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ABSTRACT 
Deep Reinforcement Learning (DRL) has been shown to be 

a very powerful technique in recent years on a wide range 

of applications. Much of the prior DRL work took the on

line learning approach. However, given the challenges of 

building accurate simulations for modeling student learn

ing, we investigated applying DRL to induce a pedagogical 

policy through an offiine approach. In this work, we ex

plored the effectiveness of offiine DRL for pedagogical pol

icy induction in an Intelligent Tutoring System. Generally 

speaking, when applying offiine DRL, we face two major 

challenges: one is limited training data and the other is the 

credit assignment problem caused by delayed rewards. In 

this work, we used Gaussian Processes to solve the credit 

assignment problem by estimating the inferred immediate 

rewards from the final delayed rewards. We then applied 

the DQN and Double-DQN algorithms to induce adaptive 

pedagogical strategies tailored to individual students. Our 

empirical results show that without solving the credit as

signment problem, the DQN policy, although better than 

Double-DQN, was no better than a random policy. How

ever, when combining DQN with the inferred rewards, our 

best DQN policy can outperform the random yet reasonable 

policy, especially for students with high pre-test scores. 

1. INTRODUCTION 
Interactive e-Learning Environments such as Intelligent Tu

toring Systems (ITSs) and educational games have become 

increasingly prevalent in educational settings. In order to 

design effective interactive learning environments, develop

ers must form the basic core of the system and determine 

what is to be taught and how. Pedagogical strategies are 

policies that are used to decide the how part, what action 

to take next in the face of alternatives. Each of these sys

tems' decisions will affect the user's subsequent actions and 

performance. 

Reinforcement Learning (RL) is one of the best machine 

learning approaches for decision making in interactive envi-

ronments and RL algorithms are designed to induce effective 

policies that determine the best action for an agent to take 

in any given situation to maximize some predefined cumu

lative reward. In recent years, deep neural networks have 

enabled significant progress in RL research. For example, 

Deep Q-Networks (DQNs) [26] have successfully learned to 

play Atari games at or exceeding human level performance 

by combining deep convolutional neural networks and Q

learning. Since then, DRL has achieved notable successes in 

a variety of complex tasks such as robotics control [1] and 

the game of Go [44]. From DQN, various DRL methods such 

as Double DQN [51] or Actor-Critic methods [38, 39] were 

proposed and shown to be more effective than the classic 

DQN. Despite DRL's great success, there are still many chal

lenges preventing DRL from being applied more broadly in 

practice, including applying it to educational systems. One 

major problem is sample inefficiency of current DRL algo

rithms. For example, it takes DQN hundreds of millions of 

interactions with the environment to learn a good policy and 

generalize to unseen states, while we seek to learn policies 

from datasets with fewer than 800 student-tutor interaction 

logs. 

Generally speaking, there are two major categories of RL: 

online and offiine. Online RL algorithms learn policy while 

the agent interacts with the environment; offiine RL algo

rithms, by contrast, learn the policy from pre-collected train

ing data. Online RL methods are generally appropriate for 

domains where the state representation is clear and interact

ing with simulations and actual environments is relatively 

computationally cheap and feasible, so most of prior work 

on DRL mainly took an online learning approach. On the 

other hand, for domains such as e-learning, building accurate 

simulations or simulating students is especially challenging 

because human learning is a rather complex, not fully under

stood process; moreover, learning policies while interacting 

with students may not be feasible and more importantly, 

may not be ethical. Therefore, our DRL approach is offiine. 

This approach was achieved by, first, collecting a training 

corpus. One common convention, and the one used in our 

study, is to collect an exploratory corpus by training a group 

of students on an ITS that makes random yet reasonable 

decisions and then apply RL to induce pedagogical policies 

from that exploratory training corpus. An empirical study 

was then conducted from a new group of human subjects 

interacting with different versions of the system. The only 

difference among the versions was the policy employed by 

the ITS. Lastly, the students' performance was statistically 
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compared. Due to cost limitations, typically, only the best 

RL-induced policy was deployed and compared against some 

baseline policies. 

When applying offiine DRL to ITSs, we often face one major 

challenge: our rewards are often not only noisy but also de

layed. Given the nature of ITS data collection, the training 

data including our reward functions is often noisy and our 

rewards are only the incomplete or imperfect observations 

of underlying true reward mechanisms. Due to the complex 

nature of student learning, the most appropriate rewards are 

(delayed) student learning gains, which are only available af

ter the entire training is complete. For example, hints might 

improve immediate performance but negatively impact over

all learning. On the other hand, when the size of the training 

data is limited, the availability of "true" immediate rewards 

is very important for offiine RL. Immediate rewards are gen

erally more effective than delayed rewards for offiine RL be

cause it is easier to assign appropriate credit or blame when 

the feedback is tied to a single decision. The more we de

lay rewards or punishments, the harder it becomes to assign 

credit or blame properly. Therefore, the challenge is how to 

distribute the delayed rewards to observable, immediate re

wards along each student-system interactive trajectory while 

taking the noise and uncertainty in the data into account. 

To tackle this issue, we applied a Gaussian Processes based 

(GP-based) approach to infer "immediate rewards" from the 

delayed rewards and then applied DQN to induce two poli

cies: one based on delayed rewards and the other based on 

the inferred immediate rewards, referred to as DQN-Del and 

DQN-Inf respectively. 

In this work, we used a logic ITS and focused on apply

ing DRL to induce a policy on one type of tutorial deci

sion: whether to present a given problem as a problem solv

ing (PS) or a worked example (WE). The tutor presents 

a worked example (WE) by demonstrating the individual 

steps in an expert solution to a problem. During PS, stu

dents are required to complete the problem with tutor sup

port (e.g. hints). The effectiveness of DQN-Del and DQN

Inf are evaluated theoretically using Expected Cumulative 

Reward (ECR) and empirically through two randomly con

trolled experiments: one for evaluating the effectiveness of 

DQN-Del in Spring 2018 and the other for evaluating DQN

Inf in Fall 2018. In each experiment, the effectiveness of the 

corresponding RL-induced policy was compared against the 

Random policy that flips a coin to decide between WE/PS 

and the students were randomly assigned into the two con

ditions while balancing their incoming competence. Overall, 

the results from both experiments showed no significant dif

ference between the DQN-Del and Random in Spring 2018 

and between the DQN-lnf and Random in Fall 2018 on every 

measure of learning performance. 

