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Leveraging Light-Forest with Rateless Network

Coding to Design Efficient All-Optical Multicast

Schemes for Elastic Optical Networks
Lulu Yang, Long Gong, Fen Zhou, Bernard Cousin, Miklós Molnár, and Zuqing Zhu, Senior Member, IEEE

Abstract—In this paper, we study the multicast-capable rout-
ing, modulation and spectrum assignment (MC-RMSA) schemes
that consider the physical impairments from both the trans-
mission and light-splitting in elastic optical networks (EONs).
Specifically, we propose to provision each multicast request with
a light-forest which consists of one or more light-trees to avoid the
dilemma that because of the accumulated physical impairments, a
relatively large light-tree may have to use the lowest modulation-
level and hence consume too many frequency slots (FS’). In order
to further improve the spectral efficiency and compensate for
the differential delays among the light-trees, we incorporate the
rateless network coding (R-NC) in the multicast system. We first
formulate an integer linear programming (ILP) model to solve
the problem for static network planning. Then, we propose three
time-efficient heuristics that leverage the set-cover problem and
utilize layered auxiliary graphs. The simulation results indicate
that in both the ILP and heuristics, the MC-RMSA with R-NC
can achieve better performance on the maximum index of used
FS’ than that without. After that, we evaluate the heuristics in
dynamic network provisioning. The results show that the MC-
RMSA with R-NC can effectively improve the performance of
all-optical multicast in EONs to reduce the blocking probability.

Index Terms—All-optical multicast; Routing, modulation and
spectrum assignment (RMSA); Light-forest; Rateless network
coding; Elastic optical networks (EONs).

I. INTRODUCTION

O
VER the past decade, the rapid development of band-

width intensive applications has made the traffic volumes

in Internet backbone increase exponentially. To address this

issue, we need to realize highly flexible and scalable backbone

networks, which has stimulated active research and develop-

ment on new optical networking technologies. In line of these

efforts, people have developed advanced optical transmission

and switching technologies [1, 2], and used them to realize

the flexible-grid elastic optical networks (EONs) [3, 4]. It

is known that with the bandwidth-variable transponders (BV-

Ts) and wavelength-selective switches (BV-WSS’), EONs can

achieve the bandwidth allocation granularity at 12.5 GHz or

less and support a super-channel at 400 GHz and beyond
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as well. Therefore, compared with the traditional fixed-grid

wavelength-division multiplexing (WDM) networks, EONs

provide enhanced spectral efficiency and make the spectrum

allocation in the optical layer more flexible.

Besides these advantages, EONs also bring new challenges

to the network control and management (NC&M), since

the elastic nature determines that the network planning and

provisioning procedure would be more sophisticated than its

counterpart in conventional WDM networks. Specifically, to

establish a lightpath in an EON, the network operator needs

to allocate a few spectrally-contiguous frequency slots (FS’)

to satisfy the bandwidth demand. Here, the bandwidth of an

FS is usually at 12.5 GHz, which is much narrower than a

wavelength channel. Moreover, the modulation format used

by the FS’ should be chosen adaptively from those that

have different spectral efficiencies and receiver sensitivities,

e.g., binary phase-shifted keying (BPSK), quadrature phase-

shifted keying (QPSK), 8 quadrature amplitude modulation (8-

QAM) and 16-QAM, according to the quality-of-transmission

(QoT). Intuitively, if we change the modulation format to a

higher order one, e.g., from QPSK to 8-QAM, the spectral

efficiency becomes higher and thus we can use fewer FS’ to

provision the same bandwidth demand. Meanwhile, since the

receiver sensitivity of 8-QAM is lower, it can only support a

shorter transmission reach. To this end, the classic routing and

wavelength assignment (RWA) problem in WDM networks

evolves into the routing, modulation and spectrum assignment

(RMSA) problem in EONs [5, 6].

Previously, numerous studies have addressed the RMSA

problem and proposed various approaches to solve it with

different optimization objectives [3, 5–11]. Nevertheless, most

of them did not consider the all-optical multicasting that

can realize point-to-multiple-point communications in EONs.

With the evolution of the Internet, multicast has become

a key and necessary communication scheme to efficiently

support emerging network services such as grid computing and

teleconferencing, etc. Moreover, with the recent rise of inter-

datacenter networks, huge-throughput traffics for data backup

or service migration may also require multicast transmission.

Hence, it is also desired to facilitate efficient multicast schemes

in the backbone networks. All-optical multicast with light-trees

has been proposed in [12] for the IP-over-WDM networks.

Basically, by leveraging the multicast-capable optical cross-

connects (MC-OXCs) [13, 14], all-optical multicast allows the

nodes on a light-tree to send the optical signal to more than

one outputs (i.e., light-splitting), and reduces the cost from
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optical-to-electrical-to-optical (O/E/O) conversions [15].

The RWA problem for all-optical multicast in WDM net-

works has been studied in [12, 15–20]. Due to the unique

requirements on NC&M (e.g., RMSA for resource allocation),

supporting efficient all-optical multicast in EONs would be

more challenging and has just started to attract research

interests since recently. The authors of [21] first studied all-

optical multicast in EONs and compared the performance of

two simple multicast-capable routing and spectrum assignment

(MC-RSA) algorithms. However, they did not consider either

the QoT constraint or the adaptive modulation selection. In

[22], we designed an approach to facilitate MC-RSA with

layered auxiliary graphs and demonstrated that it could outper-

form those in [21]. Nevertheless, the QoT-aware modulation

selection was still not addressed. By using an over-simplified

impairment model that did not consider the optical signal-

to-noise-ratio (OSNR) degradation due to light-splitting, we

studied the RMSA for all-optical multicast (MC-RMSA) in

EONs, formulated two integer linear programming (ILP) mod-

els, and proposed several heuristics based on genetic algorithm

in [23]. However, it is known that the light-splitting in MC-

OXCs causes power loss and the subsequent re-amplification

results in noticeable OSNR degradation [15, 18]. Hence, one

cannot simply assume that the transmission reaches of the

optical signals with and without light-splitting are the same.

