
Markel Sanz Ausin, Hamoon Azizsoltani, Tiffany Barnes and
Min Chi "Leveraging Deep Reinforcement Learning for
Pedagogical Policy Induction in an Intelligent Tutoring System"
In: Proceedings of The 12th International Conference on
Educational Data Mining (EDM 2019), Collin F. Lynch, Agathe
Merceron, Michel Desmarais, & Roger Nkambou (eds.) 2019, pp.
168 - 177

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 168

Leveraging Deep Reinforcement Learning for Pedagogical
Policy Induction in an Intelligent Tutoring System

Markel Sanz Ausin, Hamoon Azizsoltani, Tiffany Barnes and Min Chi
North Carolina State University

Raleigh, NC, 27695
{msanzau,hazizso,tmbarnes,mchi}@ncsu.edu

ABSTRACT
Deep Reinforcement Learning (DRL) has been shown to be

a very powerful technique in recent years on a wide range

of applications. Much of the prior DRL work took the on

line learning approach. However, given the challenges of

building accurate simulations for modeling student learn

ing, we investigated applying DRL to induce a pedagogical

policy through an offiine approach. In this work, we ex

plored the effectiveness of offiine DRL for pedagogical pol

icy induction in an Intelligent Tutoring System. Generally

speaking, when applying offiine DRL, we face two major

challenges: one is limited training data and the other is the

credit assignment problem caused by delayed rewards. In

this work, we used Gaussian Processes to solve the credit

assignment problem by estimating the inferred immediate

rewards from the final delayed rewards. We then applied

the DQN and Double-DQN algorithms to induce adaptive

pedagogical strategies tailored to individual students. Our

empirical results show that without solving the credit as

signment problem, the DQN policy, although better than

Double-DQN, was no better than a random policy. How

ever, when combining DQN with the inferred rewards, our

best DQN policy can outperform the random yet reasonable

policy, especially for students with high pre-test scores.

1. INTRODUCTION
Interactive e-Learning Environments such as Intelligent Tu

toring Systems (ITSs) and educational games have become

increasingly prevalent in educational settings. In order to

design effective interactive learning environments, develop

ers must form the basic core of the system and determine

what is to be taught and how. Pedagogical strategies are

policies that are used to decide the how part, what action

to take next in the face of alternatives. Each of these sys

tems' decisions will affect the user's subsequent actions and

performance.

Reinforcement Learning (RL) is one of the best machine

learning approaches for decision making in interactive envi-

ronments and RL algorithms are designed to induce effective

policies that determine the best action for an agent to take

in any given situation to maximize some predefined cumu

lative reward. In recent years, deep neural networks have

enabled significant progress in RL research. For example,

Deep Q-Networks (DQNs) [26] have successfully learned to

play Atari games at or exceeding human level performance

by combining deep convolutional neural networks and Q

learning. Since then, DRL has achieved notable successes in

a variety of complex tasks such as robotics control [1] and

the game of Go [44]. From DQN, various DRL methods such

as Double DQN [51] or Actor-Critic methods [38, 39] were

proposed and shown to be more effective than the classic

DQN. Despite DRL's great success, there are still many chal

lenges preventing DRL from being applied more broadly in

practice, including applying it to educational systems. One

major problem is sample inefficiency of current DRL algo

rithms. For example, it takes DQN hundreds of millions of

interactions with the environment to learn a good policy and

generalize to unseen states, while we seek to learn policies

from datasets with fewer than 800 student-tutor interaction

logs.

Generally speaking, there are two major categories of RL:

online and offiine. Online RL algorithms learn policy while

the agent interacts with the environment; offiine RL algo

rithms, by contrast, learn the policy from pre-collected train

ing data. Online RL methods are generally appropriate for

domains where the state representation is clear and interact

ing with simulations and actual environments is relatively

computationally cheap and feasible, so most of prior work

on DRL mainly took an online learning approach. On the

other hand, for domains such as e-learning, building accurate

simulations or simulating students is especially challenging

because human learning is a rather complex, not fully under

stood process; moreover, learning policies while interacting

with students may not be feasible and more importantly,

may not be ethical. Therefore, our DRL approach is offiine.

This approach was achieved by, first, collecting a training

corpus. One common convention, and the one used in our

study, is to collect an exploratory corpus by training a group

of students on an ITS that makes random yet reasonable

decisions and then apply RL to induce pedagogical policies

from that exploratory training corpus. An empirical study

was then conducted from a new group of human subjects

interacting with different versions of the system. The only

difference among the versions was the policy employed by

the ITS. Lastly, the students' performance was statistically

169 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

compared. Due to cost limitations, typically, only the best

RL-induced policy was deployed and compared against some

baseline policies.

When applying offiine DRL to ITSs, we often face one major

challenge: our rewards are often not only noisy but also de

layed. Given the nature of ITS data collection, the training

data including our reward functions is often noisy and our

rewards are only the incomplete or imperfect observations

of underlying true reward mechanisms. Due to the complex

nature of student learning, the most appropriate rewards are

(delayed) student learning gains, which are only available af

ter the entire training is complete. For example, hints might

improve immediate performance but negatively impact over

all learning. On the other hand, when the size of the training

data is limited, the availability of "true" immediate rewards

is very important for offiine RL. Immediate rewards are gen

erally more effective than delayed rewards for offiine RL be

cause it is easier to assign appropriate credit or blame when

the feedback is tied to a single decision. The more we de

lay rewards or punishments, the harder it becomes to assign

credit or blame properly. Therefore, the challenge is how to

distribute the delayed rewards to observable, immediate re

wards along each student-system interactive trajectory while

taking the noise and uncertainty in the data into account.

To tackle this issue, we applied a Gaussian Processes based

(GP-based) approach to infer "immediate rewards" from the

delayed rewards and then applied DQN to induce two poli

cies: one based on delayed rewards and the other based on

the inferred immediate rewards, referred to as DQN-Del and

DQN-Inf respectively.