There are two potential explanations for such findings. First, 

our random baseline policy is decently strong. While ran

dom policies are usually bad in many RL tasks, in the con

text of WE vs. PS, our random policies can be strong base

lines. Indeed, some learning literature suggests that the best 

instructional intervention is to alternate WE and PS [35, 

41, 36]. Second, there may be an aptitude-treatment in

teraction (ATI) effect [6, 47], where certain students are 

less sensitive to the induced policies, meaning they achieve a 

similar learning performance regardless of policies employed; 

whereas other students are more sensitive, meaning their 

learning is highly dependent on the effectiveness of the poli

cies. Thus, we divided the students into High vs. Low based 

on their incoming competence and investigated the ATI ef

fect. While no ATI effect was found between DQN-Del and 

Random for Spring 2018, a significant ATI effect was found 

between DQN-lnf and Random in Fall 2018. 

In short, we explored applying offiine DRL for pedagogical 

policy induction based on delayed and inferred immediate 

rewards. Our results showed that no ATI effect was found 

between DQN-Del and Random in Spring 2018, whereas 

there was an ATI effect between DQN-Inf and Random in 

Fall 2018. More specifically, the High incoming competence 

group benefited significantly more from the DQN-Inf policy 

than their peers in the Random condition. This result sug

gests that the availability of inferred immediate rewards was 

crucial for effectively applying offiine DRL for pedagogical 

policy induction. 

2. BACKGROUND 
A great deal of research has investigated the differing im

pacts of worked examples (WE) and problem solving (PS) 

on student learning [49, 22, 21, 23, 41, 27, 36]. McLaren 

and colleagues compared WE-PS pairs with PS-only [22]. 

Every student was given a total of 10 training problems. 

Students in the PS-only condition were required to solve ev

ery problem while students in the WE-PS condition were 

given 5 example-problem pairs. Each pair consisted of an 

initial worked example problem followed by tutored prob

lem solving. They found no significant difference in learning 

performance between the two conditions. However, the WE

PS group spent significantly less time than the PS group. 

McLaren and his colleagues found similar results in two sub

sequent studies [21, 23]. In the former, the authors com

pared three conditions: WE, PS and WE-PS pairs, in the 

domain of high school chemistry. All students were given 10 

identical problems. As before, the authors found no signifi

cant differences among the three groups in terms of learning 

gains but the WE group spent significantly less time than 

the other two conditions; and no significant time on task dif

ference was found between the PS and WE-PS conditions. 

In a follow-up study, conducted in the domain of high school 

stoichiometry, McLaren and colleagues compared four con

ditions: WE, tutored PS, untutored PS, and Erroneous Ex

amples (EE) [23]. Students in the EE condition were given 

incorrect worked examples containing between 1 and 4 errors 

and were tasked with correcting them. The authors found 

no significant differences among the conditions in terms of 

learning gains, and as before the WE students spent signif

icantly less time than the other groups. More specifically, 

for time on task, they found that: WE < EE < untutored 

PS< tutored PS. In fact, the WE students spent only 30% 

of the total time that the tutored PS students spent. 

The advantages of WEs were also demonstrated in another 

study in the domain of electrical circuits [50]. The authors 

of that study compared four conditions: WE, WE-PS pairs, 

PS-WE pairs (problem-solving followed by an example prob

lem), and PS only. They found that the WE and WE-PS 
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students significantly outperformed the other two groups, 

and no significant differences were found among four condi

tions in terms of time on task. 

In short, prior research has shown that WE can be similar 

or more effective than PS or alternating PS with WE, and 

the former can take significantly less time than the latter 

two [49, 22, 21, 23, 41]. However, there is no widespread 

consensus on how or when WE vs. PS should be used. This 

is why we will derive pedagogical strategies for them directly 

from empirical data. 

2.1 ATI Effect 
Previous work shows that the ATI effect commonly exists 

in many real-world studies. More formally, the ATI effect 

states that instructional treatments are more or less effective 

to individual learners depending on their abilities [6]. For 

example, Kalyuga et al. [17] empirically evaluated the effec

tiveness of worked example (WE) vs. problem solving (PS) 

on student learning in programmable logic. Their results 

show that WE is more effective for inexperienced students 

while PS is more effective for experienced learners. 

Moreover, D'Mello et al. [7] compared two versions of ITSs: 

one is an affect-sensitive tutor which selects the next prob

lem based on students' affective and cognitive states com

bined, while the other is an original tutor which selects the 

next problem based on students' cognitive states alone. An 

empirical study shows that there is no significant difference 

between the two tutors for students with high prior knowl

edge. However, there is a significant difference for students 

with low prior knowledge: those who trained on the affect

sensitive tutor had significantly higher learning gain than 

their peers using the original tutor. 

Chi and VanLehn [4] investigated the ATI effect in the do

main of probability and physics, and their results showed 

that high competence students can learn regardless of in

structional interventions, while for students with low com

petence, those who follow the effective instructional inter

ventions learned significantly more than those who did not. 

Shen and Chi [43] find that for pedagogical decisions on WE 

vs. PS, certain learners are always less sensitive in that their 

learning is not affected, while others are more sensitive to 

variations in different policies. In their study, they divided 

students into Fast and Slow groups based on time, and found 

that the Slow groups are more sensitive to the pedagogical 

decisions while the Fast groups are less sensitive. 

3. RELATED WORK 
Deep Reinforcement Learning: In recent years, many 

DRL algorithms have been developed for various applica

tions such as board games like Go [44, 46], Chess and Shogi 

[45], robotic hand dexterity [33, 1], physics simulators [19, 

29, 30], and so forth. While most DRL algorithms have 

been mainly applied online, some of them can also be ap

plied offiine. More specifically, DRL algorithms such Vanilla 

Policy Gradient (VPG) [48], Proximal Policy Optimization 

(PPO) [39], Trust Region Policy Optimization (TRPO) [38], 

or A3C [24] can only be applied for online learning by inter

acting with simulations. Some other DRL algorithms can be 

applied for offiine learning using pre-collected training data. 

These include the Q-learning based approaches such as Deep 

Q-Network (DQN) [26], Double-DQN [51], prioritized expe

rience replay [37], distributed prioritized experience replay 

(Ape-X DQN) [14], and the Actor-Critic based methods such 

as Deep Deterministic Policy Gradient (DDPG) [19], Twin 

Delayed Deep Deterministic policy gradient (TD3) [9], or 

Soft Actor-Critic (SAC) [11]. Among them, DQN and its 

variants have been much more extensively studied, however, 

it is still not clear whether they can be successfully applied 

offiine for pedagogical policy induction for ITSs. 