In this work, we investigate the MC-RMSA schemes that

consider the physical impairments from both the transmission

and light-splitting in EONs. Specifically, we propose to serve

each multicast request with a light-forest that consists of one

or more light-trees to avoid the situation that due to the

accumulated impairments, a relatively large light-tree may

have to use the lowest modulation-level and hence consume

too many FS’. Moreover, to further improve the spectral

efficiency and compensate for the latency differences among

the light-trees, we propose to use the rateless network coding

(R-NC) in [24] in the multicast system. We first formulate an

ILP model to tackle the problem of static network planning and

obtain the optimal solutions of small-scale problems. Then, we

leverage the set-cover problem and layered auxiliary graphs

to design time-efficient heuristics, and use them for dynamic

network provisioning. The proposed algorithms are evaluated

with extensive simulations, and the results show that the MC-

RMSA using light-forest with R-NC can effectively improve

the performance of all-optical multicast in EONs.

The rest of the paper is organized as follows. Section II

introduces the network model and explains how to use the

light-forest with R-NC to realize all-optical multicast in EONs.

In Section III, we formulate the ILP model to jointly optimize

the light-forest construction, modulation format selection, and

spectrum assignment (i.e., MC-RMSA) for multicast requests.

The heuristics for MC-RMSA are proposed in Section IV, and

Section V discusses the numerical simulations for performance

evaluation. Finally, Section VI summarizes the paper.

II. PROBLEM DESCRIPTION

A. Network Model

We use a directed graph G(V,E) to represent the EON’s

physical topology, where V denotes the set of nodes that each

Fig. 1. Mapping between transmission distance and modulation format.

equips with an MC-OXC, and E is the fiber link set. Each

link e ∈ E has a bandwidth capacity of ̥ FS’, each of

which occupies a fixed bandwidth and provides a capacity of

C Gb/s when using BPSK as the modulation format. For the

modulation format selection, we define m as the modulation-

level, and have m = 1, 2, 3, and 4 for BPSK, QPSK, 8-QAM,

and 16-QAM, respectively. Hence, for different modulation

formats, the capacity of an FS can be calculated as m ·C Gb/s.

Here, since we consider all-optical multicast without spectrum

conversions, the modulation format and spectrum assignment

stay unchanged for all the links on a light-tree.

For a light-tree, the modulation-level is selected according

to its QoT, which depends on both the transmission distance of

the longest branch and the number of destinations (i.e., light-

splitting times) [15]. We first set up the mapping between the

modulation-level and the maximum transmission distance for

the cases in which there is no light-splitting (i.e., unicast).

Fig. 1 depicts the mapping, which is obtained based on the

experimental results in [25]. With this mapping, we always

select the highest feasible modulation-level to use as long as

the transmission distance permits, for obtaining the highest

spectral efficiency [5, 6]. Then, we address the additional

impairments due to the light-splitting in MC-OXCs.

Definition The relation among the modulation-level, the trans-

mission distance and the number of destinations in a light-

tree is referred as the MTD relation. For a light-tree that

includes n destinations, the transmission distance of its longest

branch and the modulation-level m to be used should satisfy

the equation below [15, 18]

Sm,n =
Sm,1

log10(n) + 1
, (1)

where Sm,n denotes the maximum length that the light-tree’s

longest branch can have to use modulation-level m, and Sm,1

follows the mapping in Fig. 1.

A multicast request can be denoted as MR(s,D,B), where

s ∈ V is the source node, D ⊆ V \ s represents the set of

destination nodes, and B is the capacity requirement in Gb/s.

Due to the MTD relation, when the size of D is relatively

large and/or the distances between s and D are long, it would

be impossible or inefficient to serve MR with a single light-

tree. Therefore, we have to consider MC-RMSA with light-

forest, and the construction of the light-forest and the selection

of modulation-levels for the light-trees in it are correlated.
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With Eq. (1), we determine the modulation-level mk for the

k-th light-tree in the light-forest, and assign ⌈ B
mk·C

⌉ spectrally-

contiguous FS’ on the links in the light-tree.

B. Multicast using Light-Forest with R-NC

Note that in addition to accommodating the QoT constraint,

we may also use a light-forest to serve MR because a large

FS-block1 cannot be found on the links due to spectrum

fragmentation [26]. Hence, when building the light-forest, we

may not only divide the destinations in D into groups and

cover each with a light-tree, but also split the traffic to certain

destination(s) into multiple sub-streams and send them over

several light-trees. The latter mimics the spectrum-splitting

scheme for serving unicast lightpaths [11, 27].

However, the aforementioned MC-RMSA with light-forest

has some intrinsic drawbacks. First of all, the total spectrum

usage may become higher. Basically, we can easily prove that

when a light-tree and a light-forest that consists of multiple

light-trees are both feasible for MR, the total number of links

in the light-forest is equal to or larger than that in the light-

tree2. Therefore, if we cannot leverage the adaptive modulation

selection to reduce the spectrum usage on each link, the light-

forest may consume more spectra. Secondly, if we consider

the case that the traffic to a certain destination is split into

multiple sub-streams, the differential delay among the sub-

streams may incur a relatively large buffer at the receiver for

data reordering [28].

In order to relieve the impacts from these drawbacks, we

propose to incorporate the rateless network coding (R-NC)

[24] in the multicast system. Specifically, the work in [24]

indicated that with R-NC, we can recover k original symbols

by using any k · (1 + ε) encoded symbols, where the order

to receive the encoded symbols does not affect the decoding

results. Here, ε is a small real number that usually satisfies

ε ≤ 0.05 [29]. Therefore, we can see that all-optical multicast

using light-forest with R-NC is promising. Actually, previous

studies have already considered the usage of R-NC for the

multicast in multimedia networks [29, 30].

