
Leveraging COUNT Information in Sampling
Hidden Databases

Arjun Dasgupta #, Nan Zhang ∗, Gautam Das #

#University of Texas at Arlington , ∗George Washington University

{arjundasgupta,gdas} @ uta.edu
#

, nzhang10@gwu.edu
∗

Abstract— A large number of online databases are hidden
behind form-like interfaces which allow users to execute search
queries by specifying selection conditions in the interface. Most
of these interfaces return restricted answers (e.g., only top-k of
the selected tuples), while many of them also accompany each
answer with the COUNT of the selected tuples. In this paper, we
propose techniques which leverage the COUNT information to
efficiently acquire unbiased samples of the hidden database. We
also discuss variants for interfaces which do not provide COUNT
information. We conduct extensive experiments to illustrate the
efficiency and accuracy of our techniques.

I. INTRODUCTION

A. Hidden Databases

A large portion of data available on the web is present in

the so called “deep web”. The deep web consists of private

or hidden databases that lie behind form-like query interfaces.

These query interfaces allow external users to browse these

databases in a controlled manner. Typically users provide

inputs in the form interface which are then translated into SQL

queries for execution and the results provided to the user on

the browser. Databases with such public web-based interfaces

are present for many commercial sites, as well as government,

scientific, and health agencies.

We focus on two of the simplest and most widely prevalent

kind of query interfaces. The first kind of interfaces allows

users to specify range conditions on various attributes -

however, instead of returning all satisfying tuples, such

interfaces restrict the returned results to only a few (e.g.,

top-k) tuples, sorted by a suitable ranking function. Along

with these returned tuples, the interface may also alert the

user if there was an “overflow”, i.e., if there were other tuples

besides the top-k that also satisfied the query conditions but

were not returned. We refer to such interfaces as TOP-k-

ALERT interfaces. Examples include MSN Stock Screener

(http://moneycentral.msn.com/investor/finder/customstocks.asp)

which has k = 25 and Microsoft Solution Finder

(https://solutionfinder.microsoft.com/Solutions/SolutionsDirect-

ory.aspx?mode=search) which has k = 500. The second kind

interfaces that we consider are similar to the above, except

that instead of simply alerting the user of an overflow, they

provide a count of the total number of tuples in the database

that satisfy the query condition. We refer to such interfaces

as TOP-k-COUNT interfaces. An example is MSN Careers

(http://msn.careerbuilder.com/JobSeeker/Jobs/JobFindAdv.aspx)

which has k = 4000.

B. The Problem of Sampling from Hidden Databases

There has been interesting recent focus on the problem of

sampling from hidden databases [1]: given such restricted

query interfaces, how can one efficiently obtain a uniform

random sample of the backend database by only accessing the

database via the public front end interface? Database sampling

is the process of randomly selecting tuples from a database

and is useful in gathering statistical information about the

data. Likewise, random samples from hidden databases can

be extremely useful to third-party applications in obtaining

insight into the hidden data. However, sampling from hidden

databases presents significant challenges as the only view

available into these databases is via the proprietary interface

that allows only limited access. Thus traditional database

sampling techniques that require complete and unrestricted

access to the data (e.g., [2], [3]) cannot be easily applied. In

[1] an interesting approach named HIDDEN-DB-SAMPLER

was proposed for sampling from hidden databases with TOP-

k-ALERT interfaces. The approach was based on a random

drill-down over the space of all queries executable via the form

interface, starting with an extremely broad (therefore over-

flowing) query, and iteratively narrowing it down by adding

random predicates, until a non-overflowing query is reached.

Once such a non-overflowing query is reached, one of the re-

turned tuples is randomly picked for inclusion into the sample.

This process can be repeated to get samples of any desired

size. The paper proposed several variants of HIDDEN-DB-

SAMPLER, depending on whether the database consisted of

only Boolean attributes or also included categorical attributes.

While much of the paper was devoted to sampling from TOP-

k-ALERT interfaces, a simple approach for sampling from

TOP-k-COUNT interfaces was also proposed.

C. Outline of Technical Results

In this paper we revisit the hidden database sampling

problem, and present vastly superior sampling techniques than

those proposed in our preliminary work [1]. Unlike our earlier

work, our main focus here is on the TOP-k-COUNT interface.

However, we also show how a novel hybrid technique can

be utilized to also extend our techniques to TOP-k-ALERT

interfaces. We briefly describe our new contributions below.

There are two main objectives that any hidden database

sampling algorithm should seek to achieve:

• Sample bias: Due to the restricted nature of the interface,

it is challenging to produce samples that are truly uniform

random samples. Consequently, the task is to produce

samples that have small bias, i.e., samples that deviate as

little as possible from uniform.

• Efficiency: We measure efficiency of the sampling process

by the number of queries that need to be executed via the

interface in order to collect a sample of a desired size.

The task is to design an efficient sampling procedure that

executes as few queries as possible.

Our Algorithm for TOP-k-COUNT Interfaces: We first

discuss our results for TOP-k-COUNT interfaces. As was

briefly described in [1], it is fairly straightforward to design

a random drill-down procedure that produces samples without

any bias. However, the procedure suffers from poor efficiency

- it has to execute an inordinate number of queries before

obtaining reasonable sized samples. In the current paper we

have carefully investigated this problem, and have designed

COUNT-DECISION-TREE, a vastly more efficient algorithm.

This is one of the principal results of our paper.
The new procedure COUNT-DECISION-TREE is based

on two main ideas. The first idea is to continuously log

the query history while the sampling is in progress - i.e.,

record (as materialized views) all executed queries and their

returned counts. We then design a sampling procedure that

tries to leverage the query history as much as possible, where

in preparing the next query to execute, preference is given

to queries that already appear in the query history, thereby

replacing a costly query execution with a fast local look-up

at the client’s end. In fact, utilization of query history offers

opportunities of query inference in addition to simple reuse -

the former refers to queries that may not have been directly

executed in the past, but whose counts can be inferred from

the ones that have been executed. In the paper we carefully

explore our idea of logging query history, and provide both

a theoretical analysis of the number of queries saved by

this approach, as well as substantial experimental evidence

to corroborate our analytical findings.
The second idea is to generalize the notion of attribute

ordering used in [1] to that of a decision tree. In the earlier

work, the random drill-down procedure was guided by an

ordering of the attributes, such that each new predicate selected

for narrowing the query involved a random value of the

next attribute present in the attribute order. For the case of

TOP-k-COUNT interfaces, it was suggested that any specific

attribute order was adequate for obtaining unbiased samples.

In the current paper, we make non-trivial enhancements to

this simplistic scheme to obtain unbiased samples, but with

significant performance improvements. Our new approach may

be considered as the execution of multiple random drill-down

procedures (where each such procedure results in the selection

of a random sample tuple) except that we always adhere to

following paths down a decision tree. In this paper, a decision

tree over the database tuples is a tree where all internal

nodes are attributes, all leaf nodes are tuples, and each edge

leading out of a node is labeled with a unique value from

that attribute’s domain, along with a transition probability

proportional to the number of leaf tuples that can be reached by

following that edge. This transition probability is used to select

the edge during random drill-down. Each path from the root

to a leaf encounters a subset of the attributes in the interface,

but the same attribute is never repeated along a path.

Clearly the use of a decision tree is a generalization over

using any fixed attribute order - the latter essentially refers to

a decision tree that has the same attributes at any given level

of the tree. More importantly, while any legitimate decision

tree can be used to obtain unbiased samples, the challenge

is in designing a decision tree that achieves the maximum

efficiency. This problem is complicated by the fact that this

tree cannot be created in its entirety, as complete access to all

database tuples is impractical; thus this tree has to be built and

used on-the-fly, i.e., while the sampling is in progress. Thus if

we take a snapshot at any time during the sampling process, we

will essentially have created a partial decision tree, with only

a few paths extending all the way to the leaves (corresponding

to those tuples that have been included in the sample thus far).