Reinforcement Learning in Education: Prior research 

using online RL to induce pedagogical policies has often re

lied on simulations or simulated students, and the success of 

RL is often heavily dependent on the accuracy of the simu

lations. Beck et al. [3] applied temporal difference learning, 

with off-policy E-greedy exploration, to induce pedagogical 

policies that would minimize student time on task. Igle

sias et al. applied another common online approach named 

Q-learning to induce policies for efficient learning [15, 16]. 

More recently, Rafferty et al. applied POMDP with tree 

search to induce policies for faster learning [32]. Wang et 

al. applied an online Deep-RL approach to induce a policy 

for adaptive narrative generation in educational game [52]. 

All of the models described above were evaluated by com

paring the induced policy with some baseline policies via 

simulations or classroom studies. 

Offiine RL approaches, on the other hand, "take advantage 

of previously collected samples, and generally provide ro

bust convergence guarantees" [40]. Shen et al. applied value 

iteration and least square policy iteration on a pre-collected 

training corpus to induce pedagogical policies for improv

ing students' learning performance [43, 42]. Chi et al. ap

plied policy iteration to induce a pedagogical policy aimed 

at improving students' learning gains [5]. Mandel et al. 

[20] applied an offiine POMDP approach to induce a policy 

which aims to improve student performance in an educa

tional game. In classroom studies, most models above were 

found to yield certain improved student learning relative to 

a baseline policy. 

DRL in Education is a subject of growing interest. DRL 

adds deep neural networks to RL frameworks such as POMDP 

for function approximation or state approximation [25, 26]. 

This enhancement makes the agent capable of achieving 

complicated tasks. Wang et al. [52] applied a DRL frame

work for personalizing interactive narratives in an educa

tional game called CRYSTAL ISLAND. They designed the im

mediate rewards based on normalized learning gain (NLG) 

and found that the students with the DRL policy achieved a 

higher NLG score than those following the linear RL model 

in simulation studies. Furthermore, Narasimhan et al. [28] 

implemented a Deep Q-Network (DQN) approach in text

based strategy games, constructed based on Evennia, which 

is an open-source library and toolkit for building multi-users 

online text-based games. Using simulations, they found that 

the DRL policy significantly outperformed the random pol

icy in terms of quest completion. 

In summary, compared with MDP and POMDP, relatively 

little research has been done on successfully applying DRL 

to the field of ITS. None of the prior research has success

fully applied DRL to ITSs without simulated environments, 
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in order to learn an effective pedagogical strategy that makes 

students learn in a more efficient manner. Furthermore, no 

prior work has empirically evaluated any DRL-induced pol

icy to confirm its benefits on real students. 

4. METHODS 
In RL, the agent interacts with an environment £, and the 

goal of the agent is to learn a policy that will maximize 

the sum of future discounted rewards (also known as the 

return) along the trajectories, where each trajectory is one 

run through the environment, starting in an initial state and 

ending in a final state. This is done by learning which action 

to take for each possible state. In our case, £ is the learning 

context, and the agent must learn to take the actions that 

lead to the optimal student learning, by maximizing the re

turn R = 'Ei=o "'./rt, where rt is the reward at time step t, 
T is the time step that indicates the end of the trajectory, 

and, E (0, 1] is the discount factor. 

4.1 DQN and Double-DQN 
Deep Q-Network (DQN) is, fundamentally, a version of 

Q-learning. In Q-learning, the goal is to learn the optimal 

action-value function, Q*(s, a), which is defined as the ex

pected reward obtained when taking the optimal action a in 

state s, and following the optimal policy 1r* until the end of 

the trajectory. For any state-action pair, the optimal action

value function must follow the Bellman optimality equation 

in that: 

Q*(s, a)= r + ,maxQ*(s', a') 
a' 

(1) 

Here r is the expected immediate reward for taking action 

a at state s; , is the discount factor; and Q* ( s', a') is the 

optimal action-value function for taking action a' at the sub

sequent state s' and following policy 1r* thereafter. 

Compared with the original Q-leaning, DQNs use neural net

works (NNs) to approximate action-value functions. This is 

because NNs are great universal function approximators and 

they are able to handle continuous values in both their in

puts and outputs. In order to train the DQN algorithm, 

two neural networks with equal architectures are employed. 

One is the main network and its weights are denoted 0 and 

the other is the target network, and its weights are de

noted 0-. The target value used to train the network is 

y := r + , maxa, Q( s', a'; 0-). Thus, the loss function that 

is minimized in order to train the main network is: 

Loss(0) = IE[(y - Q(s, a; 0))
2

] (2) 

The main network is trained on every training iteration, 

while the target network is frozen for a number of train

ing iterations. Every m training iterations, the weights of 

the main neural network are copied into the target network. 

This is one of the techniques used in order to avoid diver

gence during the training process. Another one of these 

techniques was the use of an experience replay buffer. This 

buffer contains the p most recent (s, a, r) tuples, and the 

algorithm randomly samples from the buffer when creating 

the batch on each training iteration. We followed the same 

procedure, but as our training was performed offiine, the 

experience replay buffer consists of all the samples on our 

training corpus, and it does not get refreshed over time. 

Double-DQN or DDQN was proposed by Van Hasselt et 

al. [12] who combined it with neural networks in the Double

DQN algorithm [51]. The intuition behind it is to decouple 

the action selection from the action evaluation. To achieve 

this, the Double-DQN algorithm uses the main neural net

work to first select the action that has the highest Q-value 

for the next state ( argmaxa, Q( s', a', 0)) and then evaluates 

the Q-value of the selected action using the target network 

( Q( s', argmaxa, Q( s', a'; 0); 0-)). This simple trick has been 

proven to significantly reduce overestimations in Q-value cal

culations, resulting in better final policies. With this tech

nique, the target value used to optimize the main network 

becomes: 

y := r + ,Q(s', argmax Q(s', a', 0); 0-) (3) 
a' 

The loss function is still the same as in equation 2, but the 

target value y used in the formula is now updated to be the 

one in equation 3. 

4.2 Fully Connected vs. LSTM 
For our NN architectures, we explored two options: Fully 

connected NNs and Long Short Term Memory (LSTM). 

Fully Connected or multi-layer perceptrons are the sim

plest form of neural network units. They calculate a simple 

weighted sum of all the input units, and each unit produces 

an output value that is often passed to an activation func

tion. We used these units to parametrize our neural net

works. All the input units are connected to all the units in 

the first hidden layer, and all those units are connected to 

every unit in the next hidden layer. This process continues 

until the final output layer. 