We use Figs. 2-4 as intuitive examples to explain the

working principle and benefits of multicast using light-forest

with R-NC. Fig. 2 shows the spectrum resources on each link

in the network. The source node is s, and the destination nodes

are D = {d1, d2, d3}. To simplify the problem, we do not

consider the adaptive modulation selection, and assume that if

the longest branch of a light-tree is more than two hops, only

one destination can be reached. Here, the capacity of an FS

is 12.5 Gb/s, and each destination node needs a bandwidth of

20 Gb/s, which means it needs ⌈ 20
12.5⌉ = 2 contiguous FS’.

However, we cannot find two available contiguous FS’ in any

light-tree to satisfy the requirement. Hence, we try to split the

traffic over multiple light-trees to serve the request.

Fig. 3 considers the case without R-NC. We simply split

the traffic into two sub-streams, i.e., A and B, each of which

1An FS-block is the block of available contiguous FS’ in the optical
spectrum, which has the maximum size in FS’ at the spectral location.

2Here, if more than one light-tree in the light-forest use the same link, we
count the link multiple times since the source will deliver multiple copies of
the traffic over it.

Fig. 2. Spectrum resources on links in an EON.

Fig. 3. Example on multicast using light-forest without R-NC.

carries a bandwidth of 10 Gb/s (i.e., 1 FS), and build a light-

forest with 4 light-trees to deliver them. In Fig. 3, we can find

that it is not possible to merge the light-trees in Figs. 3(c) and

3(d), even though they can use FS 3 from s to d1 and d3. This

is because if we do so, neither d1 nor d3 can receive both A

and B. In this case, the multicast scheme in Fig. 3 consumes

a total bandwidth resource of 10 FS·hops. Moreover, we will

have the data reordering issue if the light-trees’ branches are

in different lengths. Fig. 4 shows the case with R-NC. Here,

we use R-NC to encode the traffic into three sub-streams a,

b, and c, each of which requires a bandwidth of 10 · (1 + ε)
Gb/s. Then, according to the working principle of R-NC, we

can just build 3 light-trees to ensure that all the destinations

can receive 20 · (1+ε) Gb/s of encoded bandwidth for correct

decoding. For instance, we can deliver sub-streams a, b, and

c over the light-trees as shown in Fig. 4(a)-(c). Then, for this

case, the total bandwidth consumption is 9 FS·hops, and we

do not have to worry about the data reordering issue.

With this network model and considering the advantages

of R-NC, we study MC-RMSA for two different scenarios of

EONs, i.e., static network planning and dynamic network pro-

Fig. 4. Example on multicast using light-forest with R-NC.
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Fig. 5. Six-node topology marked with link lengths in kilometers.

visioning. In the static network planning, we try to minimize

the maximum index of used FS’ and make the MC-RMSA

more spectral efficient, while in the dynamic network provi-

sioning, the request blocking probability should be minimized

to make the MC-RMSA more effective.

III. ILP FORMULATION

In this section, we formulate an ILP model to optimize

MC-RMSA for multicast requests. Specifically, we consider

the light-forest construction, modulation format selection and

spectrum assignment jointly, and incorporate the R-NC scheme

discussed in the previous section.

Parameters:

• G(V,E): Network topology, where V and E are the sets

of nodes and fiber links, respectively.

• l(u,v): Length of link (u, v) ∈ E in kilometers.

• C: Capacity of an FS in Gb/s when using BPSK as the

modulation format.

• s: Source node of the multicast request MR.

• D: Destination set of MR and each destination is d ∈ D.

• ̥: Number of FS’ on each link.

• B: Capacity requirement of MR in Gb/s.

• Bg: Minimum capacity that can be allocated on a light-

tree when we use R-NC, in terms of Gb/s.

• [K]: [K] = {1, 2, ...,K}, K is the maximum number of

light-trees that can be included in the light-forest3. The

index of a light-tree is k ∈ [K].
• Q: Q = ⌈ B

Bg
⌉, is the maximum value of B in terms of

Bg , and the index q satisfies q ∈ [Q].
• ∆: Maximum transmission reach when using BPSK with

single destination, i.e., ∆ = S1,1 based on Eq. (1).

• M : Highest modulation-level.

• T(u,v): Number of available FS-blocks on link (u, v).

• W(u,v),t: Start-index of the t-th available FS-block on

link (u, v).
• Z(u,v),t: End-index of the t-th available FS-block on link

(u, v).
• Sm,n: MTD relation, which tells the maximum transmis-

sion reach of a branch when there are n destinations in

a light-tree that uses modulation-level m.

Variables:

• f
(u,v)
d,k : Boolean variable that indicates whether link (u, v)

is used to serve destination d ∈ D in the k-th light-tree.

• F
(u,v)
k : Boolean variable that equals 1 if link (u, v) is in

the k-th light-tree, and 0 otherwise.

3Note that when we split the traffic into multiple sub-streams, we count a
light-tree multiple times if it carries more than one sub-stream.

• yd,k: Boolean variable that indicates whether destination

d ∈ D gets traffic from the k-th light-tree.

• xk: Integer variable that represents the number of desti-

nations covered by the k-th light-tree.

• ∆k: Integer variable that represents the length of the

longest branch on the k-th light-tree.

• mk: Integer variable that represents the modulation-level

used on the k-th light-tree.

• ok1,k2 : Boolean variable that equals 1, if the start-index

of the FS-block used on the k1-th light-tree is smaller

than that of the k2-th light-tree, and 0 otherwise.

• ck1,k2 : Boolean variable that equals 1, if the k1-th and

k2-th light-trees share common link(s), and 0 otherwise.

• wk: Integer variable that represents the start-index of the

FS-block used on the k-th light-tree.

• zk: Integer variable that represents the end-index of the

FS-block used on the k-th light-tree.

