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Simple Summary: The histopathological detection of these malignancies is a vital element in deter-
mining the optimal solution. Timely and initial diagnosis of the sickness on either front diminishes
the possibility of death. Deep learning (DL) and machine learning (ML) methods are used to hasten
such cancer recognition, allowing the research community to examine more patients in a much shorter
period and at a less cost.

Abstract: Cancer is a deadly disease caused by various biochemical abnormalities and genetic dis-
eases. Colon and lung cancer have developed as two major causes of disability and death in human
beings. The histopathological detection of these malignancies is a vital element in determining the
optimal solution. Timely and initial diagnosis of the sickness on either front diminishes the possibility
of death. Deep learning (DL) and machine learning (ML) methods are used to hasten such cancer
recognition, allowing the research community to examine more patients in a much shorter period
and at a less cost. This study introduces a marine predator’s algorithm with deep learning as a lung
and colon cancer classification (MPADL-LC3) technique. The presented MPADL-LC3 technique aims
to properly discriminate different types of lung and colon cancer on histopathological images. To
accomplish this, the MPADL-LC3 technique employs CLAHE-based contrast enhancement as a pre-
processing step. In addition, the MPADL-LC3 technique applies MobileNet to derive feature vector
generation. Meanwhile, the MPADL-LC3 technique employs MPA as a hyperparameter optimizer.
Furthermore, deep belief networks (DBN) can be applied for lung and color classification. The simu-
lation values of the MPADL-LC3 technique were examined on benchmark datasets. The comparison
study highlighted the enhanced outcomes of the MPADL-LC3 system in terms of different measures.

Keywords: lung cancer; colon cancer; computer-aided diagnosis; MobileNet; marine predator’s algorithm

1. Introduction

Cancer is a common disease where abnormal cells start to develop in an uncontrolled
manner, which starts in any tissue or organ of the body. Cancer ranks as the second leading
factor of death worldwide, accounting for nearly 9.6 million deaths in 2018 [1–3]. Among
several cancer types, lung cancer denotes 1.76 million passings and 2.06 million cases,
whereas colorectal malignancy accounts for 783 thousand deaths and 1.80 million cases.
Non-small-cell cancer (NSCLC) and small-cell cancer in the lungs (SCLC) are the two kinds
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of lung cancer [4,5] which abruptly spread and develop. SCLC remains a dangerous form
of cancer from cells displaying neuroendocrine qualities and is recorded for fifteen percent
of total lung cancer cases. NSCL accounts for 85% of total cases and is further divided into
3 pathology types; they are enormous cell carcinoma, adenocarcinoma, and squamous cell
carcinoma [6]. So, accurate and timely diagnosis of lung cancer histology was an urgent
need since its treatment relies upon the histology types, stage of the disease, and molecular
profile; it was found to be vital for analyzing the histopathology imageries of lung cancer.
Yet, manual analysis of histopathology reports is subjective and time-taking [7–10].

Nowadays, the technical advancement in the domain of medical image and image
processing has presented a lot of effective and cost-effective computer-aided diagnostics
methods [11,12]. The end goal of the old technique was to execute a pattern-recognition-
related mechanism for automatic cancer diagnosis. The technique extracts a standard set
of handcrafted features from histology imageries and trained classifiers’ over-extracted
features for categorizing the tumorous cells [13]. These days, medical image processing
has grabbed the attention of many in deep neural networks (DNNs), which combines
classification and feature extraction within a unified learning structure [14–16]. DNN has
successfully shown great tasks in image segmentation, image classification, and object
recognition. Convolutional neural networks (CNNs), which were DNN approaches, were
broadly utilized in computer vision (CV) tasks because of their auspicious success in tar-
get recognition and classification [17]. The performance is based on the depth of CNN.
However, increasing the CNN depth can cause problems with saturated accuracy and van-
ishing gradient, which becomes a network challenge. DNNs have positively shown great
achievements in image segmentation, image classification, and object recognition [18–20].