In this work, we used a logic ITS and focused on apply

ing DRL to induce a policy on one type of tutorial deci

sion: whether to present a given problem as a problem solv

ing (PS) or a worked example (WE). The tutor presents

a worked example (WE) by demonstrating the individual

steps in an expert solution to a problem. During PS, stu

dents are required to complete the problem with tutor sup

port (e.g. hints). The effectiveness of DQN-Del and DQN

Inf are evaluated theoretically using Expected Cumulative

Reward (ECR) and empirically through two randomly con

trolled experiments: one for evaluating the effectiveness of

DQN-Del in Spring 2018 and the other for evaluating DQN

Inf in Fall 2018. In each experiment, the effectiveness of the

corresponding RL-induced policy was compared against the

Random policy that flips a coin to decide between WE/PS

and the students were randomly assigned into the two con

ditions while balancing their incoming competence. Overall,

the results from both experiments showed no significant dif

ference between the DQN-Del and Random in Spring 2018

and between the DQN-lnf and Random in Fall 2018 on every

measure of learning performance.

There are two potential explanations for such findings. First,

our random baseline policy is decently strong. While ran

dom policies are usually bad in many RL tasks, in the con

text of WE vs. PS, our random policies can be strong base

lines. Indeed, some learning literature suggests that the best

instructional intervention is to alternate WE and PS [35,

41, 36]. Second, there may be an aptitude-treatment in

teraction (ATI) effect [6, 47], where certain students are

less sensitive to the induced policies, meaning they achieve a

similar learning performance regardless of policies employed;

whereas other students are more sensitive, meaning their

learning is highly dependent on the effectiveness of the poli

cies. Thus, we divided the students into High vs. Low based

on their incoming competence and investigated the ATI ef

fect. While no ATI effect was found between DQN-Del and

Random for Spring 2018, a significant ATI effect was found

between DQN-lnf and Random in Fall 2018.

In short, we explored applying offiine DRL for pedagogical

policy induction based on delayed and inferred immediate

rewards. Our results showed that no ATI effect was found

between DQN-Del and Random in Spring 2018, whereas

there was an ATI effect between DQN-Inf and Random in

Fall 2018. More specifically, the High incoming competence

group benefited significantly more from the DQN-Inf policy

than their peers in the Random condition. This result sug

gests that the availability of inferred immediate rewards was

crucial for effectively applying offiine DRL for pedagogical

policy induction.

2. BACKGROUND
A great deal of research has investigated the differing im

pacts of worked examples (WE) and problem solving (PS)

on student learning [49, 22, 21, 23, 41, 27, 36]. McLaren

and colleagues compared WE-PS pairs with PS-only [22].

Every student was given a total of 10 training problems.

Students in the PS-only condition were required to solve ev

ery problem while students in the WE-PS condition were

given 5 example-problem pairs. Each pair consisted of an

initial worked example problem followed by tutored prob

lem solving. They found no significant difference in learning

performance between the two conditions. However, the WE

PS group spent significantly less time than the PS group.

McLaren and his colleagues found similar results in two sub

sequent studies [21, 23]. In the former, the authors com

pared three conditions: WE, PS and WE-PS pairs, in the

domain of high school chemistry. All students were given 10

identical problems. As before, the authors found no signifi

cant differences among the three groups in terms of learning

gains but the WE group spent significantly less time than

the other two conditions; and no significant time on task dif

ference was found between the PS and WE-PS conditions.

In a follow-up study, conducted in the domain of high school

stoichiometry, McLaren and colleagues compared four con

ditions: WE, tutored PS, untutored PS, and Erroneous Ex

amples (EE) [23]. Students in the EE condition were given

incorrect worked examples containing between 1 and 4 errors

and were tasked with correcting them. The authors found

no significant differences among the conditions in terms of

learning gains, and as before the WE students spent signif

icantly less time than the other groups. More specifically,

for time on task, they found that: WE < EE < untutored

PS< tutored PS. In fact, the WE students spent only 30%

of the total time that the tutored PS students spent.

The advantages of WEs were also demonstrated in another

study in the domain of electrical circuits [50]. The authors

of that study compared four conditions: WE, WE-PS pairs,

PS-WE pairs (problem-solving followed by an example prob

lem), and PS only. They found that the WE and WE-PS

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 170

students significantly outperformed the other two groups,

and no significant differences were found among four condi

tions in terms of time on task.

In short, prior research has shown that WE can be similar

or more effective than PS or alternating PS with WE, and

the former can take significantly less time than the latter

two [49, 22, 21, 23, 41]. However, there is no widespread

consensus on how or when WE vs. PS should be used. This

is why we will derive pedagogical strategies for them directly

from empirical data.

2.1 ATI Effect
Previous work shows that the ATI effect commonly exists

in many real-world studies. More formally, the ATI effect

states that instructional treatments are more or less effective

to individual learners depending on their abilities [6]. For

example, Kalyuga et al. [17] empirically evaluated the effec

tiveness of worked example (WE) vs. problem solving (PS)

on student learning in programmable logic. Their results

show that WE is more effective for inexperienced students

while PS is more effective for experienced learners.

Moreover, D'Mello et al. [7] compared two versions of ITSs:

one is an affect-sensitive tutor which selects the next prob

lem based on students' affective and cognitive states com

bined, while the other is an original tutor which selects the

next problem based on students' cognitive states alone. An

empirical study shows that there is no significant difference

between the two tutors for students with high prior knowl

edge. However, there is a significant difference for students

with low prior knowledge: those who trained on the affect

sensitive tutor had significantly higher learning gain than

their peers using the original tutor.

Chi and VanLehn [4] investigated the ATI effect in the do

main of probability and physics, and their results showed

that high competence students can learn regardless of in

structional interventions, while for students with low com

petence, those who follow the effective instructional inter

ventions learned significantly more than those who did not.

Shen and Chi [43] find that for pedagogical decisions on WE

vs. PS, certain learners are always less sensitive in that their

learning is not affected, while others are more sensitive to

variations in different policies. In their study, they divided

students into Fast and Slow groups based on time, and found

that the Slow groups are more sensitive to the pedagogical

decisions while the Fast groups are less sensitive.

3. RELATED WORK
Deep Reinforcement Learning: In recent years, many

DRL algorithms have been developed for various applica

tions such as board games like Go [44, 46], Chess and Shogi

[45], robotic hand dexterity [33, 1], physics simulators [19,

29, 30], and so forth. While most DRL algorithms have

been mainly applied online, some of them can also be ap

plied offiine. More specifically, DRL algorithms such Vanilla

Policy Gradient (VPG) [48], Proximal Policy Optimization

(PPO) [39], Trust Region Policy Optimization (TRPO) [38],

or A3C [24] can only be applied for online learning by inter

acting with simulations. Some other DRL algorithms can be

applied for offiine learning using pre-collected training data.

