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We present Science Assistments, an interactive environment, which assesses students’ inquiry skills as 

they engage in inquiry using science microworlds. We frame our variables, tasks, assessments, and 

methods of analyzing data in terms of evidence-centered design. Specifically, we focus on the student 

model, the task model, and the evidence model in the conceptual assessment framework. In order to 

support both assessment and the provision of scaffolding, the environment makes inferences about 

student inquiry skills using models developed through a combination of text replay tagging [cf. Sao Pedro 

et al. 2011], a method for rapid manual coding of student log files, and educational data mining. Models 

were developed for multiple inquiry skills, with particular focus on detecting if students are testing their 

articulated hypotheses, and if they are designing controlled experiments. Student-level cross-validation 

was applied to validate that this approach can automatically and accurately identify these inquiry skills for 

new students. The resulting detectors also can be applied at run-time to drive scaffolding intervention. 
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1. INTRODUCTION  

It is well-acknowledged that in order to be competitive in 21st century workplaces, students need 

to understand science deeply, and possess well-honed learning strategies that will allow them to 

apply their science knowledge in flexible ways. For example, the national frameworks for 

science emphasize inquiry skills [NRC 2011], also referred to as ‘scientific practices’ by the 

National Assessment of Educational Progress [Champagne et al. 2004], claiming that these skills 

are critical to science reform efforts. As such, efforts have been made to incorporate inquiry 

within the classroom and to find ways to address the assessment needs of today’s schools. 

In regards to assessment, there are two commonly used approaches for doing so, short answer 

tests of specific inquiry skills [cf. Alonzo and Aschbacher 2004] and hands-on performance 

assessments [cf. Gotwals and Songer 2006]. Short answer tests can be incorporated into large-

scale standardized assessments, but it is unclear whether these properly identify inquiry skills 

[Black 1999; Pellegrino et al. 2001], or whether they are well aligned to current national 

frameworks [Quellmalz et al. 2007].  

For example, Scalise et al. [2009] studied 77 simulation products for middle and high school, 

and in more than half of these projects, conventional, paper-and-pencil pre- versus post-test 

comparisons were used as assessments. This type of assessment has relatively limited 

possibilities for measuring the complex science knowledge and skills that their instruction was 

designed to target [Quellmalz et al. 2009]. Hands on performance assessments are more 

authentic because they require specific skills to solve real problems [Baxter and Shavelson 1994; 

Ruiz-Primo and Shavelson 1996]. However, these are seldom used in schools, largely due to the 

difficulty of reliable administration and the resulting high cost.  

Another critical issue is that since inquiry skills are developed in rich scientific contexts, it is 

crucial that they also be assessed within the contexts in which they are learned and embedded 

[Mislevy et al. 2003]. Lastly, in order to yield reliable assessments, a great deal of data is 

required; this is yet another problem that has hampered the development of inquiry assessment 

measures, methods, and procedures [Shavelson et al. 1999]. Thus, despite the acknowledged 

need for science inquiry skills, typical classrooms often focus on rote learning of vocabulary, 

facts, and formulas, due to the difficulty of implementing inquiry [de Jong et al. 2005], and 
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difficulty assessing science process skills [Fadel et al. 2007; Mislevy et al. 2003; Shavelson et al. 

1999].  

In response to these implementation and assessment difficulties, we are developing a web-

based learning environment, Science Assistments [Gobert, Heffernan, Ruiz & Ryung, 2007; 

Gobert, Heffernan, Koedinger & Beck, 2009] to provide scalable, reliable performance-based 

assessment of authentic inquiry skills. This interactive environment assesses inquiry skills as 

students experiment within science microworlds [Papert 1980], computerized models of real-

world phenomena whose properties can be inspected and changed [Pea and Kurland 1984; 

Resnick 1997].  

As part of this approach, we utilized the conceptual assessment framework (CAF) of the 

evidence-centered design (ECD) framework [e.g., Mislevy et al. 2003; Mislevy et al., this issue], 

because we perceived it to be most important to our work on inquiry assessment. We describe 

here our student model (the inquiry skills we aim to measure), task model (the activities designed 

to elicit demonstration of skill), and evidence model (our approach to assessing and tracking 

student knowledge). We also focus on how we leveraged techniques from the educational data 

mining (EDM) literature [cf. Baker and Yacef 2009; Romero and Ventura 2010] to develop our 

evidence models, and reliably assess inquiry process skills associated with data collection [Sao 

Pedro et al., 2011].  

The remainder of this paper is organized as follows. First, we provide background literature 

on ECD and prior work on assessing inquiry skills within computerized environments. Then, we 

present an overview of Science Assistments. Next, we present our realization of the CAF 

emphasizing our EDM-based approach to developing evidence models of two process skills 

associated with data collection. Finally, we present our conclusions and future work. 

2. BACKGROUND  

2.1 Evidence-Centered Design  

ECD, a cognitively principled framework for designing assessments, suggests that one should 

relate the learning to be assessed, as specified in a student model, to a task model that specifies 

features of tasks and questions that would elicit the evidence of learning, then to an evidence 

model that specifies the quality of student responses that would indicate levels of proficiency 
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[Messick 1994; Mislevy et al. 2003; Mislevy et al., this issue; Pellegrino et al. 2001]. In more 

recent documents on ECD, its authors have added the presentation model and the assembly 

model as components to their assessment framework [Mislevy et al. 2006] as well as descriptions 

of the computational processes that tie them together in practice, which are known as the four-

process model [Mislevy et al., this issue]; however, we did not utilize these components in our 

work.  

For our student model, we defined a set of inquiry skills and sub-skills that have been 

identified as being pedagogically-relevant to the assessment of inquiry [NRC 1996, 2011]. The 

task model refers to the specification of the microworlds and activities conducted in the 

microworld that can reveal students’ proficiencies for each skill of interest. Our evidence model 

is comprised of two sources of student data. The first is the work products students generate 

while conducting inquiry and the second are the work processes, namely the types of actions / 

behaviors they engage in while experimenting during inquiry. These are then aggregated and 

analyzed to yield performances that are used to identify evidence of students’ proficiencies for 

each skill of interest [NRC 1996, 2011]. Further, the work products and processes of inquiry that 

result are interpreted as evidence of proficiency on the skills of interest. 

2.2 Inquiry Assessment in the Context of Science Simulations 

Previously in the paper, we noted problems with traditional assessments of inquiry skills. Rich 

learning environments, which generate large streams of log data, are potentially of great use for 

performance assessment; however, these learning environments often are not used for 

performance assessment to the extent they could [Scalise et al. 2009] in order to measure the 

complex science knowledge and skills that their instruction was designed to target [Quellmalz et 

al. 2009].   