This study introduces a marine predator’s algorithm with deep learning as a lung and
colon cancer classification (MPADL-LC3) technique. The presented MPADL-LC3 technique
employs CLAHE-based contrast enhancement as a pre-processing step. In addition, the
MPADL-LC3 technique applies MobileNet to derive feature vector generation. Meanwhile,
the MPADL-LC3 technique employs MPA as a hyperparameter optimizer. Furthermore,
deep belief networks (DBN) can be applied for lung and color classification. The simulation
values of the MPADL-LC3 technique are examined on benchmark datasets in terms of
different measures.

The rest of the paper is given as follows. Section 2 provides a detailed literature review,
and Section 3 offers the proposed model. Then, Section 4 elaborates on the performance
validation, and Section 5 concludes the work.

2. Related Works

This section offered a detailed literature review of existing lung and colon detection
techniques. A new optimized hybrid DL and ML architecture is developed in [21]. This
architecture comprises two stages. At first, the features of lung and colon histopathological
images (HSI) were mined by the PCA network. Next, classification was performed by using
the ELM algorithm with the ROA that categorizes lung cancer and CC into five different
types. Hoang et al. [22] developed a modified DNN transfer learning for lung cancer, and
CC classification relies upon GoogLeNet. Particularly, the fundamental concept of the
Inception model of GoogLeNet runs convolution and pooling operations with different
filter sizes simultaneously such that there is no need to face any trade-offs. The next
advantage of the Inception model is overparameterization dealing and dimensionality
reduction of feature maps.

Attallah et al. [23] developed an architecture based on a lightweight DL approach for
the earlier detection of lung cancer and CC. The architecture uses different transformation
techniques that implement feature reduction and offer a broader representation of the
data. In that regard, HSI is fed into the SqueezeNet, ShuffleNet, and MobileNet methods.
The amount of deep features attained from the model is consequently decreased using
fast Walsh–Hadamard transform (FHWT) and PCA models. Next, the DWT model is
used for fusing the FWHT-reduced features attained from three different DL algorithms.
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In Toğaçar [24], AI-supported models and optimization techniques have been used for
realizing the classification of lung cancer and CC HSI. In this work, the image class was
trained from scratch with DarkNet-19, which is one of the DL techniques.

Mangal et al. [25] presented a computer-assisted diagnosis technique for detecting
squamous cell carcinomas and adenocarcinomas of the lung and colon using the CNN
network by estimating the digital pathology image for cancer. A shallow NN was used for
classifying HSI into squamous cell carcinomas, benign, and adenocarcinomas for the lung.
Mehmood et al. [26] developed a computationally efficient and highly accurate method for
swift and precise detection of lung cancer and CC as a substitute for the cancer detection
method. A massive dataset of lung and colon HSI was used for the validation and training
process [27]. A CNN-based method was developed for the classification of lung cancer
and CC image datasets utilizing two common optimizer techniques: RMSprop and Adam.
In this work, a separate model was constructed for lung cancer and CC through CNN for
more accurately predicting the types of the disease.

3. The Proposed Model

In this study, we have introduced a new MPADL-LC3 algorithm for lung and colon
cancer classification. The presented MPADL-LC3 method aims to properly discriminate
different types of lung and colon cancer in histopathological images. To accomplish this, the
MPADL-LC3 technique encompasses CLAHE-based contrast enhancement, MobileNet fea-
ture extraction, MPA-based hyperparameter tuning, and DBN-based classification. Figure 1
illustrates the overall flow of the MPADL-LC3 approach.
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3.1. Contrast Enhancement

Primarily, the contrast enhancement uses the CLAHE technique. CLAHE has been
primarily employed for enriching low-contrast medical imageries [28]. CLAHE varies
from normal AHE in that it limits contrast. To address the problem of noise amplification,
the CLAHE enforced clipping limits. Before computation of the Cumulative Distribution
Function, the CLAHE limits the intensification by clipping the histogram at a predefined
value (CDF). The CLAHE approach has divided input original images into non-overlapping
contextual areas called sub-images, blocks, or tiles. The CLAHE can be described by two
variables: Clip Limit (CL) and Block Size (BS). These two variables chiefly govern enhanced
image quality. If CL is amplified, the image becomes brighter as the input images contain a
very low intensity, and larger CL makes its histogram flatter.