• γ
m,n
k : Boolean variable that indicates whether the k-th

light-tree satisfies the specific m and n according to the

MTD relation, where m ∈ [M ] is the modulation-level

and n is the number of destinations.

• ξk: Integer variable that represents the capacity allocated

to the k-th light-tree in terms of Bg .

• ρ
q,0
d,k: Boolean variable that equals 1 if the capacity

allocated to the k-th light-tree is q ·Bg and the k-th light-

tree does not cover d, and 0 otherwise.

• ρ
q,1
d,k: Boolean variable that equals 1 if the capacity

allocated to the k-th light-tree is q ·Bg and the k-th light-

tree covers d, and 0 otherwise.

• h
q,m
k : Boolean variable that indicates whether on the k-

th light-tree, the capacity allocated is q · Bg and the

modulation-level chosen is m.

• hm
k : Boolean variable that indicates whether on the k-th

light-tree, the modulation-level chosen is m.

• Ω: Maximum index of the used FS’ in the light-forest.

• u
(u,v),t
k : Boolean variable that equals 1, if the t-th avail-

able FS-block on link (u, v) is assigned to the k-th light-

tree, and 0 otherwise.

Objective:

We design a metric as follows to assist the optimization.

Ψ = α1 · Ω + α2 ·
∑

(u,v)∈E

∑

k∈[K]

F
(u,v)
k +

∑

k∈[K]

∆k

∆
, (2)

where α1 and α2 are positive constants (α1 ≫ α2) to balance

the ratio among the three terms in Eq. (2). The first term

is for the maximum index of the used FS’ for the request

(i.e., Ω), and a smaller Ω reflects a more efficient MC-RMSA,

as we can make the spectrum utilization more compact in

the network. Therefore, we use α1 to make sure that this

term makes the major contribution to Ψ. The second term

is the total number of used links in the light-forest, which

is less important than Ω, but is also needed to assist the

optimization. We use the third term to ensure that each tree has

the minimum ∆k. The last two terms are necessary because the

ILP only provides the MC-RMSA for one multicast request,

and when there are multiple pending requests, we will use the

ILP repeatedly to find the MC-RMSAs for them one by one.
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Hence, to minimize the values of these two variables for the

current request can benefit the rest requests. With Eq. (2), we

define the optimization objective as

Minimize Ψ. (3)

Constraints:

1) Flow Conservation Constraint,
∑

u∈V

f
(u,v)
d,k −

∑

u∈V

f
(v,u)
d,k =











−yd,k, v = s,

yd,k, v = d,

0, otherwise,

∀d ∈ D, k ∈ [K].

(4)

Eq. (4) ensures that if a light-tree covers a destination node d,

there is a single path from s to d on it.

2) Link Aggregation Constraint,

F
(u,v)
k ≥ f

(u,v)
d,k , ∀k ∈ [K], d ∈ D. (5)

Eq. (5) ensures that if different destinations share the same

link(s) in a light-tree, we aggregate the links into one.

3) Impairment-Related Constraints,
∑

(u,v)∈E

f
(u,v)
d,k · l(u,v) ≤ ∆k, ∀k ∈ [K], d ∈ D, (6)

∆k ≤ ∆, ∀k ∈ [K]. (7)

Eqs. (6) - (7) ensure that the lengths of the branches in

each light-tree should not be longer than that of the longest

branch in the light-tree or the maximum transmission reach

determined by the MTD relation.

xk =
∑

d∈D

yd,k, ∀k ∈ [K], (8)

mk =

⌊

log2(
∆

∆k

)− log2[log10(xk) + 1]

⌋

+ 1, ∀k ∈ [K],

(9)

mk ≤M, ∀k ∈ [K]. (10)

Eqs. (8) - (10) determine the modulation-level chosen for the

k-th light-tree. Since the expression in Eq. (9) is nonlinear, we

introduce the variable γ
m,n
k to linearize it and transform the

constraint in Eq. (9) into a set of equations as

∑

m

∑

n

γ
m,n
k ≤ 1, ∀k ∈ [K], (11)

∑

m

∑

n

n · γm,n
k = xk, ∀k ∈ [K], (12)

∑

m

∑

n

Sm,n · γ
m,n
k ≥ ∆k, ∀k ∈ [K], (13)

mk ≤
∑

m

γ
m,n
k ·m, ∀k ∈ [K]. (14)

4) Spectrum Assignment Constraints,

∑

t∈[T(u,v)]

u
(u,v),t
k = F

(u,v)
k , ∀k ∈ [K], (15)

wk ≥ u
(u,v),t
k ·W(u,v),t,

∀k ∈ [K], (u, v) ∈ E, t ∈ [T(u,v)],
(16)

zk ≤ (Z(u,v),t −̥) · u
(u,v),t
k +̥,

∀k ∈ [K],(u, v) ∈ E, t ∈ [T(u,v)].
(17)

Eqs. (15) - (17) ensure that if link (u, v) is on the k-th light-

tree, the FS’ allocated to the light-tree should be located in an

available FS-block on it.

zk2−wk1+1 ≤ ̥·(1+ok1,k2−ck1,k2), ∀k1, k2 ∈ [K], k1 6= k2,

(18)

zk1−wk2+1 ≤ ̥·(2−ok1,k2−ck1,k2), ∀k1, k2 ∈ [K], k1 6= k2.

(19)

Eqs. (18) - (19) ensure that for any two different light-trees

sharing common link(s), their spectrum assignments can never

overlap with each other.