These include the Q-learning based approaches such as Deep

Q-Network (DQN) [26], Double-DQN [51], prioritized expe

rience replay [37], distributed prioritized experience replay

(Ape-X DQN) [14], and the Actor-Critic based methods such

as Deep Deterministic Policy Gradient (DDPG) [19], Twin

Delayed Deep Deterministic policy gradient (TD3) [9], or

Soft Actor-Critic (SAC) [11]. Among them, DQN and its

variants have been much more extensively studied, however,

it is still not clear whether they can be successfully applied

offiine for pedagogical policy induction for ITSs.

Reinforcement Learning in Education: Prior research

using online RL to induce pedagogical policies has often re

lied on simulations or simulated students, and the success of

RL is often heavily dependent on the accuracy of the simu

lations. Beck et al. [3] applied temporal difference learning,

with off-policy E-greedy exploration, to induce pedagogical

policies that would minimize student time on task. Igle

sias et al. applied another common online approach named

Q-learning to induce policies for efficient learning [15, 16].

More recently, Rafferty et al. applied POMDP with tree

search to induce policies for faster learning [32]. Wang et

al. applied an online Deep-RL approach to induce a policy

for adaptive narrative generation in educational game [52].

All of the models described above were evaluated by com

paring the induced policy with some baseline policies via

simulations or classroom studies.

Offiine RL approaches, on the other hand, "take advantage

of previously collected samples, and generally provide ro

bust convergence guarantees" [40]. Shen et al. applied value

iteration and least square policy iteration on a pre-collected

training corpus to induce pedagogical policies for improv

ing students' learning performance [43, 42]. Chi et al. ap

plied policy iteration to induce a pedagogical policy aimed

at improving students' learning gains [5]. Mandel et al.

[20] applied an offiine POMDP approach to induce a policy

which aims to improve student performance in an educa

tional game. In classroom studies, most models above were

found to yield certain improved student learning relative to

a baseline policy.

DRL in Education is a subject of growing interest. DRL

adds deep neural networks to RL frameworks such as POMDP

for function approximation or state approximation [25, 26].

This enhancement makes the agent capable of achieving

complicated tasks. Wang et al. [52] applied a DRL frame

work for personalizing interactive narratives in an educa

tional game called CRYSTAL ISLAND. They designed the im

mediate rewards based on normalized learning gain (NLG)

and found that the students with the DRL policy achieved a

higher NLG score than those following the linear RL model

in simulation studies. Furthermore, Narasimhan et al. [28]

implemented a Deep Q-Network (DQN) approach in text

based strategy games, constructed based on Evennia, which

is an open-source library and toolkit for building multi-users

online text-based games. Using simulations, they found that

the DRL policy significantly outperformed the random pol

icy in terms of quest completion.

In summary, compared with MDP and POMDP, relatively

little research has been done on successfully applying DRL

to the field of ITS. None of the prior research has success

fully applied DRL to ITSs without simulated environments,

171 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

in order to learn an effective pedagogical strategy that makes

students learn in a more efficient manner. Furthermore, no

prior work has empirically evaluated any DRL-induced pol

icy to confirm its benefits on real students.

4. METHODS
In RL, the agent interacts with an environment £, and the

goal of the agent is to learn a policy that will maximize

the sum of future discounted rewards (also known as the

return) along the trajectories, where each trajectory is one

run through the environment, starting in an initial state and

ending in a final state. This is done by learning which action

to take for each possible state. In our case, £ is the learning

context, and the agent must learn to take the actions that

lead to the optimal student learning, by maximizing the re

turn R = 'Ei=o "'./rt, where rt is the reward at time step t,
T is the time step that indicates the end of the trajectory,

and, E (0, 1] is the discount factor.

4.1 DQN and Double-DQN
Deep Q-Network (DQN) is, fundamentally, a version of

Q-learning. In Q-learning, the goal is to learn the optimal

action-value function, Q*(s, a), which is defined as the ex

pected reward obtained when taking the optimal action a in

state s, and following the optimal policy 1r* until the end of

the trajectory. For any state-action pair, the optimal action

value function must follow the Bellman optimality equation

in that:

Q*(s, a)= r + ,maxQ*(s', a')
a'

(1)

Here r is the expected immediate reward for taking action

a at state s; , is the discount factor; and Q* (s', a') is the

optimal action-value function for taking action a' at the sub

sequent state s' and following policy 1r* thereafter.

Compared with the original Q-leaning, DQNs use neural net

works (NNs) to approximate action-value functions. This is

because NNs are great universal function approximators and

they are able to handle continuous values in both their in

puts and outputs. In order to train the DQN algorithm,

two neural networks with equal architectures are employed.

One is the main network and its weights are denoted 0 and

the other is the target network, and its weights are de

noted 0-. The target value used to train the network is

y := r + , maxa, Q(s', a'; 0-). Thus, the loss function that

is minimized in order to train the main network is:

Loss(0) = IE[(y - Q(s, a; 0))
2

] (2)

The main network is trained on every training iteration,

while the target network is frozen for a number of train

ing iterations. Every m training iterations, the weights of

the main neural network are copied into the target network.

This is one of the techniques used in order to avoid diver

gence during the training process. Another one of these

techniques was the use of an experience replay buffer. This

buffer contains the p most recent (s, a, r) tuples, and the

algorithm randomly samples from the buffer when creating

the batch on each training iteration. We followed the same

procedure, but as our training was performed offiine, the

experience replay buffer consists of all the samples on our

training corpus, and it does not get refreshed over time.

Double-DQN or DDQN was proposed by Van Hasselt et

al. [12] who combined it with neural networks in the Double

DQN algorithm [51]. The intuition behind it is to decouple

the action selection from the action evaluation. To achieve

this, the Double-DQN algorithm uses the main neural net

work to first select the action that has the highest Q-value

for the next state (argmaxa, Q(s', a', 0)) and then evaluates

the Q-value of the selected action using the target network

(Q(s', argmaxa, Q(s', a'; 0); 0-)). This simple trick has been

proven to significantly reduce overestimations in Q-value cal

culations, resulting in better final policies. With this tech

nique, the target value used to optimize the main network

becomes:

y := r + ,Q(s', argmax Q(s', a', 0); 0-) (3)
a'

The loss function is still the same as in equation 2, but the

target value y used in the formula is now updated to be the

one in equation 3.