3.2. Feature Extraction Using Optimal MobileNet

In this study, the MobileNet model is employed for feature vector generation. CNN
is an effective network type of DNN to deal with a considerable quantity of difficulty
around the computation and pre-processing of data [29]. The major component of the
CNN entails dropout, convolutional, pooling, flattening, and nonlinear activation layers.
The convolutional layer mines the feature map out of input images, which are the main
layer in CNN. The flattening layer transforms (flattens) the dataset into an array; thus,
the dense layer performs data computation. The pooling layer, termed a sub-sampling
layer, is a major component of CNN. The pooling layer acts on the feature map extracted
through the convolution layer. It decreases the feature size for extracting the relevant
feature from the feature map to prevent overfitting. Pooling can be a sum, max, or average.
The max-pooling can find more sharp features than the sum and average pooling.

MobileNet is a lightweight DNN structure with higher classification accuracy and
fewer parameters. It is a CNN architecture for mobile vision applications and image classifi-
cation. MobileNet applies depthwise separable convolution in every color channel instead
of merging all three and flattening them. The depthwise separable layer is divided into two
layers, a separate layer of filtering and a separate layer for compiling. This factorization
of the MobileNet model decreases the model and computational size. MobileNet is better
suited for embedded systems since it needs lower computational power to run and is
efficient in the healthcare field. This study develops artificially intelligent medical devices
based on MobileNet architecture that takes lower computational power with optimum
time and provides higher accuracy. The MobileNet model is suitable for embedded vision
applications. An additional feature of the MobileNet model is two global hyperparameters
that effectively present the trade-offs between latency and accuracy.

For an optimal hyperparameter tuning process, the MPA is involved in this study.
The MPA is a population, iterative-based optimization technique [30]. At first, an ini-
tial population of the solution is generated. The population matrix of n× d size can be
produced by:

P =


X1,1 X1,2 . . . X1,d
X2,1 X2,1 . . . X2,d

...
...

...
...

Xn,1 Xn,2 . . . Xn,d

 (1)

In Equation (1), n refers to the population size, viz, the number of searching agents
(every prey and predator are looking for food and regarded as a searching agent), and d
denotes the dimension (number of parameters) of every agent. Every parameter of the
initial solution was distributed uniformly over searching space as follows:

Xj = lb + rand× (ub − lb), (2)

In Equation (2), lb and ub represent the lower and upper bounds, and rand indicates a
uniform distribution random integer. The topmost predator has the better foraging abilities
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according to the concept of survival of the fittest. Thus, the best solution was selected as a
better predator and utilized for constructing a matrix named Elite.

Elite =


X I

1,1 X I
1,2 . . . X I

1,d

X I
2,1 X I

2,2 . . . X I
2,d

...
...

...
...

X I
n,1 X I

n,2 . . . X I
n,d

 =


X
X
...
X

, (3)

In Equation (3), X denotes the topmost predator vector that is repeated n times to
create an Elite matrix. The Elite matrix would be upgraded at the end of every iteration if
the optimal predator of the population was swapped by the best predator. Another matrix
called Prey was produced by a similar dimension as the Elite.

Prey =


X1,1 X1,2 . . . X1,d
X2,1 X2,2 . . . X2,d

...
...

...
...

