus-

try. Keeping that in mind, the few difficulties must be

tended to. Its potential is extraordinary however, issues,
for example, multiple source information management,
ensuring protection, shielding security, setting up mod-

els and administration, advance analyzing techniques

and data quality are the notable challenges in the do-

main. Regardless, the future trends of Big Data in the

social insurance framework have the capability of en-

hancing and quickening communications among clini-

cians, executive, logistic manger, and analyst by dimin-

ishing costs, reducing risks and improving personalized
care.

Implementation of big data analytic is the responsi-

bility for all stakeholders in healthcare industry. They
must be effectively engaged in the review and policy
making process if big data that could results in improv-
ing the patient outcomes. Government agencies, health-

care professionals, hardware companies, pharmaceuti-

cal industries, people, data scientist, researchers and

vendors must be involved in developing the big data

framework that will provide the future direction of big

data analytics in healthcare industry.
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