, ....................... .... ....................... . 

[ • ........... ..... . .......................... ............ ............ '.>-.' .. -... :.......+--- Yt 

Forget Input Output 

Figure 1: A single LSTM unit containing a forget, input and 

ouput gate 

Long Short-Term Memory (LSTM) is a type of re

current neural network specifically designed to avoid the 

vanishing and exploding gradient problems [13]. LSTMs 

are particularly suitable for tasks where long-term tempo

ral dependencies must be remembered. They achieve this 

by maintaining the previous information of hidden states as 

internal memory. Figure 1 shows the architecture of a single 

LSTM unit. It consists of a memory cell state denoted by 

Ct and three gates: the forget gate ft E [O, 1], the input gate 

it E [O, 1], and the output gate Ot E [O, 1]. These three gates 

interact with each other to control the flow of information. 

During training, the network learns what to memorize and 

when to allow writing to the cell in order to minimize the 
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training error. More specifically, the forget gate determines 

what information from the previous memory cell state is 

expired and should be removed; the input gate selects infor

mation from the candidate memory cell state c; to update 

the cell state; and the output gate filters the information 

from the memory cell so that the model only considers in

formation relevant to the prediction task. The value of each 

gate is computed as follows, where W[i,f,C,o] are the weight 

matrices and b[i,f,C,o] are the bias vectors: 

it = sigmoid(Wi · [Yt-1, Xt] + bi) 

ft= sigmoid(W1 · [Yt-1,Xt] + b1) 

c; = tanh(Wc · [Yt-1,Xt] + be) 

Ot = sigmoid(Wo · [Yt-1, Xt] + bo) 

(4) 

The memory cell value Ct and output value Yt from the 

LSTM unit are computed using the following formulas: 

Ct = Ct-1 · ft + c; · it 
Yt = Ot * tanh( Ct) 

4.3 Inferring Immediate Rewards 

(5) 

A historical dataset 1i consists of m trajectories, h1 to hm 

and n unknown immediate rewards. We would like to in

fer the immediate rewards given delayed rewards. In order 

to infer the immediate rewards, we used a minimum mean 

square error (MMSE) estimator in the Bayesian setting [18, 

8, 10]. Assume R = Dr + E is a linear process where D 

is a known matrix, r is a n x 1 random vector of unknown 

immediate rewards, R is a m X 1 vector of observed delayed 

rewards and E is a vector of independent and identically dis

tributed noise with mean of zero and standard deviation of 

O"R. Assuming the discounted sum of the immediate rewards 

is equal to the delayed rewards, a linear model matrix D is 

proposed as: 

0 (6) 

where 'Y is the discount factor. Following the linear MMSE 

estimator, we assume that the immediate rewards follow a 

Gaussian Process defined as r ~ N (µr, Crr) where µr is the 

a priori mean and Crr is the a priori covariance defined by 

an appropriate kernel [2]. Using the theorem of conditional 

distribution of multivariate Gaussian distributions [34], con

ditional expectation of immediate rewards given delayed re

wards JE[rlR] or the posterior mean of immediate rewards 

is: 

JE[rlR] = µr + CrrDT CRR -l (R - D µr) (7) 

and the posterior covariance C[rlR] of inferred immediate 

rewards given delayed rewards can be calculated as: 

IC[rlR] = Crr - CrrDTCRR -lDC~r (8) 

where CRR = DCrrDT + a-itl and I is the identity matrix. 

Algorithm 1 shows the process used to infer the immediate 

rewards. Estimation of the mean and covariance of the ran-

dom column vector r in Eqs. 7 and 8 requires the inverse of 

the matrix CRR· By introducing several intermediary vari

ables, this algorithm provides an efficient solution to matrix 

inversion using the Cholesky decomposition similar to the 

Gaussian Processes algorithm implementation [34]. 

Algorithm 1 Immediate reward approximation algorithm. 

Inputs: R, µr, Crr, D, O-it 
£ = Cholesky (DCrrDT + a-itl) 
/3 = £\ (R - D µr) forward-substitution algorithm 

a= £T\/3 back-substitution algorithm 

k= DC;r 

v=£\k 
-T 

lE [rlR] = µr + k a 
IC [rlR] = Crr - VTV 

return: lE [rlR] and IC [rlR] 

5. POLICY INDUCTION 
In this section, we will describe our ITS, the training corpus, 

our policy induction procedure, and theoretical evaluation 

results. 

5.1 Logic ITS 
The logic tutor used in this study is named Deep Thought 

(DT), and it uses a graph-based environment to solve logic 

proofs. It is used in the undergraduate level Discrete Math

ematics class at North Carolina State University. To com

plete a problem, students iteratively apply rules to logic 

statement nodes in order to derive the conclusion node. DT 

automatically checks the correctness of each step and pro

vides immediate feedback on any rule that is applied incor

rectly. The tutor consists of 6 levels, with 3 to 4 problems 

per level. Each problem can be represented as Problem Solv

ing (PS) or as Worked Example (WE). Figure 2 (left) shows 

the user interface for PS, and Figure 2 (right) shows the 

interface for WE. 

I -·· " 

-- ·•-c=..J•OU111 DMplllought~ 1 
~ ~.-- -

""1 0 :::~-:::!·:.! .• _ -

Figure 2: User Interface for DT. Left: PS. Right: WE. 

5.2 Training Corpus 
Our training corpus contains 786 complete student trajecto

ries collected over five semesters. On average, each student 

spent two hours to complete the tutor. For each student, the 

tutor makes about 19 decisions. From our student-system 

interaction logs, we extracted a total of 142 state features: 

• Autonomy: 10 features describing the amount of work 

done by the student. 

• Temporal: 29 features, including average time per 

step, the total time spent on the current level, the 

time spent on PS, the time spent on WE, and so on. 
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• Problem Solving: 35 features such as the difficulty of 

the current problem, the number of easy and difficult 

problems solvoo on the current level, the number of 

PS and WE problems seen in the current level, or the 

number of nodes the student added in order to reach 

the final solution. 

• Performance: 57 features such as the number of in

correct steps, and the ratio of correct to incorrect rule 

applications for different types of rules. 

• Hints: 11 features such as the total number of hints 
requested or the number of hints the tutor provided 

without the student asking for them. 