Xn,1 Xn,2 . . . Xn,d

, (4)

where Xi,j represents the jth dimension of its prey. During the first iteration, the Prey matrix
is equal to the randomly generated population matrix P. In all subsequent iterations, the
Prey is updated, and its values are used to compute the Elite matrix. The update of the
Prey matrix is carried out separately in three phases of MPA optimization.

Phase 1: This stage agrees to a higher velocity ratio and occurs at the first
(

1
3

)
th of

maximal iteration where exploration is greater. The updating rule can be represented as:

Stepsizei = RB ⊗ (Elitei − RB ⊗ Preyi), ∀i = 1, · · · , n (5)

Preyi = Preyi + P.R⊗ Stepsizei, ∀i = 1, · · · , n (6)

From the expression, Preyi denotes the vector of the Prey matrix, and RB and R
show the vector of d dimension comprising arbitrary numbers from Normal and Uniform
distribution, correspondingly. P denotes a constant equivalent to 0.5, and ⊗ indicates
component-wise multiplication.

Phase 2: This stage agrees to the unit velocity ratio once the prey and predator move
at a similar pace and happens for the intermediate (1

3)rd of the iteration, where exploration
and exploitation matter. The updating rule can be represented as:

Stepsizei = RL ⊗ (Elitei − RL ⊗ Preyi), ∀i = 1, · · · ,
n
2

(7)

Preyi = Preyi + PR⊗ Stepsizei, ∀i = 1 · · · ,
n
2

(8)

Stepsizei = RB ⊗ (Elitei − RB ⊗ Preyi), ∀i =
n
2
+ 1, · · · , n (9)

Preyi = Elitei + P.CP⊗ Stepsizei, ∀i =
n
2
+ 1 · · · , n (10)

Now, RL indicates a vector of size d comprising a random number depending on Lévy

distribution, CF = (1− I
IMax

)
(2 l

lMax
) denotes the adaptive parameter used for controlling

the step size for predator movement, I indicates the existing iteration, and IMax represents
the maximal amount of iterations.
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Phase 3: This stage agrees to a lower velocity ratio once the predator moves faster
when compared to the prey. This phase occurs at the last (1

3)rd iteration where exploitation
matters. The updating rule can be represented as:

Stepsizei = RL ⊗ (Elitei − Preyi), ∀i = 1, · · · , n (11)

Preyi = Elitei + P.CP⊗ Stepsizei, ∀i = 1 · · · , n (12)

Next, the behavioral change in MPs is modeled due to environmental effects. This
effect is called fish aggregating devices (FADs) and is also represented as local optimal;
thus, the prey and predator should implement a long jump during simulation to prevent
stagnation in local optimal. The updating rule of the Prey matrix can be mathematically
expressed:

Preyi = {
Preyi
Preyi

ax−X

Preyr1

n)]⊗
Preyr2

+ R⊗ XmmiU + ((−)r > PADs)}

Preyi =

{
Preyi + CF

[
Xmin + R⊗

(
Xmax − Xmin

)
⊗U r ≤ FADs

Preyi + [FAD(1− r)r] +
(

Preyr1 − Preyr2
)

r > FADs

}
,

(13)

where FADs = 0.2 denotes the existence probability of the FAD effect; U represents a
randomly produced binary vector; r indicates the uniformly distributed random integer in
[0, 1]; and Xmax and Xmin indicate the vector has minimum and maximum boundaries of
dimensions, correspondingly; and r1, and r2 denote random numbers of Prey matrix.

Afterward, the Prey matrix was upgraded based on Equations (6) to (12), and inte-
grating the FAD effect of Equation (13), these matrices are assessed for fitness functions.
The fitness of every solution of the present iteration was compared with its corresponding
solutions at the previous iteration. When the present solution was better, they replaced the
earlier one. At the following iteration, the better solution of Prey generates the Elite matrix
and upgrades the Prey matrix based on Equations (6) to (12).