There are several reasons why this is the case. First, the development of assessment methods 

for simulation-based learning is lagging behind in terms of theoretical grounding in the learning 

and assessment literature [Quellmalz et al. 2009]. Second is the lack of theoretically motivated 

guiding principles upon which to parse, aggregate, and analyze the huge streams of log data that 

are generated as students learn with simulations. Third, specifically, the skills being assessed are 

psychologically multidimensional and as such, traditional psychometric methods such as 
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classical test theory (CTT) [e.g., Crocker and Algina 2006] and unidimensional item response 

theory (UIRT) [de Ayala 2009; Hambleton and Jones 1993] cannot appropriately model their 

complexity. This, according to Quellmalz et al. [2009], is principally due to the complexity of 

the simulations, and is summarized by their following four main characteristics [Williamson et 

al. 2006; see also Rupp et al. 2010]: 

 

1) the task requires the learner to complete many, non-trivial, domain-relevant 

steps/processes, 

2) multiple elements or features for each task are captured and considered in the 

determination of skills for assessment purposes or diagnostic feedback,  

3) there is potential for wide variability in the data for each task, and 

4) the task as a whole has many components that are not independent from each other. 

 

Though these complexities exist, several researchers are attempting to overcome these 

difficulties by employing a variety of tactics. We discuss some these in the next section. 

2.3 Prior Approaches to Assessment for Simulation-Based Learning 

Noting the limitations of CTT and UIRT as methods for performance-based assessments, other 

methods have been applied to data in order to model students’ knowledge and skills learned in 

simulations and similarly complex learning environments. These methods fit largely into two 

categories, (1) models developed through knowledge engineering and/or cognitive task analysis, 

and (2) models developed through data mining and/or machine learning methods. We describe 

these in more detail below. 

2.3.1 Knowledge Engineering / Cognitive Task Analysis Approaches. In knowledge 

engineering/ cognitive task analysis approaches, rules are defined a priori that encapsulate 

specific behaviors [Koedinger et al. 1998; McElhaney and Linn 2008, 2010] or differing levels 

of systematic experimentation skill [Buckley et al. 2006; Buckley et al. 2010]. For example, 

Schunn and Anderson [1998] engineered a rule-based Adaptive Control of Thought—Rational 

(ACT-R) model of scientific inquiry based on an assessment of skill differences between experts 

and novices on formulating hypotheses, exploring, analyzing data, and generating conclusions 



 

 

109                                                                                                JEDM Special Issue, Article 3, Volume 4, Fall 2012 

[e.g., Anderson and Lebiere 1998]. Briefly, ACT-R evolved from earlier theories of human 

cognition and models of cognitive architecture [Newell 1990; Newell and Simon 1972] and is 

used to model “overt, observable human behavior(s)” [Anderson and Lebiere 1998, p. 10]. ACT-

R describes cognition as involving declarative knowledge (i.e., knowledge about things), and 

procedural knowledge (i.e., skills that act on knowledge); procedural knowledge is implemented 

in ACT-R models as production rules.  

With ACT-R in mind, knowledge-engineering models can be leveraged using a method called 

model-tracing, where student responses are matched to a knowledge-engineered cognitive model 

of expert/correct behavior that includes declarative knowledge and production rules and, in some 

cases, specific misconceptions termed “bugs” [Koedinger et al. 1997]. Model-tracing has been 

applied in the domain of scientific inquiry in a separate study by Gobert and Koedinger [2011], 

who used this approach with production rules to auto-score students’ inquiry on the use of the 

control-of-variables (CVS) strategy [cf. Chen and Klahr 1999], where all but the target variable 

is changed across trials within a science microworld.  

Model-tracing assessments and other approaches can be, in turn, utilized within knowledge-

tracing [Corbett and Anderson 1995], a method for assessing latent knowledge from correct and 

incorrect performance. Reye [2004] has shown that knowledge-tracing models are a simple form 

of Bayesian Networks / Bayes nets (BNs) [e.g., Almond et al. in press]. More complex BNs have 

also been used in assessing student knowledge in science. For example, Martin and Van Lehn 

[1995] used BNs to assess procedural knowledge for physics within the Andes learning 

environment. Rowe and Lester [2010] developed dynamic BN models of middle school students’ 

narrative, strategic, and curricular knowledge as students they explored within a 3D immersive 

environment on microbiology, Crystal Island. Rupp et al. (this issue) use Bayes nets and related 

diagnostic measurement tools to model multivariate skill profiles for network engineering based 

on performance in an interactive digital learning environment. 

2.3.2 Educational Data Mining / Machine Learning Approaches. In EDM / machine learning 

approaches [cf. Baker and Yacef 2009; Romero and Ventura 2010], student inquiry behaviors 

are discovered from data. For example, Stevens et al. [2004] used a self-organizing artificial 

neural network [Bryson and Ho 1969; cf. Russell and Norvig 2009] to build models of novice 
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and expert performance using transition logs within the HAZMAT high school chemistry 

learning environment. They then leveraged those models to construct a hidden Markov model 

[Baum and Petrie 1966; cf. Russell and Norvig 2009] for identifying learner trajectories through 

a series of activities.  

Similar approaches have also been used to distinguish students’ problem solving strategies 

within exploratory learning environments. For example, Bernardini and Conati [2010] used 

clustering techniques [cf. Witten and Frank 2005] and class association rules [Liu et al. 1998; 

Agrawal and Srikant 1994] to capture learner models of effective and ineffective learning 

strategies within an exploratory learning environment for learning about a constraint satisfaction 

algorithm. Ghazarian and Noorhosseini [2010] constructed task-dependent and task-independent 

machine-learned models to predict skill proficiency in computer desktop applications.  

Our work on assessing student inquiry skills in Science Assistments (www.inq-its.org) uses 

techniques from EDM but builds off of a different history of EDM methods, namely the work to 

develop automated detectors of student behaviors, specifically disengagement. In this line of 

research, Walonoski and Heffernan [2006] as well as Baker et al. [2008b] successfully built and 

validated detectors of “gaming the system” (whereby students simply try to get as many hints as 

possible rather than learn the material) by triangulating qualitative field observations with 

features gleaned from log files. Detectors of gaming the system have also been developed using a 

training set labeled using text replays, a method for quickly annotating log files by hand  [Baker 

and de Carvalho 2008; Baker et al. 2010].  

As was done in this work, we utilize text replays to annotate log data, and then extrapolate 

models from the data that can label sequences of student behavior in terms of inquiry 

performance. Lastly, we use knowledge-engineered models to assess students’ work products.  

Later in this paper, we provide more details on our methods and give evidence on their reliability 

and validity. In the next section, we provide a description of our learning environment and its 

components.  

  

http://www.inq-its.org/
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3. OVERVIEW OF SCIENCE ASSISTMENTS 

Leveraging infrastructure development from other funded projects [Gobert et al. 2007; Gobert et 

al. 2009; Gobert and Baker 2010] and other prior work by the Science Assistments project team 

as well as current research findings and recent calls for performance assessment [Fadel et al. 

