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The complex interaction between a genotype and its environment controls the

biophysical properties of a plant, manifested in observable traits, i.e., plant’s phenome,

which influences resources acquisition, performance, and yield. High-throughput

automated image-based plant phenotyping refers to the sensing and quantifying

plant traits non-destructively by analyzing images captured at regular intervals and

with precision. While phenomic research has drawn significant attention in the last

decade, extracting meaningful and reliable numerical phenotypes from plant images

especially by considering its individual components, e.g., leaves, stem, fruit, and

flower, remains a critical bottleneck to the translation of advances of phenotyping

technology into genetic insights due to various challenges including lighting variations,

plant rotations, and self-occlusions. The paper provides (1) a framework for plant

phenotyping in a multimodal, multi-view, time-lapsed, high-throughput imaging system;

(2) a taxonomy of phenotypes that may be derived by image analysis for better

understanding of morphological structure and functional processes in plants; (3) a

brief discussion on publicly available datasets to encourage algorithm development

and uniform comparison with the state-of-the-art methods; (4) an overview of the

state-of-the-art image-based high-throughput plant phenotyping methods; and (5) open

problems for the advancement of this research field.

Keywords: high-throughput plant phenotyping, image analysis, multimodal image sequence, phenotype

taxonomy, structural phenotype, physiological phenotype, temporal phenotype

1. INTRODUCTION

The temporal variation in the plant’s morphological and functional traits regulated by genotype and
the environment plays a crucial role for the development of crops that impact both yield and quality
(Lobos et al., 2017). High-throughput image-based plant phenotyping facilitates the computation
of phenotypes by analyzing a large number of plants in short time interval with precision, nullifying
the need for time-consuming physical human labor (Das Choudhury et al., 2018). The process is
generally non-destructive, allowing the same traits to be quantified repeatedly at multiple times and
scales during a plant’s life cycle. It is an interdisciplinary research field involving computer science,
biology, remote sensing, statistics, and genomics in the effort to link intricate plant phenotypes to
genetic expression in order to meet current and emerging issues in agriculture relating to future
food security under dwindling natural resources and projected climate variability and change.

Plants are not static but living organisms with constantly increasing complexity in shape,
architecture, and appearance. Many plants alter leaf positioning (i.e., phyllotaxy) in response to
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light signals perceived through the photochrome in order to
optimize light interception (Maddonni et al., 2002). In addition
to variation in phyllotaxy, growth of individual leaves leads to
self-occlusions and leaf crossovers over time posing challenges
to image-based plant phenotyping analysis. Other challenges
include variation in illumination, cluttered background, and
change in zoom levels in the cameras often used to adjust for
plant growth.

The state-of-the-art computer vision based approachesmainly
focus on the structural and morphological aspects of a plant for
computing 2D and 3D phenotypes. However, quantification of
physiological processes in plant components, i.e., leaves, stem
segments, flowers, fruits, etc., may show differential behavior
as a function of environmental stress, and result in different
leaf-level photosynthetic activity or carbohydrate content in a
plant segment. Similarly, dynamic event-based phenotypes, i.e.,
identifying important events in plant life cycle, e.g., emergence
timing of a new leaf, automated germination detection, timing of
emergence detection of fruits and flowers, may provide important
insights into the acclimation and adaptation strategies of plants.
Thus, we present a novel taxonomy, beyond the well-studied
class of structural phenotypes, to illustrate the vast potential
of image analysis based methods to assist in understanding of
insightful physiological and temporal phenotypes. To achieve
this, full range of available imaging modalities and mechanisms
must be used. Therefore, we propose a general computational
framework for image-based plant phenotyping. We also
summarize state-of-the-art image-based plant phenotyping
methods with discussion on potential future developments in
this field. To systematically evaluate and uniformly compare
the methods, benchmark datasets are indispensable. Thus, the
paper also provides a comprehensive summary of the publicly
available datasets.