The MPA approach has derived fitness functions for obtaining enhanced classifier
outcomes. It determined positive values for indicating the superior outcome of the candi-
date solutions. Here, the reduced classifier error rate was treated as the fitness function, as
specified in Equation (14).

f itness(xi) = Classi f ier Error Rate(xi) =
number o f misclassi f ied samples

Total number o f samples
∗ 100, (14)

3.3. Classification Model Using DBN Model

In the final phase, the DBN method can be used for lung and color classification.
DBN is a probabilistic generalization model collected by the stacked module of RBM
and provides an alternative to the discriminatory nature of classical NN [31]. The most
important feature of DBN is the capability to encode higher-request network structure and
quick induction. The DBN model used two probabilities and unassisted solving to deliver
output. It is made up of double inert factors, and they have coordinated and undirected
layers. Different from other models, every layer in DBN learns the complete data. It is
used for clustering, identification, image processing, signal-capture data, and video sequels
in addition to training non-linear autoencoder (AE). Figure 2 illustrates the framework
of DBN. The mathematical modeling of DBN is given in the following: A DBN with l
hidden layer (HL) contains l weight matrices W(1), . . . , W(l); also, it has l + 1 bias vector
b(0), . . . , b(1), where b(0) provides the bias for the visible layer shown below:

P(h(l), h(l−1)) ∝ exp(b(l)
T

h(l) + b(l−1)T
h(l−1) + h(l−1)T

W(l)h(l)), (15)

(h(k)i = 1|h(k+1)) = σ
(

b(k)i + W(k+1)T

:,i h(k+1)
)

, (16)
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where ∀i, ∀k ∈ 1, . . . , l − 2

P(vi = 1|h(1)) = σ
(

b(0)i + W(1)T

:,i h(1)
)
∀i, (17)

In the case of the real-valued visible unit, replace

v ∼ N
(

b(0) + W(1)T
h(l)β−1

)
, (18)

with β diagonal for tractability σ(x) = 1/(1 + exp(−x)). The weight from the trainable
DBN is utilized as the initialized weight of the DNN:

h(1) = σ(b(1) + vTW(1)), (19)

h(l) = σ
(

b(l)i + h(l−1)T
W(l)

)
, ∀l ∈ 2, . . . , m, (20)
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Additionally, the entire load is tweaked by using backpropagation or other discrimina-
tory modules to improve the effectiveness of the algorithm.

An AE–NN can adaptively discover data characteristics and later characterize the
complicated data in an effective manner that improves the accuracy and training speed [32].
Thus, the study presents an AE layer to mine features from X′ pre-processed data. It has an
encoder and decoder procedure. These two procedures are NN with a similar structure.
The input and output layers have a similar number of nodes and similar meanings. The
encoding layer reduces the number of dimensions of the input dataset X′ to the HL, and

then the decoding layer will decode the HL to X′, whereby the error between X′ and
∼
X
′

should be smaller. The encoder process can be mathematically expressed as follows:

E1 = f (W1 × X′ + b1)
E2 = f (W2 × E1 + b2)
. . .
En = f (Wn × En−1 + bn)

, (21)

Furthermore, the decoder process can be mathematically expressed as follows:

D1 = f
(
W ′1 × En + b′1

)
. . .
Dn−1 = f

(
W ′n−1 × Dn−2 + b′n−1

)
Dn = f (W ′n × Dn−1 + b′n)
X′ = f

(
W ′n+1 × Dn + b′n+1

) , (22)

where (w1, w2, . . . wn) and (b1, b2, . . . bn) represent the weight and bias in the encoding
stage,

(
w′1, w′2, . . . , w′n

)
and

(
b′1, b′2, . . . b′n

)
signify weights and biases in decoding stage, and

n defines the count of encoding and decoding layers. The objective function is as given
in Equation (23) to train the suitable parameter, whereas N denotes the number of input
datasets for batch processing. Lastly, En is utilized as an input to the GRU layer as follows:

L(
∼
X′, X′) = ∑ (

∼
X′ − X′)2

N
, (23)

4. Results and Discussion
4.1. Data Used

In this section, the lung and colon cancer classification results of the MPADL-LC3
technique can be examined on a dataset comprising 25,000 HIs [33]. The details relevant
to the dataset are reported in Table 1. Figure 3 represents the sample image of the colon
and lung.