2007; Quellmalz et al. 2007], we have developed an approach to science inquiry skills 

assessment that affords the rigor and validity of performance tests and the simplicity of large-

scale assessments.  

The Science Assistments system, significantly adapted from the original ASSISTments system 

[Razzaq et al. 2005; Heffernan et al. 2006] for mathematics, aims to enable automatic assessment 

of inquiry skills and provide real-time support for students as they engage in inquiry using 

interactive microworlds across several topics within physical, life, and earth science [Gobert et 

al. 2007; Gobert et al. 2009].  

Science Assistments enables a moderate degree of student control, less than in purely 

exploratory learning environments [Amershi and Conati 2009], but more than in classic model-

tracing tutors [Koedinger and Corbett 2006] or constraint-based tutors [Mitrovic et al. 2001]. 

Science Assistments also differs from other microworld-based discovery environments [e.g., 

White and Frederiksen 1998; van Joolingen and de Jong 2003; Buckley, Gobert, & Horwitz 

2006; McElhaney and Linn 2008, 2010; Buckley et al. 2010; de Jong et al. 2010] in several 

ways.  

First, it was designed to prioritize the assessment of inquiry skills, rather than the learning of 

science, which many other inquiry systems emphasize (although content can be learned in our 

system as one engages in inquiry, in fact, this is considered optimal for science learning). 

Second, it aims to track acquisition of inquiry skills across domains. Finally, our system aims to 

scaffold students’ inquiry skills in real-time as students conduct investigations within 

microworlds.  

This scaffolding design lead to a guided system; that is, we aimed to strike a balance between 

open-ended and guided inquiry [cf., Kirschner et al. 2006; Hmelo-Silver et al. 2007] such that 

students can be assessed on inquiry skills and so that they are provided with support so they do 

not flounder or engage in haphazard inquiry [Buckley et al. 2006]. For example, a student might 
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begin by exploring a microworld, go on to make a hypothesis, return to exploring some more, 

then make another hypothesis, and test it. 

 When asked to warrant his/her claim, the student might realize that they did not collect 

enough data, and then return to the experiment phase again. Thus, students may take various 

valid paths to finish an inquiry task, so our system needed to be flexible enough to track what 

each student is doing during each phase in order to provide assessment data to the teacher, as 

well as real time tutoring to the student.  

In terms of the context in which our data are collected, it is important to note that students 

come to our inquiry environment having first studied a science topic in their regular science 

class; thus, we decided to use our environment for assessment of these previously learned inquiry 

skills. If we were to design an inquiry environment expressly for learning, we likely would 

design a system with substantially more open-ended exploration, and it is not difficult to imagine 

that such an environment would not suffice as an assessment environment.  

Thus, because our environment is considered first an assessment environment, rather than a 

pure learning environment, we have chosen to operationalize inquiry skills so as to support their 

auto-assessment. As such, we focus on defining and, in turn, assessing skills of inquiry, namely, 

hypothesizing, conducting experiments, analyzing data, and warranting claims, and their 

respective sub-skills; a similar approach was taken in the original development of intelligent 

tutoring systems for math [Koedinger and Corbett 2006].  

Rather than including larger conceptual knowledge that pertains to inquiry such as how theory 

and disciplinary knowledge enter into the inquiry process, we have chosen to focus on the 

assessment of the more well-defined inquiry skills, as described above. These larger conceptual 

issues, we feel, are beyond the scope of an inquiry environment and possibly beyond the scope of 

middle school science instruction as well.  

Finally, given the plethora of studies that have evidenced students’ difficulties in executing 

inquiry, including difficulties with hypothesis-formation [Chinn and Brewer 1993; Klahr and 

Dunbar 1988; Kuhn et al. 1995; Njoo and de Jong 1993; van Joolingen and de Jong 1997; Glaser 

et al. 1992], difficulties with conducting experiments [Glaser et al. 1992; Reimann 1991; Tsirgi 

1980; Shute and Glaser 1990; Kuhn 2005; Schunn and Anderson 1998, 1999; Harrison and 
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Schunn 2004; McElhaney and Linn 2008, 2010); difficulties with interpreting data, and linking 

hypotheses and data [Chinn and Brewer 1993; Klahr and Dunbar 1988; Kuhn et al. 1995], and 

difficulties with communicating findings [Krajcik et al. 1998; McNeill and Krajcik 2007], it 

seems reasonable to us that an environment like ours, which as designed to assess and assist with 

both teachers and students as integral players, is critically what is  needed at this time. 

There are many advantages of our system for educational research, instruction, assessment, 

and adaptive scaffolding, and scalability as follows. In terms of research, we can effortlessly and 

accurately monitor and record every student action, affording thorough analysis of student 

learning and performance. And because our assessment and instruction are seamlessly integrated, 

skills are developed and assessed in rich contexts in which they are developing [Mislevy et al. 

2003], additional class time is not needed for assessment, and formative assessment data is 

provided to teachers about his/her students on their science process skills and sub-skills.  

Regarding adaptive instruction, we can diagnose at risk students early and monitor these 

students using our assessment data to drive adaptive scaffolding via our pedagogical agent, Rex, 

a cartoon dinosaur who provides individualized feedback [Gobert and Baker 2012]. With regard 

to scalability, because these materials are web-based, virtually any teacher with access to the web 

can use our materials. 

3.1 Components of Science Assistments: Microworlds & Inquiry Support Widgets 

Important to inquiry are our microworlds of scientific phenomena for Physical, Life, and Earth 

Science, which are implemented using the Open Laszlo platform (www.openlaszlo.org) and 

accompanying lzx language. As previously stated, a microworld [Papert 1980] is a runnable, 

computerized model of real-world phenomena whose properties can be inspected and changed 

[Pea and Kurland 1984; Resnick 1997]. Microworlds provide an excellent context in which to 

hone and assess students’ inquiry skills because they share many features with real apparatus and 

can make visible important processes that are invisible due to their time and size scale [Gobert 

2005a]. The Science Assistments group has developed a suite of over 20 microworlds for 

Physical, Life, and Earth Science that are aligned to the Massachusetts Curricular Frameworks 

for Middle school science [Massachusetts Department of Education 2006].  

http://www.openlaszlo.org/
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Students are supported through the various phases of inquiry by representational tools, which 

depict students’ data. These representational formats include the table tool and the graph tool. 

The table tool supports students by collecting data from trials run by the student; the student can 

also view this data in order to decide what trials need to be performed. A graph tool was built as 

a reusable utility that can be included in any microworld. The main purpose of the graph tool is 

to display any (or several) two-dimensional relations between independent variable(s) and 

dependent variable(s). The graph tool also includes features to scaffold the student towards the 

solution. 