The features contain non-negative continuous values. As 

their range varies significantly (time ca.n be a large num

ber while problem difficulty is always between land 9), we 

normalized ea.ch feature to the range (0, 1]. Input feature 
normalization has been shown to improve the stability of 

the learning process on neural networks, and often leads to 

faster convergence. 

To induce our pedagogical policy, while previous research 
mainly used learning gains or time on task as reward func

tion, our reward function here is baaed on the improvement 

of learning efficiency, which balances both learning gain im
provement and time on task improvement. In this way, if 

two students have the same amount of learning gain, the 
one who takes shorter time would get higher reward. To 

calculate their learning efficiency, we used students' scores 
obtained on ea.ch level divided by the training time on the 

level. Students must solve the last problem on each level 
without help, and we use this as a level score. The range 

of the score for ea.ch level is [-100, + 100), and the learning 

gain for level L is calculated as ScoreL - ScoreL-1, thus 

having a range of [-200, +200). 

5.3 Training Process 
For both DQN and Double DQN, we explored UBing Fully 

Connected {FC) NNs or UBing LSTM to estimate the action

value function Q. Our FC has four fully connected layers of 

128 units each, uses Rectified Linear Unit (ReLU) as the 

activation function. Our LSTM architecture consists of two 

layers of 100 LSTM units ea.ch, with a fully connected layer 

at the end. Additionally, for either FC or LSTM, for a given 
time t, we explored three input settings: to use only the 

current state observation St (k = 1), to use the last two 

state observations: Bt-l and St (k = 2), and to use the last 

three: si-2, si-1 and St (k = 3). 

In the case of the fully connected (FC) model, the observar
tions are concatenated and passed to the input layer as a 

fl.at array of values. For LSTM, the input state observations 

are passed to the network in a sequential manner. These 
past observations provide extra information about the per

formance of the student in the previous states. However, 
including previous states also add complexity to the net

work, which can slow down the learning process and can 
increase the risk of converging to a weaker final policy. As 

the number of parameters increases in the NNs, the chance 

that our NN would get stuck at a local optima increases, e&

pecially when our training data is limited. L2 regularization 
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Figure 3: Importance sampling result.a. 

was used to get a model that generalizes better. We trained 

our models for 50,000 iterations, using a batch size of 200. 

S.4 Induced Policy 
First, we induced the DQN-Del policy using delayed rewards 

only. Our training de.ta was split: 90% of the student.a for 
training data and 10% for testing data. We trained all 12 

of our models (DQN and Double-DQN with either FC lay

ers or LSTM layers, and with k = {1, 2, 3}) on the training 

data and evaluated their performance on testing data. We 

repeated this process twice with two different test sets and 
reported their average performance on a series of popular 

off-policy evaluation metrics. Among them, Expected Cu

mulative Reward (ECR) is the most widely used. However, 

Per-Decision Importance Sampling (PDIS) has shown to be 

more robust [31] . 

ECR is simply calculated by averaging over the highest Q

value for all the initial states in the validation set. The 
formula is described in Equation 9. 

1 N 

ECR= N Eni:xQ(s,.,a) 
•=l 

(9) 

s, is an initial state, and N denotes the number of trajecto

ries in the validation set. 

PDIS [31) is an alternative to regular Importance Sampling, 

to reduce variance in the estimations. The PDIS results 

of the 12 models are shown in Figure 3. The PDIS result 

of the rand.om policy is used to set y = 0 ( the red line) 

in Figure 3. Much to our surprise, while double DQN has 

shown to be much more robust in online DRL applications, 

its performance is generally worse than DQN here, especially 

when k = 1 and k = 2. Figure 3 shows that the best policy 
is induced using DQN with the LSTM architecture for k = 
3, and thus is selected as DQN-Del. We also compare the 
selected policy with the Teroaining ones UBing ECR and other 

evaluation metrics and the results showed UBing DQN with 

the LSTM architecture for k = 3 is always among the best 

policies across different evaluation metrics. 

To evaluate the impact of Inferred rewards on the DQN in-
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Figure 4: ECR evolution of DQN-Del and DQN-Inf. 

duced policies, we used the same approach to induce the 

DQN-lnfpolicy and the only major difference is that we used 

the inferred immediate rewards in the training dataset, cal

culated through Algorithm 1. During the training process, 

we calculated the ECRs of DQN with the LSTM architecture 

for k = 3 using the original delayed rewards (DQN-Del) vs. 

using the inferred immediate rewards (DQN-Inf). The evo

lution of the ECR values for each policy during the training 

process is shown in Figure 4, showing that using the inferred 

rewards we can theoretically converge faster and to a better 

policy. 

6. EMPIRICAL EXPERIMENT SETUP 
Two empirical experiments were conducted, one in the Spring 

2018 semester and one in the Fall 2018 semester. They were 

both conducted in the undergraduate Discrete Mathematics 

class at North Carolina State University. 

6.1 Experiment 1: Spring 2018 
84 students from the Spring 2018 class were randomly as

signed to the Random (control) group and the DQN-Del 

group. Because both WE and PS are considered to be rea

sonable educational interventions in the context of learn

ing, we refer to our control random policy as a random yet 

reasonable policy or Random in the following. The assign

ment was done in a balanced random manner, using the pre

test score to ensure that the two groups had similar prior 

knowledge. N = 45 and N = 39 were assigned to Random 

and DQN-Del respectively. Among them, N = 41 Ran

dom students and N = 33 DQN-Del students completed 

the training. A x2 test showed no significant differences 

between the completion rates of the two different groups: 

x2 (1, N = 84) = 0.053, p = 0.817. 

6.2 Experiment 2: Fall 2018 
98 students from the Fall 2018 Discrete Mathematics class 

were distributed into two conditions. The two conditions 

are the Random (control) group and the DQN-Inf group. 

The group sizes were as follows: N = 49 for Random, and 

N = 49 for DQN-lnf. A total of 84 students completed the 

experiment and their distribution was as follows: N = 43 

for Random, and N = 41 for DQN-lnf. A x2 test of inde-

pendence showed no significant differences between the com

pletion rates of the two different groups: x2 (1, N = 98) = 
0.025, p = 0.872. 

6.3 Performance Measure 
Our tutor is consisting of 6 strictly ordered levels of proof 

problems. All of the students received the same set of prob

lems in level 1. Their initial proficiency is calculated based 

upon the number of mistakes made on the final problem of 

level 1 and the total training time on level 1. The profi

ciency reflects how well they understand the knowledge and 

can apply the logic rules in the proof process before the tu

tor follows different pedagogical policies. In each sequential 

level, DT will follow the corresponding policies to determine 

the next problem to be WE or PS. The last problem on 

each level is used as a mini-posttest to measure students' 

performance on that level. 