Our investigations of such an optimal decision tree-based

approach led to several interesting technical results. A theoret-

ical study revealed interesting connections with the seemingly

unrelated NP-hard problem of entity identification in the

design of interactive question-answering systems [4]. Thus

we show that drawing samples in an optimal manner using

the decision tree approach is computationally intractable.

However, our COUNT-DECISION-TREE algorithm is based

on a carefully designed heuristic for incrementally building an

efficient decision tree while the sampling is in progress, with

the goal being that the remaining samples can be obtained

in as few queries as possible. This heuristic is based on

the online computation of a savings function that attempts

to select new queries that: (a) leverage the query history

and try to reuse as many past queries as possible, and (b)

have the best chance of reaching a random tuple as quickly

as possible. Although primarily a heuristic, we are able to

provide important analytical arguments as to why such a

heuristic is expected to do well. Our experiments corroborate

our conceptual and analytical arguments to show that COUNT-

DECISION-TREE is an order of magnitude more efficient than

the previous algorithm presented in [1] for drawing random

samples from a TOP-k-COUNT interface.

Our Algorithm for TOP-k-ALERT Interfaces: We next

discuss our results for TOP-k-ALERT interfaces. Unlike TOP-

k-COUNT interfaces, it is quite difficult to draw a random

sample from a TOP-k-ALERT interface without introducing

bias into the resultant sample. In fact, bias and efficiency

are contradictory goals, and the earlier algorithm HIDDEN-

DB-SAMPLER in [1] is actually a parameterized procedure

which trades off bias against efficiency. In the current paper

we propose a new parameterized procedure, ALERT-HYBRID,

for drawing random samples from a TOP-k-ALERT interface

which is significantly better than HIDDEN-DB-SAMPLER.

This is second main algorithm presented in our paper.

We provide a brief outline of the idea of ALERT-HYBRID.

The algorithm consists of two phases. The first phase consists

of a drawing a fairly small random sample with very small bias

(henceforth called a pilot sample) using the earlier HIDDEN-

DB-SAMPLER algorithm. Then in the second phase, the

remaining desired number of samples is drawn from the

alert interface, except that we use our COUNT-DECISION-

TREE algorithm to draw the remaining samples. Although

the interface does not have the capability to provide count

information for queries, we use the pilot sample to estimate

count information for queries. This is done using standard

approximate query processing techniques [5]–[7] by executing

each query locally on the pilot sample and appropriately

scaling the result to estimate the count for the entire database.

Interestingly, the “hybrid” idea of using a small amount of

pilot samples to bootstrap COUNT-based sampling is inspired

by similar sampling approaches considered in other unrelated

contexts [8], [9]. Because the counts are only estimates, we

are not able to completely remove bias from the resultant

sample, however our experiments show that ALERT-HYBRID

is significantly better than HIDDEN-DB-SAMPLER for draw-

ing random samples from a TOP-k-ALERT interface - for

the same bias (same efficiency), it produces samples more

efficiently (with less bias).

In summary, the main contributions of this paper are:

• We revisit the problem of random sampling from hidden

databases with proprietary form interfaces.

• We present COUNT-DECISION-TREE, an efficient al-

gorithm for drawing random samples without bias from

hidden databases with TOP-k-COUNT interfaces. The

algorithm is based on two ideas: (a) the use of query

history, and (b) the use of a decision tree. We provide

several theoretical insights into the behavior and perfor-

mance of this algorithm.

• We present ALERT-HYBRID, an efficient algorithm for

drawing random samples with small bias from hidden

databases with TOP-k-ALERT interfaces. The algorithm

is based on using a pilot sample to bootstrap the COUNT-

DECISION-TREE algorithm to draw the samples.

• We provide a thorough experimental study that demon-

strates the significance of our theoretical results and the

superiority of our algorithms over previous efforts.

The rest of this paper is organized as follows. We briefly

review the existing sample algorithms for hidden databases

in Section 2. In Sections 3 and 4, we introduce our two

major algorithms, COUNT-DECISION-TREE and ALERT-

HYBRID, respectively. Section 5 presents the experimental

results. Related work is reviewed in Section 6, followed by

final remarks in Section 7.

II. PRELIMINARIES

A. Models of Hidden Databases

We restrict our discussion in this paper to categorical data

- we assume a simple discretization of numerical data to

resemble categorical data. Apparently, different discretization

will lead to different performance of sampling. How to design

an optimal discretization scheme is left as an open problem.

Consider a hidden database table D with m tuples

t1, . . . , tm and n attributes A1, . . . , An with respective do-

mains Dom1, . . . , Domn. The table is only accessible to users

through a web interface. We assume a prototypical interface

where users can query the database by specifying values for

a subset of attributes. Thus a user query QS is of the form:

SELECT ∗ FROM D WHERE Ai1 = vi1 ... Ais
= vis

,

where vij
is a value from Domij

.

Let Sel(QS) be the set of tuples in D that satisfy QS .

As is common with most web interfaces, we shall assume

that the query interface is restricted to only return k tuples,

where k ≪ m is a pre-determined small constant (such as

10 or 50). Thus, Sel(QS) will be entirely returned only if

|Sel(QS)| ≤ k. If the query is too broad (i.e., |Sel(QS)| > k),

only the top-k tuples in Sel(QS) will be selected according

to a ranking function, and returned as the query result. The

interface will also notify the user that there is an overflow, i.e.,

that not all tuples satisfying QS can be returned. At the other

extreme, if the query is too specific and returns no tuple, we

say that an underflow occurs. If there is neither overflow nor

underflow, we have a valid query result.

For the purpose of this paper, we assume that a restrictive

interface does not allow the users to “scroll through” the

complete answer Sel(QS) when an overflow occurs for QS .

Instead, the user must pose a new query by reformulating some

of the search conditions. We argue that this is a reasonable

assumption because many real-world top-k interfaces (e.g.,

Google) only allow “page turns” for limited (100) times before

blocking a user by IP address.

Based on the response provided by the interface when

there was an overflow, we classify the interfaces for hidden

databases into two categories: TOP-k-ALERT and TOP-k-

COUNT. If the interface only issues a Boolean alert i.e.,

whether there were other tuples besides the top-k that also

satisfied the query conditions but were not returned, then the

interface is TOP-k-ALERT. If the interface also provides a

count of the total number of tuples in the database that satisfy

the query condition, we call the interface as TOP-k-COUNT.

B. A Running Example

Table I depicts a simple dataset which we will use as a

running example throughout this paper. There are 8 tuples

and 7 attributes, including 3 Boolean and 5 categorical with

domain size ranging from 4 to 8.

TABLE I

EXAMPLE: INPUT TABLE

A1 A2 A3 A4 A5 A6 A7

t1 0 0 0 0 0 0 0

t2 0 1 0 0 2 0 1

t3 1 0 0 1 1 0 2

t4 1 0 1 1 2 0 3

t5 2 1 0 0 2 1 4

t6 2 1 0 1 2 2 5

t7 3 1 1 1 3 3 6

t8 4 0 1 1 3 0 7

C. Prior Sampling Algorithms

In this subsection we review three variants of HIDDEN-DB-

SAMPLER, the sampling algorithm presented in our earlier

work [1] for obtaining random samples from hidden databases.

1. ALERT-ORDER: We first describe a variant that was

designed for TOP-k-ALERT interfaces (for the rest of this

paper we refer to this variant as ALERT-ORDER). Assume

a specific fixed ordering of all attributes, e.g. A1, . . . , An.

Consider Figure 1 a) which represents an attribute-order tree

over the database tuples, where all internal nodes at the ith
level are labeled by attribute Ai. Each internal node Ai has

exactly |Domi| edges leading out of it, labeled with values

from Domi. Thus, each path from the root to a leaf represents

a specific assignment of values to attributes, with the leaves

representing possible database tuples. Note that since some

domain values may not lead to actual database tuples, only

some of the leaves representing actual database tuples are

marked solid, while the remaining leaves are marked empty.