We also designed several widgets to scaffold students’ inquiry; these also support auto-

assessment and real time scaffolding. These are important in that they scaffold students in 

conducting various phases of inquiry, but are also the basis upon which we collect our 

performance data on students’ inquiry skills. Our inquiry widgets were designed in accordance 

with the learning sciences and science education literature on students’ difficulties in conducting 

inquiry.  

For example, research has shown that students have difficulty with inquiry, including 

choosing the correct variables to work with, forming testable hypotheses, drawing correct 

conclusions from experiments, and linking hypotheses and data [Chinn and Brewer 1993; Klahr 

and Dunbar 1988; Kuhn et al. 1995; Kuhn 2005]. They also struggle with translating theoretical 

variables from their hypotheses into manipulable variables [Richardson 2008], and adequately 

monitoring what they do [de Jong et al. 2005; de Jong 2006].  

Regarding the designing and conducting experiments, a great deal of prior work has shown 

that students [Chen and Klahr 1999; McElhaney and Linn 2008, 2010; Sao Pedro et al. 2010, 

2011], and even scientifically naive adults do not understand the control for variables strategy if 

not taught explicitly to do so [Kuhn 1991]. These findings emphasize the need for widgets to 

support students’ inquiry processes [Kirschner et al. 2006]. Each of our widgets is described 

below.  

3.1.1 Hypothesis Widget. A key component of scientific inquiry is generating a hypothesis 

[Kuhn 2005]. In order to support this initial important step of inquiry, the hypothesis widget was 

developed. This widget provides the capacity for the student to make a hypothesis using a simple 
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interface. The purpose of the tool is to help students learn how to create hypotheses using 

independent and dependent variables. Hypotheses are posed as natural-language sentences 

created through a series of drop-down boxes/multiple-choice widgets. The general structure of 

the hypothesis is:  

 

When the [independent variable] is [increased/decreased], the [dependent variable] 

[increases/decreases/doesn’t change].  

 

Both independent and dependent variables are included in each pull-down box such that 

sequences of choices permit us an assessment opportunity of whether the student understands (1) 

what an independent variable is, (2) what a dependent variable is, and (3) the relationship 

between them. Once the student has generated a hypothesis, they then run trials within the 

microworld to test their hypothesis; these actions also provide an assessment opportunity as to 

whether the student tests the hypothesis that they articulated. Further detail on this assessment 

process and a screen capture of our hypothesis widget (Figure 3) are given later in the paper as 

we illustrate how our system works. 

3.1.2 Interpretation Widget. Just as the hypothesis tool provides the student a structure for 

creating a hypothesis, the data interpretation tool provides a structure for the student to interpret 

their data after the experimental trials are completed. Similar to the hypothesis tool, the data 

interpretation tool presents a way for the student to create statements about the relationship 

between the independent and dependent variables from their trials using drop-down lists. This 

also provides a way for the system to auto-score whether students’ claims are correct, and 

whether students can warrant their claims based on data. The second part of this widget provides 

students with a drop down menu used to warrant their claims using evidence from their 

experimental trials. 
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The general structure of the data interpretation widget is:  

 

When I changed the [independent variable] so that it [increased/decreased], the 

[dependent variable] [increased/decreased/didn’t change]. I am basing this on: Data 

from trial [trial number from table] compared to data from trial: [trial number from 

table] this statement [does support/does not support/is not related to] my hypothesis. 

Later in the document we provide a screen capture of this widget (Figure 5).  

 

3.1.3 Communication Widget. Lastly, the students are asked to communicate their findings in 

open-text format. We incorporate this inquiry step since there is evidence that explaining is a 

good strategy to get students to reify their understanding [Chi et al. 1989; Chi et al. 1994; Chi 

2000]. For communication, we use prompts that are designed to foster the construction of deep 

explanations; an example of a prompt is:  

 

“Pretend that you are explaining to a friend the effects of the amount of substance on 

the boiling point of that substance as if they did not do the experiment.”  

 

These prompts are based on findings that students’ explanations are deeper when a prompt 

asks them to explain to someone else [Gobert 2005b].  

Currently, we are not autoscoring students’ explanations as it is beyond the scope of the 

project; however, we are reacting to students who write too little, and we are presently 

developing a detector that will react to those who write gibberish. Briefly, when one of these two 

situations occurs, Rex our pedagogical agent, intervenes. Our goal here, hence, is not to auto-

assess students’ communication skills, but to scaffold students who might avoid or trivialize this 

writing task.  

In sum, using our microworlds and the widgets within our environment, students can develop 

a hypothesis as well as design and conduct an experiment. The resulting data are automatically 

collected, graphed, and entered into tables so that students can interpret their data and warrant 

their claims using data; lastly, they communicate their findings.  
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Next, we present our system and how it relates to ECD; that is, we describe how we used the 

ECD framework to guide our design and implementation processes for the system and for how to 

score the resulting sequences of actions. Additionally, we give an example of how the widgets 

and microworlds work in concert to generate performance data about students’ inquiry skills 

(this in the task model section, 4.2). 

4. SCIENCE ASSISTMENTS AND ECD  

4.1 Student Model 

As previously described, the student model of the ECD framework consists of aspects of 

proficiency measured by the assessment (i.e. a collection of variables that represent the skills of a 

learner) whose values are inferred from students’ data [Mislevy et al. 2006]. These are latent 

skills that we uncover or evaluate by conducting the assessment and those that need to be 

explicitly modeled to capture learner performance. Put simply, the student model asks the 

question: “What do we want to measure?”  

It is worth noting that the ECD definition of student model is slightly different from the 

definition typically used in the ITS and Artificial Intelligence in Education research 

communities. In particular, these groups do not separate the evidence model from the student 

model; the student model contains the definition of the latent variables and the ways they and 

their relationships are measured are combined [cf. Wenger 1987; Bull et al. 1995]. On the other 

hand, in ECD the student model simply defines the latent variables that one intends to measure. 

The ECD evidence model defines how the latent variables will be measured. 

For our goals, namely to assess inquiry skills, the variables and components in the student 

model and how we have operationalized them are shown in Figure 1 and described as follows:  

4.1.1 Hypothesizing. This entails formulating a testable hypothesis, which requires students to 

be able to distinguish independent (manipulable) variables from dependent (outcome) variables, 

and posit some relationship between them. Prior research has shown that students typically have 

trouble doing so [van Joolingen and de Jong 1991; Njoo and de Jong 1993].  
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Fig. 1. Skill model with sub-skills for science inquiry. 

 

4.1.2 Designing and Conducting Experiments. This high-level skill entails the process of 

collecting evidence (data) to enable supporting or refuting hypotheses. We have identified two 

important sub-skills related to successfully designing and conducting experiments: (1) designing 

controlled experiments and (2) collecting data to test a stated hypothesis.  