Table 1. Details of the dataset.

Class Name Description No. of Samples

Col_Ad Colon Adenocarcinoma 5000

Col_Be Colon Benign Tissue 5000

Lun_Ad Lung Adenocarcinoma 5000

Lun_Be Lung Benign Tissue 5000

Lun_SC Lung Squamous Cell Carcinoma 5000

Total Number of Samples 25,000
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4.2. Result Analysis

In Figure 4, the confusion matrices of the MPADL-LC3 technique on colon and lung
cancer classification are reported. The results indicate that the MPADL-LC3 technique has
accurately identified lung and colon cancer types.

In Table 2, the overall colon and lung cancer classification outcomes of the MPADL-
LC3 technique with 80:20 of TRS/TSS are offered. In Figure 5, the classification results of
the MPADL-LC3 method on 80% of TRS are provided. The results represented that the
MPADL-LC3 technique has provided effectual outcomes under all classes. It is highlighted
that the MPADL-LC3 technique reaches an average accuy of 99.25%, precn of 98.12%, recal
of 98.12%, Fscore of 98.12%, and AUCscore of 98.82%.
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Table 2. Classifier outcomes of MPADL-LC3 approach on TRS/TSS of 80:20.

Labels Accuy Precn Recal Fscore AUCscore

Training Phase (80%)

Col_Ad 99.35 98.28 98.41 98.35 98.99

Col_Be 99.10 98.21 97.30 97.76 98.43

Lun_Ad 99.29 98.24 98.19 98.21 98.87

Lun_Be 99.19 97.73 98.24 97.98 98.83

Lun_SC 99.30 98.13 98.44 98.28 98.98

Average 99.25 98.12 98.12 98.12 98.82
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Table 2. Cont.

Labels Accuy Precn Recal Fscore AUCscore

Testing Phase (20%)

Col_Ad 99.28 97.73 98.85 98.29 99.12

Col_Be 99.08 98.07 97.28 97.67 98.40

Lun_Ad 99.42 98.64 98.55 98.59 99.10

Lun_Be 99.30 98.45 97.95 98.20 98.79

Lun_SC 99.28 98.02 98.23 98.12 98.88

Average 99.27 98.18 98.17 98.17 98.86
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In Figure 6, the classification outcomes of the MPADL-LC3 approach on 20% of TRS
are provided. The outcomes designated in the MPADL-LC3 system have rendered effectual
outcomes under all classes. It is pointed out that the MPADL-LC3 method reaches an average
accuy of 99.27%, precn of 98.18%, recal of 98.17%, Fscore of 98.17%, and AUCscore of 98.86%.
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In Table 3, the overall colon and lung cancer classification outcomes of the MPADL-
LC3 technique with 70:30 of TRS/TSS are provided. In Figure 7, the classification results
of the MPADL-LC3 method on 70% of TRS are offered. The results represented that the
MPADL-LC3 technique has provided effectual outcomes under all classes. It is noted that
the MPADL-LC3 algorithm attains an average accuy of 99.21%, precn of 98.02%, recal of
98.02%, Fscore of 98.02%, and AUCscore of 98.76%.

Table 3. Classifier outcomes of MPADL-LC3 approach on TRS/TSS of 70:30.