The ALERT-ORDER sampler executes a random walk in

this tree to obtain a random sample tuple. To simplify the

discussion, assume k = 1. Suppose we have reached the

ith level and the path thus far represents the query A1 =
v1& . . .&Ai−1 = vi−1. The algorithm selects one of the

domain values of Ai uniformly at random, say vi, adds the

condition Ai = vi to the query, and executes it. If the

outcome is an underflow (i.e., leads to an empty leaf), we

can immediately abort the random walk. If the outcome is a

single valid tuple, we can select that tuple into that sample.

And only if the outcome is an overflow do we proceed further

down the tree.

This random walk may be repeated a number of times to

obtain a sample (with replacement) of any desired size. One

important point to note is that this method of sampling intro-

duces bias into the sample, as not all tuples are reached with

the same probability. Techniques such as acceptance/rejection

sampling are further employed for reducing bias (see [1] for

further details).

For this scheme, clearly the order of the attributes can play

an important role in the efficiency of the sampling process. It

was suggested in [1] that the attributes be ordered from largest

to smallest domain sizes.

2. ALERT-RANDOM: For the special case of Boolean data,

since the domain sizes are the same for all attributes, it

was suggested that instead of using a specific fixed attribute

order, a fresh random ordering of attributes be used before

every random walk. It was shown that such a scheme helps

reduce the bias more than any fixed order attribute scheme.

Henceforth we refer to this variant as ALERT-RANDOM.

3. COUNT-ORDER: We now turn our attention to TOP-

k-COUNT interfaces. It was pointed out in [1] that, when

COUNT information is returned for each query, a random

walk scheme can be designed to generate completely unbiased

samples. Thus, no bias reduction techniques need to be used

later. Henceforth we refer to this variant as COUNT-ORDER.

For a given node in the attribute-order tree, instead of choosing

edges with uniform probability, COUNT-ORDER chooses an

edge with probability proportional to the COUNT of that edge

(i.e., proportional to the number of actual tuples that can be

reached following that edge). For example, suppose we have

reached the ith level and the path thus far represents the query

A1 = v1& . . .&Ai−1 = vi−1. Let the current attribute under

consideration, Ai, have |Domi| = bi edges labeled with values

v1
i , . . . , vbi

i . Then, the random walk follows edge vj
i (i.e., adds

b) A decision tree

A1

A2 A3 A4

0 1 2 3 4

0 1 0 1 0 1

A1

0 1 2 3 4

0 1 0 1 0 1

A2

A3

0 1 0 1

0 1

A4

a) An attribute-order tree

t1 t2

t3 t4

t5 t6

t7 t8

t1 t2 t3 t4 t5 t6

t7 t8

valid queryInternal node underflow

Fig. 1. Attribute-Order Tree vs. Decision Tree

Ai = vj
i to the query) with probability equal to

P (vj
i) =

COUNT(A1 = v1, . . . , Ai−1 = vi−1, Ai = vj
i)

COUNT(A1 = v1, . . . , Ai−1 = vi−1)
.

Consider the impact of this approach to the bias of the

obtained samples. The probability that a random walk hits

a tuple t = 〈v1, . . . , vn〉 in the database is

P (t) =
n

∏

i=1

Pr{vi is chosen for Ai} (1)

=

n
∏

i=1

COUNT(A1 = v1, . . . , Ai−1 = vi−1, Ai = vi)

COUNT(A1 = v1, . . . , Ai−1 = vi−1)

(2)

=
1

m
(3)

where, recall that m is the number of tuples in the database

and COUNT(A1 = v1, . . . , Ai−1 = vi−1) = COUNT(∗) = m
for i = 1. Thus, the count-based sampling generates unbiased

samples.

III. COUNT-DECISION-TREE

In this section we present the main ideas of COUNT-

DECISION-TREE, our algorithm for sampling a hidden

database with TOP-k-COUNT interface.

A. Motivation

Although the simple COUNT-ORDER algorithm explained

in Section II can generate unbiased samples, it also introduces

a significant challenge, as the number of queries required

for sampling categorical databases may increase dramatically

compared with both TOP-k-ALERT algorithms. To understand

this, consider a random walk from a node to one of its b
successors in the tree. In both TOP-k-ALERT algorithms, an

edge is chosen uniformly at random from [1, b], and only one

query corresponding to the chosen edge needs to be issued.

However in COUNT-ORDER, the counts of all edges must be

first determined in order to compute their respective transition

probabilities, after which an edge is randomly selected to

follow. This requires b − 1 queries1. Thus, COUNT-ORDER

1The remaining count can be inferred from these b−1 counts and the count
of the current node.

may require a large number of queries for sampling categorical

databases, especially for attributes with large domains.

The rest of this section is devoted to techniques for improv-

ing the efficiency of sampling TOP-k-COUNT interfaces.

We first introduce a generalization of an attribute-order tree

to a decision tree on the hidden database. The key extension

of a decision tree is that it allows each level of the tree to

contain different attributes. Figure 1 a) and b) illustrates both

types of trees for the database in Table I for the case k =
1. Random walks over decision trees are likely to be more

efficient than over attribute-order trees, as by leveraging the

flexibility of selecting multiple attributes for nodes at the same

level, a compact decision tree features a shorter depth and a

smaller total number of possible queries. For the example in

Figure 1, when one sample tuple needs to be collected, the

decision tree provides a saving of (1/4× 1 + 1/4× 2) = 3/4
queries in comparison with the attribute-order tree. We defer

a more thorough analysis of the advantages of decision trees

over attribute-order trees to Section III-C.

Suppose we are given the structure of a decision tree over

a hidden database - i.e., the entire tree is available, barring

the various COUNT information (or transition probabilities

associated with the edges). Figure 2 depicts a count-based

sampling algorithm that performs random walks on this de-

cision tree to collect a sample with s tuples (in the figure we

use the notation |u| to refer to the count of node (or edge) u,

i.e., the number of database tuples below u in the tree). We

would like to make several remarks regarding the algorithm.

First, this is of course a hypothetical scenario, as such a tree

is not available for hidden databases, and in fact has to be

constructed on-the-fly (which will be discussed later in the

paper). Second, queries corresponding to nodes in the upper

level (e.g., root) of the tree may be reused by many random

walks, especially if s is large. This motivates us to consider

the impact of query history in Section III-B. Third, no matter

how the decision tree is structured, the sampling algorithm

always generates unbiased samples. Fourth, the number of

queries, however, may vary significantly between different

structures. An interesting challenge is to identify a structure

which achieves the optimal efficiency. We will address this

challenge in Sections III-C.

Require: r: root node of the decision tree

1: for i = 1 to s do

2: Obtain the i-th sample as DT SAMP(r).

3: end for

4: function DT SAMP(u)

5: ⊲ Let u have b values v1, . . . , vb and edges u1, . . . , ub

6: Query b − 1 edges for counts of u1, . . . , ub.

7: Randomly pick j ∈ [1, b] s.t. Pr{j picked} = |uj |/|u|.
8: if |uj | ≤ k then

9: return a random tuple from the answer to uj

10: else

11: return DT SAMP(uj).

12: end if

13: end function

Fig. 2. Sampling TOP-k-COUNT with a Given Decision Tree

B. Improving Efficiency: Query History

We start our discussion on improving the efficiency of

count-based sampling by a simple strategy: take advantage of

the query history. That is, the sampling algorithm should only

send to the hidden database “new” queries which have never

been asked before and cannot be inferred from the history. An

example of inference is the computation of COUNT(a1 = 1)
from COUNT(∗) and COUNT(a1 = 0).

We discuss the impact of leveraging query history to im-

prove sampling efficiency. The following theorem provides a

lower bound on the number of queries saved by consulting the

query history.