Students design controlled experiments when they generate data that can be used to determine 

the effects of independent variables on outcomes [Sao Pedro et al., 2011]. This entails successful 

use of the CVS, a strategy stating that one should change only a single variable to be tested, the 

target variable, while keeping all extraneous variables constant in order to test the effects of that 
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target variable on an outcome [Chen and Klahr 1999; Kuhn 2005]. It has been noted that students 

(and adults too) often change too many variables when attempting to test a hypothesis [Tsirgi 

1980; Shute and Glaser 1990; Schunn and Anderson 1999; McElhaney and Linn 2008, 2010], 

and consequently incorrectly draw conclusions from confounded data [Klahr and Dunbar 1988; 

Kuhn et al. 1992; Schauble et al. 1995].  

Students test their stated hypotheses when they generate data with the intent to support or 

refute an explicitly stated hypothesis [Sao Pedro et al., 2011].  This skill is separated from the 

designing controlled experiments since students may attempt to test their hypotheses with 

confounded designs, or may design controlled experiments for a hypothesis not explicitly stated. 

This skill may be related to students’ planning and monitoring [de Jong 2006], particularly if 

they are testing more than one hypothesis. 

4.1.3 Interpreting data. This has been operationalized by our group as correctly interpreting 

the relationship between the independent and the dependent variable, as per experimental trials 

collected. Prior research here has shown that students have trouble drawing correct conclusions 

from experiments, and linking hypotheses and data [Chinn and Brewer 1993; Klahr and Dunbar 

1988; Kuhn 2005]. 

4.1.4 Warranting claims. This has been operationalized by our group as selecting two (or 

more) trials which either support or refute the hypothesis stated in the hypothesis phase, and 

demonstrating skill at correctly knowing whether the data support or refute the hypothesis. This 

is an important skill that relates to epistemological aspects of science (i.e., “knowing how one 

knows”) [Perkins 1986]. Again, students have a great deal of difficulty with this aspect of 

science inquiry [Chinn and Brewer 1993; Klahr and Dunbar 1988; Kuhn 2005]. 

4.1.5 Communicating findings. This skill requires that students can express the relationship 

between cause and effect using evidence and a logical argument. We operationalize this as 

whether the student included the correct independent variable, dependent variable, and the 

relationship between them; we also score for the depth of the explanation and whether it includes 

correct content knowledge. As previously mentioned, this skill is not auto-assessed in our 

system, as it is beyond the scope of the project.  
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4.2 Task Model 

The task model of the ECD framework specifies the key features of the tasks, materials, items, 

and conditions under which data are collected. This also includes all of the variables that may be 

required to make sense of learners’ actions in the context in which they were performed. Put 

simply, the task model answers the question: “In what situations do we measure it?”  

In our system, the microworlds and widgets are used to support inquiry describe the task 

model; we now provide an example of how the microworlds and widgets work together in our 

Phase Change environment (Figures 3 and 4). A typical task provides students with an explicit 

goal to determine if a particular independent variable (e.g., container size, heat level, substance 

amount, and cover status) affects various outcomes (e.g., melting point, boiling point, time to 

melt, and time to boil). Students’ inquiry skills (the skills identified in the student model) are 

inferred as they formulate hypotheses, collect data, interpret data, warranting claims with data, 

and communicating findings about how that variable affected the outcomes within these tasks. 

These inquiry processes are supported by guiding students through different inquiry phases: 

“observe”, “hypothesize”, “experiment”, and “analyze data”. Students begin in the “hypothesize” 

phase and are allowed some flexibility to navigate between phases as shown in Figure 2. 

 

Fig. 2. Paths through inquiry phases. 

Observe

Hypothesize Experiment

Analyze

Done
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In the “hypothesize” phase, students use the hypothesis widget (as seen in Figure 3) to 

generate testable hypotheses. The “observe” phase and “experiment” phase (as seen in Figure 4) 

are similar. In the “experiment” phase, the student designs and conducts experiments, and has 

access to two inquiry support tools, a data table summarizing previously run trials, and a 

hypothesis list. These tools aim to help students plan which experiments to run next.  

 

 

Fig. 3. Hypothesizing widget in the Phase Change microworld. 
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Fig. 4. Data collection example for the Phase Change microworld. 

 

The “observe” phase, in contrast, hides the inquiry support tools so that students can focus 

specifically on the simulation. This gives students the opportunity to explore the microworld if 

they are not yet ready to formulate a hypothesis. Finally, in the “analyze” phase, students are 

shown the data they collected and use the data analysis tool to construct an interpretation about 

their data and warrant their claims using data to either support or refute their hypotheses.  

As already mentioned, students have some freedom to navigate between inquiry phases 

(Figure 2) and have flexibility within each phase to conduct many actions. For example, while in 

the “hypothesize” phase (Figure 3), students could elect to explore the simulation more before 

formulating any hypotheses by moving to the “observe” phase. Alternatively, they could choose 

to specify one or more hypotheses like, “If I change the container size so that it increases, the 

melting point stays the same” before collecting data.  
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Within the “experiment” phase (Figure 4), students can run as many experiments as they wish 

to collect data for any one or all of their hypotheses. Within the “analysis” phase, students also 

have several options (Figure 5). As they construct their claims, students can decide to go back 

and collect more data or, after constructing claims based on their data, they can decide to create 

additional hypotheses, thus starting a new inquiry loop. Thus, students can conduct these inquiry 

activities in various patterns, engaging in inquiry in many different ways. 

 

 

Fig. 5. Interpretation widget in the Phase Change microworld. 

 

Since the environment currently does not provide feedback on students’ inquiry processes, 

students can engage in either systematic or haphazard inquiry behavior [Buckley et al. 2006; 

Buckley et al. 2010]. Specific to the “hypothesize” and “experiment” phases, students acting in a 

systematic manner [Buckley et al. 2006, 2010] collect data by designing and running controlled 

experiments that test their hypotheses. They may also use the table tool and hypothesis viewer in 

order to reflect and plan for additional experiments. These systematic behaviors are 

representative of the “designing and conducting experiments” skills [NRC 1996, 2011] that we 

are assessing with machine-learned detectors (described in the evidence model).  

In contrast, students acting haphazardly in our environment may construct experiments that do 

not test their hypotheses, not collect enough data to support or refute their hypotheses, design 
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confounded experiments by not using the control for variables strategy, fail to use the inquiry 

support tools to analyze their results and monitor their additional experimenting [cf. de Jong 

2006], or collect data for the same experimental setup multiple times [Buckley et al. 2006, 2010]. 

In this paper, we focus on describing how we detect and assess appropriate systematic inquiry 

behaviors to enable assessment of skills that students are developing, rather than how we detect 

specific haphazard inquiry behaviors - the latter line of work is described in more detail in 

Hershkovitz et al. [2011]. 

