
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Vuorimaa, Petri; Laine, Markku; Litvinova, Evgenia; Shestakov, Denis
Leveraging declarative languages in web application development

Published in:
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS

DOI:
10.1007/s11280-015-0339-z

Published: 01/07/2016

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Vuorimaa, P., Laine, M., Litvinova, E., & Shestakov, D. (2016). Leveraging declarative languages in web
application development. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 19(4), 519-
543. https://doi.org/10.1007/s11280-015-0339-z

https://doi.org/10.1007/s11280-015-0339-z
https://doi.org/10.1007/s11280-015-0339-z

Leveraging declarative languages in web
application development

Petri Vuorimaa & Markku Laine & Evgenia Litvinova &

Denis Shestakov

Received: 7 February 2014 /Revised: 24 February 2015 /Accepted: 4 March 2015 /
Published online: 2 April 2015
The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Web Applications have become an omnipresent part of our daily lives. They are
easy to use, but hard to develop. WYSIWYG editors, form builders, mashup editors, and
markup authoring tools ease the development of Web Applications. However, more advanced
Web Applications require servers-side programming, which is beyond the skills of end-user
developers. In this paper, we discuss how declarative languages can simplify Web Application
development and empower end-users as Web developers. We first identify nine end-user Web
Application development levels ranging from simple visual customization to advanced three-
tier programming. Then, we propose expanding the presentation tier to support all aspects of
Web Application development. We introduce a unified XForms-based framework—called
XFormsDB—that supports both client-side and server-side Web Application development.
Furthermore, we make a language extension proposal—called XFormsRTC—for adding true
real-time communication capabilities to XForms. We also present XFormsDB Integrated
Development Environment (XIDE), which assists end-users in authoring highly interactive
data-driven Web Applications. XIDE supports all Web Application development levels and,
especially, promotes the transition from markup authoring and snippet programming to single
and unified language programming.

Keywords Web framework .Web application .Web development . End-user development .

Declarative language . Real-time communication

World Wide Web (2016) 19:519–543
DOI 10.1007/s11280-015-0339-z

P. Vuorimaa (*) :M. Laine : E. Litvinova :D. Shestakov
Department of Computer Science, Aalto University, Aalto FI-00076, Finland
e-mail: petri.vuorimaa@aalto.fi

M. Laine
e-mail: markku.laine@aalto.fi

E. Litvinova
e-mail: evgenia.litvinova@aalto.fi

D. Shestakov
e-mail: denis.shestakov@aalto.fi

1 Introduction

Highly interactive data-driven Web Applications—abbreviated toWeb Applications in the follow-
ing—are usually based on the so-called three-tier architecture [2]. The presentation tier (i.e., user
interface) is defined using HTML and CSS languages, and complemented with numerous
JavaScript embeddings for client-side application logic. The logic tier (i.e., server-side application
logic) is based either on an object-oriented (e.g., Java or Ruby) or scripting (e.g., PHP) language
and uses HTML, XML, or JSON formats for client–server communication. Finally, the data tier
(i.e., application data) uses either an Object-Relational Mapping (ORM) library or SQL statements
for data management.

Typically, Web Applications contain both imperative (e.g., Java and JavaScript) and declara-
tive (e.g., HTML, CSS, and SQL) components. Thus, Web developers have to master several
programming languages and face their conceptual differences [39]. A common solution is to
assign tier-specific professionals (i.e.,Web designers, software engineers, and database experts) to
develop each tier.

On the other hand, end-users also participate in Web development. Without professional help,
they create and edit Web Applications that assist them in their daily life activities [11]. The scope
of their applications is wide—end-users write in forums and wikis, create mashups and surveys,
edit media rich blog pages, create basic HTML pages, etc. In the following, the term end-user
developers refers to non-professionals, who do some Web development to support their profes-
sional or leisure activities.

End-user developers often use dedicated visual tools, such as survey builders, mashup
editors, or component-based tools [23] to create Web Applications. Unfortunately, these visual
tools have their limitations. While professional tools are more expressive, they require more
extensive knowledge of different programming languages, technologies, and paradigms. Thus,
end-user developers face the complexities of professional Web Application development
described above.

In this paper, we aim to bridge the gap between end-user and professional Web
Application development. We focus on end-users who need to move forward from
markup authoring and snippet programming. First, we analyze how Web Application
development complicates when proceeding from end-user to professional Web develop-
ment. At the same time, we identify the core learning barriers. Then, we discuss how
end-users can leverage their existing Web development skills to overcome these learning
barriers.

According to a recent review [54], there is a lack of support for complete Web
Application development: server-side and client-side application logic, client–server
communication, and interaction. Another recent survey [10] shows that research
focuses on either model-driven design or implementation issues—a distinct gap exists
between them. In this paper, we propose that a single, declarative model is used both
on the client-side (i.e., presentation tier) and server-side (i.e., logic and data tiers);
including client–server communication and interaction. Declarative approach is bene-
ficial, since end-user developers often have some experience in using declarative
languages. In addition, the application security improves as, in general, each technol-
ogy is one more compromise to the overall application security.

Our contributions This paper discusses declarative Web Application development. Our specific
contributions related to framework, IDE, and minor/other contributions are as follows:

520 World Wide Web (2016) 19:519–543

& Nine-level classification of end-user Web Application development activities with a special
focus on advanced Web development (minor)

& Presentation-centric architectural approach based on W3C-standardized declarative lan-
guages for unifying Web Application development (framework)

& Set of requirements for extending a presentation-centric declarative language with com-
mon server-side and database-related functionality; including real-time communication
capabilities (framework)

& Language extension (XFormsDB) for turning XForms [5] into a comprehensive Web
Application development language (framework)

& Language extension (XFormsRTC) for adding real-time communication capabilities to
XForms (framework)

& Web framework (XFormsDB) implementing XForms and the XFormsDB language ex-
tension for declarative Web Application development (framework)

& Web-based visual authoring tool (XIDE) for the XFormsDB framework to assist lower-
level end-user developers in Web Application development (IDE)

& Evaluation of the XFormsDB framework and the XIDE authoring tool (framework and
IDE)

This paper is organized as follows. Next, Section 2 presents related work. Then, Section 3
discusses altogether nine end-user development levels. After that, Section 4 describes how the
presentation tier can be expanded to cover all aspects of Web Application development.
Section 5 defines requirements to extend XForms with common server-side and database-
related functionality, including Real-Time Communication (RTC) capabilities. Then, Section 6
describes the proposed XFormsDB and XFormsRTC language extensions, while Section 7
discusses practical implementation issues. Next, Section 8 introduces the XIDE editor: a visual
tool for end-user Web Application development. Then, Section 9 presents evaluation of both
the XFormsDB framework and the XIDE editor. Finally, Section 10 contains conclusions.

2 Related work

In this Section, we present related work. Based on two recent surveys [10, 54], we identify
WebML-RIA [7, 15] as being closest to XFormsDB, and thus provide a thorough comparison
between these two approaches. Finally, we discuss the differences between declarative and
imperative Web Application development.

2.1 Rich internet applications

According to Toffetti et al. [54] Rich Internet Application (RIA) development approaches can
be divided into Code-based, Framework-based, and Model-driven methodologies. In the first
approach, developers code directly using technology-specific programming languages. Frame-
works contain more advanced libraries and code-generation tools. However, frameworks
typically focus on client-side, and thus lack support for complete application development.
Model-driven methodologies are more comprehensive and rely on automatic code-generation.
However, model-driven methodologies usually have difficulties in expressing advanced RIA
features.

World Wide Web (2016) 19:519–543 521

Toffetti et al. [54] compare the different development approaches based on their technology,
language, and process-related features. We evaluated our XFormsDB framework using the
same criteria. The closest Framework-based methodologies are AJAX [16] libraries, AJAX
code-generators,OpenLazzlo (http://www.openlaszlo.org/), and Adobe Flex,1 while the closest
Model-driven methodologies are WebML-RIA [7, 15], UsiXML [36], and OOWS for RIA
[55].

Model-driven methodologies are typically declarative as XFormsDB. However, most
model-driven methodologies focus on modelling the presentation and behavioral issues at
client side. Only WebML-RIA [7, 15] models also data issues as XFormsDB. Most model-
driven methodologies also rely on back-to-front development process. XFormsDB is based on
more user-centered design as UsixML [36] and OOWS for RIA [55].

2.2 WebML-RIA

WebML-RIA [7, 15] models are composed of four sub models: domain, hypertext, dynamic,
and presentation. XForms is based on conventional Model-View-Controller architecture,
whose parts resemble WebML-RIA’s domain, presentation, and dynamic models. However,
there are major differences. In WebML-RIA, domain data model is expressed either as entity-
relationships diagrams or semantic representations (e.g., RDF or OWL), while XForms uses
XML Schemas. In essence, bothWebML-RIA dynamic model and XForms controller describe
how events are handled inside the Web Application. The XFormsRTC extends client–server
communication with bidirectional real-time support. In WebML-RIA, hypertext model defines
the composition and navigation of the user interface (UI), while the overlaying presentation
model describes the look and feel of the UI. In XForms, the view defines the structure of the
form. However, the UI is always embedded in a host language, such as XHTML. The host
language defines the UI and navigation. Thus, the division is a bit different than inWebML-RIA.