Theorem 3.1: For the algorithm in Figure 2, the number of

queries saved by consulting the query history for obtaining s
samples (s ·k ≪ m) of a hidden database of size m is at least

sQH > s ·

(

(b − 1) · logb s − 2 −
b

b − 1

)

, (4)

where b (b ≥ 2) is the minimum domain size of an attribute.

We omit the proof due to space limitation. An observation

from the theorem is that the saving from history is significant

when s is large. For example, obtaining 5, 000 samples from

a Boolean database will lead to a saving of at least 41, 438
queries. For a 100,000-tuple i.i.d. Boolean database where the

1’s and 0’s are uniformly distributed with probability 0.5 each,

it implies an expected saving of at least 49.90% when k = 1
(from 83, 048 to at most 41, 610). The saving will be even

larger for a categorical database with b > 3. For example,

when b = 5, the saving is at least 89, 590 queries. Again, for

a 100,000-tuple i.i.d. database with each attribute following

uniform distribution on 5 values, it implies an expected saving

of 62.62% (from 143, 067 to 53, 317).

Theorem 3.1 provides a lower bound on the number of

queries saved by the history. Now consider an even more

important problem for leveraging history: how many unique

queries are needed to sample a hidden database with a

TOP-k-COUNT interface? We investigate this problem below.

In particular, we consider the maximum number of queries

needed in the extreme case where all branches are traversed.

The result will also form the foundation for our discussion of

building the decision tree in Section III-C.

Tree A Tree B

Tree C

A2

A5 A6

A7

0 1 2 3 0 1 2 3

0 1

0 1 2 3 4 5 6 7

A2

A5 A7

0 1 2 3 0 1 2 3

0 1

4

Tree D

A1

A2 A3 A4

0 1 2 3 4

0 1 0 1 0 1

t1 t2 t3 t4 t5 t6

t7 t8

t1 t3 t4 t8 t2 t5 t6 t7

t1 t2 t3 t4 t5 t6 t7 t8 t1 t3 t4 t8 t5t2 t6 t7

5 6 7

Fig. 3. Examples of Decision Trees

First, we consider a special case of decision trees referred to

as loaded decision trees. A tree is loaded iff it does not have

any empty leaves. For example, of the four trees in Figure 3

corresponding the running example database in Table I, trees

A, B, and C are loaded, while tree D is not. In the following,

we will first derive the maximum number of unique queries

required for sampling a loaded tree. After that, we extend the

result to general decision trees.

Theorem 3.2: Given the structure of a loaded decision tree,

the total number of unique queries required for obtaining s
samples through a TOP-k-COUNT interface is at most m−1.

Proof: Let |Li| and |Ωi| be the number of all (internal

and leaf) nodes and internal nodes in level i, respectively

(root is level 1, let the maximum levels be h). Then, the

maximum number of queries issued for level i is |Li+1|−|Ωi|
because each internal node has one query saved through

history inference. Thus, the maximum total number of queries

issued is

h−1
∑

i=1

(|Li+1|−| Ωi|) =

h
∑

i=1

|Li|−
h−1
∑

i=1

|Ωi|− 1 = m − 1. (5)

This is due to two reasons. First,
∑h

i=1 |Li| −
∑h−1

i=1 |Ωi| is

equal to the total number of leaf nodes because all nodes in

level h are leaves. Second, the number of leaves is m.

The theorem shows that given a loaded decision tree, the

maximum number of unique queries required for count-based

sampling of the tree only depends on the number of tuples

in the database, and not by the number of attributes or their

domain sizes. For example, trees A, B and C in Figure 3 all

have 7 unique queries for count-based sampling: Tree A has

1 at the level 1 and 6 at level 2; Tree B has 4 at level 1 and 3

at level 2; while all 7 queries for Tree C are at the same level.

We now consider the extension to general decision trees.

Again, we would like to remark that in practice, we will not

be provided with the structure of a decision tree; rather queries

must be issued to both construct the decision tree and sample

from it. If a decision tree is constructed without consulting the

complete database, empty branches often occur and the tree is

usually not loaded. Thus, the sampling of a decision tree that

has empty leaves is arguably a more practical scenario.

Each edge leading to an empty leaf leads to one additional

query, as we can observe from tree D in Figure 3. To analyze

the number of empty leaves, we consider an example of m-

tuple i.i.d. Boolean dataset studied in [1], where each attribute

takes the value of 1 with probability p. Let L(m, k, p) be the

expected number of empty leaves for such a dataset. We have

L(0, k, p) = 1. (6)

L(1, k, p) = 0. (7)

. . .

L(k, k, p) = 0. (8)

L(m, k, p) =

m
∑

i=0

(m

i

)

pi(1 − p)m−i(L(i, k, p) + L(m − i, k, p)).

(9)

Note that although L(m, k, p) appears in both the left and right

side of (9), it can nevertheless be solved from the equation.

Figure 4 depicts the relationship between the number of empty

leaves and the number of tuples when k = 1. The results are

computed from (6)-(9) using Matlab simulation. As we can

see, L(m, p) and m roughly follow a linear relationship. Based

on (9) and Theorem 3.2, we have the following corollary.

Corollary 3.1: Given an i.i.d. Boolean dataset where each

attribute takes the value of 1 with probability p, for all s ≥ 1,

the total number of queries required for obtaining s samples

through a top-k interface with COUNT is at most m − 1 +
L(m, k, p).

0 20 40 60 80 100
0

50

100

150

200

Number of Tuples (m)

N
u
m

b
e
r

o
f
E

m
p
ty

 L
e
a
ve

s
(L

(m
,
p
))

p = 0.125

p = 0.250

p = 0.333

p = 0.500

Fig. 4. The number of empty leaves vs. the number of tuples when k = 1

C. Improving Efficiency: Constructing Decision Tree

1) Motivation and Hardness: Theorem 3.2 indicates that,

if a very large number of samples need to be collected, then

every decision tree without empty leaves will have the same

efficiency because the total number of queries only depends

on the size of the database. Nonetheless, the design of the

decision tree may play an important role in reality due to the

following two reasons:

• Since the number of samples required in practice is

usually much smaller than the size of the database, many

of the m − 1 queries may not be issued; thus different

decision trees may have different impact on efficiency.

• As we can see from Figure 4, the number of empty leaves

may be significant, especially when the attributes skew

towards a few values.

We now discuss the design of an efficient decision tree,

in particular the following problem: Given s, the number

of samples to be collected, design a decision tree with the

minimum sampling cost, i.e., the minimum expected number

of queries required to collect s unbiased samples.

Unfortunately, this problem is hard even if the decision tree

can be constructed with full access to the m tuples. Consider a

special case of the problem when s = 1 and k = 1 for Boolean

databases. The problem is essentially the same as computing

a decision tree with no empty leaves that has the minimum

average path length from root to the leaves. This is equivalent

to a well-known problem of constructing an optimal decision

tree for the entity identification problem [4], for which the

following hardness result is known from [4]:

Theorem 3.3: (from Theorem 4.1 in [4]) When s = 1 and

k = 1, it is NP-hard to construct a decision tree over a

Boolean database with the minimum sampling cost, or even

approximate it within a factor of Ω(log m).

2) Basic Ideas: Due to the hardness of the problem, we

propose a heuristic greedy algorithm to construct an efficient

decision tree. We remind the reader that the tree cannot be

created in its entirety, as complete access to all database tuples

is impractical; the tree has to be built and used on-the-fly. At

any time during the sampling process, we will essentially have

created a partial decision tree, with only a few paths extending

all the way to the leaves (corresponding to those tuples that

have been included in the sample thus far).

We first discuss the intuition behind the algorithm: the

saving and expense associated with each node in the decision

tree. For the ease of understanding, we restrict our attention

to k = 1 in the discussion of intuition, but will present the

algorithm with arbitrary k.