4.3 Evidence Model 

The evidence model is the link between the task model, which describes the task, and the student 

model, which describes that which is known about the learner. Specifically, the evidence model 

includes the specifications for the salient features of whatever the learner says, does, or creates in 

the task situation, as well as the rules for scoring, rating, or otherwise categorizing the salient 

features of the assessment. Put simply, the evidence model answers the question: “How do we 

measure it?”  

Additionally, in the context of performance assessments, Rupp et al. [this issue] distinguish 

between product data and process data. Product data are essentially students’ finalized, tangible 

work products, whereas process data come from learners’ interactions with other learners or 

interactions within the environment. In our microworlds, product data are akin to students’ stated 

hypotheses and results of the analyses of their data. Process data, on the other hand, arise from 

students’ entire stream of data-collection activities.  

Since we have two kinds of data, we use two different methodologies for assessing students. 

Our product data is assessed using knowledge-engineered rules whereas our process data is 

assessed using more complex behavior models derived using techniques from EDM [cf. Baker 

and Yacef 2009; Romero and Ventura 2010]. 

4.3.1 Assessing Product Data: Hypothesizing and Analyzing. The “constructing hypotheses” 

skill - not to be confused with the “testing hypotheses” skill - and the data interpretation skill are 

measured by assessing students’ data; we refer to these as work products. These work products, 

in particular, are the hypotheses students generate using the hypothesis widget, and the analyses 

they construct about their data using the analysis widget. These products lend themselves to 
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evidence identification processes using knowledge-engineered rules because they are relatively 

well-defined skills (see Figure 1).  

For example, when a student generates an analysis of the data that they collect, our system 

uses knowledge-engineered rules to “check” that the analysis has the following components: did 

they identify the correct independent variable and dependent variable, did they specify the 

correct relationship between them, and lastly, did the appropriate trials to support their analysis.  

Currently, we have implemented the rules to automatically score students’ hypotheses and 

data interpretations. We generate binary assessments for each hypothesizing sub-skill each time a 

student formulates a hypothesis, and binary assessments for each interpreting data sub-skill each 

time a student constructs an analysis and warrants their claims. However, to date, we have not 

yet developed models to aggregate these assessments across inquiry activities and domains to 

determine the degree to which students have mastered these skills. In the future, we plan on 

doing so by employing Bayesian Knowledge-Tracing (BKT) [Corbett and Anderson 1995].   

4.3.2 Assessing Process Data: Experimenting. To assess and track the two skills “designing 

controlled experiments” and “testing stated hypotheses”, we use the following tools for the 

associated process data. First, we apply our validated, machine-learned detectors (i.e., models) of 

behaviors associated with these skills to classify students’ actions as they collect data. 

Essentially, these models encapsulate evidence identification rules [Mislevy et al. 2006] whose 

resulting classifications are the assessments of skill demonstrated in a practice opportunity.  

As students engage in inquiry over several activities, the detectors are applied each time the 

student collects data. We then feed the detectors’ classifications into BKT models associated 

with each skill to keep track of students’ proficiency over time. To date, we have developed and 

validated such models for our phase change physical science microworld [Sao Pedro et al. 2010; 

Montalvo et al. 2010; Sao Pedro et al. 2011]. Below, we briefly describe how they were 

developed and validated for that microworld. 

4.3.2.1 Development of Behavior Models. To generate behavior models of each skill, we 

utilized text replay tagging of log files [Sao Pedro et al. 2010; Montalvo et al. 2010; Sao Pedro et 

al. 2011], which is an extension of the text replay approach developed in Baker et al. [2006]. 

Similar to a video replay or screen replay, a text replay uses a pre-specified chunk of student 
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actions presented in text format that includes information such as an associated time stamp, 

action type, widget type, and exact input.  

Text replay tagging differs from other types of text replay in one key way. Text replays allow 

for the classification of a replay clip as a single category out of a set of categories. Text replay 

tagging, in contrast, allows multiple tags to be associated with one clip. For example, within the 

domain of science inquiry, a clip may be tagged as involving designing controlled experiments, 

involving testing stated hypotheses, both, or neither.  

In text replay tagging, human coders first hand-coded clips gleaned from students’ 

engagements with the phase change microworld activities. Clips, contiguous sequences of low-

level student actions, were labeled using a set of behavior tags (i.e., “designed controlled 

experiments” and/or “tested stated hypotheses”). A clip (shown in Figure 6) contained all 

interface interactions within the hypothesizing and experimenting phases of inquiry (see Figure 

2) since these phases are relevant to labeling data collection behaviors. Then, a feature set was 

distilled to summarize clips and, with the tags, were used to construct machine-learned detectors 

for each behavior.  

 

Fig. 6. An example clip labeled by a human coder. This clip was tagged as involving designing controlled 

experiments and testing stated hypotheses, in addition to other behaviors. 
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Following this methodology, detectors for the “designing controlled experiments” behavior 

and “testing stated hypotheses” behavior were constructed and validated. To be brief, we present 

here only high-level details and a summary of the results from Sao Pedro et al. [2011]. A full 

description of how these models were generated from fine-grained student logs appears in that 

publication.  

Detectors were constructed using data gleaned from 148 middle school students’ interactions 

with the phase change microworld. Approximately 570 clips were hand-coded by two coders to 

generate a set of training instances from which to build detectors. Detectors were built by 

removing correlated features and using J48 decision trees with automated pruning in order to 

control for over-fitting. They were validated using six-fold student-level cross validation and had 

their predictive goodness assessed using two metrics, A’1 [Hanley and McNeil 1982] and 

Cohen’s Kappa (κ)2 [Cohen 1960]. An illustration and interpretation of the results decision trees 

for each skill appear in Sao Pedro et al. [2011]. 

Overall, the results for classifying student behavior with the detectors were very promising. 

The detectors could distinguish a set of trials in which a student designed controlled experiments 

from a set of trials in which students did not design controlled experiments 85% of the time. 

They could also distinguish a set of trials in which a student tested their stated hypotheses from a 

set of trials in which they did not 85% of the time. Furthermore, the associated Kappa values, 

ranging from .40 to .47, indicated that each of these detectors was better than chance. The 

performance of these detectors, as measured by A’ and Kappa, is comparable to detectors of 

gaming the system refined over several years [e.g., Baker and de Carvalho 2008; Baker et al. 

2010]. Therefore, these detectors can be used to automatically classify students’ data collection 

behavior. 

  

                                                 
1 A' is the probability that if the detector is comparing two clips, one involving the category of interest (designing 

controlled experiments, for instance) and one not involving that category, it will correctly identify which clip is 

which. A model with an A' of 0.5 performs at chance, and a model with an A' of 1.0 performs perfectly. 

