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Abstract 

Generative chemical language models (CLMs) can be used for de novo molecular structure 

generation. These CLMs learn from the structural information of known molecules to generate 

new ones. In this paper, we show that “hybrid” CLMs can additionally leverage the bioactivity 

information available for the training compounds. To computationally design ligands of 

phosphoinositide 3-kinase gamma (PI3Kγ), we created a large collection of virtual molecules with 

a generative CLM. This primary virtual compound library was further refined using a CLM-based 

classifier for bioactivity prediction. This second hybrid CLM was pretrained with patented 

molecular structures and fine-tuned with known PI3Kγ binders and non-binders by transfer 

learning. Several of the computer-generated molecular designs were commercially available, 

which allowed for fast prescreening and preliminary experimental validation. A new PI3Kγ ligand 

with sub-micromolar activity was identified. The results positively advocate hybrid CLMs for virtual 

compound screening and activity-focused molecular design in low-data situations. 

Introduction 

Computational methods have become key players in hit and lead discovery in pharmaceutical 

research, complementing experimental high-throughput screening1. Bespoke virtual compound 

libraries provide access to untapped regions of the chemical space2, thereby extending the 

diversity of potential drug candidates. However, owing to the potentially unlimited size of virtual 

chemical libraries, concerns have been raised over the pragmatism of successfully screening 

billions of molecules virtually with a potentially high risk of false positives2,3. To mitigate some of 

these challenges, researchers have employed generative deep learning models to construct 

compounds on demand by de novo design and to obtain small, bespoke virtual compound 

libraries4,5. A variety of data-driven approaches can be used to generate focused virtual chemical 

libraries and create molecules with the desired properties5–18. Chemical language models (CLMs) 
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are based on deep learning networks for processing string representations of molecules (e.g., 

simplified molecular input line entry system (SMILES) strings; Fig. 1a)5,7,19. CLMs have already 

been successfully employed to generate focused virtual chemical libraries. Examples of de novo 

designed bioactive molecules include inhibitors of vascular endothelial growth factor receptor 2 

kinase and the unfolded protein response pathway7, and nuclear hormone receptor modulators20–

23. 

The creation of a focused virtual chemical library with a CLM generally includes three basic 

steps: (i) model pretraining with a large set of molecules to learn the SMILES grammar and the 

feature distribution of the pretraining data, (ii) transfer learning with a smaller set of molecules 

(fine-tuning set) to bias the molecule generation by the CLM toward the chemical space of interest, 

and (iii) sampling of new molecules from the data distributions modeled in steps i) and ii)5,24. There 

are alternative approaches for CLM development, e.g., model fine-tuning (step ii) by 

reinforcement learning6,25. 

In this study, we developed a data-driven molecular design pipeline that leverages both 

the structural and bioactivity information of known ligands to generate de novo bespoke 

molecules. We pretrained two CLMs, each with a distinct pretraining strategy, on a large set of 

patented compound structures (one for molecular generation and one for classification). Both 

CLMs were fine-tuned on inhibitors of phosphoinositide 3-kinase gamma (PI3Kγ), which is an 

anticancer, anti-inflammatory, and immunomodulatory drug target26,27. For rapid validation, 

commercially available compounds from the set of de novo generated molecules were tested, as 

opposed to synthesizing them. A new nanomolar ligand of phosphoinositide 3-kinase gamma 

(PI3Kγ) was identified. 

 

Results and Discussion 

Molecular design and scoring were performed in two steps, each of which was executed by a 

distinct CLM: (i) molecular de novo design and (ii) refinement of the generated virtual molecule 

library using the available ligand bioactivity data for the target of interest (PI3Kγ).  

 

Focused library generation 

Chemical language model. A CLM based on a long short-term memory (LSTM) model and 

SMILES strings as input was developed for the de novo generation of a focused virtual chemical 

library for PI3Kγ28. To learn from unlabeled data, CLMs leverage “self-supervised” learning29. 