Saving: Recall from the proof of Theorem 3.2 that, when k =
1, a decision tree without empty branch requires exactly m−1
total queries when the number of queries s → ∞. Consider

these as the baseline queries for the sampling process. As we

mentioned above, the actual number of queries varies from the

baseline due to two possible reasons:

• When s is small, a subtree may never be encountered

by a random walk. Note that a never-encountered subtree

with m tuples yields a reduction of m−1 on the number

of queries. Let the total reduction be R(s).
• Each empty leaf leads to an increase of 1 on the number

of queries. Let the total increase be L.

Thus, the actual number of queries is m − 1 − (R(s) − L).
We say that the decision tree yields a saving of R(s) − L.

Note that unlike the number of baseline queries which is

independent of the structure of the decision tree, R(s) − L
strongly depends on the tree structure. For example, consider

trees in Figure 3. Tree C offers no saving at all, because all

possible queries will be issued to collect the first sample. When

s = 1, the saving of tree B is 3 because one of the 2nd level

nodes (A5 and A6) cannot be encountered by the random walk.

The saving also depends on s. When s increases, the saving

of tree B decreases rapidly because it is very likely that both

A5 and A6 will be encountered. Nonetheless, tree A might still

offer some saving if one of the three nodes (A2, A3, A4) are

not encountered by random walks. Thus, a critical challenge

is to construct a decision tree with maximized saving given s.

Consider the saving associated with not reaching a node

u of Ai (but reaching its ancestors). Denote such saving by

R(s, u) − L(u). Consider R(s, u) first. Recall that bi is the

domain size of ai. Let uj be the edge of u which corresponds

to the j-th value of Ai, and |uj | be the number of tuples below

uj . Define

R(s, u) =

bi
∑

j=1

Pr{uj is not traversed, u is reached} · (|uj |− 1)

=

bi
∑

j=1

((

1 −
|uj |

m

)s

−

(

1 −
|u|

m

)s)

· (|uj |− 1),

and

L(u) = |{j|j ∈ [1, bi], |uj | = 0}|. (10)

It is easy to see that R(s) =
∑

u R(s, u), L =
∑

u L(u), and

R(s) − L =
∑

u

(R(s, u) − L(u)). (11)

We refer to R(s, u)−L(u) as the saving of u. Table II shows

the saving of the root node for trees A, B and C in Figure 3. As

we can see, tree B offers the greatest saving when s = 1, but

its saving decreases rapidly to below tree A when s increases

to > 3. As we discussed above, tree C has a saving of 0.

TABLE II

EXAMPLE: SAVING

s 1 2 3 4 5 6

Tree A 2.2500 1.6875 1.2656 0.9492 0.7119 0.5339

Tree B 6.0000 3.0000 1.5000 0.7500 0.3750 0.1875

Tree C 0 0 0 0 0 0

Expense: The saving function R(s) − L concerns how many

queries are saved from the baseline m − 1 queries. Now

consider the opposite view: how many queries are executed,

starting from 0 queries? Let C be this number. Note that

C = m − 1 − (R(s) − L). Define

C(u) = Pr{u is reached} · (bi − 1) (12)

=

(

1 −

(

1 −
|u|

m

)s)

· (bi − 1). (13)

Again, we have C =
∑

u C(u). We refer to C(u) as the

expense of u.

Intuition of Constructing a Decision Tree: The task of

constructing a decision tree is essentially to select an attribute

label for each node: first, select an attribute for the root, and

then recursively choose an attribute for each child, and so on.

During the process, we aim to increase
∑

u(R(s, u) − L(u))
and reduce

∑

u C(u). However, note that the total number of

nodes depends on the structure of the decision tree, and may

not be known during the construction. Thus, while selecting an

attribute for a node u, we propose a heuristic of maximizing

the saving per expense ratio

SER(s, u) =
R(s, u) − L(u)

C(u)
. (14)

Due to the constraint that
∑

u(R(s, u)−L(u)+C(u)) = m−1,

limiting the ratio also limits the number of queries issued for

sampling. In particular, we have the following theorem:

Theorem 3.4: If all nodes in the decision tree satisfies

SER(s, u) ≥ σ, then the expected number of queries for

obtaining s samples is at most (m − 1)/(σ + 1).
For data in Table I, Table III shows the SER of different

attributes for choosing the root node when s = 1 and s =
10. Note that A7 is not shown in the table because its SER

is always 0. As we can see, A2 will be chosen as the root

when s = 1, while A1 will be chosen when s = 10. This is

consistent with our intuition discussed above.

Computation of SER(s, u): For computing SER(s, u), four

variables are needed: the number of samples s, the COUNT of

the current node |u|, the domain size bi and the branch counts

|uj |. Among them, |u| and s are already determined, while bi

TABLE III

EXAMPLE: SER FOR THE ROOT NODE

A1 A2 A3 A4 A5 A6

s = 1 0.5625 3.0000 2.7500 2.7500 0.7500 0.5000

s = 10 0.0422 0.0059 0.0184 0.0184 0.0197 0.0001

and |uj | depend on the selected attribute. bi can be learned

through domain knowledge. However, |uj | have to be queried

from the hidden database. For high-domain-size attributes,

|uj | requires a large number of queries, which jeopardize our

ultimate objective of minimizing the total number of queries.

Fortunately, the exact computation of SER(s, u) might

not be necessary for our algorithm. Note that to select an

attribute for node u, we only need to determine which attribute

returns the largest SER(s, u). An important observation is

that R(s, u)−L(u) may vary significantly between attributes

of different domain size. For example, consider the selection

between two attributes A1, A2 for the root node. Both follow

uniform distribution with domain size b1 = 2 and b2 = 10.

Note that when m ≫ 10, neither of them is likely to have

L(u) > 0. Thus,

SER(s, a1) =
m − 2

2s
≪

(m − 10) · 9s

9 · 10s
= SER(s, a2).

Clearly, in this case, a rough estimation of |uj | would be

sufficient for choosing between the two attributes.

We leverage this property of SER(s, Ai) by approximating

its value with the minimum number of queries. The simplest

choice is to assume that all attributes follow the uniform

distribution, and to compute |uj | = |u|/bi. However, we found

through experiments that this approximation is oversimplified

because many attributes in real-world datasets have highly

skewed value distribution.

Thus, we propose to first issue a small number (
∑

i bi)

of marginal queries, and then estimate |uj | based on the

conditional independence assumption: The marginal queries

are COUNT(Ai = v1), . . . , COUNT(Ai = vbi
) for all

attributes Ai. To select an attribute for node u, we estimate

the COUNT of branch uj for attribute Ai by

|uj |e = |u| ·
COUNT (ai = vj)

COUNT (∗)
. (15)

However, note that once an attribute ai is selected, we will

actually query all |uj | in order to determine the probability

for following each branch. By doing so, we save the queries

used for constructing but not sampling the decision tree (i.e.,

queries |uj | for attributes which are not eventually chosen),

without affecting the unbiasedness of the collected samples.

D. Algorithm COUNT-DECISION-TREE

Figure 5 depicts COUNT-DECISION-TREE, our algorithm

for sampling TOP-k-COUNT interfaces. It performs the fol-

lowing alternative steps: a) determine the attribute for the

current node (Lines 1 to 3), then b) determine which branch

to follow, and so on. The estimation of SER(s, u) is used to

determine the attribute (Line 6). Note that once an attribute is

chosen for a node, it is available for reuse for future samples

in order to leverage the query history. Determining the next

edge involves the execution of bi−1 queries (Line 8), followed

by a random picking of the next edge (Line 10).

Require: Attr(·) = ∅ if not assigned

1: for i = 1 to s do

2: Obtain the i-th sample as DT SAMP(s − i + 1, 〈〉).
3: end for

4: function DT SAMP(st, path)

5: if Attr(path) = φ then

6: Attr(path) = arg max((R(st, u, k) − L(u, k))
/C(u)).