 
2 Cohen’s Kappa assesses whether the detector is better than chance at identifying the correct action sequences as 

involving the category of interest. A Kappa of 0 indicates that the detector performs at chance, and a Kappa of 1 

indicates that the detector performs perfectly. 
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4.3.2.2. Development of Skill Proficiency Estimates. The behavior detectors have the 

capability to distinguish students who are engaging in systematic data collection behavior from 

those who are not within a clip. Clips are the granularity at which these behaviors are exhibited, 

and as such, can also be viewed as a practice opportunity. To amalgamate students’ 

performances over practice opportunities (i.e., clips) and produce proficiency skill estimates, we 

used BKT due to its success at estimating skill in other learning environments that provide 

explicit learning support [e.g. Corbett and Anderson 1995; Koedinger and Corbett 2006; Baker et 

al. 2008a; Ritter et al. 2009; Feng et al. 2009; Baker et al. 2010; Pardos et al. 2010]. 

Briefly, a BKT model is a two-state hidden Markov model that estimates the probability a 

student possesses latent skill (Ln) after n observable practice opportunities. In our case, 

observable student performance is demonstration of data collection skill within a clip, as 

assessed by the detectors. BKT models are characterized by four parameters, G, S, L0, and T, 

used in part to compute latent skill (Ln). The guess parameter (G) is the probability the student 

will demonstrate the skill despite not knowing it. Conversely, the slip parameter (S) is the 

probability the student will not demonstrate the skill even though they know it. Finally, L0 is the 

initial probability of knowing the skill before any practice and T is the probability of learning the 

skill between practice attempts. Within the BKT framework, these four parameters are assumed 

to be the same for all students and knowledge of the skill is assumed to be binary, i.e. either the 

student knows the skill, or they do not.  

Using these four parameters, the probability that a student knows the skill, P(Ln) and the 

estimate that a student will demonstrate that skill in their next practice opportunity 

P(Demonstrate_Skilln) can be computed. The equations for these calculations are: 

 

𝑃(𝐿𝑛−1|𝑂𝑏𝑠𝑛) =  

{
 
 

 
 

𝑃(𝐿𝑛−1) ∗ (1 − 𝑆)

𝑃(𝐿𝑛−1) ∗ (1 − 𝑆) + (1 − 𝑃(𝐿𝑛−1)) ∗ 𝐺
, 𝐷𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑒𝑑_𝑆𝑘𝑖𝑙𝑙𝑛 

𝑃(𝐿𝑛−1) ∗ 𝑆

𝑃(𝐿𝑛−1) ∗ 𝑆 + (1 − 𝑃(𝐿𝑛−1)) ∗ (1 − 𝐺)
, ~𝐷𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑒𝑑_𝑆𝑘𝑖𝑙𝑙𝑛 

 

𝑃(𝐿𝑛) = 𝑃(𝐿𝑛−1|𝑂𝑏𝑠𝑛) + ((1 − 𝑃(𝐿𝑛−1|𝐶𝑙𝑖𝑝𝑛)) ∗ 𝑇) 

𝑃(𝐷𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑒_𝑆𝑘𝑖𝑙𝑙𝑛) = 𝑃(𝐿𝑛−1) ∗ (1 − 𝑆) + (1 − 𝑃(𝐿𝑛−1)) ∗ 𝑇 
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Note that P(Demonstrate_Skilln) is an a-priori estimate of demonstrating skill since it depends 

on the prior estimate of knowing the skill, P(Ln-1). An example application of these equations for 

a students’ performance profile associated with the designing controlled experiments skill is 

shown in Table I. In this example, the student generated 9 clips over all activities (and thus 

engaged in 9 data collections). Each clip was labeled as demonstrating skill or not using the 

designing controlled experiments detector. From there, estimates for P(Ln) and 

P(Demonstrate_Skilln) can be found by applying the equations above. 

 

Table I. Example Student Practice Profile with BKT Estimates  

 

Note. This student engaged in 9 data collection activities, and their final estimate of knowing this 

skill is P(Ln) = .999. 

 

In Sao Pedro et al. [2011], we used brute force search [cf. Baker et al. 2011] to find the best 

fitting parameter estimates (values for G, S, L0, and T) given data for the phase change 

microworld.  

We then validated the goodness of the resulting BKT models for each skill in two ways. First, 

we predicted performance within the environment, P(Demonstrate_Skilln), providing a measure 

of the internal reliability. On this metric, it was found that BKT could estimate skill at each 

practice opportunity acceptably (A’ = .74 for designing controlled experiments and A’ = .79 for 

testing stated hypotheses). Second, we used the BKT probabilistic estimates of knowing the 

skills (Ln) to predict performance on transfer tasks requiring inquiry skill, providing a measure of 

external validity. Overall, each model of authentic inquiry skill was significantly, albeit 

modestly, correlated to its corresponding transfer test (i.e., with the standardized-test style 

Designing Ctrl'd Exp's 

Practice Opportunities 1 2 3 4 5 6 7 8 9 Final

P(Ln-1) 0.077 0.387 0.819 0.97 0.795 0.965 0.769 0.959 0.994 0.999

P(Demonstrate_Skill) 0.191 0.429 0.761 0.877 0.742 0.873 0.723 0.869 0.895

Observable: 

Demonstrated Skill?
Yes Yes Yes No Yes No Yes Yes Yes

           BKT Model: {L 0  = .077, G  = .132, S  = .100, T  = .038}
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questions on hypotheses). This provided some external validation of the skill estimates derived 

from performance within the phase change environment. Thus, the BKT models appeared to be a 

valid way to amalgamate evidence across activities in order to estimate students’ skills. 

5. DISCUSSION 

In response to calls for inquiry assessments, we designed our educational environment, Science 

Assistments, which assesses students’ inquiry skills. The ECD framework [Mislevy and Haertel 

2006] was used to help our initial conceptualizations of the student model, the task model, and 

the evidence model, as well as to help guide our data analyses.  

Specifically, for us, the student model included the specifications of the skills and sub-skills of 

inquiry; the task model included the specifications of the tasks, items, conditions, and forms 

completed by the student in our environment; and the evidence model included the data, in our 

case extracted from the log files of students’ inquiry regarding whether students area testing their 

articulated hypotheses or are designing controlled experiments. We have, in this paper, provided 

an overview about how inquiry skills other than those involved in designing and conducting 

experiments can be conceptualized and analyzed with ECD as well. 

In designing our learning environment / microworlds, we balanced the need for creating rich, 

authentic inquiry tasks and the goal of auto-scoring students’ inquiry skills. This was a 

complicated task and many design trade-offs that are currently being discussed in the learning 

science literature influenced our design [Kirschner et al. 2006; Hmelo-Silver et al. 2007]. 