Specifically, the CLM was trained with an autoregressive approach, i.e., the process of iteratively 

predicting the next character in a SMILES string given all the previous characters in the string 

(Fig. 2a)30. In previous studies, CLMs were pretrained on molecules with known biological activity 

(IC50, EC50, Kd, and Ki) <1 µM retrieved from the ChEMBL database20,23,31–33. Although the training 

set can capture the general features of bioactive compounds, it does not necessarily represent 

the physicochemical properties of approved drugs. Here, to enable the CLM to capture features 

more related to approved drugs, we used 839,674 molecules from the US patent database for the 

CLM pretraining34. We hypothesized that patented compounds are more likely to become 

marketed drugs than the molecules deposited in ChEMBL. Transfer learning was performed to 

properly focus the pretrained CLM toward the target space of PI3Kγ ligands. For transfer learning, 
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46 PI3Kγ inhibitors with IC50 ≤100 nM were selected from the Drug Target Commons (DTC) 

database35. 

 

Nucleus sampling for molecule generation. CLMs generate new molecules by extending strings 

from a “start” character until the “stop” character is sampled or when reaching a preset maximum 

string length. String characters are iteratively added by weighted random sampling from the 

probability distribution learned by the CLM during training. The more likely a given character is at 

a given step according to the probabilities learned by the CLM, the more often it will be sampled, 

and vice versa. Narrowing the probabilities learned by the CLM with a parameter (the so-called 

temperature; Fig. 1b) generally improves the SMILES string sampling31. This improvement occurs 

in terms of (i) the quality of the SMILES strings generated, as reflected by their validity 

(grammatically valid SMILES strings), uniqueness (nonrepetitive molecules), and novelty 

(molecules not present in the pretraining and fine-tuning data), and (ii) the similarity of the sampled 

virtual chemical libraries to the reference data in terms of their chemical structures and 

bioactivities, as measured by the Fréchet ChemNet Distance (FCD)36. However, with this 

“temperature sampling” approach, SMILES characters are unlikely to be sampled, which could 

result in the construction of molecules that do not match the design objective. To prevent the CLM 

from picking unlikely SMILES characters by temperature sampling, we employed “nucleus 

sampling” here37. This method reflects the confidence of the model in its predictions by allowing 

only the most probable character(s) to be sampled using a probability threshold based on the 

cumulative probabilities of the SMILES characters (Fig. 1c). 

Nucleus sampling improved upon temperature sampling in terms of lower FCD values 

(Fig. 1d), indicating a greater overall similarity of the de novo generated molecules to the 

pretraining set in terms of structural and bioactivity properties. During transfer learning, nucleus 

sampling generally improved the quality of the sampled molecules in terms of the novelty of the 

SMILES strings compared to the best temperature sampling data obtained (Fig. 1e)33. The results 

were stable over a range of sampling threshold values (Supplementary Table S1). However, 

nucleus sampling did not outperform temperature sampling in terms of the uniqueness, validity, 

and novelty of the SMILES strings generated after the pretraining (Supplementary Table S2). To 

create a PI3Kγ focused chemical library during transfer learning, we used nucleus sampling with 

a threshold of 0.85. A total of 5000 SMILES strings were sampled over 50 transfer learning epochs 

with 10 repetitions (5000 × 50 × 10). A total of 2,500,000 SMILES strings were generated, of 

which 1,121,735 were valid, unique, and novel compared to both the training and fine-tuning 

compounds. 
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Fig. 1 | De novo molecular generation with the CLM. a, SMILES string representation of a 

molecule. b, Example of the effect of the temperature parameter on the probability distribution 

learnt by the CLM. c, Example of the effect of the nucleus sampling threshold. Only the characters 

N and C can be sampled here. d, Fréchet ChemNet Distance (FCD) comparison between 

temperature and nucleus sampling after the pretraining (reported as the mean with standard 

deviation over 10 repeats with 5000 molecules sampled per repeat). e, Comparison of the novelty 

of the generated SMILES strings during the transfer learning between temperature sampling 

(temperature = 0.7) and nucleus sampling (threshold = 0.85). Mean values (lines) and standard 

deviations (shaded areas) are shown for 10 repeats (1000 SMILES strings were sampled every 

second epoch over 40 epochs). Novelty is expressed as the percentage of SMILES strings 

generated that were valid and not included in either the training or the fine-tuning data. 