7: end if

8: Query b−1 branches. (Only issue those not in history)

9: Randomly pick j ∈ [1, b] s.t. Pr{j picked} = |uj |/|u|.
10: if |uj | ≤ k then

11: return a random tuple from the answer to uj

12: else

13: return DT SAMP(st, path‖Attr(path) = vj).

14: end if

15: end function

Fig. 5. COUNT-DECISION-TREE

COUNT-DECISION-TREE also extends the previous dis-

cussion by addressing the cases with interface parameter k >
1. Clearly, the value of C(u) is unaffected. For computing

the saving R(s, u) − L(u), we define the number of baseline

queries as m/k − 1. Thus, the saving becomes

R(s, u, k) =

bi
∑

j=1

((

1 −
|uj |

m

)s

−

(

1 −
|u|

m

)s)

·

(

|uj |

k
− 1

)

,

and

L(u, k) =
∑

j|j∈[1,bi],|uj |<k

k − uj

k
. (16)

IV. ALERT-HYBRID

In this section, we present the main ideas behind ALERT-

HYBRID, our new algorithm for sampling hidden database

behind a TOP-k-ALERT interface.

A. Basic Ideas

A major problem of ALERT-ORDER, the state-of-the-art

algorithm for sampling TOP-k-ALERT interfaces, is the bias

of the collected samples. Since ALERT-ORDER chooses each

branch of a node with equal probability, those tuples on upper

levels of the tree (which require shorter walk from the root) are

more likely to be sampled. Although an acceptance-rejection

module was introduced to reduce the bias [1], not many

samples can be rejected in order to maintain the efficiency

of ALERT-ORDER. As a result, the remaining bias may still

be significant, as we will illustrate in the experiments.

On the other hand, the algorithms we just discussed for

TOP-k-COUNT interfaces generate no bias because each

branch is chosen with probability proportional to its COUNT.

As a result, each tuple is sampled with equal probability.

Clearly, the COUNT information which is absent from TOP-

k-ALERT interfaces can play an important role on reducing

the bias of collected samples.

Fortunately, the COUNT information is not completely out

of reach in TOP-k-ALERT interfaces. In particular, after a

small number of samples are collected, the COUNT of certain

queries may be estimated from the collected samples.

Thus, we propose ALERT-HYBRID, a two-phase procedure

by which the sampler first collects a small number (say s1)

of pilot samples for COUNT estimations, and then use the

estimated COUNT to facilitate the collection of the remaining

(much larger) s − s1 samples. The s1 samples can be sim-

ply collected by ALERT-ORDER, parameterized to produce

samples with small bias. The small bias in the s1 samples

is desirable because it helps in accurate COUNT estimations

in the second phase. Although this requirement makes the

ALERT-ORDER procedure less efficient, the relatively small

number of the pilot samples required ensures that the cost of

the first phase is a modest portion of the overall sampling cost.

For the remaining s − s1 samples, note that we cannot

directly use the COUNT-DECISION-TREE algorithm because

not all nodes can have COUNT accurately estimated from

a very small number (s1 ≪ m) of samples. Thus, we pro-

pose a hybrid approach which integrates COUNT-based and

ALERT-based sampling. In particular, after collecting the s1

samples, we invoke the COUNT-DECISION-TREE algorithm

until reaching a node u with COUNT in the collected samples

less than a threshold, say cS. At this node, there are not

enough collected samples to support a robust estimation of

the probability for following each edge. Thus, a natural choice

is to switch to ALERT-based sampling. In particular, ALERT-

ORDER is called to collect a sample under node u. As we can

see, this hybrid approach starts with COUNT-based sampling

at the upper levels of the tree, and then switches to ALERT-

based when there is not enough support from the collected

samples. Initially, the switch from COUNT-based to ALERT-

based sampling may occur early at the upper levels. However,

when more samples are collected (at the second phase), more

nodes will be able to support COUNT-based sampling, and

thus the switch may occur later.

There are two important parameters in the algorithm: s1, the

number of pilot samples collected for initial count estimation,

and cS, the count threshold for switching to ALERT-ORDER.

The setting of s1 influences the efficiency of ALERT-HYBRID

for two reasons: First, with a small s1, the constructed decision

tree is unlikely to be optimal, and therefore may require more

queries in the second phase. Second, if s1 is too large, there

will be a large number of queries spent in collecting the pilot

samples. Note that these queries are unlikely to be reused in

the second phase because COUNT-DECISION-TREE may use

a different tree from the attribute-order tree used by ALERT-

ORDER in the first phase.

The setting of cS influences the bias of the collected

samples. Note that in the count-based sampling part of the

tree, the probability of following each branch is determined

by the COUNT information estimated from the samples. Thus,

error on the estimated COUNT will lead to biased samples.

Thus, the value of cS should be large enough to enable a

stable estimation for the probability of following each edge.

Nonetheless, if cS is too large, a random walk might switch

to ALERT-ORDER at very early stage of a random walk, and

thereby introduce more bias to the samples.

We will discuss the impact of different settings of s1 and cS

in greater details in the experimental results section. Nonethe-

less, we would to remark that, although the experimental

results verify the effect of s1 and cS on the efficiency and

bias of ALERT-HYBRID, for the class of datasets we tested,

the efficiency and bias are not very sensitive to s1 and cS as

long as the parameters are set within a reasonable range. How

to determine the optimal values for s1 and cS is left as an

open problem for future work.

B. Algorithm ALERT-HYBRID

Figure 6 depicts the detailed algorithm for ALERT-

HYBRID. In the algorithm, TS is the set of collected samples

(to which a newly acquired sample is appended); and TS(path)
(resp. T (path)) is the subset of tuples in TS (resp. T) which

satisfy the selection conditions in path.

The basic steps can be stated as follows. First, the algorithm

collects s1 pilot samples before using the hybrid sampling

method to collect the other samples. During the hybrid sam-

pling, ALERT-ORDER is used when the current node has

COUNT less than cS in TS. Otherwise, COUNT-DECISION-

TREE is used, with the only difference that the counts of the

current node (i.e., |u|e) and all edges (i.e., |uj |e) are estimated

from the samples rather than queried from the database.

Clearly, the saving function Re(st, u) − Le(u) − Ce(u) is

estimated as well. Both the pilot samples and the samples

collected by hybrid sampling are returned.

1: for i = 1 to s1 do

2: TS[i] ← ALERT-ORDER(T).

3: end for

4: for i = s1 to s do

5: TS[i] ← HYBRID SAMP(s − i + 1, 〈〉).
6: end for

7: function HYBRID SAMP(st, path)

8: if COUNT(TS(path)) < cS then

9: return ALERT-ORDER(T (path))
10: else if Attr(path) = φ then

11: Attr(path) = arg maxRe(st, u)− Le(u)−Ce(u).
12: end if

13: Randomly pick j ∈ [1, b] with P (j) = |uj |e/|u|e.

14: Query q = (path‖Attr(path) = vj).
15: if q is a valid query then

16: return a random tuple from the answer to q
17: else

18: return HYBRID SAMP(st, path‖Attr(path) = vj).

19: end if

20: end function

Fig. 6. ALERT-HYBRID

V. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup, com-

pare our two algorithms with the existing ALERT-RANDOM,

ALERT-ORDER, and COUNT-ORDER algorithms, and draw

conclusions on the impact of our three main ideas: leveraging

query history, constructing an efficient decision tree, and sam-

pling TOP-k-ALERT interfaces with ALERT-HYBRID. Note

that the existing algorithms for comparison were proposed as

the HIDDEN-DB-SAMPLER in [1].

A. Experimental Setup

1) Hardware: All experiments were on a machine with

Intel Xeon 2GHz CPU with 4GB RAM and Windows XP

operating system. All our algorithms were implemented using

C# and Matlab.

2) Datasets: We conducted the experiments on three types

of datasets: Boolean Synthetic, Yahoo! Auto, and Census. For

all datasets, we tested a TOP-k-COUNT interface with k = 10.