5) Capacity Constraints,

For these constraints, we consider the cases with and without

R-NC, and describe those designed for each of them.

a) Case without R-NC,

∑

k∈[K]

yd,k ≥ 1, ∀d ∈ D. (20)

Eq. (20) ensures that when there is no R-NC, each destina-

tion d ∈ D only needs to be covered4 by one light-tree in

the light-forest. By applying this constraint, we avoid to use

traffic splitting in MC-RMSA. As discussed in Subsection

II-B, traffic splitting causes several drawbacks for the case

without R-NC. In the rest of the paper, we refer to the ILP

model for the case without R-NC as ILP.

zk − wk + 1 =

⌈

B

mk · C

⌉

, ∀k ∈ [K]. (21)

Eq. (21) ensures that the number of FS’ allocated to each

light-tree satisfies the capacity requirement. Eq. (21) is

nonlinear, and we linearize it with the following equations.
∑

m∈[M ]

hm
k ≤ 1, ∀k ∈ [K], (22)

∑

m∈[M ]

hm
k ·m = mk, ∀k ∈ [K], (23)

zk − wk + 1 ≥
∑

m∈[M ]

(

hm
k ·B

m · C

)

, ∀k ∈ [K]. (24)

b) Case with R-NC,

∑

k∈[K]

(yd,k · ξk ·Bg) ≥ B, ∀d ∈ D. (25)

Eq. (25) ensures that when there is R-NC, each destination

d ∈ D receives enough encoded bandwidth to recover the

4Note that, only if d ∈ D appears as a destination node in the light-tree,
we say it is covered.
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original data5. In the rest of the paper, we refer to the ILP

model for the case with R-NC as ILP-R-NC. Eq. (25) is

nonlinear, and we introduce Eqs. (26) - (29) to linearize it.

ξk =
∑

q∈[Q]

q · (ρq,0d,k + ρ
q,1
d,k) ·Bg, ∀k ∈ [K], d ∈ D, (26)

∑

q∈[Q]

ρ
q,1
d,k = yd,k, ∀k ∈ [K], d ∈ D, (27)

∑

q∈[Q]

ρ
q,0
d,k = 1− yd,k, ∀k ∈ [K], d ∈ D, (28)

Bg ·





∑

k∈[K]

∑

q∈[Q]

ρ
q,1
d,k · q



 ≥ B, ∀d ∈ D. (29)

zk − wk + 1 =

⌈

ξk ·Bg

mk · C

⌉

, ∀k ∈ [K]. (30)

Eq. (30) ensures that the number of FS’ allocated to each

light-tree satisfies the capacity requirement. As it is also

nonlinear, we linearize it by using the following equations.

∑

q∈[Q]

∑

m∈[M ]

h
q,m
k ≤ 1, ∀k ∈ [K], (31)

∑

q∈[Q]

∑

m∈[M ]

h
q,m
k ·m = mk, ∀k ∈ [K], (32)

∑

q∈[Q]

∑

m∈[M ]

h
q,m
k · q = ξk, ∀k ∈ [K], (33)

zk − wk + 1 ≥
∑

q∈[Q]

∑

m∈[M ]

(

h
q,m
k · q ·Bg

m · C

)

, ∀k ∈ [K].

(34)

6) Common-Link-Related Constraint,

ck1,k2 ≥ F
(u,v)
k1

+F
(u,v)
k2

− 1, ∀k1 6= k2 ∈ [K], ∀(u, v) ∈ E.

(35)

Eq. (35) ensures that all the common links between any two

different light-trees are taken care of.

7) Constraint on Maximum Index of Used FS’ (MIUFS),

Ω ≥ zk, ∀k ∈ [K]. (36)

Eq. (36) ensures that the maximum index Ω of used FS’ is

equal to or larger than the end-index of the FS-block used on

any light-tree in the light-forest.

The variable number in the ILP is ((|E| +M + 2·B
Bg

+ 1) ·

|D|+(|̥|+1) · |E|+( B
Bg

+1) ·M +6) ·K+2 ·K2+1, and

the constraint number is ((|V |+ |E|+4) · |D|+(2 · |̥|+1) ·
|E|+ 18) ·K + (|E|+ 2) ·K2 + 3 · |D|+ 1.

5Here, since the coding overhead of R-NC is very small such that ε ≪ 1

[29], we ignore it in the ILP formulation.

IV. HEURISTIC ALGORITHMS

In this section, we design several heuristics to perform MC-

RMSA that considers the physical impairments from both the

transmission and light-splitting in EONs. Basically, in order to

design an efficient MC-RMSA, we need to focus on improving

the light-forest’s spectral efficiency. Hence, the modulation

selection for each light-tree becomes vital. However, the MTD

relation in Eq. (1) makes the modulation selection relate to

both the longest branch and the number of destinations in the

light-tree. Specifically, a relatively high modulation-level may

not be feasible for a large light-tree. Hence, we need to address

the tradeoff between the modulation-level and the size of a

light-tree carefully, and try to use the light-trees that can use

relatively high modulation-level and cover many destinations.

A. MC-RMSA using Set-Cover

We first design an MC-RMSA algorithm that leverages

the weighted set-cover problem [31]. For a multicast request

MR(s,D,B), the universe is the destination set D, the

family A represents the set of all the non-empty subsets

of D. For instance, if D = {d1, d2}, then we have A =
{{d1}, {d2}, {d1, d2}}. We define Am,n ∈ A as the set of

destinations within which any n number of destinations can

be covered by a light-tree with modulation-level m according

to the MTD relation. In the light-forest for MR, each light-

tree has two key parameters, i.e., the number of destinations

n and the modulation-level m, which affect its spectrum

consumption significantly. First of all, the more destinations

that can be covered by the light-tree, the less light-trees will

be needed by the light-forest (i.e., less bandwidth-variable

transponders (BV-Ts)), and thus by increasing n, we can

reduce the operational cost. On the other hand, the higher the

modulation-level is, the more spectrum efficient the light-tree

is, and hence by increasing m, we can reduce the total spec-

trum consumption of MR. Therefore, we define the weight of

Am,n as β
n
+ δ

m
, where β and δ are the positive constants to

adjust the contributions of n and m. Then, the MC-RMSA is

transformed into the weighted set-cover problem that finds the

minimum-weighted cover (i.e., a subset of A) whose elements

have their union equal D.