2. HIGH-THROUGHPUT PLANT
PHENOTYPING PLATFORM

Figure 1 shows a schematic diagram for image-based high-
throughput plant phenotyping platform. It analyses temporal
image sequences of a group of plants (belonging to different
genotypes) captured by multimodal cameras, i.e., visible
light, fluorescent, near infrared, infrared and hyperspectral,
from different viewing angles. The plants are imaged at
regular intervals under various environmental conditions, e.g.,
drought, salinity, and thermal (Das Choudhury et al., 2016).
Motivated by the high-throughput plant phenotyping platform
presented in Fahlgren et al. (2015), we design a more
advanced representation to explore computer vision based plant
phenotyping algorithms inmultiple dimensions, i.e., multimodal,
multiview and temporal, regulated by genotypes under various
environmental conditions. The image sequences captured by
visible light camera are often used to compute structural
or morphological phenotypes. Fluorescent, near infrared and
infrared images are respectively used to analyze the chlorophyll,
water, and temperature content of the plants. Thermal infrared
imaging is used as proxy for a plant’s temperature to detect

differences in stomatal conductance as a measure of the plant
response to the water status and transpiration rate for abiotic
stress adaptation (Lei et al., 2014b). Hyperspectral imaging
is uniquely suited to provide insights into the functional
properties of plants, e.g., leaf tissue structure, leaf pigments,
and water content (Mahlein et al., 2011) and stress resistance
mechanisms (Wahabzada et al., 2016). The high-throughput
plant phenotyping platforms presented by Rahaman et al. (2015)
and Araus and Cairns (2014) provide emphasis on bridging gap
between phenotype-genotype relationship from the molecular
point of view.

3. A TAXONOMY FOR PLANT
PHENOTYPES

We present a plant phenotypic taxonomy (Figure 2) which
reflects plant phenotypes introduced in recent literature
as well as the new challenges that require future research
attention. The figure shows that the aboveground plant
phenotypes are broadly classified into three categories,
namely, structural, physiological, and temporal. The structural
phenotypes refer to the morphological attributes of the
plants, whereas the physiological phenotypes are related
to traits that affect plant processes regulating growth and
metabolism. Structural and physiological phenotypes are
further divided into two groups: holistic and component. The
holistic phenotypes consider the whole plant as a single object
and compute its basic geometrical properties, e.g., height of
the bounding rectangle to account for plant height, area of
the convex-hull to account for plant size (Das Choudhury
et al., 2017, 2018). Component phenotypes are computed by
considering individual components of the plants, i.e., leaves,
stem, flower, and fruit. Examples of component phenotypes
include leaf length, chlorophyll content of each leaf, stem
angle, flower size, and fruit volume (Gage et al., 2017; He
et al., 2017; Das Choudhury et al., 2018; Yin et al., 2018;
Zhou et al., 2019).

The different parts of plants grow non-uniformly over space
and time. This non-uniformity in growth is also regulated
by the genotypes. The temporal phenotypes are computed by
analyzing a sequence of images. We propose two different
types of temporal phenotypes: trajectory-based and event-
based. The structural and physiological phenotypes can be
computed from a single image or a sequence of images to
take into account of temporal phenotypic characteristics for
better genetic variability, e.g., plant growth rate, leaf elongation
rate, and trajectories of stem angle (Das Choudhury et al.,
2016, 2018; Sun et al., 2018). It includes change in phenotypic
traits as a function of time, time-rate of change in stem
width and relative growth rates of different leaves. Event-
based phenotypes are based on specific events in a plant’s life
cycle, e.g., germination, emergence of a new leaf, flowering,
etc. The timing of the events with reference to an origin
(say planting date) is important in understanding a plant’s
behavior (Agarwal, 2017). While the primary phenotypes refer
to one specific characteristic of a plant, derived phenotypes
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are composed of two or more primary phenotypes, i.e., bi-
angular convex-hull area ratio to account for phyllotaxy and
plant aspect ratio to provide information on canopy architecture
(Das Choudhury et al., 2016).

4. PUBLIC DATASETS

Development and public dissemination of datasets are vital
for research in image based plant phenotyping as it provides
the broader computer vision research community access to
datasets that they typically do not have the ability to generate.
Also, standard datasets provide a common basis to compare
the performance of plant phenotyping algorithms. We briefly
summarize the datasets below that are publicly disseminated.