WebML-RIA and XFormsDB have also implementation differences. The WebML-RIA
IDE has been implemented using the WebRatio tool, while XFormsDB has its ownWeb-based
IDE, XIDE. The WebML-RIA server-side implementation is also based on WebRatio and its
Apache Struts2 framework and Hibernate persistence layer. XFormsDB server-side imple-
mentation is based on our XFormsDB processor and Orbeon Forms XForms processor. The
WebML-RIA client runtime environment is OpenLazzlo, while XFormsDB uses (X)HTML+
CSS+JavaScript.

2.3 Declarative vs. imperative web application development

AJAX libraries, such as Dojo (http://dojotoolkit.org/) and jQuery (http://jquery.com/), are
imperative technologies, while XFormsDB is declarative. AJAX libraries typically use only
declarative UIs based on HTML. AJAX code-generators are even more imperative. OpenLazzlo
has also declarative UI, but is otherwise imperative. Same applies to Adobe Flex, which is based
on ActionScript rather than JavaScript.

Kuuskeri and Mikkonen [26] introduced a JavaScript-based middleware platform, extend-
ing the JavaScript language with server-side functionality. As in our approach, this proposed
Web development model used only one client-side language. The two approaches differ on the
conceptual level: while Kuuskeri and Mikkonen [26] presented server-side extensions to
imperative JavaScript, we expanded the scope of declarative XForms.

1 Currently known as Apache Flex (http://flex.apache.org/).

522 World Wide Web (2016) 19:519–543

http://www.openlaszlo.org/
http://dojotoolkit.org/
http://jquery.com/
http://flex.apache.org/

In [28], we evaluated three frameworks in detail, each representing the Web tier-expansion
approach: our declarative XFormsDB, imperative Google Web toolkit (GWT)2, and declarative
Sausalito3 [22], which expand the presentation, logic, and data tiers, respectively. The logic-
centric imperative GWT is most mature and powerful of the three frameworks. It has the best
documentation and tools support and the most active development community. While the data-
centric declarative Sausalito (with the declarative XQuery as a base language) provides the
best scalability support, the presentation-centric declarative XFormsDB is an attractive solu-
tion for end-user developers familiar with declarative markup languages.

Using single language on all three tiers reduces the number of technologies involved and
can unify the Web development process [28]. According to Schmitz [52], declarative lan-
guages (e.g., (X)HTML) have several advantages over imperative languages (e.g., Java).
Especially, declarative languages are more accessible to end-user developers (i.e., non-pro-
grammers). Moreover, end-user developers are more familiar with declarative, W3C-
standardized (X)HTML and CSS than server-side aspects of Web Application development.
Thus, they benefit from a client-side language that has been extended with server-side
functionality.

To justify the choice of our client-side programming language, we followed a recent survey
[44], in which five XML-based client-side languages—including HTML5 [18] and XForms—
were evaluated. According to the study, the XForms language is best suited for data-intensive
applications and applications with accessibility requirements. The XForms language also
provides a rich declarative use of client-side data and can easily define interdependencies
between the data and user interface.

3 End-user web application development

In practice, all the tools and frameworks discussed in the previous section are intended for
professional developers. To understand better end-user developers’ requirements, we analyze
the evolution of Web Application development from Web surfing to professional Web
development. The analysis is based on a survey of the literature and existing tools. More
precisely, we expand end-user development classification described in [11]. In [32], we defined
six levels of end-user Web Application development between Web surfing and professional
development. In this paper, we focus especially on advanced Web Application development,
and thus we deconstruct the two most advanced levels into five new levels of programming
activities.

As depicted in Figure 1, we identify nine Web Application development levels. Far left is
Web surfing, i.e., no Web development. Far right is professional Web Application develop-
ment. Each level in between defines both the activities a user is able to perform and
corresponding skills he/she needs to possess.

L1 Customizing components: End-users adjust existing Web Applications by setting
values to parameters, such as adjusting colors of a personal blog page.
L2 WYSIWYG editing: End-users develop static Web pages or targeted applications
(e.g., surveys) in What You See Is What You Get (WYSIWYG) editors. Example tools
are Google Sites (http://sites.google.com/), JotForm (http://www.jotform.com/), and
Orbeon Form Builder (http://www.orbeon.com/).

2 Currently known as GWT (http://www.gwtproject.org/).
3 Currently known as 28.io - Virtual Databases (http://www.28.io/).

World Wide Web (2016) 19:519–543 523

http://sites.google.com/
http://www.jotform.com/
http://www.orbeon.com/
http://www.adobe.com/products/dreamweaver.html
http://www.adobe.com/products/dreamweaver.html

L3 Visual editing: End-users create Web Applications visually by adding, customizing,
and connecting components [46]. Common examples are mashup editors, such as Yahoo!
Pipes (http://pipes.yahoo.com/pipes/) and DashMash [9], and component-based editors,
such as EzWeb/FAST [33, 56]. Visual editing is possible without programming skills and
syntax knowledge. However, end-users often need to understand the tool’s programming
paradigm and application-creation logic.
L4 Markup authoring: End-users contribute to wikis and write rich-text posts to blogs
using plain markup languages. This is a code editing activity; however, the markup
languages are often simplified. Nevertheless, end-users learn the basics of declarative
programming. For example, Wikipedia authors use an internal markup language to add
their contributions to articles.
L5 Snippet programming: End-users copy-paste or manually edit existing source code
[8]. For example,AdobeDreamweaver (http://www.adobe.com/products/dreamweaver.html)
allows end-users first to create a Web page visually in a drag-n-drop editor and then
manually edit the auto-generated source code. However, end-users find switching the
views between visual and source code editors difficult [42]. With WordPress (http://
wordpress.org/) end-users can create Web Applications using predefined templates and
widgets implemented in PHP, which is rarely known among the end-users at the skill level
5. In addition, end-users need to know WordPress’ internal architecture and API before
they can do even minor changes to widgets. Click [47] allows end-users to create Web
Applications using component-based approach. The tool provides several layers of
modification complexity, starting from customizing templates to modifying and extending
the component framework and editing PHP code.
L6 Single language programming: End-users have a sufficient knowledge of a single
programming language and they are able to develop a piece of functionality from scratch.
However, they are unaware of other programming languages and paradigms, so they can
only apply their knowledge on one tier, either for creating a static user interface,
developing the server-side part of application logic, or managing data. For example, an
end-user might know (X)HTML to create a static user interface. In order to create a fully
interactive data-drivenWebApplication, end-users need to rely on other developers or tools.
L7 Unified language programming: End-users have sufficient knowledge of a single
programming language or technology, which can be used to create all necessary compo-
nents of a Web Application. In addition, end-users are able to manage the communica-
tion between the components. When a single programming language is used on all three
tiers, end-users often use special toolkits or frameworks, which process the source code
and translate it to low-level, tier-specific languages. For example, GWT allows the
creation of entire Web Application using only Java language. In compilation phase,
GWT automatically converts the Java source code to JavaScript and a database language.

Figure 1 Levels of Web Application development

524 World Wide Web (2016) 19:519–543

http://pipes.yahoo.com/pipes/
http://www.adobe.com/products/dreamweaver.html
http://wordpress.org/
http://wordpress.org/

L8 Multiple language programming: End-users know several complementary lan-
guages and can combine them. The main difference to the level 7 is that end-users need
to master and integrate several languages together. However, the languages utilize the
same paradigm (i.e., declarative or imperative), which makes it less demanding for end-
users to combine them. For example, eXist-db (http://exist-db.org/) [38] combines two
declarative languages (i.e., XForms [5] and XQuery [4]) to support the creation of Web
Applications.
L9 Multiple language and paradigm programming: End-users are almost professional
programmers. They know how to combine several complementary technologies to
construct an interactive client–server Web Application. At the level 9, the main challenge
is that technologies can be declarative, imperative, or even multi-paradigm. Therefore,
end-users need to understand both paradigms and master the communication between
different parts of a Web Application.

Currently, professional Web Application development takes place between the levels 6 and
9. Usually, a professional Web developer masters at least one programming or unified
programming language, while a development team can handle multiple programming lan-
guages and paradigms necessary to implement the entire Web Application.

Although end-users are less advanced than professional developers, they can learn new
skills. Their main motivation is to improve the current or new application’s functionality,
which requires higher-level skills and tools. As the analysis shows, the lower-level tools
presuppose only basic Web Application usage skills. However, the tools restrict the scope of
developed Web Applications. As end-users move to the right, they can create more versatile
Web Applications, but they must master more advanced skills.