In our algorithm, we first calculate all the shortest paths

from source node s to each destination node d ∈ D, denoted

as ps,d. Based on the MTD relation Sm,n and the length of

ps,d, we can obtain the potential destination sets {Am,n}.
However, a set Am,n might be invalid, if the destinations in

it are less than n. We remove these invalid sets. For the set

Am,n that have more than n destinations, we convert it to

multiple sets by choosing n destinations from it each time

according to the distance between source and destinations,

and when the remaining destinations are less than n, we just

ignore them. After obtaining the updated destination sets, we

find the minimum-weighted cover for them and use it to set

up the light-forest for MR.

Algorithm 1 shows the detailed procedure of the MC-RMSA

using set-cover (SC). Lines 1-8 are for the initialization, where

we set the light-forest T and each set Am,n as empty and

select the destinations to form a series of potential destination
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sets {Am,n}. The for-loop that covers Lines 9-29 updates

{Am,n} and the corresponding light-trees. We check whether

a potential Am,n is valid with Lines 14-16. The for-loop

covering Lines 18-27 calculates the light-trees based on a

specific Am,n. Specifically, we select n destinations in Am,n

each time, which are currently farthest from s, and then use a

heuristic [32] to build a delay-constrained Steiner tree to cover

s and the destinations in Am,n while satisfying the maximum

branch length Sm,n. The light-trees are then inserted into

the light-forest T , as shown in Line 22. Then, if T cannot

cover all the destinations in D, Lines 30-31 mark the MR

as blocked. Otherwise, Lines 32-39 try to perform first-fit

spectrum assignment [33] for all the light-trees in T and check

whether MR can be successfully served.

In Algorithm 1, since we can pre-calculate all the shortest

paths between each node pair in the topology, the time

complexity for checking whether the length of ps,d is within

Sm,n is O(|V |), the complexity of constructing the delay-

constrained Steiner tree is O(|D|3 + |D| · |V |) according

to [32], in the worst case, the procedure will be performed

M · |D| . The complexity of assigning FS’ to the light-forest

is O(|D| · |V |2 · |̥|). Hence, the time complexity of Algorithm

1 is O(M · |D|4 +M · |D|2 · |V |+ |D| · |V |2 · |̥|).

B. MC-RMSA using Set-Cover and Layered Auxiliary Graphs

The second MC-RMSA heuristic leverages the good perfor-

mance of the layered auxiliary graph (LAG) based approach

that we proposed in [22]. Basically, the LAG approach can

realize integrated multicast routing and spectrum assignment.

Here, we combine SC with the LAG approach and propose the

SC-LAG algorithm for MC-RMSA that considers the MTD

relation. We define a threshold m0, which is specific to a

given topology G(V,E), to divide the modulation-levels into

two categories: 1) high modulation-levels (m > m0) and 2)

low modulation-levels (m ≤ m0). Here, for MR(s,D,B), the

meanings of D and A are the same as those in Subsection

IV-A. Then, for an element in A with the destination set

that can be served with a high modulation-level according

to the MTD relation, we still apply SC in G(V,E) to serve

the destinations, since SC uses relatively few FS’ in total.

However, if the destination set has to use a low modulation-

level, we apply the LAG approach and use SC in each LAG

to avoid generating excessive spectrum fragmentation.

The details of the SC-LAG algorithm are given in Algorithm

2. In Lines 1-7, we run Algorithm 1 to find and serve all the

light-trees that need high modulation-levels (m > m0). If there

are still some destination(s) that have not be covered, Lines 8-

39 try to serve them with the SC-LAG approach. The for-loop

that covers Lines 10-20 builds the LAGs according to the spec-

trum usage in the network, and selects the destinations to form

set Ai
m,n, which means that any n destinations in Ai

m,n can

be served in the i-th LAG Gi(V i, Ei) with modulation-level

m according to the MTD relation. Specifically, to construct

the i-th Gi(V i, Ei), we make V i = V , check the spectrum

usage in G(V,E), and insert a link e in Gi(V i, Ei), if starting

from the i-th FS, there are ⌈ B
C·m⌉ available contiguous FS’ on

e in G(V,E). Hence, if we can obtain a light-tree from s to

Algorithm 1: MC-RMSA using Set-Cover (SC)

input : Multicast request MR(s,D,B), the shortest

path from s to each d in D as ps,d, the MTD

relation {Sm,n}, the modulation-level set

[M ], and the available FS’ on each link.

output: Light-forest T and allocated FS’ on it.

1 T ← ∅, Am,n ← ∅;
2 for each Sm,n that m ≤M and n ≤ |D| do

3 for each d ∈ D do

4 if length(ps,d) ≤ Sm,n then

5 Am,n ← Am,n ∪ d;

6 end

7 end

8 end

9 for n = |D| to 1 do

10 if D = ∅ then

11 break;

12 end

13 for m = M to 1 do

14 if |Am,n| < n then

15 continue;

16 end

17 j =
⌊

|Am,n|
n

⌋

;

18 for i = 1 to j do

19 select n farthest destinations from s in

Am,n;

20 record selected destinations in Dtemp;

21 calculate the delay-constrained Steiner

tree T to cover s and selected Dtemp;

22 T = T ∪ T , D = D \Dtemp;

23 delete Dtemp from all Am,n;

24 if D = ∅ then

25 goto line 32;

26 end

27 end

28 end

29 end

30 if D 6= ∅ then

31 mark MR as blocked;

32 else

33 assign FS’ to the light-trees in T ;

34 if spectrum assignment is not successful then

35 mark MR as blocked;

36 else

37 return T and allocated FS’;

38 end

39 end
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Algorithm 2: MC-RMSA using Set-Cover and Lay-

ered Auxiliary Graphs (SC-LAG)

input : Multicast request MR(s,D,B), the shortest

path from s to each d in D as ps,d, the MTD

relation {Sm,n}, the modulation-level set

[M ], and the available FS’ on each link.

output: Light-forest T and allocated FS’ on it.