 

 

Bioactivity prediction with a hybrid chemical language model 

Leveraging bioactivity data for molecule selection. The availability of bioactivity data for the fine-

tuning molecules permitted the training of a bioactivity prediction model to select the most 

promising de novo designs38. Classical chemoinformatics methods often rely on precomputed 

features (molecular descriptors), combined with a machine learning algorithm for molecular 

property prediction. In this study, we aimed to explore the potential of a SMILES string-based 

hybrid CLM to predict the bioactivity. This neural network model combines a generative CLM with 

a classifier network. Given that (i) inactive molecules were annotated with PI3Kγ pIC50 = 4.0 (Fig. 
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2c) and (ii) there is a natural ordering of the PI3Kγ ligands according to their pIC50 values, the 

bioactivity prediction task was framed as an ordinal classification task, i.e., classification with a 

class order39. Such a model considers both the active and inactive compounds for training and 

preserves both the class labels and the class order. For model training, we defined three class 

labels: “inactive” (pIC50 ≤ 4.0, 34 molecules), “moderately active” (4.0 < pIC50 ≤ 6.5, 121 

molecules), and “highly active” (pIC50 > 6.5, 43 molecules). The CLM generated a focused virtual 

chemical library by leveraging the structural information of the molecules used for fine-tuning, 

while the classifier layer factored their activity labels into the model (Fig. 2d). 

We explored two different pretraining strategies for feature learning with a large amount of 

unlabeled data.  

1. Autoregressive pretraining (Fig. 2a). This strategy is analogous to the one performed for 

the generative CLM. 

2. ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements 

Accurately) pretraining (Fig. 2b)40. The ELECTRA approach is based on training a model 

to distinguish between “real” input characters and “corrupt” ones, which was previously 

shown to be useful for contextual representation of natural language40. We adapted 

ELECTRA for the CLM training with an LSTM model and SMILES strings as input28. The 

training data contained corrupted input SMILES strings generated by randomly 

substituting multiple characters with other characters of the SMILES language. The CLM 

was trained to spot the corrupted characters. 

We hypothesized that, compared to autoregressive pretraining, ELECTRA pretraining has a 

more appropriate inductive bias (i.e., the set of algorithmic assumptions to solve a given task) to 

extract useful features for ordinal classification. The inductive bias of autoregressive pretraining 

is particularly suited for generating SMILES strings because the training and generative tasks are 

the same, namely, adding characters iteratively. However, ligands of the same macromolecular 

target tend to have similar chemical substructures, and, therefore, the ability of a model to 

distinguish small structural changes was deemed relevant. At the same time, small structural 

changes might lead to drastic variation of the biological activity (the so-called activity cliffs)41. 

Hereinafter, the model that was pretrained with the ELECTRA method is referred to as “E-CLM.” 
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Fig. 2 | Bioactivity prediction. a, A CLM for molecule generation iteratively predicts the next 

character in a SMILES string given the preceding characters (“autoregressive” approach). b, An 

E-CLM (a CLM pretrained with the ELECTRA method) is trained on corrupted SMILES strings 

aiming to predict, for each string character, whether it is the original (correct) or a corrupted 

(substituted) character. c, Activity distribution of the PI3Kγ ligands. Compounds with annotated 

pIC50 ≤ 4.0 were considered “inactive”, and a pIC50 value of 6.5 was used to separate the 

“moderately active” from the “highly active” compounds. d, The molecular structures (in the form 

of a SMILES string) of the fine-tuning set were used to focus the CLM (pretrained on the US 

patent database) on the chemical space of the target of interest (PI3Kγ). To account for the 

uncertainty in the predictions, we employed an ensemble of 100 models to rank the generated 

molecules by the number of “votes”.  

 

 

To probe the effect of the pretraining scheme on the predictions, we added only a single 

feedforward layer to the pretrained CLM and E-CLM for bioactivity prediction. This additional 

network layer consisted of three neurons, one for each of the three bioactivity classes. It was 

added to fine-tune the entire network for bioactivity prediction42,43. To mitigate the class data 

imbalance, we applied oversampling to the classes with fewer data (i.e., the “inactive” and “highly 

active” classes)44.  

Overall, we found that the E-CLM performed better than the standard CLM for the task of 

identifying the most active molecules, while minimizing the number of inactive molecules 

misclassified as “highly active”. For the chosen threshold (0.4), the E-CLM had a false positive 
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rate of 10.0% compared to 46.7% for the CLM for the same true positive rate (71.3%) 

(Supplementary Figs. S2a and S3a). Fine-tuning of all neural network weights performed better 

than keeping the weights of one of the two layers constant (Supplementary Figs. S2a, S2c, and 

S2d). These results highlight the importance of choosing an appropriate pretraining method 

depending on the downstream task, e.g., data generation or classification.  