• Leaf segmentation challenge (LSC) dataset: LSC dataset is
released to advance the state-of-the-art in leaf segmentation,
counting, and tracking of rosette plants. The dataset consists
of images of two plant species, i.e., Arabidopsis (Arabidopsis
thaliana) and tobacco (Nicotiana tabacum) organized into
three subsets. Subsets A1 (Ara2012) and A2 (Ara2013) consist
of top-view time-lapse images of Arabidopsis thaliana rosettes.
The total number of images in Ara2012 and Ara2013 are
150 and 5048, respectively. Subset A3 (Tobacco) consists
of top-view stereo image sequences of tobacco (Nicotiana
tabacum) plants captured hourly for 30 days. The LSC dataset
is publicly available from http://www.plant-phenotyping.org/
CVPPP2014-challenge.

• Michigan State University Plant imagery dataset (MSU-

PID): The MSU-PID dataset (Cruz et al., 2016) consists of
images of Arabidopsis (total 2160 × 4 images) and bean
(total 325 × 4 images) captured with four types of calibrated
cameras, i.e., fluorescent, infrared, RGB color and depth sensor
to facilitate research in leaf segmentation, leaf counting, leaf
alignment, leaf tracking, and 3D leaf reconstruction. A subset
(576 × 4 Arabidopsis images and 175 × 2 bean images)
is annotated to provide ground-truth for leaf tip location,
leaf segmentation, and leaf alignment. MSU-PID dataset
is publicly available from http://cvlab.cse.msu.edu/multi-
modality-imagery-database-msu-pid.html Cruz et al. (2016).

• Panicoid Phenomap-1: To stimulate the development and
evaluation of holistic phenotypes of panicoid grain crops, a
public dataset called Panicoid Phenomap-1 is introduced in
Das Choudhury et al. (2016). It consists of visible light image
sequences of 40 genotypes including at least one representative
accession from five panicoid grain crops: maize, sorghum,
pearl millet, proso millet, and foxtail millet. The images are
captured by the Lemnatec scanalyzer high-throughput plant
phenotyping facility at the University of Nebraska-Lincoln
(UNL), USA.

• University of Nebraska-Lincoln Component Plant

Phenotyping Dataset (UNL-CPPD): A benchmark dataset
called UNL-CPPD in introduced in Das Choudhury
et al. (2018), to spur research in leaf detection and
tracking, leaf segmentation, evaluation of holistic, and
component phenotypes for maize and cereal crops with
similar architecture, e.g., sorghum. UNL-CPPD includes

human-annotated ground-truth along with the original
image sequences to facilitate image-based component
phenotyping analysis.

• Komatsuna Dataset: Komatsuna Dataset (Uchiyama et al.,
2017) contains images of early growth stages of Komatsuna
plants with a leaf annotation tool to facilitate 3D plant
phenotyping analysis such as leaf segmentation, tracking, and
reconstruction. A set of 5 Komatsuna plants are imaged every
4 h for 10 days using a RGB camera (Multiview dataset) and a
RGB camera fitted with structured light depth camera (RGB-
D dataset). The dataset is freely available from http://limu.ait.
kyushu-u.ac.jp/~agri/komatsuna/.

• University of Nebraska-Lincoln 3D Plant Phenotyping

Dataset (UNL-3DPPD): This dataset consists of images of 20
maize and 20 sorghum plants for 10 side views to facilitate
3D plant phenotyping research. Plants were imaged once per
day using the visible light camera of the UNL Lemnatec
Scanalyzer 3D high-throughput phenotyping facility. Panicoid
Phenomap-1, UNL-CPPD, and UNL-3DPPD can be freely
downloaded from http://plantvision.unl.edu/.

• Deep Phenotyping Dataset: This dataset consists of 22
successive top-view image sequences of four accessions
of Arabidopsis, i.e., Sf-2, Cvi, Landsberg, and Columbia,
captured once daily to study temporal phenotypes for
accession classification using convolutional neural network
(CNN), recurrent neural network and long-short term
memory (LSTM) (Taghavi Namin et al., 2018). The
dataset is augmented by rotating each image by 90◦,
180◦, and 270◦ to avoid overfitting while training CNN.
It can be freely downloaded from https://figshare.com/s/
e18a978267675059578f.