4.2 Fully Connected vs. LSTM
For our NN architectures, we explored two options: Fully

connected NNs and Long Short Term Memory (LSTM).

Fully Connected or multi-layer perceptrons are the sim

plest form of neural network units. They calculate a simple

weighted sum of all the input units, and each unit produces

an output value that is often passed to an activation func

tion. We used these units to parametrize our neural net

works. All the input units are connected to all the units in

the first hidden layer, and all those units are connected to

every unit in the next hidden layer. This process continues

until the final output layer.

,

[• '.>-.' .. -... :.......+--- Yt

Forget Input Output

Figure 1: A single LSTM unit containing a forget, input and

ouput gate

Long Short-Term Memory (LSTM) is a type of re

current neural network specifically designed to avoid the

vanishing and exploding gradient problems [13]. LSTMs

are particularly suitable for tasks where long-term tempo

ral dependencies must be remembered. They achieve this

by maintaining the previous information of hidden states as

internal memory. Figure 1 shows the architecture of a single

LSTM unit. It consists of a memory cell state denoted by

Ct and three gates: the forget gate ft E [O, 1], the input gate

it E [O, 1], and the output gate Ot E [O, 1]. These three gates

interact with each other to control the flow of information.

During training, the network learns what to memorize and

when to allow writing to the cell in order to minimize the

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 172

training error. More specifically, the forget gate determines

what information from the previous memory cell state is

expired and should be removed; the input gate selects infor

mation from the candidate memory cell state c; to update

the cell state; and the output gate filters the information

from the memory cell so that the model only considers in

formation relevant to the prediction task. The value of each

gate is computed as follows, where W[i,f,C,o] are the weight

matrices and b[i,f,C,o] are the bias vectors:

it = sigmoid(Wi · [Yt-1, Xt] + bi)

ft= sigmoid(W1 · [Yt-1,Xt] + b1)

c; = tanh(Wc · [Yt-1,Xt] + be)

Ot = sigmoid(Wo · [Yt-1, Xt] + bo)

(4)

The memory cell value Ct and output value Yt from the

LSTM unit are computed using the following formulas:

Ct = Ct-1 · ft + c; · it
Yt = Ot * tanh(Ct)

4.3 Inferring Immediate Rewards

(5)

A historical dataset 1i consists of m trajectories, h1 to hm

and n unknown immediate rewards. We would like to in

fer the immediate rewards given delayed rewards. In order

to infer the immediate rewards, we used a minimum mean

square error (MMSE) estimator in the Bayesian setting [18,

8, 10]. Assume R = Dr + E is a linear process where D

is a known matrix, r is a n x 1 random vector of unknown

immediate rewards, R is a m X 1 vector of observed delayed

rewards and E is a vector of independent and identically dis

tributed noise with mean of zero and standard deviation of

O"R. Assuming the discounted sum of the immediate rewards

is equal to the delayed rewards, a linear model matrix D is

proposed as:

0 (6)

where 'Y is the discount factor. Following the linear MMSE

estimator, we assume that the immediate rewards follow a

Gaussian Process defined as r ~ N (µr, Crr) where µr is the

a priori mean and Crr is the a priori covariance defined by

an appropriate kernel [2]. Using the theorem of conditional

distribution of multivariate Gaussian distributions [34], con

ditional expectation of immediate rewards given delayed re

wards JE[rlR] or the posterior mean of immediate rewards

is:

JE[rlR] = µr + CrrDT CRR -l (R - D µr) (7)

and the posterior covariance C[rlR] of inferred immediate

rewards given delayed rewards can be calculated as:

IC[rlR] = Crr - CrrDTCRR -lDC~r (8)

where CRR = DCrrDT + a-itl and I is the identity matrix.

Algorithm 1 shows the process used to infer the immediate

rewards. Estimation of the mean and covariance of the ran-

dom column vector r in Eqs. 7 and 8 requires the inverse of

the matrix CRR· By introducing several intermediary vari

ables, this algorithm provides an efficient solution to matrix

inversion using the Cholesky decomposition similar to the

Gaussian Processes algorithm implementation [34].

Algorithm 1 Immediate reward approximation algorithm.

Inputs: R, µr, Crr, D, O-it
£ = Cholesky (DCrrDT + a-itl)
/3 = £\ (R - D µr) forward-substitution algorithm

a= £T\/3 back-substitution algorithm

k= DC;r

v=£\k
-T

lE [rlR] = µr + k a
IC [rlR] = Crr - VTV

return: lE [rlR] and IC [rlR]

5. POLICY INDUCTION
In this section, we will describe our ITS, the training corpus,

our policy induction procedure, and theoretical evaluation

results.

5.1 Logic ITS
The logic tutor used in this study is named Deep Thought

(DT), and it uses a graph-based environment to solve logic

proofs. It is used in the undergraduate level Discrete Math

ematics class at North Carolina State University. To com

plete a problem, students iteratively apply rules to logic

statement nodes in order to derive the conclusion node. DT

automatically checks the correctness of each step and pro

vides immediate feedback on any rule that is applied incor

rectly. The tutor consists of 6 levels, with 3 to 4 problems

per level. Each problem can be represented as Problem Solv

ing (PS) or as Worked Example (WE). Figure 2 (left) shows

the user interface for PS, and Figure 2 (right) shows the

interface for WE.

I -·· "

-- ·•-c=..J•OU111 DMplllought~ 1
~ ~.-- -

""1 0 :::~-:::!·:.! .• _ -

Figure 2: User Interface for DT. Left: PS. Right: WE.

5.2 Training Corpus
Our training corpus contains 786 complete student trajecto

ries collected over five semesters. On average, each student

spent two hours to complete the tutor. For each student, the

tutor makes about 19 decisions. From our student-system

interaction logs, we extracted a total of 142 state features:

• Autonomy: 10 features describing the amount of work

done by the student.

• Temporal: 29 features, including average time per

step, the total time spent on the current level, the

time spent on PS, the time spent on WE, and so on.

173 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

• Problem Solving: 35 features such as the difficulty of

the current problem, the number of easy and difficult

problems solvoo on the current level, the number of

PS and WE problems seen in the current level, or the

number of nodes the student added in order to reach

the final solution.

• Performance: 57 features such as the number of in

correct steps, and the ratio of correct to incorrect rule

applications for different types of rules.

• Hints: 11 features such as the total number of hints
requested or the number of hints the tutor provided

without the student asking for them.