 

Increasing the prediction confidence using deep ensemble learning. Deep learning models suffer 

from a decrease in performance when applied to out-of-domain data45, a well-known issue in 

quantitative structure-activity relationship modeling46,47. To increase the confidence in the 

bioactivity predictions, we used a deep ensemble model by combining the predictions of multiple 

models with a majority voting approach48,49. Owing to the nondeterministic optimization process, 

repeats of the same CLM training procedure will lead to different models. Deep ensemble learning 

has been shown to perform well across different domains to account for the predictive uncertainty 

of the models, while having the benefit of being straightforward to implement50. Accordingly, 100 

different E-CLM classifiers were trained on the bioactivity prediction task. The level of confidence 

in a prediction was defined as the number of models that classified a given input molecule as 

“highly active”. 

With increasing confidence levels, the number of molecules predicted as “highly active” 

decreased (Fig. 3a), a documented effect of ensemble voting51. None of the molecules from the 

focused virtual library was predicted as “highly active” with all 100 votes. Forty-seven de novo 

designs were predicted as highly active, with 99 votes. Among these top-ranked molecules, 64% 

featured a new atom scaffold and 62% featured a new graph scaffold with respect to the fine-

tuning set52,53. Higher confidence was reflected in the increased substructure similarity of the 

predicted actives to the molecules of the fine-tuning set, as captured by the Tanimoto index 

computed on Morgan fingerprints (Fig. 3b)54. In line with the chemical similarity principle55, this 

observation suggests that there is a greater chance of identifying active molecules when the 

number of votes is high. The five most dissimilar molecules among the top-ranked molecules had 

a similarity to their respective nearest neighbors of the fine-tuning set, ranging from 53% to 58% 

(Fig. 3c). The closest molecules of the fine-tuning set have a similarity ranging between 77% and 

100%, meaning that one molecule of the fine-tuning set was re-created by the CLM, although with 

a different stereochemistry (Fig. 3d), a structural feature that is not captured by Morgan 

fingerprints. This result highlights the potential of the approach to explore both closely related 

molecules to known bioactives, e.g., for structure-activity relationship studies or hit-to-lead 

expansion, as well as more structurally innovative compounds for “scaffold hopping”.  
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Fig. 3 | Molecule ranking with a deep ensemble model. a, Number of molecules in the refined 

virtual chemical library that were predicted as “highly active” as a function of the number of votes 

(confidence level). b, Average structural similarity (Tanimoto similarity index computed on Morgan 

fingerprints) of each de novo design to the fine-tuning set as a function of the number of votes. 

The solid line represents the mean value, with the shaded area representing the standard 

deviation. c, Top-ranked designs (99/100 votes) selected with the most distant nearest neighbor, 

whose similarity is indicated below the structure (“Most similar”) in the fine-tuning set. The atom 

(“Atom scaffold”) and graph (“Graph scaffold”) scaffold novelty of the structure with respect to the 

fine-tuning set is indicated below each structure (“Yes”: new, “No”: not new). d, Top-ranked 

designs (99/100 votes) selected with the closest nearest neighbor in the fine-tuning set. 
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In vitro bioactivity testing  

For a proof of concept, some of the molecules generated by the CLM were tested for PI3Kγ 

binding in vitro. To optimize the efficiency in terms of both time and resources, we selected the 

test molecules from the refined virtual chemical libraries that could be purchased from commercial 

suppliers, as opposed to synthesizing the de novo designs. In total, 16 computer-generated 

molecules were commercially available. Their predictive confidence ranged from 80/100 votes for 

compound 1 to 24/100 votes for compound 16 (Fig. 4). 

 

 
Fig. 4 | Compounds tested for PI3Kγ inhibition. Compounds 1–16 are shown, together with 

the number of votes from the ensemble of the maximum number of 100 possible votes and the 

experimentally determined binding constant Kd. Absence of a value (-) indicates no observed 

binding of the compound to the target. 

 

Although none of the ordered molecules was part of the top-ranked set (i.e., receiving 

99/100 votes), compound 1, the molecule with the highest number of votes (80/100), was a hit, 

with Kd ranging between 0.6 and 0.7 µM (n = 2; 670 nM and 620 nM) (Figs. 4 and 5, and 

Supplementary Table S3). None of the lower-ranking compounds inhibited PI3Kγ in the 

biochemical assay (Fig. 4). The confidence level of our ensemble correctly prioritized compound 

1 (active in vitro) over compounds 2 and 4 (inactive in vitro), despite all of them having the same 
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scaffold but with different substituents (Fig. 4). We hypothesize that this might be due to the 

positive effect of the ELECTRA pretraining, which was aimed at recognizing the effect of small 

structural changes.  