When inducing both the DQN-Del and DQN-lnf, we calcu

lated our reward function based upon the improvement of 

students' learning efficiency which is defined as level scores 

divided by the training time on that level. So to measure stu

dent performance, we first calculate the learning efficiency 

on each level as: the score obtained by the student in the 

last problem of that level, divided by the total time (in min

utes). In this study, we use student learning efficiency in 

level 1 as their pretest efficiency score and their learning effi

ciency in level2-level6 as the post-test efficiency scores. Since 

our DQNs used learning efficiency improvement as their re

wards, we expect that the DRL-induced policy would cause 

students to have higher post-test efficiencies. 

7. RESULTS 

7.1 Experiment 1 Results 
No significant difference was found on the pre-test efficiency 

between the Random and DQN-Del: t(72) = 1.086, p = 
0.281. We divided the students into high pre-test efficiency 

(n = 37) and low pre-test efficiency (n = 37) groups, based 

upon their learning efficiency on the pre-test. As expected, 

there was a significant difference between the high and low 

efficiency students on their pre-test efficiency: t(72) = 9.570, 

p < 0.001. The partition mentioned above resulted in four 

groups, based upon their incoming efficiency and condition: 

DQN-Del-High (n = 16), DQN-Del-Low (n = 17), Random

High (n = 21), and Random-Low (n = 20). At-test showed 

no significant difference in the pre-test efficiencies either be

tween the two low groups, Random-Low and DQN-Del-Low, 

or between the two high efficiency groups. These results 

show that there is no significant difference in the pre-test 

efficiency across conditions. 

A two-way ANCOVA test on the post-test efficiency, using 

Condition {Random, DQN-Del} and Incoming Competency 

{ Low, High} as factors and pre-test efficiency as a covariate, 

showed that there is no significant main effect of Condition 

F(l, 69) = 2.633, p = 0.109, and no significant main effect 

of Incoming Efficiency F(l, 69) = 0.036, p = 0.849. No in

teraction (ATI) effect was found either F(l, 69) = 1.285, 

p = 0.261. Thus, we conclude there was no difference be

tween the two conditions in the Spring 2018 study. 
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Figure 5: Post-Test Learning Efficiency a.cross different 

groups for the Fall 2018 study. 

7.2 Experiment 2 Results 
In fall 2018, again no significant difference was found on 

the pre-test efficiency between the Random and DQN-Inf 

groups: t(82) = -0.333,p = 0.739. The students were also 

divided into high pre-test efficiency (n = 42) and low pre

test efficiency (n = 42) groups. At-test showed a significant 
difference between the high and low efficiency students on 

the pre-test efficiency: t(82) = 6.38,p < 0.001. The same 

four groups were formed, based upon their incoming effi

ciency and condition: DQN-Inf-High {n = 20), DQN-Inf

Low (n = 21), Random-High (n = 22), and Random-Low 

(n = 21). A t-test showed no significant difference on the 

pre-test efficiencies when comparing the Random-Low and 

DQN-lnf-Low groups: t(40) = 0.027,p = 0.978. No signifi

cant difference was found either, when performing at-test on 

the two high efficiency groups: t(40) = -0.698,p = 0.489. 
This shows that there is no significant difference on the pre

test efficiency a.cross conditions during the Fall 2018 study. 

A two-way ANOVA test using Condition {Random, DQN

Inf} and Incoming Competency { Low, High} as two factors 

showed a significant interaction effect on students' post-test 

efficiency: F(l,80) = 5.038,p = 0.027 {as shown in Fig

ure 5). To be more strict, we ran a two-way ANCOVA test 

using Condition and Incoming Competency as two factors 
and pre-test efficiency as a covariate. This analysis also 

showed a significant interaction effect on students' post-test 

efficiency: F(l, 79) = 4.687,p = 0.033. Thus, by taking the 

pre-test efficiency into consideration, there is still a signifi

cant interaction effect. No significant main effect was found 

from either Condition or Incoming Competency. A one-way 

ANCOVA test on the post-test efficiency for the Low com
petency groups, using Condition {Random-Low, DQN-Inf

Low} as a factor and pre-test competency as a covariate 

showed no significant difference on the post-test efficiency 

F(l, 39) = 0.429, p = 0.516. However, a significant dif

ference was found for the High groups F{l,39) = 5.513, 

p = 0.024, with means -0.719 for Random-High and 2.916 
for DQN-Inf-High (as shown in Figure 5). 

7.3 Log Analysis 
This section will show more details on the different types of 

tutorial decisions made a.cross the different conditions and 
studies. The features that were analyzed include the total 

number of problems ea.ch student encountered (Total Count), 

the number of problems solved (PSCount), the number of 

difficult problems solved (diffPSCount), the number ofWEs 

seen (WECount), and the number of difficult WEs seen (dif

fWECount). Table 1 shows the summary of these five fea

tures for ea.ch condition and study. Columns 3 and 4 show 

the mean and standard deviation of ea.ch condition for these 

categories. Column 5 shows the statistical results of different 

t-tests comparing the two conditions. 

No significant difference is found for the total number of 

problems seen by ea.ch group. However, we observed that 

for the features diffPSCount, WECount and diHWECount, 

a significant difference was found only during the Spring 

2018 study. Looking at the mean values, we notice that the 

DQN-Del policy assigned fewer WE and more PS problems. 

However, this did not improve the performance of the stu

dents in the DQN-Del group during this study. During the 

Fall 2018 study, we only observe a significant difference in 

the number of PS problems assigned. No significant differ

ence was found in the remaining categories. 

When we analyze the logs for the High competency students, 

table 2 shows the values of those same features, but only 

for the High competency students in ea.ch study. During 

the Spring 2018 semester, we find a statistically significant 

difference for TotalCount, PSCount, and diffWECount, and 

we find a marginal difference for WECount. This shows that 

the DQN-Del policy gave more PS problems, fewer WE, and 

fewer difficult WE problems, but no significant difference 

was found in students' post-test performance. The Fall 2018 
study results show no significant or marginal difference in 

any of the five categories. Despite this fa.ct, the DQN-Inf 

policy implemented in the Fall 2018 study outperformed the 

Random policy for the High competency students. We can 

also observe how, in Tobie 2, the standard deviation for the 

DQN groups is often larger than the standard deviation for 

the Random groups. This makes sense because we expect all 

the students in the Random group to have a similar values 

in ea.ch category. However, it looks like the DQN policy 

is assigning more PS to certain students, and more WE to 
other students, resulting in a larger standard deviation. 