The critical transition happens between the levels 4 and 6, where end-users have to learn a
programming language. However, a declarative language can lower this barrier [52]. The key
ingredient is the markup language that the level 4 end-users learn at least partially. Since
declarative languages—such as (X)HTML and XML—look familiar, they can do some code
editing based on their existing knowledge. However, currently pure HTML supports only the
creation of static Web pages. The level 5 and 6 end-users have limited programming skills, and
thus they usually face difficulties in imperative server-side development.

On the levels 7 and 8, a unified programming model can be based on either server-side or
client-side concepts. For example, GWT realizes the server-side approach using a general-
purpose programming language (i.e., object-oriented imperative Java) to author both the
server-side application logic and Web Application user interface. However, the user interface
design and implementation almost always requires human involvement and judgment. Thus,
we consider a full Web Application development cycle—based on a client-side programming
language—as a more compelling alternative. The client-side approach is particularly feasible,
since—unlike user interface and interaction behavior—most server-side functionalities can be
covered by generic components. In addition lower-level end-user developers are more familiar
with declarative languages.

4 Expanding the presentation tier

In this paper, we target end-user developers who author Web content, but possess limited
programming skills to develop entire Web Applications on their own. As we analyzed in the
previous section, many users reach the level 4, in which they learn the basics of declarative
languages. Thus, a declarative markup language meets the requirements of the client-side Web

World Wide Web (2016) 19:519–543 525

http://exist-db.org/

programming model. We propose to use XForms [5], which is an XML-based Web user
interface language designed to tackle the most common problems found in HTML forms. In
addition, XForms removes the dependency on imperative scripting languages, such as
JavaScript. Thus, when used in conjunction with XHTML, it becomes possible to author
dynamic Web user interfaces (i.e., presentation tier with client-side application logic) without
JavaScript.

This architectural change to fully declarative user interfaces simplifies the development
process. However, end-user developers still have to face significant architectural hurdles, as
depicted in Figure 2a. In conventional XForms-based Web Applications, the server-side applica-
tion logic is implemented using an object-oriented imperative language, such as Java, Ruby, or
PHP. The client and the server communicate using declarative formats (e.g., XML or JSON4) and
asynchronous submissions over HTTP(S). On the lowest application tier (i.e., data tier), either
declarative SQL statements or an ORM library manage data stored in a relational database.

The above-mentioned development processes requires tier-specific experts, because the
programming languages, programming paradigms, and data models differ on each tier. In
addition, the manual partitioning of a Web Application between the client (i.e., presentation
tier) and the server (i.e., logic and data tiers) complicates the development process. [26, 57]

From a developer’s point of view, one way to simplify the Web Application development
even further is to expand the presentation tier to cover all three tiers. This presentation-centric
architectural expansion allows the use of XForms—as well as the XML data model—as the
only programming language and paradigm throughout the entire Web Application. In addition,
it removes the need for using a separate data-binding framework, such as WebSoDa [17].
Figure 2b depicts this presentation-centric architectural approach for extending XForms with
common server-side and database-related functionality.

Currently, only experimental browsers such as X-Smiles (http://www.xsmiles.org/) [20]
natively support XForms. Fortunately, several solutions5—from browser plug-ins and client-
side XSLT transformations to Ajax-based server-side transformations—allow XForms to be
used in all modern Web browsers. Our XFormsDB framework includes Orbeon Forms
XForms processor, which automatically converts XForms documents into cross-browser
(X)HTML+CSS+JavaScript documents. In addition, business logic is handled by generic server
side XFormsDB processor (cf. Section 7).

5 XForms as a unified end-user web application development language

XForms [5]—a W3C recommendation since October 2003—is an XML-based client-side
forms technology. In contrast to conventional HTML forms, XForms cleanly separates the
presentation (i.e., XForms User Interface) from the logic (i.e., XForms Model) and data (i.e.,
Instance Data) with its internal Model-View-Controller (MVC) architecture [25].

Our objective is to extend the presentation-centric XForms language with common server-
side and database-related functionality, as described in Section 4. In addition, we extend
XForms with two-way, full-duplex, true RTC capabilities. These language extensions support
transition from the level 6 to the level 7, and thus enable end-user developers to develop entire
Web Applications on their own. In addition, development and maintenance of Web Applica-
tions becomes easier as authoring is done using only markup languages. Because most of

4 JSON support is planned for XForms 2.0 [6].
5 List of XForms implementations is available at http://www.w3.org/community/xformsusers/wiki/XForms_
Implementations.

526 World Wide Web (2016) 19:519–543

http://www.xsmiles.org/
http://www.w3.org/community/xformsusers/wiki/XForms_Implementations
http://www.w3.org/community/xformsusers/wiki/XForms_Implementations

common server-side functionality relates to data management, a seamless integration of a
standardized query language with the XForms markup language is also important. However,
enterprise-level Web Applications are beyond our scope, since we focus on end-user devel-
opers, who do not require complex application logic.

Kaufmann and Kossmann [22] listed general requirements for Web Applications that cover
all three tiers of a Web Application; including communication requirements. From their list,
only four requirements fall within the scope of this paper (cf. R1.1-4 below). In addition, we
include three additional general requirements (cf. R1.5-7).

R1.1 Persistence and database: A uniform API for connecting to different types of data
sources must be provided. In addition, a standardized, declarative query language appli-
cable across all data sources viewable as XML must be supported.
R1.2 Error handling: A method for notifying the client about errors occurred while
processing a requested server-side command must be provided.
R1.3 Session management and security: Managing sessions between a client and a
server must be supported regardless of the browser used or its settings. In addition,
documents sent to the client must neither expose nor allow unauthorized altering of
sensitive information.
R1.4 Modules to facilitate recurring tasks: A method to facilitate modularity and reuse
of ready-made components (e.g., user interface parts and queries) in Web Applications
must be supported.
R1.5 State maintenance: A method to maintain the state in Web Applications—espe-
cially, a mechanism for passing state information (e.g., in the XML format) between
documents—must be supported.
R1.6 Authentication, authorization, and access control: A simple way to authenticate
users and to handle common access control tasks must be provided.
R1.7 Real-time communication: A uniform API for communicating with different types
of RTC servers must be provided.

Furthermore, we define two specific requirements for the language extensions (cf. R2.1-2).

R2.1 Similar syntax and processing model: The syntax and processing model of a
language extension must be similar to its base language.

Figure 2 (a) The conventional three-tier Web Application architecture using XForms and its (b) presentation-
centric architectural expansion [29]

World Wide Web (2016) 19:519–543 527

R2.2 Extensible architecture: The architecture of a language extension must provide a
method to define new features (e.g., server-side commands) in the language extension
while retaining the same processing model.

We want to empower end-user developers below the skill level 9 to create Web Applica-
tions. We pursue a smooth transition from the levels 4 and 5 to the levels 6 and 7. To support
this transition, we need an IDE, and thus we also define IDE requirements (cf. R3.1-4).

R3.1 Unified background technology: End-user developers face problems, when they
have to learn new or combine different technologies. Thus, the background technology
must be unified and based on markup languages. Using fewer technologies—or even one
markup language—simplifies development of Web Applications [28].
R3.2 Same background technology: Source code editing includes both application and
component source code editing. Common background technology removes additional
learning barriers. In addition, end-user developers can use existing components as
examples of what can be achieved with the technology [42].
R3.3 Transparent background technology: Component and application architecture
must be transparent. Component editing and deployment has to be self-explanatory. Thus,
internal libraries and complex architectures are undesirable.
R3.4 Smooth transition: The transition from visual editing to source code editing must
be smooth. Level 5 and 6 tools must, for example, assist in code editing, give immediate
feedback, have fully functional preview, and highlight the link between the source code
and the preview.

6 XForms language extensions

Conventional HTML forms offer limited extensibility options, whereas XForms has been
explicitly designed from the start with extensibility in mind. The different options
available for extending XForms include [12]: 1) script, 2) new data types and libraries,
3) XPath [3] extension functions, 4) new form controls, 5) XForms Actions, 6) custom
events, and 7) new serialization formats.

However, certain XForms extension options do not work in browsers, which have
either native or plug-in based XForms support, because they require end-users to update
the browser’s XForms client (i.e., an XForms processor). XForms also allows foreign
attributes in all XForms elements. Foreign elements from any namespace other than
XForms, however, can only be used when defined within the extension element or in a
host language.

In this section, we describe two XForms extensions: XFormsDB and XFormsRTC.
The former addresses the requirements R1.1-6, while the latter focuses on the require-
ment R1.7; both fulfill the requirements R2.1-2.

6.1 XFormsDB

XFormsDB specifies common server-side and database-related functionalities that turn
XForms into a comprehensive Web programming language. It fulfills the requirements
R1.1-6, as discussed in the following code examples. On the other hand, XFormsRTC
complements XForms’ HTTP-based communication with two-way, full-duplex, true RTC

528 World Wide Web (2016) 19:519–543

capabilities. Thus, XFormsRTC fulfills the requirement R1.7. Both language extensions
support requirements R2.1-2 and are mainly targeted at the level 6 end-user developers
and allow them to develop and maintain entire Web Applications on their own.