5. RECENT ADVANCEMENTS IN
IMAGE-BASED PLANT PHENOTYPING

This section provides a brief description of the state-of-the-art
methods to compute phenotypes from images organized using
our taxonomy, i.e., structural, physiological, and temporal.

5.1. Structural Phenotypes
5.1.1. 2D Phenotypes

The method in Dellen et al. (2015) uses a leaf-shape model
to detect each leaf of a tobacco plant. A graph-based tracking
algorithm is used to track the detected leaves in a sequence to
measure growth rate as a trajectory-based structural phenotype.
Leaf alignment and tracking are formulated as two optimization
problems in Yin et al. (2018) based on Chamfer matching
and leaf template transformation from fluorescent videos for
application in leaf-level photosynthetic capability estimation.
Das Choudhury et al. (2018) introduced a set of new holistic
and component phenotypes computed from 2D side view image
sequences of maize plants, and demonstrated the temporal
variations of these phenotypes regulated by genotypes. The
method accepts plant image sequence as the input and produces a
leaf status report containing the phenotypic information, i.e., the
emergence timing, total number of leaves present at any point
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FIGURE 1 | A taxonomy of phenotypes. Key: "MV"-multi-view.

FIGURE 2 | High-throughput plant phenotyping platform.
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of time, total number of leaves emerged, the day on which a
particular leaf stopped growing or lost, and the length and relative
growth rate of individual leaves. The method in Das Choudhury
et al. (2017) introduces an algorithm to compute stem angle,
a potential measure for plants’ susceptibility to lodging, based
on graph-based plant architecture determination. A time series
clustering analysis is used to summarize the temporal patterns of
the stem angles into different groups to provide further insight
into genotype specific behavior of the plants. Unlike the methods
by Das Choudhury et al. (2016, 2018) which focus on vegetative
stage phenotyping analysis of maize, the method by Brichet et al.
(2017) develops a robot-assisted imaging pipeline to track the
growths of ear and silks based on an ear detection algorithm.
The genotypic variation in silk growth rate under drought stress
is experimentally demonstrated.

It has been suggested that future progress in image-based plant
phenotyping will require a combined effort in the domains of
image processing for feature extraction and machine learning for
data analysis (Tsaftaris et al., 2016). In recent times, machine
learning techniques have gained popularity in high-throughput
2D phenotyping, e.g., in detection of branch shaking locations
for robotic cherry harvesting (Amatya et al., 2017) and plant
growth analysis (Navarro et al., 2016). Deep learning is an
emerging field that promises unparalleled results on many data
analysis problems. Building on artificial neural networks, deep
approaches have many more hidden layers in the network,
and hence have greater discriminative and predictive power.
A deconvolutional network is used for segmenting the rosette
leaves from the background, and then a CNN is used for leaf
counting in the method by Aich and Stavness (2017). The
method by Atanbori et al. (2018) re-architects four existing
deep neural networks to create “Lite" CNN models in an
attempt to reduce their parameters while avoiding overfitting
for cost-effective solutions in plant phenotyping. The method
also introduces a global hyper-parameter for efficient trade-off
between parameter size and accuracy of “Lite" CNN models. The
method by Pound et al. (2017) uses CNN to identify quantitative
trait loci by classifying biologically relevant features such as root
tips, leaf and ear tips, and leaf bases to determine root and
shoot architecture.

An open source software tool based on CNN called
Deep Plant Phenomics is proposed in Ubbens and Stavness
(2017) to compute complex phenotypes from plant image
sequences. ResNet50, a deep residual neural network, is used
in Dobrescu et al. (2017) as a leaf prediction model to count
the number of leaves of the rosette plants. In this method,
leaf counting is modeled as a direct regression problem.
A comprehensive summary of deep learning algorithms for
identification, classification, quantification, and prediction of
plant stress phenotypes is presented by Singh et al. (2018).
Deep learning has applications in a variety of plant phenotyping
tasks, e.g., plant stalk count and stalk width (Baweja et al.,
2017), leaf counting in rosette plants (Giuffrida et al., 2018;
Ubbens et al., 2018), maize tassel counting (Lu et al., 2017),
cotton bloom detection (Xu et al., 2018), wheat spikes
detection (Hasan et al., 2018), and rice panicle segmentation
(Xiong et al., 2017).