1 run Algorithm 1 to build the light-trees;

2 perform spectrum assignment for the light-trees that

need a high modulation-level (m > m0);

3 if the MC-RMSA has failed then

4 mark MR as blocked;

5 return;

6 end

7 remove the served destinations in D;

8 if D 6= ∅ then

9 for m = m0 to 1 do

10 for n = 1 to |D| do

11 for i = 1 to (̥− ⌈ B
C·m⌉) + 1 do

12 construct an LAG Gi(V i, Ei);
13 for each d ∈ D do

14 calculate the shortest path from s

to each d ∈ D in Gi as pis,d;

15 if length(pis,d) ≤ Sm,n then

16 insert d into Ai
m,n;

17 end

18 end

19 end

20 end

21 delete all Ai
m,n with |Ai

m,n| < n;

22 while there is Ai
m,n that |Ai

m,n| > 0 do

23 select Ai
m,n with the largest |Ai

m,n|;

24 j =
⌊

|Ai
m,n|

n

⌋

;

25 for k = 1 to j do

26 select n farthest destinations to s in

Gi from Ai
m,n;

27 record selected destinations in Dtemp;

28 calculate the shortest-path tree T to

cover s and selected Dtemp in Gi;

29 allocate spectrum to T based on Gi;

30 T = T ∪ T , D = D \Dtemp;

31 delete Dtemp from all Ai
m,n;

32 delete all Ai
m,n with |Ai

m,n| < n;

33 if D = ∅ then

34 return;

35 end

36 end

37 end

38 end

39 end

40 if D 6= ∅ then

41 mark MR as blocked;

42 else

43 return T and allocated FS’;

44 end

certain destinations in Gi(V i, Ei), those destinations can be

served with the light-tree, using the i-th to (i + ⌈ B
C·m⌉ − 1)-

th FS’ in G(V,E). With all the {Ai
m,n}, the while-loop

covering Lines 22-37 tries to serve the remaining destinations

by building the largest feasible light-tree in the LAGs with

the highest modulation-level each time. Finally, if certain

destinations still have not been served, Lines 40-41 mark MR

as blocked, otherwise, the algorithm returns the light-forest T
and allocated FS’ on it for MR.

The time complexity of the Dijkstra’s algorithm is O(|E|+
|V | · log|V |) if we use the Fibonacci-heap data structure

according to [34]. And the complexity of calculating the

shortest-path tree is O(|D| · |V |) according to [35], if we know

the shortest path from the source to each destination. And the

complexity of deleting destinations from all the {Ai
m,n} is

O(|̥| · |D| ·M). Thus, the time complexity of the LAG part

is O (M · (|̥| · (|E|+ |V |log|V |) + |D| · (|V |+ |̥| · |D|))).
Finally, the time complexity of Algorithm 2 is O(M · |D|4 +
M · |D|2 · |V |+ |D| · |V |2 · |̥|+M ·(|̥| ·(|E|+ |V | · log|V |)+
|D| · (|V |+ |̥| · |D|))).

C. MC-RMSA with R-NC using Set-Cover and Layered Aux-

iliary Graphs

Note that both SC and SC-LAG do not consider R-NC.

Actually, we can easily extend SC-LAG and make it support

the scheme that splits the traffic to certain destination(s) into

multiple sub-streams and sends them over multiple light-trees,

when MR cannot be served due to lack of spectrum resources.

More specifically, in Line 11 of Algorithm 2, we can replace

B with Bg (i.e., the spectrum-splitting granularity) and build

the LAGs accordingly. Also, before finishing the MC-RMSA,

we need to make sure that all the destinations in D can receive

enough encoded bandwidth to recover the original data. This

MC-RMSA heuristic is referred to as SC-LAG-R-NC.

V. PERFORMANCE EVALUATION

A. Static Network Planning

Since the heuristics in Section IV are designed for dynamic

network provisioning, we make minor modifications in SC-

LAG-R-NC and SC-LAG to make them suitable for static

network planning. Specifically, in SC-LAG-R-NC, the R-NC

with light-forest is applied when a multicast request cannot

be provisioned due to the lack of spectrum resources, which

however, would not be an issue in static network planning.

Hence, we modify this trigger condition to when serving a

multicast request would increase the maximum index of the

used FS’ (MIUFS) in the network. Similarly, SC-LAG is also

modified accordingly.

We evaluate the performance of the ILP model and heuris-

tics in static network planning with the six-node topology

shown in Fig. 5, considering both the cases with and without

R-NC. All the simulations run on a computer with 3.40 GHz

Intel Core i3 CPU and 4 GB RAM and we use Lingo v11.0

[36] to solve the ILP. We assume that in the EON, an FS

provides a capacity of C = 12.5 Gb/s when using BPSK

as the modulation format, and we choose two modulation-

levels as m = 1 (BPSK) and m = 3 (8-QAM) to limit
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TABLE I
SIMULATION RESULTS FOR STATIC NETWORK PLANNING

# of Request
ILP ILP-R-NC SC SC-LAG SC-LAG-R-NC

MIUFS
Running
Time (s)

MIUFS
Running
Time (s)

MIUFS
Running
Time (s)

MIUFS
Running
Time (s)

MIUFS
Running

Time (s)

5 8.4 63.368 7.2 1140.687 12.2 0.028 10.4 0.076 10.4 0.087

10 15.4 161.119 12.6 1106.446 18.8 0.041 17.2 0.147 16.8 0.173

20 24.6 956.641 20.6 3123.407 31.2 0.080 31.2 0.275 28.6 0.313

35 39.0 1948.963 36.0 8638.648 52.6 0.135 47.4 0.507 46.6 0.580

50 53.0 3134.702 50.0 9204.175 71.0 0.167 68.0 0.741 64.8 0.882

the computational complexity. For each MR(s,D,B), the

source s and destinations D are randomly chosen, while B

is uniformly distributed within [25, 75] Gb/s. The size of D is

set as 2 or 3 randomly, and the maximum number of light-trees

in a light-forest is K = 3.