In the following, we use a simple blog application as an example. The XFormsDB
Blog application provides basic functionalities for consuming and publishing
content, such as news, thoughts, comments, and experiences. The application
(http://testbed.tml.hut.fi/blog/) and its source code are both publicly available
(cf. Section 7).

Blog users can read published posts and related comments, leave their own comments,
and browse through archives. In addition, administrators can manage published posts and
comments. The user interface (cf. Figure 3) looks and feels like any other modern Web
Application, i.e., it gives a fast response to user input and remains responsive while
submitted requests are being processed on the server side. Next, we provide a high-level
description of the XFormsDB server-side language extension used in the application,
along with the XFormsRTC language extension, proposed in this paper.

Server-side requests are commands submitted to and securely executed on the server
side. They are defined within a new xformsdb:instance element, which acts as a wrapper

Figure 3 A screenshot image showing the XFormsDB Blog administration user interface

World Wide Web (2016) 19:519–543 529

http://testbed.tml.hut.fi/blog/

for all server-side requests. This enables adding new commands to the language without
requiring any changes to the request-processing model. Currently, the language extension
includes definitions for the following server-side commands: 1) maintaining state infor-
mation, 2) logging users in and out, 3) retrieving information about a currently logged-in
user, 4) executing queries against data sources, 5) managing files, and 6) checking the
browser support for cookies.

Listing 1 shows an example of a query command for retrieving comments of a
selected blog post (cf. R1.1). The parameterized query expression is written in XPath
[3], whose source code is defined in an external resource (cf. line 3).

1: <xformsdb:instance id=“select-and-update-comments-reqinstance”>

2: <xformsdb:query datasrc=“exist-db” doc=“blog.xml”>

3: <xformsdb:expression resource=“../xpath/select_and_update_comments.xpath” />

4: <xformsdb:xmlns prefix=“xformsdb” uri=“http://www.tml.tkk.fi/2007/xformsdb” />

5: <xformsdb:var name=“postid” />

6: </xformsdb:query>

7: </xformsdb:instance>

Listing 1 Definition of a query command
The new xformsdb:submission element submits server-side requests. As in standard

XForms submissions, server-side requests can also be submitted multiple times and at
any point in a form’s lifetime (cf. R1.5). Listing 2 demonstrates the submission of the
aforementioned query command. The standard XForms send action triggers the
submission.

1: <xformsdb:submission id=“select-comments-sub” replace=“instance”

2: instance=“comments-instance” requestinstance=“select-and-update-comments-reqinstance”

3: expressiontype=“select”>

4: <xforms:action ev:event=“xforms-submit”>

5: …

6: </xforms:action>

7: <xforms:action ev:event=“xforms-submit-done”>

8: …

9: </xforms:action>

10: <xforms:action ev:event=“xformsdb-request-error”>

11: …

12: </xforms:action>

13: </xformsdb:submission>

Listing 2 Definition of a query command submission
XForms includes events (e.g., xforms-ready and xforms-submit-done), which standard

event handlers (XForms Actions) catch using XML Events. Custom events are also
possible. XFormsDB includes a new xformsdb-request-error event, which indicates a
failure in a server-side request submission and/or execution process (cf. R1.2). Listing 3
shows the actions to be done in case a server-side error occurs while executing the
aforementioned query command submission.

1: <xforms:action ev:event=“xformsdb-request-error”>

2: <xforms:toggle case=“off-progress-animation” />

3: <xforms:toggle case=“select-comments-sub-error-message” />

4: </xforms:action>

530 World Wide Web (2016) 19:519–543

http://www.tml.tkk.fi/2007/xformsdb

Listing 3 The xformsdb-request-error event represents server-side errors
Standard XForms lacks a secure mechanism for controlling user access to certain

portions of a document. We have extended XForms to include a role-based authori-
zation system (cf. R1.3 and R1.6). The system contains:

1. A new element, xformsdb:secview, to control user access within a document.
2. Server-side requests for logging users in and out as well as retrieving information about a

currently logged-in user.
3. A realm XML document representing a “database” of usernames, passwords, and roles

assigned to those users.

Listing 4 shows how users with roles other than admin are redirected to the login
Web page (cf. lines 1–5), whereas admin users can access the contents between the
lines 6–8.

1: <xformsdb:secview>

2: <xforms:model>

3: <xforms:load resource=“../login.xformsdb” ev:event=“xforms-ready” />

4: </xforms:model>

5: </xformsdb:secview>

6: <xformsdb:secview roles=“admin”>

7: …

8: </xformsdb:secview>

Listing 4 The xformsdb:secview element implements a role-based authorization
The new xformsdb:include element provides a recursive inclusion mechanism,

which facilitates modularity (cf. R1.4). This element allows the construction of large
XML documents from several well-formed XML documents. Compared to XInclude
[35], the xformsdb:include element is simpler. In addition, its processing model is in
line with the other new XFormsDB elements. In the demo application, the
xformsdb:include element could be used to include common metadata information within
the head section on all Web pages (cf. Listing 5).

1: <xformsdb:include resource=“../xinc/meta.xinc” />

Listing 5 The xformsdb:include element supports code reuse

6.2 XFormsRTC

In standard XForms, the communication between a client and a server is typically
asynchronous over HTTP(S). Since HTTP is a request-response protocol, the client
always needs to initiate the communication with the server. However, there are
different ways to emulate server push over HTTP. The simplest way is to poll the
server at constant time intervals, but this generates lots of unnecessary network traffic.
More efficient approach is to use so-called long-polling (a common implementation of
Comet [48]). Long-polling delays the completion of an HTTP response until either
next update becomes available or the connection times out.

The left-hand side column of Listing 6 shows how two-way communication—includ-
ing support for server push updates through long-polling—can be realized in Web
Applications using standard XForms. First, two separate xforms:submission elements
need to be defined, one for each direction of communication. Sending data to the server

World Wide Web (2016) 19:519–543 531

happens normally using the xforms:send element, which initiates the submission
process.

Listing 6 A comparison between standard XForms (left) and the XFormsRTC language
extension proposal (right) for two-way communication. XForms can only emulate RTC using
two different connections and a polling-based technique, whereas XFormsRTC provides two-
way, full-duplex, true RTC capabilities over a single connection

Reception of server push updates requires the initiation of another submission process;
identified by the id receive-sub. Whenever new data becomes available from the server or the
connection is timed out, the xforms-submit-done event is dispatched and the event (i.e.,
received data) gets handled within the appropriate event handler. At the end of the event
handler, the long-polling submission process is restarted to continue receiving further updates
from the server. As the example shows, realizing two-way communication using standard

532 World Wide Web (2016) 19:519–543

XForms is non-optimal. It requires two separate submissions and re-purposes HTTP to
emulate server push. Also, the syntax is complex and unintuitive to use. Therefore, an
alternative approach—e.g., similar to WebSocket [14, 19] but with a declarative API—is
needed to add easy to use, two-way, full-duplex, true RTC capabilities to XForms.

The right-hand side column of Listing 6 presents our language extension proposal called
XFormsRTC. XFormsRTC complements XForms’ HTTP-based communication with two-
way, full-duplex, true RTC capabilities. It uses a single xformsrtc:connection element to define
a long-lived, two-way, full-duplex connection between a client and a server. The connection
can be opened and closed (cf. the connect and disconnect methods) multiple times and at any
point in a form’s lifetime. Otherwise, the syntax and functionality of the element is essentially
similar to the standard xforms:submission element, which makes it simple and intuitive for
end-user developers to adopt. XFormsRTC also introduces four new events: 1) xformsrtc-
connection-connect, 2) xformsrtc-connection-disconnect, 3) xformsrtc-connection-data, and 4)
xformsrtc-connection-error. They are dispatched to indicate changes in connection state or
upon receiving server push updates.

XFormsRTC supports different types of RTC servers including Comet andWebSocket. The
URI scheme of the xformsrtc:connection element’s resource attribute defines the communi-
cation protocol. Thus, an XFormsRTC client can send and receive data to/from an RTC server
over HTTP or WebSocket. Furthermore, it is possible to use special application-level proto-
cols, such as XMPP [49–51]; defined by the optional subprotocol attribute. Indeed, Pohja [45]
proposes that HTTP communication should be complemented with XMPP in order to meet the
communication requirements of modern Web Applications. This, of course, requires that the
RTC server supports either an HTTP binding for XMPP (BOSH) [43] or a WebSocket binding
for XMPP [53], which is still in draft form.

7 XFormsDB implementation

The XFormsDB Blog application presented above was developed using a framework
called XFormsDB [27, 29]. The XFormsDB framework is an open source project (http://
mediatech.aalto.fi/publications/webservices/xformsdb/). The framework is implemented
in pure Java, and includes an XFormsDB processor supporting the above-described
XFormsDB server-side language extension.