Labels Accuy Precn Recal Fscore AUCscore

Training Phase (70%)

Col_Ad 98.94 97.63 97.04 97.33 98.23

Col_Be 99.32 98.18 98.48 98.33 99.01

Lun_Ad 99.17 98.10 97.80 97.95 98.66

Lun_Be 99.25 98.00 98.20 98.10 98.85

Lun_SC 99.35 98.17 98.57 98.37 99.05

Average 99.21 98.02 98.02 98.02 98.76

Testing Phase (30%)

Col_Ad 98.84 97.93 96.31 97.11 97.90

Col_Be 99.17 97.47 98.27 97.87 98.83

Lun_Ad 98.96 97.39 97.25 97.32 98.31

Lun_Be 99.05 97.46 98.02 97.74 98.67

Lun_SC 99.31 98.09 98.48 98.28 99.00

Average 99.07 97.67 97.67 97.66 98.54
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In Figure 8, the classification results of the MPADL-LC3 technique on 30% of TRS
are provided. The outcomes signified that the MPADL-LC3 technique presented effectual
outcomes under all classes. It is emphasized that the MPADL-LC3 approach reaches an
average accuy of 99.07%, precn of 97.67%, recal of 97.67%, Fscore of 97.66%, and AUCscore
of 98.54%.
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The TACY and VACY of the MPADL-LC3 approach are inspected on colon and lung
cancer classification performance in Figure 9. The figure signified that the MPADL-LC3
method had improved performance with increased values of TACY and VACY. Visibly, the
MPADL-LC3 model attained higher TACY outcomes.
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The TLOS and VLOS of the MPADL-LC3 technique are tested on colon and lung cancer
classification performance in Figure 10. The figure implied that the MPADL-LC3 model
exposed superior performance with minimum values of TLOS and VLOS. Particularly, the
MPADL-LC3 approach has the fewest VLOS outcomes.
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A brief precision–recall investigation of the MPADL-LC3 system under the test database
is shown in Figure 11. The results specified the MPADL-LC3 algorithm has improved values
of precision–recall values under every class label.
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4.3. Discussion

In Table 4, a comparison study of the MPADL-LC3 technique with recent DL models
is carried out. The experimental results indicate that the mSRC model reports the fewest
classifier outcomes. Meanwhile, the ResNet-50 model attains slightly improved outcomes,
whereas the CNN and DL models report closer performance. Although the Faster RCNN
and DAELGNN models accomplish closer performance with classification accuy of 98.64%
and 98.73%, the MPADL-LC3 technique results in maximum outcomes with accuy of 99.27%.
These results ensured the betterment of the MPADL-LC3 technique over other current
techniques. The enhanced performance of the proposed model is due to the inclusion of
the MPA-based hyperparameter tuning process.

Table 4. Comparative outcome of MPADL-LC3 system with recent DL methods.

Methods Accuracy Precision Recall F-Score

MPADL-LC3 99.27 98.18 98.17 98.17

mSRC 88.31 85.14 91.66 86.70

Faster R-CNN 98.64 96.52 97.75 97.19

DAELGNN 98.73 97.98 96.47 96.65

RESNET-50 93.81 96.20 97.56 96.90

CNN 97.13 97.02 97.36 97.79

DL Model 96.34 96.94 96.31 98.03

5. Conclusions

In this study, we have introduced a new MPADL-LC3 approach for lung and colon
cancer classification. The presented MPADL-LC3 algorithm aims to properly discriminate
different types of lung and colon cancer in histopathological images. To accomplish
this, the MPADL-LC3 technique employs CLAHE-based contrast enhancement as a pre-
processing step. In addition, the MPADL-LC3 technique applied the MobileNet to derive
feature vector generation. Meanwhile, the MPADL-LC3 technique introduced the MPA
as a hyperparameter optimizer. Moreover, the DBN method is applied for lung and color
classification. The simulation values of the MPADL-LC3 technique are examined on the
benchmark dataset. The comparison study highlighted the enhanced outcomes of the
MPADL-LC3 method with maximum accuracy of 99.27%. In the future, we plan to work
on the architecture of the classification model and engineer new sets of features from more
histopathological images to elevate its performance.
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