In short, our log analysis results show that it is not about 

the total amount of PSs and WEs that students received 

that matters, but rather how or when they receive which. 

8. CONCLUSIONS 
We used offiine Deep Reinforcement Learning algorithms in 

conjunction with inferred immediate rewards to induce a 

pedagogical policy to improve the students' learning effi

ciency for a logic tutor. Our results showed that our DRL

induced pedagogical policy can outperform the Random pol

icy, which is a strong baseline here. More specifically, there 

was an ATI effect in the Fall 2018 study in that the high in

coming competency students were benefited more from our 
DRL-induced policy, by achieving better post-test learning 

efficiency than other groups. Our results showed t hat our 

proposed Gaussian Processes based approach to infer ''im-
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Table 1: Log analysis results for per semester and condition. 

Feature Semester Random DQN Significance 

Total Count 
Spring 22.68(5.05) 24.02(5.29) t(72) = -1.118, p = 0.267 

Fall 23.81(3.32) 25.26(5.37) t(82) = -1.489, p = 0.141 

PSCount 
Spring 14.82(5.29) 17.08(6.11) t(72) = -1.691, p = 0.095• 

Fall 14.38(2.30) 15. 73(3.68) t(82) = -2.029, p = 0.046* 

diffPSCount 
Spring 5.19(1.74) 4.85(2.06) t(72) = 0.765, p = 0.446 

Fall 7.54(1.57) 8.19(2.31) t(82) = -1.501, p = 0.137 

WECount 
Spring 7.85(1.17) 6.94(1.87) t(72) = 2.466, p = 0.016* 

Fall 9.43(1.57) 9.52(2.37) t(82) = -0.210, p = 0.833 

diffWECount 
Spring 3.85(1.33) 2.61(1.87) t(72) = 3.226, p = 0.002* 

Fall 2.15(1.42) 2.02(1.23) t(82) = 0.469, p = 0.639 

Table 2: Log analysis results for the high competency groups per semester. 

Feature Semester Random 

Total Count 
Spring 21.52(2.18) 

Fall 24.27(0. 76) 

PSCount 
Spring 13.61(2.49) 

Fall 14.59(0.66) 

diffPSCount 
Spring 5.57(1.43) 

Fall 7.68(0.83) 

WECount 
Spring 7.90(1.33) 

Fall 9.68(0.94) 

diffWECount 
Spring 4.23(1.41) 

Fall 2.18(1.46) 

mediate rewards" from the delayed rewards seems reasonable 

and works pretty well here. Thus, offiine DRL can be suc

cessfully applied to real-life environments even with a limited 

training dataset with delayed rewards. 

Acknowledgements 

This research was supported by the NSF Grants #1432156, 

#1651909, and #1726550. 

9. REFERENCES 
[1] M. Andrychowicz, B. Balcer, et al. Learning dexterous 

in-hand manipulation. arXiv preprint 

arXiv:1808.00177, 2018. 

[2] H. Azizsoltani and E. Sadeghi. Adaptive sequential 

strategy for risk estimation of engineering systems 

using gaussian process regression active learning. 

Engineering Applications of Artificial Intelligence, 

74:146-165, 2018. 

[3] J. Beck, B. P. Woolf, and C.R. Beal. Advisor: A 

machine learning architecture for intelligent tutor 

construction. AAAI/IAAI, 2000(552-557):1-2, 2000. 

[4] M. Chi and K. VanLehn. Meta-cognitive strategy 

instruction in intelligent tutoring systems: How, when, 

and why. Journal of Educational Technology & 

Society, 13(1):25-39, 2010. 

[5] M. Chi, K. VanLehn, D. Litman, and P. Jordan. 

Empirically evaluating the application of 

reinforcement learning to the induction of effective 

and adaptive pedagogical strategies. UMUAI, 

21(1-2):137-180, 2011. 

[6] L. Cronbach and R. Snow. Aptitudes and instructional 

methods: A handbook for research on interactions. 

Oxford, England: Irvington, 1977. 

DQN Significance 

24.31(4.07) t(35) = -2.471, p = 0.021* 

25.95(7.58) t( 40) = -0.984, p = 0.337 

17.50(4.67) t(35) = -3.008, p - 0.006* 

15.95( 4.98) t( 40) = -1.208, p = 0.241 

5.12(2.30) t(35) = 0.680, p = 0.502 

8.75(2.93) t(40) = -1.570, p = 0.130 

6.81(1.86) t(35) = 1.981, p = 0.058• 
10.00(3.19) t( 40) = -0.428, p = 0.672 

2.43(1.82) t(35) = 3.271, p - 0.002* 

2.50(1.27) t(40) = -0.750, p = 0.457 

[7] S. D'Mello, B. Lehman, et al. A time for emoting: 

When affect-sensitivity is and isna.AZt effective at 

promoting deep learning. In ITS, pages 245-254. 

Springer, 2010. 

[8] J. T. Flam, S. Chatterjee, et al. On mmse estimation: 

A linear model under gaussian mixture statistics. 

IEEE Transactions on Signal Processing, 

60(7) :3840-3845, 2012. 

[9] S. Fujimoto, H. van Hoof, and D. Meger. Addressing 

function approximation error in actor-critic methods. 

arXiv preprint arXiv:1802.09477, 2018. 

[10] D. Guo, S. Shamai, and S. Verdu. Mutual information 

and minimum mean-square error in gaussian channels. 

arXiv preprint cs/0412108, 2004. 

[11] T. Haarnoja, A. Zhou, et al. Soft actor-critic 

algorithms and applications. arXiv:1812.05905, 2018. 

[12] H. V. Hasselt. Double q-learning. In Advances in 

Neural Information Processing Systems, pages 

2613-2621, 2010. 

[13] S. Hochreiter and J. Schmidhuber. Long short-term 

memory. Neural computation, 9(8):1735-1780, 1997. 

[14] D. Horgan, J. Quan, et al. Distributed prioritized 

experience replay. arXiv preprint arXiv:1803.00933, 

2018. 

[15] A. Iglesias, P. Martinez, R. Aler, and F. Fernandez. 

Learning teaching strategies in an adaptive and 

intelligent educational system through reinforcement 

learning. Applied Intelligence, 31(1):89-106, 2009. 