7.1 XFormsDB framework

The XFormsDB framework is a generic platform for developing and hosting Web
Applications based on the XForms markup language and our server-side extensions
introduced in the previous section. The framework uses a set of third-party software
and libraries, such as 1) Apache Tomcat (http://tomcat.apache.org/) HTTP Web server, 2)
eXist-db (http://exist-db.org/) native XML database (NXD) [38], and 3) Orbeon Forms
(http://www.orbeon.com/) Ajax-based server-side XForms processor.

Figure 4 depicts the high-level architecture of the XFormsDB framework. At the logic
tier, a generic software component called XFormsDB Processor replaces the custom
server-side software used in conventional XForms-based Web Applications. Thus, all
application development happens on the client side using Extended XHTML+XForms
Documents. The server also includes an Ajax-based XForms Processor (i.e., Orbeon
Forms), which transforms requested documents into cross-browser (X)HTML+CSS+
JavaScript or plain (X)HTML+CSS, depending on the configuration. The

World Wide Web (2016) 19:519–543 533

http://mediatech.aalto.fi/publications/webservices/xformsdb/
http://mediatech.aalto.fi/publications/webservices/xformsdb/
http://tomcat.apache.org/
http://exist-db.org/
http://www.orbeon.com/

communication between the client and the server happens asynchronously over
HTTP(S). Thus, normal browsers can be used as runtime environments. Currently, the
framework supports only XML-based data sources, i.e., XML documents and eXist-db.
However, support for Other Data Sources (e.g., relational databases) can be easily added
with suitable middleware, such as DataDirect XQuery (http://www.progress.com/
products/data-integration-suite/xquery/xquery-product-architecture/).

7.2 XFormsDB processor

The XFormsDB processor is a generic software component that supports our XFormsDB
server-side language extension. The processor’s responsibilities include: 1) handling
requests and writing responses, 2) transforming extended XHTML+XForms documents,
3) managing sessions, 4) performing synchronized updates, and 5) providing integration
services to heterogeneous data sources. Each of these responsibilities is carried out by a
separate component.

When a client makes an HTTP(S) request to the server, the request first reaches the
XFormsDB processor and is handled by its front controller, XFormsDB Servlet. The
front controller extracts relevant request information and redirects the request to an
appropriate request handler. Then, XFormsDBTransformer processes the document as follows:

1. Parse the document and identify server-side extension elements.
2. Incorporate all external documents into the main document (cf. xformsdb:include).
3. Filter out those parts to which the user does not have access rights (cf. xformsdb:secview).

Figure 4 The high-level architecture of the XFormsDB framework

534 World Wide Web (2016) 19:519–543

http://www.progress.com/products/data-integration-suite/xquery/xquery-product-architecture/
http://www.progress.com/products/data-integration-suite/xquery/xquery-product-architecture/

4. Identify and collect information about other relevant elements (e.g., xformsdb:instance,
xformsdb:query, and xformsdb:submission).

5. Store the information found in the previous step into the session (XFormsDB Managers).
6. Transform the document—including the server-side extension elements—into XHTML+

XForms 1.1 compliant markup, in which the definitions of server-side commands con-
taining sensitive information have been substituted with opaque reference IDs for security
reasons. During the transformation process, certain utility instances (e.g., an Instance Data
containing HTTP request headers) are automatically added to the document.

7. Return the transformed document.

Before returning the transformed document to the client, the document goes through
another transformation process (cf. Orbeon Forms) that transforms the document into a format
viewable by the requesting client.

Also asynchronous form submissions over HTTP(S) go through the front controller
(XFormsDB Servlet). The front controller extracts relevant request information and forwards
the request to an appropriate request handler based on the submitted command. When a query
command submission occurs, the original query expression is fetched from the session
(XFormsDB Managers) using the opaque reference ID and executed against the underlying
data source (XML Document and eXist-db Adapters). For update query command submissions,
the XFormsDB processor provides a simple and elegant XPath-based solution for performing
synchronized updates, which the 3DM XML 3-Way Merger component [30] performs. Finally,
a response XML is composed and returned to the client.

7.3 Extensibility and limitations

The XFormsDB framework supports extensibility on all three Web Application tiers. On the
presentation tier, JavaScript enhances animations, interactivity, and client-side application
logic. In addition, eXist-db’s XQuery extension functions (http://exist-db.org/exist/apps/
fundocs/browse.html?extensions=true) augment the server-side application logic. Also, more
expressive XQuery [4] overcomes XPath’s limitations, such as lack of grouping, sorting, and
cross-document joins. The XFormsDB framework also provides an elegant way to define new
server-side requests to the language extension. For validating the structures and data types of
transmitted XML documents, the same XML Schema [13] can be used both on the client and
the server. These extension methods make XFormsDB fully compatible with the XRX
(XForms/REST/XQuery) architecture [37], and thus makes it a viable option over the con-
ventional three-tier Web Applications architecture [40].

Unfortunately, each of the aforementioned methods require developers to a learn a new
technology before use. In addition, the XFormsDB framework assumes knowledge of W3C-
standardized XForms and the syntax of our extension, which may be a barrier for lower-level
end-user developers. Therefore, to widen the group of potential end-user developers utilizing
the platform, an end-user dedicated IDE with special assistance features (e.g., syntax highlight
and component-based development) is required.

8 XFormsDB integrated development environment

TheXFormsDB IDE (XIDE) (http://mediatech.aalto.fi/publications/webservices/xide/) is a visual
end-user tool that assists lower-level end-user developers in Web Applications development
[31]. XIDE supports multiple Web Application development levels (cf. Figure 1). It

World Wide Web (2016) 19:519–543 535

http://exist-db.org/exist/apps/fundocs/browse.html?extensions=true
http://exist-db.org/exist/apps/fundocs/browse.html?extensions=true
http://mediatech.aalto.fi/publications/webservices/xide/

gently leads level 4 end-user developers to the upper levels 5–7 without introducing major
learning barriers.

XIDE has four development views: 1) getting started, 2) list of applications, 3) application
management, and 4) page editing. Each view contains information and functionality related to
the activity at hand. Extending the approach of [34], XIDE provides several levels of
modification, such as customization of components, visual manipulation, page source code
modification, and component source code modification. In addition, end-user developers can
leverage XFormsDB skills they have gained, when they try more complex tasks.

XIDE combines three approaches to achieve this goal, as depicted in Figure 5. First, it helps
end-user developers to leverage their existing level 1–4 skills. For example, end-user devel-
opers can create Web Applications using predefined, customizable components (level 1). Also,
components and pages have WYSIWYG-like representations (level 2), which reveal their
contents. In addition, visual editor (level 3) allows end-user developers visually add compo-
nents to the page and connect them. XIDE supports direct manipulation of components, i.e.,
drag-n-drop for adding, managing, and deleting components. Finally, end-user developers can
edit the source code of each component, written in the markup-based language (level 4).

Second, XIDE provides an extensive source code editing functionality. The source code is
written using markup languages, and thus the editing activity belongs to the level 4. The
language is unified, so it allows building Web Applications, including server-side database

Figure 5 Developing the blog application with XIDE. The preview of the login page is shown in the top-left
corner, the components used for building the page are listed on the right, and the source code of the selected
footer component is displayed at the bottom

536 World Wide Web (2016) 19:519–543

functionality. Hence, end-user developers can achieve the tasks from the level 5. Moreover,
end-user developers can incrementally learn the technology and succeed in more advanced
code editing (levels 6 and 7). XIDE provides wizards and intelligent automatic source code
generation for configuring technical issues that can otherwise be complicated for end-user
developers. The built-in text editor supports advanced highlighting and error checking,
including XFormsDB syntax and logical structure. The syntax highlighting focuses end-user
developers’ attention to the most important parts of the source code, such as parameters.

Third, XIDE strives to reveal the connection between visual and source code editing, which
is a challenging issue for end-user developers [24]. XIDE uses multiple coordinative windows
to show one concept from different perspectives or different degrees of abstraction. This allows
end-user developers, for example, to discover the link between a component source code and
its visual output. XIDE also supports design at runtime: changes made to the page or
component source code instantly appear in the design or preview representation.

Developing the blog application with XIDE To demonstrate XIDE’s capabilities, we devel-
oped the blog application introduced in Section 6.1 using XIDE (cf. Figure 5). To support
visual component-based development, we created (levels 6 and 7) three reusable components:
header, login form, and footer. For each component, it is possible to define own queries, data
instances, database data, CSS, and resources (e.g., images). In addition, components can be
parameterized to increase their reusability. Moreover, XIDE allows to edit and customize
existing components, which can then be saved as new components (levels 4 and 5). The
content of the components was defined in XHTML, XForms, and XFormsDB.