Boolean Synthetic: Two Boolean synthetic datasets were

generated. Both have 200, 000 tuples. The first one is generated

as i.i.d. data having 80 attributes with the probability of 1 being

25%. We refer to this dataset as the Boolean-i.i.d. dataset.

The second dataset is generated in a way such that different

attributes have diverse distribution. In particular, there are 40

independent attributes, 5 of which have uniform distribution,

while the others have the probability of 1 ranging from 1/160
to 35/160 with step of 1/160. We refer to this dataset as the

Boolean-mixed dataset.

Yahoo! Auto: The Yahoo! Auto (YA) dataset consists

of data crawled from a real-world hidden database at

http://autos.yahoo.com/. In particular, it contains 15,211 used

cars for sale in the Dallas-Fort Worth metropolitan area. There

are 32 Boolean attributes, such as A/C, Power Locks, etc, and

6 categorical attributes, such as Make, Model, Color, etc. The

domain size of categorical attributes ranges from 5 to 447.

Census: The Census dataset consists of the 1990 US Census

Adult data published on the UCI Data Mining archive. After

removing attributes with domain size greater than 100, the

dataset had 12 attributes and 32,561 tuples. It is instructive to

note that the domain size of the attributes of the underlying

data is unbalanced in nature. The attribute with the highest

domain size has 92 categories and the lowest-domain-size

attributes are Boolean.

3) Parameter Settings: The experiments involve five al-

gorithms. Among them, ALERT-RANDOM and COUNT-

DECISION-TREE are parameter-less. ALERT-ORDER re-

quires a parameter called scaling factor C for the accep-

tance/rejection module, in order to tradeoff between efficiency

and bias. Following the heuristic in [1], for Boolean datasets,

we set C = 1/2l where l is the average length of random

walks for collecting the samples. For categorical data, we

consider various values of C to tradeoff between efficiency and

bias. COUNT-ORDER requires input of an (arbitrary) attribute

order. We randomly generate the order in our experiments.

Our ALERT-HYBRID approach requires two parameters: the

number of pilot samples s1 and the switching count threshold

cS. We set s1 = 100 and cS = 10 by default, but conducted

experiments with various other combinations.

4) Performance Measures: For each algorithm, there are

two performance measures: efficiency and bias. Efficiency of

a sampling algorithm was measured by counting the number of

queries that were executed to reach a certain desired sample

size. To measure the bias of collected samples, we use the

same measure as [1] which compares the marginal frequencies

of attribute values in the original dataset and in the sample:

bias =

√

√

√

√

∑

v∈V

(

1 − pS(v)
pD(v)

)2

|V |
. (17)

Here V is a set of values with each attribute contributing one

representative value, and pS(v) (resp. pD(v)) is the relative

frequency of value v in the sample (resp. dataset). The intuition

is that if the sample is unbiased uniform random sample, then

the relative frequency of any value will be the same as in the

original dataset. However, note that even for uniform random

samples, this method of measuring bias will result in small

but possibly non-zero bias.

B. Comparison with Existing Algorithms

1) COUNT-DECISION-TREE: We compared the perfor-

mance of COUNT-DECISION-TREE with three existing al-

gorithms: COUNT-ORDER, ALERT-ORDER, and ALERT-

RANDOM (note: although the latter two algorithms are de-

signed for ALERT interfaces, they can sample from COUNT

interfaces by ignoring the returned counts).

For COUNT-ORDER, our direct competitor for COUNT

interfaces, we conducted the comparison on both Yahoo! Auto

and Census datasets. The number of queries issued are shown

in Figures 7. Note that both algorithms generate unbiased

samples. As we can see, our algorithm requires orders of

magnitude fewer queries than COUNT-ORDER.

For ALERT-ORDER, we conducted the comparison on the

categorical Census dataset. In particular, we tested ALERT-

ORDER with two settings of the scaling factor [1]: C =
1/15000 and C = 1/400000. The number of queries issued

and the bias of samples collected are shown in Figures 8 and

9, respectively. As we can see, our algorithm significantly

outperforms both settings of ALERT-ORDER in efficiency and

bias (recall that even though our measurements show non-zero

marginal bias, technically COUNT-DECISION-TREE has no

bias).

Since ALERT-RANDOM was designed for Boolean

datasets [1], we performed the comparison on the Boolean-

mixed dataset. As seen in Figures 10 and 11, our algorithm sig-

nificantly outperforms ALERT-RANDOM in both efficiency

and bias.

2) ALERT-HYBRID: We compared the performance of

ALERT-HYBRID with both existing algorithms for ALERT

interfaces: ALERT-RANDOM and ALERT-ORDER. Fig-

ures 12 and 13 shows results on the Boolean-i.i.d. dataset.

We see that ALERT-HYBRID requires significantly fewer

queries than both of the previous approaches, and produces

substantially less bias than ALERT-ORDER.

C. Effects of History and Decision Tree for COUNT-

DECISION-TREE

The above subsection illustrates the improvement of our

COUNT-DECISION-TREE algorithm over the prior algo-

rithms. The improvement comes from a combination of two

Fig. 7. Number of queries vs. samples for
COUNT-DECISION-TREE and COUNT-ORDER

Fig. 8. Number of queries vs. samples for
COUNT-DECISION-TREE and ALERT-ORDER

Fig. 9. Bias vs. Number of samples for COUNT-
DECISION-TREE and ALERT-ORDER

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

#!!" $!!" %!!" &!!" '!!"

)"
*
+"
,
-
./
0.
1"

)"*+"23456.1"

789:;<

:7=>?@"

A?B=;<

>9AC2C?=<

;:99"

Fig. 10. Number of queries vs. sam-
ples for COUNT-DECISION-TREE and ALERT-
RANDOM

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#!("

!#!)"

!#!*"

$!!" %!!" &!!" '!!" (!!"
"+
,-
."

/"01".-2345."

6789:;

96<=>?"

@>A<:;

=8@BCB><;

:988"

Fig. 11. Bias vs. Number of samples for COUNT-
DECISION-TREE and ALERT-RANDOM

Fig. 12. Number of queries vs. Number of
samples for ALERT-RANDOM, ALERT-ORDER,
and ALERT-HYBRID

Fig. 13. Bias vs. Number of samples
for ALERT-RANDOM, ALERT-ORDER, and
ALERT-HYBRID

Fig. 14. Number of queries saved by history vs.
Number of samples for COUNT-DECISION-TREE

Fig. 15. Number of queries vs. Number of sam-
ples for COUNT-DECISION-TREE and COUNT-
ORDER with history.

techniques: query history and decision tree. In this subsection,

we illustrate the effect of each technique separately.

First, we consider the effect of query history on the per-

formance of COUNT-DECISION-TREE. We conducted the

experiments on both categorical (Census) and Boolean (i.i.d.)

datasets. Figure 14 depicts the number of queries saved by

considering history. As we can see, the saving is roughly linear

to the number of samples, and is not sensitive to the value of

k. This is consistent with our intuition from Theorem 3.1.

Then, we consider the effect of decision tree construction

on the performance of COUNT-DECISION-TREE. To remove

the effect of history, we added the technique of history saving

to COUNT-ORDER, and then compared its efficiency with

COUNT-DECISION-TREE. The results for Yahoo! Auto and

Census datasets are shown in Figures 15. As we can see, for

collecting 1,000 samples, we achieve 289% and 520% im-

provement on efficiency for Yahoo! Auto and Census datasets,

respectively, while providing unbiased samples.

D. Analysis of ALERT-HYBRID

We first consider the effect of using pilot samples to

bootstrap COUNT-based sampling in ALERT-HYBRID. In

particular, we compare its efficiency with ALERT-ORDER af-

ter adding the technique of history saving to ALERT-ORDER.

The result for the Boolean-i.i.d. dataset is shown in Figure 16.

As we can see, the “hybrid” technique by itself not only

reduces bias (as shown in Figure 13), but also significantly

improves the sampling efficiency (by 188% when s = 1, 000).