Specifically, we addressed the optimal degree of desired open-endedness versus degree of 

guidance so that students’ inquiry skills could be honed, as described by knowledge ontologies 

of science content, inquiry skills, and understanding of the nature of science [Perkins 1986]. As a 

consequence of our design approach and decisions, our environment is fairly flexible in terms of 

how students can approach an inquiry task.  

This design also made our auto-scoring of inquiry skills more complicated in some ways. For 

example, in the hypothesis phase, students can either list all their hypotheses at once or generate 

and test them one at a time. Additionally, as previously discussed, students also can choose to 

return to an earlier phase of inquiry or choose to explore the phenomena a second time in order 

to specify a hypothesis.  
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We have evidence that students do not conduct inquiry in a lock-step fashion. For example, 

Bachmann et al. [2010, 2011; Bachmann 2012] showed that many students, when given an 

orienting goal for their inquiry, conducted virtually all their trials in the “explore” phase of the 

inquiry process, and in doing so, arrived at the correct solution before entering the experimenting 

phase. Additionally, Gobert et al. [in preparation] analyzed data in which students, when asked to 

warrant their claims with data, returned to the experiment phase and were much more systematic 

in their data collection the second time around. This was evidenced by more systematic use of 

the control for variables strategy and targeting the proper independent variable in order to test 

their articulated hypothesis or the one specified by the orienting question. Data such as these 

serve to illustrate the flexibility of our system for students’ inquiry, but also serves to illustrate 

the complexity of assessing students’ inquiry skills within such an environment.  

As previously stated, we used the NSES inquiry strands [NRC 1996] to inform the design of 

our environment and our widgets. We designed the widgets, in part, by operationalizing the 

inquiry strands into sub-skills. Since there was a great deal of prior literature on students’ 

difficulties in conducting inquiry, a rational analysis of each skill allowed us to operationalize 

these into sub-skills. We also relied on think-aloud protocols collected with individual students 

while they conducted inquiry in order to ascertain the aspects of each skill with which students 

were having difficulty [Richardson 2008; Gobert et al. 2008].   

Our widgets, originally designed to support students’ inquiry, provide the affordance of 

generating log data that enabled us to assess students’ work products and experimentation 

processes. We developed knowledge engineered rules by hand to assess students’ work products, 

namely, their hypotheses and data interpretations. Knowledge engineering was chosen since 

“correctness” for these skills was more well-defined than students’ data collection processes, on 

the other hand, which were assessed using machine-learned models to account for the ill-defined 

nature of what it means to properly collect data. These assessments in total then can be 

amalgamated to form estimates of whether students know each inquiry skill over several inquiry 

activities of the same type. In the present work, we showed how we did this for data collection 

skills using BKT.  
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The previously described assessment and skill estimation models can be leveraged for a 

variety of purposes. First, they can be used to generate assessment reports for teachers that can 

be viewed / aggregated in various ways, including the class level and the individual student level. 

Such formative assessment feedback can enable teachers to make pedagogical decisions in real 

time, knowing which students and which inquiry sub-skills to focus on. Thus, our widgets 

support a first critical step towards developing the means to auto-assess students as they 

conducted inquiry; this is an advantage over other approaches in that we can track these skills in 

a fine-grained way. Lastly, these data also can be used to provide real time scaffolding to 

students on their inquiry as well, via our pedagogical agent Rex [Gobert and Baker 2012].  

Our approach assesses each inquiry skill over multiple trials, in the context of rich science 

inquiry microworlds, thereby providing a solution to three previously acknowledged problems, 

(1) the amount of data required to establish reliable measurement of inquiry skills [Shavelson et 

al. 1999], (2) the capacity to assess inquiry skills in the context in which they are developing 

[Mislevy et al. 2003], and (3) providing metrics that reflect the validity of these authentic 

measures of inquiry skills  [Williamson et al. 2006].  

6. CONCLUSIONS & NEXT STEPS 

In this paper we presented a description of our approach within the context of the ECD 

framework. We utilized log files of students’ data collected in real time and EDM techniques 

which we applied to these log files to characterize students in terms of their proficiency in the 

area of science inquiry skills, specifically testing hypotheses as well as designing and conducting 

experiments.  

EDM techniques can capture students’ inquiry performances and auto-score them in a manner 

that handles their complexity. For example, in the behavior models we developed, we are able to 

differentiate whether a student knows the control for variables strategy even when the student 

chooses not to conduct sequential trials. Other projects, which rely principally on rule-based 

methods for scoring data, run the risk of either being too stringent. For example, they may count 

only sequential trials in which the target variable is changed as evidence of CVS skill 

[McElhaney and Linn 2008, 2010], or may be overly “generous” by comparing all trials to all 

other trials in order to determine whether the student has demonstrated the CVS skill [Gobert and 



 

 

133                                                                                                JEDM Special Issue, Article 3, Volume 4, Fall 2012 

Koedinger 2011] potentially scoring coincidental matches between trials as evidence of CVS 

skill.  

Furthermore, conducting text replays and machine learning over multiple experimental trials 

per student as described in the present paper allowed us to automatically evaluate those who 

know CVS versus those who do not by using only a small number of trials. That is, when a 

student is conducting multiple trials that are non-sequential in their use of CVS, we can evaluate 

whether the student has demonstrated the skill.  

A key step in the development of detectors as general measurements of constructs such as 

those discussed earlier is validating the generalizability of the detectors. A methodological 

template for our planned process can be found in Baker et al. [2008a], which studied the 

generalization of detectors of gaming the system. There are at least three essential forms of 

generalizability for a detector to be fully validated for Science Assistments, (1) student-level, (2) 

classroom-level, and (3) microworld-level.  

We have already validated that detectors of student inquiry behaviors in Science Assistments 

can generalize between students. What remains to be done is the validation of the detectors at the 

classroom-level and microworld-level. To do this, it will be necessary to collect data for 

additional classrooms and microworlds, develop training labels using text replays, and then 

conduct cross-validation at the both classroom and the microworld level. Our past experience in 

developing detectors of gaming the system [Baker et al. 2008a] suggests that conducting 

microworld or unit-level cross-validation is more effective when there is a larger sample of units 

to cross-validate between -- excellent performance was achieved in that case when cross-

validating across four units.  

To this end, we plan to collect and label data for three additional microworlds beyond the 

phase change unit already studied. Once validation of our detectors is developed for three 

additional physical science microworlds, we can in turn generalize these to the other science 

domains addressed in Science Assistments, namely Life Science and Earth Science topics. Lastly, 

we will continue our work in the development of other detectors to auto-assess students’ inquiry 

skills for the other skills in the National Science Education Standards [NRC 1996], giving us a 

full suite of detectors with which to auto-assess and auto-scaffold students’ science inquiry 

across all middle school topics. 
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