Then, we developed three pages of the application as end-users would do. For example, the
login page (shown in the preview area), uses all three of the aforementioned components to
construct the Web page. The components were dragged (levels 1–3) into dedicated component
containers, and as a result, XIDE generated bindings between the components and Web pages.
The other two pages were developed using both existing components (levels 4 and 5) and
manual XFormsDB coding (levels 5–7). Finally, the blog application was published online on
the XIDE platform: http://testbed.tml.hut.fi/fakeuser/xideblogdemo/.

9 Evaluation

In this section, we evaluate the XFormsDB framework and the XIDE visual tool from three
different perspectives. First, we evaluate XFormsDB as a software product. Then, we analyze
different XFormsDB-based Web Applications. Finally, we report the results of XIDE user
tests.

9.1 Software product quality

Software product quality characteristics are part of the ISO/IEC 25010:2011 standard [21].
However, the standard is not specifically designed to evaluate Web Application frameworks,
and thus we include two additional characteristics: time-to-market [41] and support. The latter
includes documentation quality, development community activity, and development tool
availability.

Functional Suitability: XFormsDB’s functionality covers only the most common server-
side and database-related tasks, because the framework targets end-user developers whose

World Wide Web (2016) 19:519–543 537

http://testbed.tml.hut.fi/fakeuser/xideblogdemo/

main focus is not on the application’s business logic. Thus, it should be used to develop
small and medium-sized Web Applications instead of enterprise-level applications con-
taining complex business logic (cf. Section 9.2).
Reliability:XFormsDB is an academic project. However, its reliability has been tested on
numerous Web Applications (cf. Section 9.2).
Security: XFormsDB provides built-in and easy-to-use security capabilities for authen-
tication, authorization, and access control (cf. Section 6.1).
Compatibility: XFormsDB can consume data from third-party systems using, for exam-
ple, Representational State Transfer (REST) APIs. In addition, XFormsDB can expose its
application data through eXist-db’s RESTful API.
Operability: For an end-user with little technical knowledge, XFormsDB is easy to learn
(cf. Section 9.3), because it is based on declarative languages with limited functionality.
The adoption rate of both XForms and XQuery, however, is still quite low, despite being
W3C recommendations.
Performance efficiency: XFormsDB response times are reasonable but not highly
optimized [27]. Moving XFormsDB-based Web Applications to the cloud for a better
scalability requires further study.
Maintainability: XFormsDB relies heavily on declarative W3C standards, which in-
creases code modularity and reusability. In addition, XFormsDB is an open-source
project, so it can be easily modified and extended.
Portability: The XFormsDB development environment comes with executable scripts
and a bundled Web server, which makes it easy to install and uninstall.
Time-to-Market: XFormsDB allows rapid prototyping but requires additional learning
up front.
Support: XFormsDB has a visual development tool XIDE. XFormsDB’s documentation
is good, but it is mostly restricted to scientific publications.

9.2 Applications

The XFormsDB Blog application is analyzed in detail in [27], which contains also an
analysis of a Personal Information Management (PIM) application. In addition, [29]
presents an additional XFormsDB-based application: Project Management.

Åkerberg [1] did a more comprehensive evaluation of XFormsDB application
development. He developed a mobile NFC-based ticketing application without any
previous knowledge on XForms or XFormsDB. The application has three main views:
1) home screen, 2) route screen, and 3) payment screen. The home screen shows the
most often needed travel card information. The route screen displays the current
traveler’s location as well as the nearest public transportation stations and stops.
The payment screen allows loading travel value or period to the customer’s travel
card.

At the time of the development of the mobile ticketing application, XIDE was not
ready, and thus the application was implemented directly using the XFormsDB
framework. The biggest problems arose from the lack of clear instructions and examples
of how certain functionality should be implemented using XForms. Otherwise,
XFormsDB proved to be an efficient platform for the mobile ticketing application.
In addition to the internal XFormsDB database, the application used several external
APIs. The integration of HTTP-based APIs was simple, at least when the returned
data was in the XML format.

538 World Wide Web (2016) 19:519–543

9.3 XIDE evaluation

We conducted a qualitative evaluation of XIDE with nine participants (5 males and 4 females)
[32]. They were 22–31 years old (average age 25 years). The aim of the study was to
investigate whether level 4 end-users could perform level 6 and 7 tasks without facing any
major learning barriers. We recruited the participants from Economics and Computer Science
students. We only accepted level 4 participants: they were active Internet users, had tried to
create a simple Web page using a visual editor, and tried to use some XML-based markup
language. None of the participants studied Web development as a major. None of them had
ever used XIDE, XFormsDB, or XForms.

Each person participated in the study individually and each evaluation took approximately
1.5–2 hours. First, the participants were interviewed individually about their Web Application
development experience. After that, each participant was given a brief introduction to the
XIDE tool. Then, each participant was given a set of tasks, ranging from simple visual
manipulations to direct code editing. An evaluator observed how the participants executed
the tasks and discussed the motivation and decisions made with each participant. At the end,
we performed a closing interview.

Each participant performed ten tasks, which were designed to resemble the transition from
visual editing (level 3) to XFormsDB programming (level 7). First, they used the visual editor
for simple modifications (level 3). Then, they executed the same tasks manually to the source
code (level 4). After that, the participants were asked to modify the page source code (level 5).
Next, they had to do first minor (level 5) and then major modifications to the components
(level 6–7). Finally, the participants had to contribute new components (level 6–7).

We used a think-aloud method to gather data about participants’ performance. Participants
talked about the XIDE interface. They described and explained their actions. An interviewer
was allowed to ask qualifying questions. This allowed us to better understand how participants
perceived the XIDE user interface and tasks. However, performance times of individual tasks
did not provide significant results.

All participants were able to perform all the given tasks. In general, the participants said
they found the XIDE approach promising and would use such tool. They found it useful and
flexible, because it supported different levels of modification. In overall, all nine participants
were able to smoothly transit from the level 4 to the levels 6–7 without facing any major
learning barriers.

The participants widely employed the copy-paste approach. XIDE provided neither vocab-
ulary of available XFormsDB or HTML tags that could have been used nor code completion.
Thus, the only way a novice user could contribute new code was to find the piece of code that
had the same functionality, copy it, and modify it according to the task. In such tasks,
immediate response from the system was highly appreciated. The participants could see what
had changed in the page after his/her modifications to the source code. This also helped them
to understand whether it was the right place to do the modifications.

The source code highlighting was an extremely useful feature. Less important parts—
such as the data model or head part—were displayed in grayscale. Most participants
started looking into them at the very end, and thus concentrated first on more valuable
parts. The participants’ attention was focused on the code part, which—most likely—
contained the needed information. On the other hand, the rest of the code was still
visible, so the participants could check it if needed. All participants named this feature
among the most usable features in XIDE.

The XIDE evaluation provided useful information, but had also some validity limita-
tions. First, the participants progressed from task to task and from level to level. In a

World Wide Web (2016) 19:519–543 539

real-life situation, users might have problems in decomposing a task into smaller steps.
Second, participants were selected from a narrow group of university students who were
about the same age.

10 Conclusions

This paper contains three new contributions: 1) extended nine-level classification of Web
Application development, 2) requirements for real-time communication capabilities in Web
Applications, and 3) new XFormsRTC language extension for client–server communication in
XForms-based Web Applications.

First, we investigated how the complexity of Web Application development increases when
proceeding from traditional end-user development towards conventional three-tier Web Ap-
plications development. We defined nine Web Application development levels. The first three
levels are within the reach of most end-user developers: level 1) customizing components,
level 2) WYSIWYG editing, and level 3) visual editing. More advanced end-user developers
master the level 4) markup authoring, and even the level 5) snippet programming. However,
most end-user developers are reluctant to become real programmers. We divided professional
Web development into four levels: level 6) single language programming, level 7) unified
language programming, level 8) multiple language programming, and level 9) multiple
language and paradigm programming. Using this analysis as a basis, we strived to reassess
how to expand the scope of Web Applications mid-level end-user developers can create
without facing major learning challenges.

We based our approach on the level 7) unified language programming. In our proposal, the
presentation tier is expanded to cover all three tiers of a Web Application. This allows end-user
developers not only to leverage their existing skills in user interface development, but also to
implement entire Web Applications using a single declarative language and data model. In the
proposed XFormsDB framework, all application development is done on the client side. We
believe that this helps especially Web designers—usually mid-level end-user developers—to
become advanced Web Application developers. The framework is based on the XForms
markup language and our proposed XFormsDB server-side language extension. We imple-
mented the XFormsDB framework based on the derived requirements, and argued that it could
simplify both the development and maintenance of small and medium-sized Web
Applications.

In addition, we proposed an improvement for the client–server communication in XForms-
based Web Applications. Our proposal—the XFormsRTC language extension—complements
XForms’HTTP-based communication with two-way, full-duplex, true RTC capabilities. Using
the XFormsRTC uniform API, it is possible to communicate with different types of RTC
servers in a fully declarative manner.