[16] A. Iglesias, P. Martinez, R. Aler, and F. Fernandez. 

Reinforcement learning of pedagogical policies in 

adaptive and intelligent educational systems. 

Knowledge-Based Systems, 22( 4):266-270, 2009. 

[17] S. Kalyuga, P. Ayres, P. Chandler, and J. Sweller. The 



177 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

expertise reversal effect. Educational psychologist, [35] A. Renkl, R. K. Atkinson, et al. From example study 

38(1):23-31, 2003. to problem solving: Smooth transitions help learning. 

[18] N. Kim, Y. Lee, and H. Park. Performance analysis of The Journal of Experimental Education, 

mimo system with linear mmse receiver. IEEE 70( 4) :293-315, 2002. 

Transactions on Wireless Communications, 7(11), [36] R. J. Salden, V. Aleven, et al. The expertise reversal 

2008. effect and worked examples in tutored problem 

[19] T. P. Lillicrap, J. J. Hunt, et al. Continuous control solving. Instructional Science, 38(3):289-307, 2010. 

with deep reinforcement learning. ar Xiv preprint [37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. 

arXiv:1509.02971, 2015. Prioritized experience replay. arXiv preprint 

[20] T. Mandel, Y.-E. Liu, et al. Oflline policy evaluation arXiv:1511.05952, 2015. 

across representations with applications to educational [38] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and 

games. In AAMAS, pages 1077-1084, 2014. P. Moritz. Trust region policy optimization. In Icml, 

[21] B. M. McLaren and S. Isotani. When is it best to volume 37, pages 1889-1897, 2015. 

learn with all worked examples? In AIED, pages [39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and 

222-229. Springer, 2011. 0. Klimov. Proximal policy optimization algorithms. 

[22] B. M. McLaren, S.-J. Lim, and K. R. Koedinger. arXiv preprint arXiv:1707.06347, 2017. 

When and how often should worked examples be given [40] D. Schwab and S. Ray. Oflline reinforcement learning 

to students? new results and a summary of the current with task hierarchies. Machine Learning, 

state of research. In CogSci, pages 2176-2181, 2008. 106(9-10):1569-1598, 2017. 

[23] B. M. McLaren, T. van Gog, et al. Exploring the [41] R. Schwonke, A. Renkl, et al. The worked-example 

assistance dilemma: Comparing instructional support effect: Not an artefact of lousy control conditions. 

in examples and problems. In Intelligent Tutoring Computers in Human Behavior, 25(2):258-266, 2009. 

Systems, pages 354-361. Springer, 2014. [42] S. Shen, M. S. Ausin, B. Mostafavi, and M. Chi. 

[24] V. Mnih, A. P. Badia, et al. Asynchronous methods Improving learning & reducing time: A constrained 

for deep reinforcement learning. In ICML, pages action-based reinforcement learning approach. In 

1928-1937, 2016. UMAP, pages 43-51. ACM, 2018. 

[25] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Playing [43] S. Shen and M. Chi. Reinforcement learning: the 

Atari with deep reinforcement learning. arXiv preprint sooner the better, or the later the better? In UMAP, 

arXiv:1312.5602, 2013. pages 37-44. ACM, 2016. 

[26] V. Mnih, K. Kavukcuoglu, D. Silver, et al. [44] D. Silver, A. Huang, C. J. Maddison, et al. Mastering 

Human-level control through deep reinforcement the game of go with deep neural networks and tree 

learning. Nature, 518(7540):529, 2015. search. nature, 529(7587):484, 2016. 

[27] A. S. Najar, A. Mitrovic, and B. M. McLaren. [45] D. Silver, T. Hubert, J. Schrittwieser, et al. A general 

Adaptive support versus alternating worked examples reinforcement learning algorithm that masters chess, 

and tutored problems: Which leads to better learning? shogi, and go through self-play. Science, 

In UMAP, pages 171-182. Springer, 2014. 362(6419):1140-1144, 2018. 

[28] K. Narasimhan, T. Kulkarni, and R. Barzilay. [46] D. Silver, J. Schrittwieser, K. Simonyan, et al. 

Language understanding for text-based games using Mastering the game of go without human knowledge. 

deep reinforcement learning. ar Xiv preprint Nature, 550(7676):354, 2017. 

arXiv:1506.08941, 2015. [47] R. E. Snow. Aptitude-treatment interaction as a 

[29] X. B. Peng, P. Abbeel, et al. Deepmimic: framework for research on individual differences in 

Example-guided deep reinforcement learning of psychotherapy. Journal of Consulting and Clinical 

physics-based character skills. ACM Transactions on Psychology, 59(2):205--216, 1991. 

Graphics (TOG}, 37(4):143, 2018. [48] R. S. Sutton, D. A. McAllester, et al. Policy gradient 

[30] X. B. Peng, G. Berseth, et al. Deeploco: Dynamic methods for reinforcement learning with function 

locomotion skills using hierarchical deep reinforcement approximation. In Advances in neural information 

learning. ACM Transactions on Graphics (TOG}, processing systems, pages 1057-1063, 2000. 

36(4):41, 2017. [49] J. Sweller and G. A. Cooper. The use of worked 

[31] D. Precup, R. S. Sutton, and S. P. Singh. Eligibility examples as a substitute for problem solving in 

traces for off-policy policy evaluation. In ICML, pages learning algebra. Cognition and Instruction, 

759-766. Citeseer, 2000. 2(1):59-89, 1985. 

[32] A. N. Rafferty, E. Brunskill, et al. Faster teaching via [50] T. Van Gog, L. Kester, and F. Paas. Effects of worked 

pomdp planning. Cognitive science, 40(6):1290-1332, examples, example-problem, and problem-example 

2016. pairs on novices' learning. Contemporary Educational 

[33] A. Rajeswaran, V. Kumar, et al. Learning complex Psychology, 36(3):212-218, 2011. 

dexterous manipulation with deep reinforcement [51] H. Van Hasselt, A. Guez, and D. Silver. Deep 

learning and demonstrations. ar Xiv preprint reinforcement learning with double q-learning. In 

ar Xiv: 1709.10087, 2017. AAAI, volume 2, page 5. Phoenix, AZ, 2016. 

[34] C. E. Rasmussen. Gaussian processes in machine [52] P. Wang, J. Rowe, W. Min, B. Mott, and J. Lester. 

learning. In Summer School on Machine Learning, Interactive narrative personalization with deep 

pages 63-71. Springer, 2003. reinforcement learning. In IJCAI, 2017. 