An interesting observation from Figure 16 is that most

queries issued by ALERT-HYBRID are for collecting the pilot

samples. After the pilot samples are collected, the number

of queries per remaining sample is much lower than that of

the ALERT-ORDER and ALERT-RANDOM algorithms. The

reason is that no query needs to be issued for a node that

enables COUNT-based sampling. Clearly, we can expect the

efficiency improvement of ALERT-HYBRID to be even more

significant as the number of samples becomes larger.

We now consider the effect of the two parameters s1 and cS

on the performance of ALERT-HYBRID. Figure 17 shows the

change of efficiency and bias when s1 ranges from 50 to 250
and cS is fixed at 10. As we can see, increase on s1 reduces

bias, because the larger number of pilot samples delays the

switching to ALERT-ORDER which generates higher bias. On

the other hand, the greater s1 is, the more queries need to be

issued because the queries used to obtain the pilot samples are

unlikely to be reused during hybrid sampling.

Figure 18 shows the change of efficiency and bias when

cS ranges from 1 to 25 and s1 is fixed at 100. As we can

see, when cS is too low (e.g., 1), the bias is high because

the estimated count used for count-based sampling has a high

error. Nonetheless, when cS is too large, the bias becomes

higher again because switching to ALERT-ORDER in the

hybrid sampling phase occurs earlier which introduces higher

bias. This is consistent with our discussion in Section IV.

Fig. 16. Number of queries vs. Number of sam-
ples for ALERT-HYBRID, ALERT-RANDOM,
and ALERT-ORDER with history.

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

(()!"

($!!"

($)!"

(*!!"

(*)!"

 +(,)!" +(,(!!" +(,()!" +(,$!!" +(,$)!"

-
./
0
"

1
"2
3"
4
5
/
67
/
+"

1"23"45/67/+" -./0"

Fig. 17. Number of queries and bias vs. s1 for
ALERT-HYBRID

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!"

)!!"

(!!!"

()!!"

 *+,(" *+,$" *+,)" *+,(!" *+,()" *+,$!" *+,$)"

-.
/
0
"

1
"2
3"
4
5
/
67
/
+"

1"23"45/67/+" -./0"

Fig. 18. Number of queries and bias vs. cS for
ALERT-HYBRID

VI. RELATED WORK

Crawling and Sampling from Hidden Databases: There

has been prior work on crawling as well as sampling hidden

databases using their public search interfaces. Several papers

have dealt with the problem of crawling and downloading

information present in hidden text based databases [10]–[12].

[13]–[15] deal with extracting data from structured hidden

databases. [16] and [17] use query based sampling methods

to generate content summaries with relative and absolute

frequencies while [18], [19] uses two phase sampling method

on text based interfaces. On a related front [20], [21] discuss

top-k processing which considers sampling or distribution

estimation over hidden sources. A closely related area of

sampling from a search engines index using a public interface

has been addressed in [12] and more recently [22], [23]. In [1]

the authors have developed techniques for random sampling

from structured hidden databases leading to the HIDDEN-DB-

SAMPLER algorithm. The hybrid technique used in ALERT-

HYBRID has also been used for other sampling applications

such as block-level sampling [8] and sampling peer-to-peer

networks [9].

Approximate Query Processing and Database Sampling:

Approximate query processing (AQP) for decision support,

especially sampling-based approaches for relational databases,

has been the subject of extensive recent research; e.g., see

tutorials by Das [5] and Garofalakis et al [6], as well as the

report [7] and the references therein.

VII. CONCLUSION

In this paper, we investigated techniques which leverage the

COUNT information to efficiently acquire unbiased samples

of hidden databases. In particular, we proposed the COUNT-

DECISION-TREE algorithm based on two ideas: (a) the use

of query history, and (b) the construction and use of an

efficient decision tree. We also discuss variants for TOP-k-

ALERT interfaces which do not provide COUNT information.

In particular, we presented ALERT-HYBRID based on using

pilot samples to bootstrap the COUNT-DECISION-TREE al-

gorithm draw the samples. Our thorough experimental study

demonstrates the superiority of our sampling algorithms over

the existing algorithms.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for useful

comments. This work was supported in part by the US

National Science Foundation under Grants 0845644, 0852674,

and 0852673, unrestricted gifts from Microsoft Research, and

start-up funds from the University of Texas at Arlington. Any

opinions, findings, conclusions, and/or recommendations in

this material, either expressed or implied, are those of the

authors and do not necessarily reflect the views of the sponsors

listed above.

REFERENCES

[1] A. Dasgupta, G. Das, and H. Mannila, “A random walk approach to
sampling hidden databases,” in SIGMOD, 2007.

[2] F. Olken and D. Rotem, “Random sampling from databases - a survey,”
Statistics & Computing, vol. 5, no. 1, pp. 25–42, 1995.

[3] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software, vol. 11, no. 1, pp. 37–57, 1985.

[4] V. T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M. Mohania,
“Decision trees for entity identification: approximation algorithms and
hardness results,” in PODS, 2007, pp. 53–62.

[5] G. Das, “Survey of approximate query processing techniques (tutorial),”
in SSDBM, 2003.

[6] M. N. Garofalakis and P. B. Gibbons, “Approximate query processing:
Taming the terabytes,” in VLDB, 2001.

[7] D. Barbará, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein,
Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A.
Ross, and K. C. Sevcik, “The new jersey data reduction report,” IEEE
Data Engineering Bulletin, vol. 20, no. 4, pp. 3–45, 1997.

[8] S. Chaudhuri, G. Das, and U. Srivastava, “Effective use of block-level
sampling in statistics estimation,” in SIGMOD, 2004.

[9] B. Arai, G. Das, D. Gunopulos, and V. Kalogeraki, “Efficient approxi-
mate query processing in peer-to-peer networks,” TKDE, vol. 19, no. 7,
pp. 919–933, 2007.

[10] E. Agichtein, P. G. Ipeirotis, and L. Gravano, “Modeling query-based
access to text databases,” in WebDB, 2003.

[11] A. Ntoulas, P. Zerfos, and J. Cho, “Downloading textual hidden web
content through keyword queries,” in JCDL, 2005.

[12] K. Bharat and A. Broder, “A technique for measuring the relative size
and overlap of public web search engines,” in WWW, 1998.

[13] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in
VLDB, 2001.

[14] S. W. Liddle, D. W. Embley, D. T. Scott, and S. H. Yau, “Extracting
data behind web forms,” in ER (Workshops), 2002.

[15] M. Alvarez, J. Raposo, A. Pan, F. Cacheda, F. Bellas, and V. Carneiro,
“Crawling the content hidden behind web forms,” in ICCSA, 2007.

[16] J. P. Callan and M. E. Connell, “Query-based sampling of text
databases,” ACM Transactions on Information Systems, vol. 19, no. 2,
pp. 97–130, 2001.

[17] L. G. Panagiotis G. Ipeirotis, “Distributed search over the hidden web:
Hierarchical database sampling and selection,” in VLDB, 2002.

[18] Y.-L. Hedley, M. Younas, A. E. James, and M. Sanderson, “A two-
phase sampling technique for information extraction from hidden web
databases,” in WIDM, 2004.

[19] ——, “Sampling, information extraction and summarisation of hidden
web databases,” Data and Knowledge Engineering, vol. 59, no. 2, pp.
213–230, 2006.

[20] K. C.-C. Chang and S. won Hwang, “Minimal probing: supporting
expensive predicates for top-k queries,” in SIGMOD, 2002.

[21] N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries over
web-accessible databases,” in ICDE, 2002.

[22] L. Barbosa and J. Freire, “Siphoning hidden-web data through keyword-
based interfaces,” in SBBD, 2004.

[23] Z. Bar-Yossef and M. Gurevich, “Random sampling from a search
engine’s index,” in WWW, 2006.