To assist lower-level end-user developers in the development of XFormsDB-based
applications, we described and implemented the XIDE editor: a visual Web Application
development tool supporting all the above-mentioned Web programming activities.
XIDE aims to gently lead end-user developers from the level 4) markup authoring to
the level 5) snippet programming, and even further to the levels 6) single language
programming and 7) unified language programming. The XFormsDB framework and the
XIDE visual authoring tool (together with a number of examples) are available under the
MIT license.

In the future, we plan to improve XFormsDB data access. Moreover, we will intro-
duce a unified querying approach that allows XForms clients to consume heterogeneous

540 World Wide Web (2016) 19:519–543

data on the Web (e.g., JSON data via Web APIs) in a developer friendly and efficient
manner.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are
credited.

References

1. Åkerberg, M.: Evaluation of XFormsDB-Based Application Development—A Case Study. M.Sc. Thesis.
Aalto Univ., Espoo, Finland (2010)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and Applications (1st
ed.). Springer (2004). ISBN: 978-3-540-44008-6

3. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J., Siméon, J. (eds.): XML Path
Language (XPath) 2.0 (Second Edition). W3C Recomm. http://www.w3.org/TR/xpath20/ (2010). Accessed
7 Feb. 2014

4. Boag, S., Chamberlin, D., Fernández,M.F., Florescu, D., Robie, J. Siméon, J. (eds.): XQuery 1.0: AnXMLQuery
Language (Second Edition). W3C Recomm. http://www.w3.org/TR/xquery/ (2010). Accessed 7 Feb. 2014

5. Boyer, J.M. (ed.): XForms 1.1. W3CRecomm. http://www.w3.org/TR/xforms/ (2009). Accessed 7 Feb. 2014
6. Boyer, J.M., Klotz, Jr., L.L., Pemberton, S., Van den Bleeken, N. (eds.): XForms 2.0. W3C Working Draft.

http://www.w3.org/TR/xforms20/ (2012). Accessed 7 Feb. 2014
7. Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi, G.: Conceptual Modeling and Code Generation for

Rich Internet Applications. In: Proc. 6th International Conference onWeb Engineering (ICWE), pp. 353–360
(2006). doi:10.1145/1145581.1145649

8. Brandt, J., Guo, P.J., Lewenstein, J., Klemmer, S.: Opportunistic Programming: How Rapid Ideation and
Prototyping Occur in Practice. In: Proc. 4th Int. Workshop End-User Softw. Eng. (WEUSE'08), pp. 1–5
(2008). doi:10.1145/1370847.1370848

9. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C.: DashMash: A Mashup
Environment for End User Development. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) Web Engineering
(ICWE’11), Lect. Notes Comput. Sci. Springer, 6757, pp. 152–166 (2011). doi:10.1007/978-3-642-22233-7_11

10. Casteleyn, S., Garrigós, I., Mazón, J.-N.: Ten Years of Rich Internet Applications: A Systematic Mapping
Study, and Beyond. ACM Trans. Web 8(3), 18:1–46 (2014). doi:10.1145/2626369

11. Costabile, M.F., Mussio, P., Parasiliti Provenza, L., Piccinno, A.: End Users as Unwitting Software
Developers. In: Proc. 4th Int. Workshop End User Softw. Eng. (WEUSE’08), pp. 6–10 (2008). doi:10.
1145/1370847.1370849

12. Dubinko, M.: XForms Essentials (1st ed.). O’Reilly Media (2003). ISBN: 978-0-596-00369-2
13. Fallside, D.C., Walmsley, P. (eds.): XML Schema Part 0: Primer Second Edition. W3C Recomm. http://

www.w3.org/TR/xmlschema-0/ (2004). Accessed 7 Feb. 2014
14. Fette, I., Melnikov, A. (eds.): The WebSocket Protocol. IETF RFC 6455 (Proposed Stand.), https://tools.ietf.

org/html/rfc6455 (2011). Accessed 7 Feb. 2014
15. Fraternali, P., Comai, S., Bozzon, A., Toffetti Carughi, G:. Engineering Rich Internet Applications with a

Model-Driven Approach. ACM Trans. Web 4(2), 7:1–47 (2010). doi:10.1145/1734200.1734204
16. Garrett, J.J.: Ajax: A New Approach to Web Applications, http://www.adaptivepath.com/ideas/ajax-new-

approach-Web-applications (2005). Accessed 7 Feb. 2014
17. Heinrich, M., Gaedke, M.: Data Binding for Standard-Based Web Applications. In: Proc. 27th Annual ACM

Symp. Appl. Comput. (SAC’12), pp. 652–657 (2012). doi:10.1145/2245276.2245402
18. Hickson, I. (ed.): HTML5: A Vocabulary and Associated APIs for HTML and XHTML. W3C Recomm.

http://www.w3.org/TR/html5/ (2014). Accessed 16 Mar. 2015
19. Hickson, I. (ed.): The WebSocket API. W3C Candidate Recomm. http://www.w3.org/TR/Websockets/

(2012). Accessed 7 Feb. 2014
20. Honkala, M., Vuorimaa, P.: XForms in X-Smiles. World. Wide. Web 4(3), 151–166 (2001) doi:10.1023/

A:1013853416747
21. ISO/IEC 25010:2011: Systems and Software Engineering—Systems and Software Quality Requirements

and Evaluation (SQuaRE)—System and Software Quality Models, International Organization for
Standardization/International Electrotechnical Commission (2011)

22. Kaufmann, M., Kossmann, D.: Developing an Enterprise Web Application in XQuery. Tech. Rep. ETH
Zürich. http://download.28msec.com/sausalito/technical_reading/enterprise_webapps.pdf (2008). Accessed
7 Feb. 2014

World Wide Web (2016) 19:519–543 541

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms20/
http://dx.doi.org/10.1145/1145581.1145649
http://dx.doi.org/10.1145/1370847.1370848
http://dx.doi.org/10.1007/978-3-642-22233-7_11
http://dx.doi.org/10.1145/2626369
http://dx.doi.org/10.1145/1370847.1370849
http://dx.doi.org/10.1145/1370847.1370849
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
http://dx.doi.org/10.1145/1734200.1734204
http://www.adaptivepath.com/ideas/ajax-new-approach-Web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-Web-applications
http://dx.doi.org/10.1145/2245276.2245402
http://www.w3.org/TR/html5/
http://www.w3.org/TR/Websockets/
http://dx.doi.org/10.1023/A:1013853416747
http://dx.doi.org/10.1023/A:1013853416747
http://download.28msec.com/sausalito/technical_reading/enterprise_webapps.pdf

23. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J.,
Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M., Wiedenbeck, S.: The State of the Art in
End-User Software Engineering. ACM Comput. Surv., 43(3), 21:1–44 (2011). doi:10.1145/1922649.
1922658

24. Ko, A.J., Myers, B.A., Aung, H.H.: Six Learning Barriers in End-User Programming Systems. In: Proc.
Symp. Visual Lang. and Hum. Centric Comput., pp. 199–206 (2004). doi:10.1109/VLHCC.2004.47

25. Krasner, G.E., Pope, S.T.: A Cookbook for Using the Model-View-Controller User Interface Paradigm in
Smalltalk-80. J. Object-Oriented. Program. 1(3), 26–49 (1988)

26. Kuuskeri, J., Mikkonen, T.: Partitioning Web Applications Between the Server and the Client. J. Web. Eng.
9(3), 207–226 (2010)

27. Laine, M.: XFormsDB—An XForms-Based Framework for Simplifying Web Application Development.
M.Sc. Thesis. Aalto Univ., Espoo, Finland. http://urn.fi/URN:NBN:fi:aalto-201203131406 (2010). Accessed
16 Mar. 2015

28. Laine, M., Shestakov, D., Litvinova, E., Vuorimaa, P.: Toward Unified Web Application Development.
13(5), 30–36 (2011). doi:10.1109/MITP.2011.55

29. Laine, M., Shestakov, D., Vuorimaa, P.: XFormsDB: An Extensible Web Application Framework Built upon
DeclarativeW3C Standards. ACM SIGAPPAppl. Comput. Rev. 12(3), 37–50 (2012). doi:10.1145/2387358.
2387361

30. Lindholm, T.: A Three-Way Merge for XML Documents. In: Proc. 2004 ACM Symp. Doc. Eng.
(DocEng’04), pp. 1–10 (2004). doi:10.1145/1030397.1030399

31. Litvinova, E.: XIDE—AVisual Tool for End User Development of Web Applications. M.Sc. Thesis. Univ.
Eastern Finland, Joensuu, Finland (2010)

32. Litvinova, E., Laine, M., Vuorimaa, P.: XIDE: Expanding End-User Web Development. In: Proc. 8th Int.
Conf. Web Inf. Syst. and Tech. (WEBIST’12), pp. 123–128 (2012). doi:10.5220/0003934201230128