The features contain non-negative continuous values. As

their range varies significantly (time ca.n be a large num

ber while problem difficulty is always between land 9), we

normalized ea.ch feature to the range (0, 1]. Input feature
normalization has been shown to improve the stability of

the learning process on neural networks, and often leads to

faster convergence.

To induce our pedagogical policy, while previous research
mainly used learning gains or time on task as reward func

tion, our reward function here is baaed on the improvement

of learning efficiency, which balances both learning gain im
provement and time on task improvement. In this way, if

two students have the same amount of learning gain, the
one who takes shorter time would get higher reward. To

calculate their learning efficiency, we used students' scores
obtained on ea.ch level divided by the training time on the

level. Students must solve the last problem on each level
without help, and we use this as a level score. The range

of the score for ea.ch level is [-100, + 100), and the learning

gain for level L is calculated as ScoreL - ScoreL-1, thus

having a range of [-200, +200).

5.3 Training Process
For both DQN and Double DQN, we explored UBing Fully

Connected {FC) NNs or UBing LSTM to estimate the action

value function Q. Our FC has four fully connected layers of

128 units each, uses Rectified Linear Unit (ReLU) as the

activation function. Our LSTM architecture consists of two

layers of 100 LSTM units ea.ch, with a fully connected layer

at the end. Additionally, for either FC or LSTM, for a given
time t, we explored three input settings: to use only the

current state observation St (k = 1), to use the last two

state observations: Bt-l and St (k = 2), and to use the last

three: si-2, si-1 and St (k = 3).

In the case of the fully connected (FC) model, the observar
tions are concatenated and passed to the input layer as a

fl.at array of values. For LSTM, the input state observations

are passed to the network in a sequential manner. These
past observations provide extra information about the per

formance of the student in the previous states. However,
including previous states also add complexity to the net

work, which can slow down the learning process and can
increase the risk of converging to a weaker final policy. As

the number of parameters increases in the NNs, the chance

that our NN would get stuck at a local optima increases, e&

pecially when our training data is limited. L2 regularization

s~-----------------~

6

4

!!!
~ 2

-2
~20.03

k=l k=2 k=31k=l k=2 k=31 k=l k=2 k=3 1 k=l k=2 k=3

FC ! LSTM I FC ! LSTM
DQN ! DDQN

Figure 3: Importance sampling result.a.

was used to get a model that generalizes better. We trained

our models for 50,000 iterations, using a batch size of 200.

S.4 Induced Policy
First, we induced the DQN-Del policy using delayed rewards

only. Our training de.ta was split: 90% of the student.a for
training data and 10% for testing data. We trained all 12

of our models (DQN and Double-DQN with either FC lay

ers or LSTM layers, and with k = {1, 2, 3}) on the training

data and evaluated their performance on testing data. We

repeated this process twice with two different test sets and
reported their average performance on a series of popular

off-policy evaluation metrics. Among them, Expected Cu

mulative Reward (ECR) is the most widely used. However,

Per-Decision Importance Sampling (PDIS) has shown to be

more robust [31] .

ECR is simply calculated by averaging over the highest Q

value for all the initial states in the validation set. The
formula is described in Equation 9.

1 N

ECR= N Eni:xQ(s,.,a)
•=l

(9)

s, is an initial state, and N denotes the number of trajecto

ries in the validation set.

PDIS [31) is an alternative to regular Importance Sampling,

to reduce variance in the estimations. The PDIS results

of the 12 models are shown in Figure 3. The PDIS result

of the rand.om policy is used to set y = 0 (the red line)

in Figure 3. Much to our surprise, while double DQN has

shown to be much more robust in online DRL applications,

its performance is generally worse than DQN here, especially

when k = 1 and k = 2. Figure 3 shows that the best policy
is induced using DQN with the LSTM architecture for k =
3, and thus is selected as DQN-Del. We also compare the
selected policy with the Teroaining ones UBing ECR and other

evaluation metrics and the results showed UBing DQN with

the LSTM architecture for k = 3 is always among the best

policies across different evaluation metrics.

To evaluate the impact of Inferred rewards on the DQN in-

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 174

a:
u
w 40 4-+--, __ ,_,__-+---+----I--+---+---+--+----<

20

- DQN_lnf

--- DQN_Del
0 ; - +---+----+--t----+-------<T r T

0 5000 10000 15000 20000 25000 30000 35000 40000

Training iterations

Figure 4: ECR evolution of DQN-Del and DQN-Inf.

duced policies, we used the same approach to induce the

DQN-lnfpolicy and the only major difference is that we used

the inferred immediate rewards in the training dataset, cal

culated through Algorithm 1. During the training process,

we calculated the ECRs of DQN with the LSTM architecture

for k = 3 using the original delayed rewards (DQN-Del) vs.

using the inferred immediate rewards (DQN-Inf). The evo

lution of the ECR values for each policy during the training

process is shown in Figure 4, showing that using the inferred

rewards we can theoretically converge faster and to a better

policy.

6. EMPIRICAL EXPERIMENT SETUP
Two empirical experiments were conducted, one in the Spring

2018 semester and one in the Fall 2018 semester. They were

both conducted in the undergraduate Discrete Mathematics

class at North Carolina State University.

6.1 Experiment 1: Spring 2018
84 students from the Spring 2018 class were randomly as

signed to the Random (control) group and the DQN-Del

group. Because both WE and PS are considered to be rea

sonable educational interventions in the context of learn

ing, we refer to our control random policy as a random yet

reasonable policy or Random in the following. The assign

ment was done in a balanced random manner, using the pre

test score to ensure that the two groups had similar prior

knowledge. N = 45 and N = 39 were assigned to Random

and DQN-Del respectively. Among them, N = 41 Ran

dom students and N = 33 DQN-Del students completed

the training. A x2 test showed no significant differences

between the completion rates of the two different groups:

x2 (1, N = 84) = 0.053, p = 0.817.

6.2 Experiment 2: Fall 2018
98 students from the Fall 2018 Discrete Mathematics class

were distributed into two conditions. The two conditions

are the Random (control) group and the DQN-Inf group.

The group sizes were as follows: N = 49 for Random, and

N = 49 for DQN-lnf. A total of 84 students completed the

experiment and their distribution was as follows: N = 43

for Random, and N = 41 for DQN-lnf. A x2 test of inde-

pendence showed no significant differences between the com

pletion rates of the two different groups: x2 (1, N = 98) =
0.025, p = 0.872.