5.1.2. 3D Phenotypes

The plants exhibit increasing architectural complexity with
time due to self-occlusions and leaf crossovers, which pose
challenges to accurate estimation of 2D component phenotypes,
e.g., leaf length, stem angle, and leaf curvature. To overcome
these challenges, attempts have been made to reconstruct a
3D model of a plant for accurate estimation of phenotypes.
A shape-from-silhouette method is used in Golbach et al.
(2016) to reconstruct the 3D model of a tomato seedling
from multi-view images. An algorithm for depth imaging-
based detection of muskmelon plant for phenotyping in the
greenhouse is proposed in Lei et al. (2014a). A detailed
review on 3D reconstruction techniques for shoot topology
for applications in phenotyping is provided in Gibbs et al.
(2016). The method in Liu et al. (2017) uses the structure
from motion method to reconstruct the 3D model of a
plant using images from multiple side views. The method
also deducted the optimal number of images needed for
reconstructing a high-quality model. Most cereal crops, e.g.,
rice, wheat, and maize, have thin ribbon-like architectures
with lack of textural surfaces, which limits the success of 3D
reconstruction to early growth stages where the distance between
the camera and the plant is relatively small facilitating accurate
camera calibration.

3D reconstruction of soybean canopies using multisource
imaging is presented in Guan et al. (2018). A density-
based spatial clustering of applications with noise removal is
used to extract canopy information from the raw 3D point
cloud. The method in Scharr et al. (2017) uses a voxel-
based volume carving for 3D reconstruction of maize shoot to
compute leaf-level traits. Depth cameras capture 3D information
from plants to segment leaves and reconstruct plant models
(Chéné et al., 2012). A semi-automated software pipeline is
developed to reconstruct a 3D plant model from the images
captured by a depth camera in McCormick et al. (2016).
Standard shoot phenotypes such as shoot height, leaf angle,
leaf length, and shoot compactness are measured from 3D
plant reconstructions to characterize the shoot architecture.
The Microsoft Kinect, originally designed for computer gaming
environments, has found applications in 3D plant phenotyping
in recent times (Chéné et al., 2012; Paulus et al., 2014;
Polder and Hofstee, 2014.)

The method in Polder and Hofstee (2014) fuses RGB
and depth image captured by Microsoft Kinect sensor to
segment muskmelon plants in the greenhouse with cluttered
background. The method in Srivastava et al. (2017) provides
an algorithm for 3D model reconstruction of wheat plants
with occluded leaves, and uses deep learning for drought stress
characterization. The remote sensing technology using light
detection and ranging (LiDAR) is hypothesized to dominate
the future generation of plant phenotyping analysis in outdoor
environments Lin (2015). The methods in Sun et al. (2017,
2018) compute morphological traits of the cotton plants, e.g.,
canopy height, projected canopy area, and plant volume, based
on 3D model reconstruction of the plants using top view images
captured by LiDAR and real-time kinematic global positioning
system (RTK-GPS).
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5.2. Physiological Phenotypes
A comprehensive review on close proximal assessment of
functional dynamics of plants using hyperspectral image analysis
is provided in Mishra et al. (2017). Water scarcity causes
serious crop losses in agriculture. Global climate change
and growing population require research advancement in the
understanding of plant resistance mechanisms to drought
stress for improved crop yield with minimum resource
utilization. The method in Römer et al. (2012) uses a
simplex volume maximization technique for early drought
stress detection using hyperspectral image sequences of barley
plants. Recent developments in hyperspectral imaging for
assessment of food quality and safety are discussed in
Huang et al. (2014), Lu et al. (2017), and Rungpichayapichet
et al. (2017). Hyperspectral image analysis has been used to
investigate physiological processes, e.g., determination of salt
stress in wheat based on vector-wise similarity measurement
(Moghimi et al., 2018), early detection of abiotic stresses
(Mohd et al., 2018), disease detection to prevent yield
losses (Wahabzada et al., 2016), and early yield prediction
(González-Sanchez et al., 2014).