33. Lizcano, D., Alonso, F., Soriano, J., López, G.: A New End-User Composition Model to Empower
Knowledge Workers to Develop Rich Internet Applications. J. Web. Eng. 10(3), 197–233 (2011)

34. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-Tailorable Systems: Pressing the Issues with
Buttons. In: Proc. SIGCHI Conf. Hum. Factors Comput. Syst.: Empowering People (CHI’90), pp. 175–
182 (1990). doi:10.1145/97243.97271

35. Marsh, J., Orchard, D., Veillard, D. (eds.): XML Inclusions (XInclude) Version 1.0 (Second Edition). W3C
Recomm. http://www.w3.org/TR/xinclude/ (2006). Accessed 7 Feb. 2014

36. Martinez-Ruiz, F., Muñoz Arteaga, J., Vanderdonckt, J., Gonzalez-Calleros, J., Mendoza, R.: A First Draft of
a Model-Driven Method for Designing Graphical User Interfaces of Rich Internet Applications. In: 4th Latin
American Web Congress (LA-Web), pp. 32–38 (2006). doi:10.1109/LA-WEB.2006.1

37. McCreary, D.: Introducing the XRX Architecture: XForms/REST/XQuery. http://datadictionary.blogspot.fi/
2007/12/introducing-xrx-architecture.html (2007). Accessed 7 Feb. 2014

38. Meier, W.: eXist: An Open Source Native XML Database. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland,
R. (eds.) Web, Web-Services, and Database Systems, Lect. Notes Comput. Sci. Springer, 2593, pp. 169–183
(2003). doi:10.1007/3-540-36560-5_13

39. Mikkonen, T., Taivalsaari, A.: Web Applications – Spaghetti Code for the 21st Century. In: 6th Int. Conf.
Softw. Eng. Research, Management and Applications (SERA'08), pp. 319–328 (2008). doi:10.1109/SERA.
2008.16

40. Nemeş, C., Podean, M., Rusu, L.: XRX: The Implementation Process under XRX Architecture. In: Proc. 8th
Int. Conf. Web Inf. Syst. and Tech. (WEBIST’12), pp. 103–109 (2012). doi:10.5220/0003931101030109

41. Offutt, J.: Quality Attributes of Web Software Applications. IEEE Softw. 19(2), 25–32 (2012). doi:10.1109/
52.991329

42. Park, T. H., Wiedenbeck, S.: First Steps in Coding by Informal Web Developers. In: Proc. Vis. Lang. and
Hum.-Centric Comput. (VL/HCC 2010), pp. 79–82 (2010). doi:10.1109/VLHCC.2010.20

43. Paterson, I., Saint-Andre, P., Stout, L., Tilanus, W. (eds.): XEP-0206: XMPP Over BOSH. Draft Standard,
XMPP Standards Foundation. http://xmpp.org/extensions/xep-0206.html (2014). Accessed 16 Mar. 2015

44. Pohja,M.: Comparison of CommonXML-BasedWebUser Interface Languages. J.Web. Eng. 9(2), 95–115 (2010)
45. Pohja, M.: Server Push for Web Applications via Instant Messaging. J. Web. Eng. 9(3), 227–242 (2010)
46. Repenning, A., Ioannidou, A.: What Makes End-User Development Tick? 13 Design Guidelines. In:

Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, Hum.-Comput. Interact. Ser. Springer,
9, pp. 51–85 (2006). doi:10.1007/1-4020-5386-X_4

47. Rode, J., Bhardwaj, Y., Pérez-Quiñones, M.A., Rosson, M.B., Howarth, J.: As Easy as “Click”: End-User
Web Engineering. In: Lowe, D. Gaedke, M., (eds.) Web Engineering, Lect. Notes Comput. Sci. Springer,
3579, pp. 478–488 (2005). doi:10.1007/11531371_61

48. Russell, A.: Comet: Low Latency Data for the Browser. http://infrequently.org/2006/03/comet-low-latency-
data-for-the-browser/ (2006). Accessed 7 Feb. 2014

542 World Wide Web (2016) 19:519–543

http://dx.doi.org/10.1145/1922649.1922658
http://dx.doi.org/10.1145/1922649.1922658
http://dx.doi.org/10.1109/VLHCC.2004.47
http://urn.fi/URN:NBN:fi:aalto-201203131406
http://dx.doi.org/10.1109/MITP.2011.55
http://dx.doi.org/10.1145/2387358.2387361
http://dx.doi.org/10.1145/2387358.2387361
http://dx.doi.org/10.1145/1030397.1030399
http://dx.doi.org/10.5220/0003934201230128
http://dx.doi.org/10.1145/97243.97271
http://www.w3.org/TR/xinclude/
http://dx.doi.org/10.1109/LA-WEB.2006.1
http://datadictionary.blogspot.fi/2007/12/introducing-xrx-architecture.html
http://datadictionary.blogspot.fi/2007/12/introducing-xrx-architecture.html
http://dx.doi.org/10.1007/3-540-36560-5_13
http://dx.doi.org/10.5220/0003931101030109
http://dx.doi.org/10.5220/0003931101030109
http://dx.doi.org/10.5220/0003931101030109
http://dx.doi.org/10.1109/52.991329
http://dx.doi.org/10.1109/52.991329
http://dx.doi.org/10.1109/VLHCC.2010.20
http://xmpp.org/extensions/xep-0206.html
http://dx.doi.org/10.1007/1-4020-5386-X_4
http://dx.doi.org/10.1007/11531371_61
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/

49. Saint-Andre, P.: Streaming XML with Jabber/XMPP. IEEE Internet. Comput. 9(5), 82–89 (2005). doi:10.
1109/MIC.2005.110

50. Saint-Andre, P. (ed.): Extensible Messaging and Presence Protocol (XMPP): Core. IETF RFC 6120
(Proposed Stand.). https://tools.ietf.org/html/rfc6120 (2011). Accessed 7 Feb. 2014

51. Saint-Andre, P. (ed.): Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and
Presence. IETF RFC 6121 (Proposed Stand.). https://tools.ietf.org/html/rfc6121 (2011). Accessed 7 Feb.
2014

52. Schmitz, P:. The SMIL 2.0 Timing and Synchronization Model: Using Time in Documents. Tech. Rep.
MSR- TR-2001-01. Microsoft Research. http://research.microsoft.com/pubs/69839/tr-2001-01.doc (2001).
Accessed 7 Feb. 2014

53. Stout, L., Moffitt, J., Cestari, E. (eds.): An XMPP Sub-protocol for WebSocket. IETF Internet Draft. https://
tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-04 (2013). Accessed 16 Mar. 2015

54. Toffetti, G., Comai, S., Preciado, J.C., Linaje, M.: State-of-the Art and Trends in the Systematic
Development of Rich Internet Applications. J. Web. Eng. 10(1), 70–86 (2011)

55. Valverde, F., Pastor, O., Valderas, P., Pelechano, V.: A Model-Driven Engineering Approach for Defining
Rich Internet Applications: A Web 2.0 Case Study. In: Handbook of Research on Web 2.0, 3.0 and X.0:
Technologies, Business and Social Applications, IGI Global, pp. 40–58 (2010). doi:10.4018/978-1-60566-
384-5.ch003

56. Won, M., Stiemerling, O., Wulf, V.: Component-Based Approaches to Tailorable Systems. In: Lieberman,
H., Paternò, F., Wulf, V. (eds.) End User Development, Hum.-Comput. Interact. Ser. Springer, 9, pp. 115–
141 (2006). doi:10.1007/1-4020-5386-X_6

57. Yang, F., Gupta, N., Gerner, N., Qi, X., Demers, A., Gehrke, J., Shanmugasundaram, J.: A Unified Platform
for Data DrivenWeb Applications with Automatic Client–server Partitioning. In: Proc. 16th Int. Conf. World
Wide Web (WWW’06), pp. 341–350 (2007). doi:10.1145/1242572.1242619

World Wide Web (2016) 19:519–543 543

http://dx.doi.org/10.1109/MIC.2005.110
http://dx.doi.org/10.1109/MIC.2005.110
https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6121
http://research.microsoft.com/pubs/69839/tr-2001-01.doc
https://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-04
https://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-04
http://dx.doi.org/10.4018/978-1-60566-384-5.ch003
http://dx.doi.org/10.4018/978-1-60566-384-5.ch003
http://dx.doi.org/10.1007/1-4020-5386-X_6
http://dx.doi.org/10.1145/1242572.1242619

	Leveraging declarative languages in web application development
	Abstract
	Introduction
	Related work
	Rich internet applications
	WebML-RIA
	Declarative vs. imperative web application development

	End-user web application development
	Expanding the presentation tier
	XForms as a unified end-user web application development language
	XForms language extensions
	XFormsDB
	XFormsRTC

	XFormsDB implementation
	XFormsDB framework
	XFormsDB processor
	Extensibility and limitations

	XFormsDB integrated development environment
	Evaluation
	Software product quality
	Applications
	XIDE evaluation

	Conclusions
	References