6.3 Performance Measure
Our tutor is consisting of 6 strictly ordered levels of proof

problems. All of the students received the same set of prob

lems in level 1. Their initial proficiency is calculated based

upon the number of mistakes made on the final problem of

level 1 and the total training time on level 1. The profi

ciency reflects how well they understand the knowledge and

can apply the logic rules in the proof process before the tu

tor follows different pedagogical policies. In each sequential

level, DT will follow the corresponding policies to determine

the next problem to be WE or PS. The last problem on

each level is used as a mini-posttest to measure students'

performance on that level.

When inducing both the DQN-Del and DQN-lnf, we calcu

lated our reward function based upon the improvement of

students' learning efficiency which is defined as level scores

divided by the training time on that level. So to measure stu

dent performance, we first calculate the learning efficiency

on each level as: the score obtained by the student in the

last problem of that level, divided by the total time (in min

utes). In this study, we use student learning efficiency in

level 1 as their pretest efficiency score and their learning effi

ciency in level2-level6 as the post-test efficiency scores. Since

our DQNs used learning efficiency improvement as their re

wards, we expect that the DRL-induced policy would cause

students to have higher post-test efficiencies.

7. RESULTS

7.1 Experiment 1 Results
No significant difference was found on the pre-test efficiency

between the Random and DQN-Del: t(72) = 1.086, p =
0.281. We divided the students into high pre-test efficiency

(n = 37) and low pre-test efficiency (n = 37) groups, based

upon their learning efficiency on the pre-test. As expected,

there was a significant difference between the high and low

efficiency students on their pre-test efficiency: t(72) = 9.570,

p < 0.001. The partition mentioned above resulted in four

groups, based upon their incoming efficiency and condition:

DQN-Del-High (n = 16), DQN-Del-Low (n = 17), Random

High (n = 21), and Random-Low (n = 20). At-test showed

no significant difference in the pre-test efficiencies either be

tween the two low groups, Random-Low and DQN-Del-Low,

or between the two high efficiency groups. These results

show that there is no significant difference in the pre-test

efficiency across conditions.

A two-way ANCOVA test on the post-test efficiency, using

Condition {Random, DQN-Del} and Incoming Competency

{ Low, High} as factors and pre-test efficiency as a covariate,

showed that there is no significant main effect of Condition

F(l, 69) = 2.633, p = 0.109, and no significant main effect

of Incoming Efficiency F(l, 69) = 0.036, p = 0.849. No in

teraction (ATI) effect was found either F(l, 69) = 1.285,

p = 0.261. Thus, we conclude there was no difference be

tween the two conditions in the Spring 2018 study.

175 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

> u

4 -+- Random

3 -f - DQN-lnf

~ 2

·;:;

f 1
w

Cl
C 0
'i:

~ -1
..J

- 2

I
-3 L_--~---------~---

Low High

Figure 5: Post-Test Learning Efficiency a.cross different

groups for the Fall 2018 study.

7.2 Experiment 2 Results
In fall 2018, again no significant difference was found on

the pre-test efficiency between the Random and DQN-Inf

groups: t(82) = -0.333,p = 0.739. The students were also

divided into high pre-test efficiency (n = 42) and low pre

test efficiency (n = 42) groups. At-test showed a significant
difference between the high and low efficiency students on

the pre-test efficiency: t(82) = 6.38,p < 0.001. The same

four groups were formed, based upon their incoming effi

ciency and condition: DQN-Inf-High {n = 20), DQN-Inf

Low (n = 21), Random-High (n = 22), and Random-Low

(n = 21). A t-test showed no significant difference on the

pre-test efficiencies when comparing the Random-Low and

DQN-lnf-Low groups: t(40) = 0.027,p = 0.978. No signifi

cant difference was found either, when performing at-test on

the two high efficiency groups: t(40) = -0.698,p = 0.489.
This shows that there is no significant difference on the pre

test efficiency a.cross conditions during the Fall 2018 study.

A two-way ANOVA test using Condition {Random, DQN

Inf} and Incoming Competency { Low, High} as two factors

showed a significant interaction effect on students' post-test

efficiency: F(l,80) = 5.038,p = 0.027 {as shown in Fig

ure 5). To be more strict, we ran a two-way ANCOVA test

using Condition and Incoming Competency as two factors
and pre-test efficiency as a covariate. This analysis also

showed a significant interaction effect on students' post-test

efficiency: F(l, 79) = 4.687,p = 0.033. Thus, by taking the

pre-test efficiency into consideration, there is still a signifi

cant interaction effect. No significant main effect was found

from either Condition or Incoming Competency. A one-way

ANCOVA test on the post-test efficiency for the Low com
petency groups, using Condition {Random-Low, DQN-Inf

Low} as a factor and pre-test competency as a covariate

showed no significant difference on the post-test efficiency

F(l, 39) = 0.429, p = 0.516. However, a significant dif

ference was found for the High groups F{l,39) = 5.513,

p = 0.024, with means -0.719 for Random-High and 2.916
for DQN-Inf-High (as shown in Figure 5).

7.3 Log Analysis
This section will show more details on the different types of

tutorial decisions made a.cross the different conditions and
studies. The features that were analyzed include the total

number of problems ea.ch student encountered (Total Count),

the number of problems solved (PSCount), the number of

difficult problems solved (diffPSCount), the number ofWEs

seen (WECount), and the number of difficult WEs seen (dif

fWECount). Table 1 shows the summary of these five fea

tures for ea.ch condition and study. Columns 3 and 4 show

the mean and standard deviation of ea.ch condition for these

categories. Column 5 shows the statistical results of different

t-tests comparing the two conditions.

No significant difference is found for the total number of

problems seen by ea.ch group. However, we observed that

for the features diffPSCount, WECount and diHWECount,

a significant difference was found only during the Spring

2018 study. Looking at the mean values, we notice that the

DQN-Del policy assigned fewer WE and more PS problems.

However, this did not improve the performance of the stu

dents in the DQN-Del group during this study. During the

Fall 2018 study, we only observe a significant difference in

the number of PS problems assigned. No significant differ

ence was found in the remaining categories.