A Matlab based software called SK-UTALCA is introduced
in Lobos and Poblete-Echeverría (2017) for applications
in plant breeding, precision agriculture, crop protection,
ecophysiology plant nutrition, and soil fertility by analyzing
high-resolution spectral reflectances. A comprehensive overview
of the machine learning techniques in the identification,
classification, quantification, and prediction of various biotic
and abiotic stress phenotypes are provided in Singh et al.
(2016). The method by Raza et al. (2014) combines information
extracted from thermal and visible light images, and uses
support vector machine (SVM) and Gaussian processes (GP)
to identify regions of spinach canopy showing a response to
soil water deficit. A review of machine learning approaches
including back-propagation neural networks, GP, SVM, rotation
forest, CNN and LSTM, for crop yield prediction and nitrogen
status estimation in precision agriculture is presented in
Chlingaryan et al. (2018).

5.3. Temporal Phenotypes
The method in Das Choudhury et al. (2018) uses line graphs
to represent the trajectories of component phenotypes, i.e.,
leaf length, integral leaf-skeleton area, mid-leaf curvature,
apex curvature and stem angle, as a function of time in
order to demonstrate the genetic influence on the temporal
variations of these phenotypes. A novel method for plant
emergence detection using adaptive hierarchical segmentation
and optical flow based tracking is introduced in Agarwal
(2017). The efficacy of the method is demonstrated based on
experimental analysis on a dataset consisting of images captured
at every 2–5 min intervals starting immediately after planting
the seeds.

6. OPEN PROBLEMS

Most of the research in image-based plant phenotyping is focused
on structural and mainly holistic physiological phenotypes.

However, timing determination of important events in the life
of a plant, e.g., germination, emergence and senescence of
leaves, emergence of flowers and fruits, can provide crucial
information about plant’s growth and response to biotic and
abiotic stresses. Timing detection of such events using computer
vision techniques remain an important open problem.

Most of the phenotypes have focused on either aboveground
or belowground phenotypes. We propose a new category
of phenotype, called integrated phenotype, that establishes
relationship between above- and belowground phenotypes
affected by abiotic and biotic stresses. Primary root growth
is inhibited during P-limitation, and its length determines
plant’s capability to access stored water in the deeper layers
of the soil substratum (Prasad et al., 2012; Paez-Garcia
et al., 2015). A new integrated phenotype, e.g., the ratio
of stem height to primary root length as a function of
time, may be investigated for increased yield of stress
tolerant crops by enhancing the capacity of the plant for
soil exploration and, thus, water and nutrient acquisition.
Algorithms to compute them from plant imagery need to
be developed.

Efforts have been made in early detection of stress, e.g.,
drought andmineral (Kim et al., 2011; Chen andWang, 2014; van
Maarschalkerweerd and Husted, 2015). However, future work
is required in the investigation of phenotypes that characterize
the prorogation of stress as a function time and also categorize
stress into different stages, e.g., slight, moderate, extreme, and
exceptional. The speed of recovery from the stresses regulated
by genotypes is also an open challenge. The method by Uga
et al. (2013) demonstrates that controlling root growth angle
contributes to drought tolerance. Hence, we propose a new
integrated phenotype to quantify speed of drought recovery from
different stress levels in relation to controlled root angle.

Extending themanual leaf trackingmethod inDas Choudhury
et al. (2018), we formulate a new problem called visual growth
tracking (i.e., tracking of different parts of an object that grows
at different rates over time) using plant image sequences for
automated growth monitoring of different components of plants,
i.e., leaves, flowers, and fruits.

Computing phenotypes from 2D images (e.g., stem angle)
are inherently error-prone as they are dependent on accurate
camera views. They are deficient too because the plant is a
3D structure and any projection onto 2D plane results in
loss of information. Thus, new and innovative 3D phenotypes,
both holistic and component, based on accurate reconstruction
of the model of a plant must be developed to accurately
characterize its properties. 3D plant model reconstruction has
been successful for early growth stages with less architectural
complexity (Golbach et al., 2016). Advanced 3D plant model
reconstruction algorithms are yet to be developed for entire
life cycle of plants covering vegetative and reproductive stages
for computation of derived phenotypes, e.g., stem cross-section
area as a function of plant height at its different stages, 3D leaf
area to leaf length ratio, 3D leaf curvature to leaf length ratio,
carbohydrate content of stem with respect to stem volume and
plant temperature to convex-hull volume ratio at different stages
of stressed plants.
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