Table I shows the simulation results on MIUFS in the

network after serving all the multicast requests and the total

computation time. In order to obtain each data point, we run

the simulation 5 times and average out the results. Firstly,

we discuss the performance difference between ILP and ILP-

R-NC. We observe that ILP-R-NC obtains smaller results on

MIUFS than ILP but its computation time is also longer, and

the difference between the results on MIUFS is not significant.

There are two factors that limit the performance of ILP-R-

NC. One is that due to its high time complexity, we limit the

maximum number of light-trees that can be included in a light-

forest as K = 3, which may make ILP-R-NC provide sub-

optimal solutions since the case with R-NC usually requires

more light-trees to serve a multicast request. The other is that

the six-node topology is too small, which also restricts the

performance gap between ILP and ILP-R-NC. Secondly, we

analyze the differences among the three heuristics. We observe

that SC-LAG-R-NC provides the best performance on MIUFS

since it can make network spectrum utilization more compact.

While the performance of SC is the worst, since it considers

the routing and spectrum assignment of a request separately.

We also notice that SC-LAG and SC-LAG-R-NC have the

same performance on MIUFS when the number of requests

is 5. The reason is that the R-NC with light-forest is seldom

applied for such a case in SC-LAG-R-NC. We can also see

that for the heuristics, the trend on total running time is in the

opposite direction of the performance on MIUFS.

Finally, it can be seen that the ILPs has better performance

on MIUFS than the heuristics, but they also consume signifi-

cantly longer computation time. Therefore, it is not practical to

use the ILPs in large-scale networks and/or a dynamic network

scenario that require real-time service provisioning decisions,

considering the complexity and scalability. Thus, we will only

discuss the time-efficient heuristics in the performance evalua-

tion for dynamic network provisioning in the next subsection.

B. EONs Provisioning With Dynamic Multicast Traffic

In this subsection, we perform simulations with the two

topologies shown in Figs. 6 and 7 for dynamic network pro-

visioning. We consider that four modulation formats, BPSK,

Fig. 6. NSFNET topology with fiber lengths in kilometers marked on links.

Fig. 7. US Backbone topology with fiber lengths in kilometers marked on
links.

QPSK, 8-QAM and 16-QAM can be used in the EON. Each

fiber link can accommodate 358 FS’ (i.e., ̥ = 358) that

each has a capacity of C = 12.5 Gb/s when using BPSK.

The source and destinations are selected randomly from the

topology, and for each traffic load, we simulate 10, 000 re-

quests. The capacity requirements of the multicast requests are

uniformly distributed within [50, 100] Gb/s, and the average

number of destinations in the requests is 4. We generate the

requests according to the Poisson traffic model with λ as the

average arrival rate and 1
µ

as the average holding time. Then,

the traffic load of multicast requests can be quantified with λ
µ

in Erlangs. For SC-LAG and SC-LAG-R-NC, we set m0 = 1
and m0 = 2 for the NSFNET and US Backbone topologies

in Figs. 6 and 7, respectively. This is because the average

link lengths in NSFNET and US Backbone are 968.18 km

and 466.49 km, respectively. For SC-LAG-R-NC, we set the

spectrum-splitting granularity as Bg = max(⌈ B
4·C ⌉, 1) · C.

Figs. 8(a) and 9(a) show the simulation results on blocking

probability. It can be seen that in both topologies, SC provides

the highest blocking probability. It performs worse than LAG-

based approaches since LAG-based approaches achieve inte-
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(b) Results on average number of light-trees per multicast request.

Fig. 8. Results from simulations with the NSFNET topology.

grated multicast routing and spectrum assignment and can al-

leviate spectrum fragmentation during the dynamic operation.

Among the three heuristics, SC-LAG-R-NC performs the best.

This is because the R-NC scheme with spectrum-splitting in

SC-LAG-R-NC can leverage multiple sub-streams to provision

relatively large traffic demands and arrange the light-trees well

by using the LAG approach.

Nevertheless, even though the LAG-based approaches (SC-

LAG and SC-LAG-R-NC) can improve the blocking perfor-

mance of the network compared with SC, they require more

light-trees per request than SC as illustrated in Figs. 8(b) and

9(b). This means that they may need more BV-Ts, which

results in higher operational costs. Therefore, to provision the

multicast requests, we have a tradeoff between the blocking

performance and operational cost. It is also interesting to

notice that the results on the average number of light-trees

per request from SC and SC-LAG stay almost unchanged

when the traffic load increases, but those from SC-LAG-R-

NC show noticeable increase when the traffic load is higher

than 150 and 180 Erlangs in the NSFNET and US Backbone

topologies, respectively. This is because when the traffic load

is higher, SC-LAG-R-NC invokes the spectrum-splitting with

R-NC more frequently to serve more requests in the network.

VI. CONCLUSION

This paper investigated the MC-RMSA schemes that con-

sider the physical impairments from both the transmission and

light-splitting in EONs, and proposed to serve each multicast
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Fig. 9. Results from simulations with the US Backbone topology.

request with a light-forest that consists of one or more light-

trees. In order to further improve the spectral efficiency and

compensate for the latency differences among the light-trees,

we used the rateless network coding (R-NC) in the multicast

system. An ILP model was first formulated to tackle the prob-

lem of static network planning. Then, we leveraged the set-

cover problem and utilized layered auxiliary graphs to design

time-efficient heuristics. The simulation results showed that

the MC-RMSA using light-forest with R-NC could effectively

improve the performance of all-optical multicast in EONs.
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