When we analyze the logs for the High competency students,

table 2 shows the values of those same features, but only

for the High competency students in ea.ch study. During

the Spring 2018 semester, we find a statistically significant

difference for TotalCount, PSCount, and diffWECount, and

we find a marginal difference for WECount. This shows that

the DQN-Del policy gave more PS problems, fewer WE, and

fewer difficult WE problems, but no significant difference

was found in students' post-test performance. The Fall 2018
study results show no significant or marginal difference in

any of the five categories. Despite this fa.ct, the DQN-Inf

policy implemented in the Fall 2018 study outperformed the

Random policy for the High competency students. We can

also observe how, in Tobie 2, the standard deviation for the

DQN groups is often larger than the standard deviation for

the Random groups. This makes sense because we expect all

the students in the Random group to have a similar values

in ea.ch category. However, it looks like the DQN policy

is assigning more PS to certain students, and more WE to
other students, resulting in a larger standard deviation.

In short, our log analysis results show that it is not about

the total amount of PSs and WEs that students received

that matters, but rather how or when they receive which.

8. CONCLUSIONS
We used offiine Deep Reinforcement Learning algorithms in

conjunction with inferred immediate rewards to induce a

pedagogical policy to improve the students' learning effi

ciency for a logic tutor. Our results showed that our DRL

induced pedagogical policy can outperform the Random pol

icy, which is a strong baseline here. More specifically, there

was an ATI effect in the Fall 2018 study in that the high in

coming competency students were benefited more from our
DRL-induced policy, by achieving better post-test learning

efficiency than other groups. Our results showed t hat our

proposed Gaussian Processes based approach to infer ''im-

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 176

Table 1: Log analysis results for per semester and condition.

Feature Semester Random DQN Significance

Total Count
Spring 22.68(5.05) 24.02(5.29) t(72) = -1.118, p = 0.267

Fall 23.81(3.32) 25.26(5.37) t(82) = -1.489, p = 0.141

PSCount
Spring 14.82(5.29) 17.08(6.11) t(72) = -1.691, p = 0.095•

Fall 14.38(2.30) 15. 73(3.68) t(82) = -2.029, p = 0.046*

diffPSCount
Spring 5.19(1.74) 4.85(2.06) t(72) = 0.765, p = 0.446

Fall 7.54(1.57) 8.19(2.31) t(82) = -1.501, p = 0.137

WECount
Spring 7.85(1.17) 6.94(1.87) t(72) = 2.466, p = 0.016*

Fall 9.43(1.57) 9.52(2.37) t(82) = -0.210, p = 0.833

diffWECount
Spring 3.85(1.33) 2.61(1.87) t(72) = 3.226, p = 0.002*

Fall 2.15(1.42) 2.02(1.23) t(82) = 0.469, p = 0.639

Table 2: Log analysis results for the high competency groups per semester.

Feature Semester Random

Total Count
Spring 21.52(2.18)

Fall 24.27(0. 76)

PSCount
Spring 13.61(2.49)

Fall 14.59(0.66)

diffPSCount
Spring 5.57(1.43)

Fall 7.68(0.83)

WECount
Spring 7.90(1.33)

Fall 9.68(0.94)

diffWECount
Spring 4.23(1.41)

Fall 2.18(1.46)

mediate rewards" from the delayed rewards seems reasonable

and works pretty well here. Thus, offiine DRL can be suc

cessfully applied to real-life environments even with a limited

training dataset with delayed rewards.

Acknowledgements

This research was supported by the NSF Grants #1432156,

#1651909, and #1726550.

9. REFERENCES
[1] M. Andrychowicz, B. Balcer, et al. Learning dexterous

in-hand manipulation. arXiv preprint

arXiv:1808.00177, 2018.

[2] H. Azizsoltani and E. Sadeghi. Adaptive sequential

strategy for risk estimation of engineering systems

using gaussian process regression active learning.

Engineering Applications of Artificial Intelligence,

74:146-165, 2018.

[3] J. Beck, B. P. Woolf, and C.R. Beal. Advisor: A

machine learning architecture for intelligent tutor

construction. AAAI/IAAI, 2000(552-557):1-2, 2000.

[4] M. Chi and K. VanLehn. Meta-cognitive strategy

instruction in intelligent tutoring systems: How, when,

and why. Journal of Educational Technology &

Society, 13(1):25-39, 2010.

[5] M. Chi, K. VanLehn, D. Litman, and P. Jordan.

Empirically evaluating the application of

reinforcement learning to the induction of effective

and adaptive pedagogical strategies. UMUAI,

21(1-2):137-180, 2011.

[6] L. Cronbach and R. Snow. Aptitudes and instructional

methods: A handbook for research on interactions.

Oxford, England: Irvington, 1977.

DQN Significance

24.31(4.07) t(35) = -2.471, p = 0.021*

25.95(7.58) t(40) = -0.984, p = 0.337

17.50(4.67) t(35) = -3.008, p - 0.006*

15.95(4.98) t(40) = -1.208, p = 0.241

5.12(2.30) t(35) = 0.680, p = 0.502

8.75(2.93) t(40) = -1.570, p = 0.130

6.81(1.86) t(35) = 1.981, p = 0.058•
10.00(3.19) t(40) = -0.428, p = 0.672

2.43(1.82) t(35) = 3.271, p - 0.002*

2.50(1.27) t(40) = -0.750, p = 0.457

[7] S. D'Mello, B. Lehman, et al. A time for emoting:

When affect-sensitivity is and isna.AZt effective at

promoting deep learning. In ITS, pages 245-254.

Springer, 2010.

[8] J. T. Flam, S. Chatterjee, et al. On mmse estimation:

A linear model under gaussian mixture statistics.

IEEE Transactions on Signal Processing,

60(7) :3840-3845, 2012.

[9] S. Fujimoto, H. van Hoof, and D. Meger. Addressing

function approximation error in actor-critic methods.

arXiv preprint arXiv:1802.09477, 2018.

[10] D. Guo, S. Shamai, and S. Verdu. Mutual information

and minimum mean-square error in gaussian channels.

arXiv preprint cs/0412108, 2004.

[11] T. Haarnoja, A. Zhou, et al. Soft actor-critic

algorithms and applications. arXiv:1812.05905, 2018.

[12] H. V. Hasselt. Double q-learning. In Advances in

Neural Information Processing Systems, pages

2613-2621, 2010.

[13] S. Hochreiter and J. Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735-1780, 1997.

[14] D. Horgan, J. Quan, et al. Distributed prioritized

experience replay. arXiv preprint arXiv:1803.00933,

2018.

[15] A. Iglesias, P. Martinez, R. Aler, and F. Fernandez.

Learning teaching strategies in an adaptive and

intelligent educational system through reinforcement

learning. Applied Intelligence, 31(1):89-106, 2009.

[16] A. Iglesias, P. Martinez, R. Aler, and F. Fernandez.

Reinforcement learning of pedagogical policies in

adaptive and intelligent educational systems.

Knowledge-Based Systems, 22(4):266-270, 2009.

[17] S. Kalyuga, P. Ayres, P. Chandler, and J. Sweller. The

177 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

expertise reversal effect. Educational psychologist, [35] A. Renkl, R. K. Atkinson, et al. From example study

38(1):23-31, 2003. to problem solving: Smooth transitions help learning.

[18] N. Kim, Y. Lee, and H. Park. Performance analysis of The Journal of Experimental Education,

mimo system with linear mmse receiver. IEEE 70(4) :293-315, 2002.

Transactions on Wireless Communications, 7(11), [36] R. J. Salden, V. Aleven, et al. The expertise reversal

2008. effect and worked examples in tutored problem

[19] T. P. Lillicrap, J. J. Hunt, et al. Continuous control solving. Instructional Science, 38(3):289-307, 2010.

with deep reinforcement learning. ar Xiv preprint [37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver.

arXiv:1509.02971, 2015. Prioritized experience replay. arXiv preprint

[20] T. Mandel, Y.-E. Liu, et al. Oflline policy evaluation arXiv:1511.05952, 2015.

across representations with applications to educational [38] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and

games. In AAMAS, pages 1077-1084, 2014. P. Moritz. Trust region policy optimization. In Icml,

[21] B. M. McLaren and S. Isotani. When is it best to volume 37, pages 1889-1897, 2015.

learn with all worked examples? In AIED, pages [39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

222-229. Springer, 2011. 0. Klimov. Proximal policy optimization algorithms.

[22] B. M. McLaren, S.-J. Lim, and K. R. Koedinger. arXiv preprint arXiv:1707.06347, 2017.

When and how often should worked examples be given [40] D. Schwab and S. Ray. Oflline reinforcement learning

to students? new results and a summary of the current with task hierarchies. Machine Learning,

state of research. In CogSci, pages 2176-2181, 2008. 106(9-10):1569-1598, 2017.

[23] B. M. McLaren, T. van Gog, et al. Exploring the [41] R. Schwonke, A. Renkl, et al. The worked-example

assistance dilemma: Comparing instructional support effect: Not an artefact of lousy control conditions.

in examples and problems. In Intelligent Tutoring Computers in Human Behavior, 25(2):258-266, 2009.

Systems, pages 354-361. Springer, 2014. [42] S. Shen, M. S. Ausin, B. Mostafavi, and M. Chi.

[24] V. Mnih, A. P. Badia, et al. Asynchronous methods Improving learning & reducing time: A constrained

for deep reinforcement learning. In ICML, pages action-based reinforcement learning approach. In

1928-1937, 2016. UMAP, pages 43-51. ACM, 2018.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Playing [43] S. Shen and M. Chi. Reinforcement learning: the

Atari with deep reinforcement learning. arXiv preprint sooner the better, or the later the better? In UMAP,

arXiv:1312.5602, 2013. pages 37-44. ACM, 2016.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, et al. [44] D. Silver, A. Huang, C. J. Maddison, et al. Mastering

Human-level control through deep reinforcement the game of go with deep neural networks and tree

learning. Nature, 518(7540):529, 2015. search. nature, 529(7587):484, 2016.

[27] A. S. Najar, A. Mitrovic, and B. M. McLaren. [45] D. Silver, T. Hubert, J. Schrittwieser, et al. A general

Adaptive support versus alternating worked examples reinforcement learning algorithm that masters chess,

and tutored problems: Which leads to better learning? shogi, and go through self-play. Science,

In UMAP, pages 171-182. Springer, 2014. 362(6419):1140-1144, 2018.

[28] K. Narasimhan, T. Kulkarni, and R. Barzilay. [46] D. Silver, J. Schrittwieser, K. Simonyan, et al.

Language understanding for text-based games using Mastering the game of go without human knowledge.

deep reinforcement learning. ar Xiv preprint Nature, 550(7676):354, 2017.

arXiv:1506.08941, 2015. [47] R. E. Snow. Aptitude-treatment interaction as a

[29] X. B. Peng, P. Abbeel, et al. Deepmimic: framework for research on individual differences in

Example-guided deep reinforcement learning of psychotherapy. Journal of Consulting and Clinical

physics-based character skills. ACM Transactions on Psychology, 59(2):205--216, 1991.

Graphics (TOG}, 37(4):143, 2018. [48] R. S. Sutton, D. A. McAllester, et al. Policy gradient

[30] X. B. Peng, G. Berseth, et al. Deeploco: Dynamic methods for reinforcement learning with function

locomotion skills using hierarchical deep reinforcement approximation. In Advances in neural information

learning. ACM Transactions on Graphics (TOG}, processing systems, pages 1057-1063, 2000.

36(4):41, 2017. [49] J. Sweller and G. A. Cooper. The use of worked

[31] D. Precup, R. S. Sutton, and S. P. Singh. Eligibility examples as a substitute for problem solving in

traces for off-policy policy evaluation. In ICML, pages learning algebra. Cognition and Instruction,

759-766. Citeseer, 2000. 2(1):59-89, 1985.

[32] A. N. Rafferty, E. Brunskill, et al. Faster teaching via [50] T. Van Gog, L. Kester, and F. Paas. Effects of worked

pomdp planning. Cognitive science, 40(6):1290-1332, examples, example-problem, and problem-example

2016. pairs on novices' learning. Contemporary Educational

[33] A. Rajeswaran, V. Kumar, et al. Learning complex Psychology, 36(3):212-218, 2011.

dexterous manipulation with deep reinforcement [51] H. Van Hasselt, A. Guez, and D. Silver. Deep

learning and demonstrations. ar Xiv preprint reinforcement learning with double q-learning. In

ar Xiv: 1709.10087, 2017. AAAI, volume 2, page 5. Phoenix, AZ, 2016.

[34] C. E. Rasmussen. Gaussian processes in machine [52] P. Wang, J. Rowe, W. Min, B. Mott, and J. Lester.

learning. In Summer School on Machine Learning, Interactive narrative personalization with deep

pages 63-71. Springer, 2003. reinforcement learning. In IJCAI, 2017.