 

 

Fig. 5 | In vitro characterization of compound 1. Kinase-ligand binding was determined in a 

competition assay (n = 2), using an immobilized ligand of PI3Kγ and quantitative polymerase 

chain reaction (qPCR) measuring the competing DNA-tagged PI3Kγ protein. The signal is 

expressed as a transformation of the qPCR cycle time (2 - cycle time). 

 

 

Hit compound 1 has a new atom scaffold compared to all molecules in the ChEMBL 

database (version 28) annotated with “pActivity” ≥ 5.0 on PI3Kγ (“pActivity”: -log(molar IC50, XC50, 

EC50, AC50, Ki, Kd, or “potency”)). The most similar molecule among these has a Tanimoto 

similarity of 34% to that of compound 1 (Supplementary Fig. S4). This preliminary in vitro 

validation advocates an ensemble prediction approach for virtual compound screening and 

ranking of the computer-generated molecular designs. 

Conclusion 

Methodological improvements in CLM training advanced the sampling of target-focused virtual 

molecule libraries. The hybrid CLM classifier successfully included both structural and bioactivity 

information of the fine-tuning molecules for the design of a virtual chemical library, thereby 

complementing the available methodological repertoire for virtual screening. It remains to be 

determined in more detail to what extent the CLM pretraining method affects model performance 

in the downstream task, i.e., molecular generation or ordinal classification. Importantly, CLM 

training was performed without data augmentation to study the positive effect of nucleus sampling 

on the generation of a SMILES string. Future improvement might be possible by combining 

nucleus sampling with data augmentation for CLM transfer learning33,56–58. Given the setup of the 

present study, it was not possible to determine whether our hypothesis regarding the beneficial 

effect of model pretraining on patented chemical structures holds true. The long time required for 
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hit-to-lead expansion and for preclinical and clinical drug development until a marketed drug is 

obtained will likely preclude any such analysis. Nonetheless, a PI3Kγ ligand with a new scaffold 

was computationally generated. Hit compound 1 was correctly predicted to be active with 80% 

confidence (80/100 votes). This result now motivates the synthesis of the top-ranking compounds 

with novel scaffolds. Obtaining rapid experimental validation of a set of readily available de novo 

designed molecules prior to embarking on de novo synthesis might help assess the value of 

computationally generated activity-focused chemical libraries. Future prospective studies will also 

have to assess the general applicability of this approach to other targets from different target 

families. 

This study highlights the versatility of generative deep learning for hit and lead finding in 

drug discovery, where the same computational pipeline can be used to both create new molecules 

and screen libraries of existing compounds. We envision future projects in which de novo design 

methods are first validated for physically available molecules from a compound repository or 

commercial suppliers before investing in potentially more expensive and time-consuming 

syntheses. This approach could help accelerate the design-make-test,-analyze cycles, and 

reduce the risk of failure59. 

Code and data availability 

The computational framework presented in this study, along with the pretrained neural network 

weights and the data used for training, is available as a GitHub repository at 

https://github.com/ETHmodlab/hybridCLMs. 

Methods 

Target selection. The protein target PI3Kγ26 was selected on the basis of the data available in 

the DTC35 database. We selected one of the targets with the most annotated data. Molecules with 

activity entries satisfying all of the following conditions were kept: standard relation: “=”, standard 

unit: “nM”,  substrate value: “10”, substrate unit: “μM”, test inhibitor type: “competitive inhibitor”, 

compound concentration value: “0.001–50”, test assay format: “biochemical”, test assay type: 

“functional”, test assay subtype: “enzyme activity”. This filtering step resulted in a dataset 

containing 198 molecules (Supplementary Fig. S1). 

 

Training data. The training molecules were represented as canonical SMILES strings using the 

RDKit package (v. 2019.03.2, https://www.rdkit.org). SMILES strings with a length of up to 90 

characters were retained and standardized in Python (v. 3.6.5) by removing salts and duplicates. 

The CLM was pretrained on the pharmaceutical subset of the US patent database60,61. After the 

processing, 839,674 unique molecules encoded as canonical SMILES strings constituted the 

pretraining data. PI3Kγ inhibitors with a reported bioactivity ≤100 nM in the DTC database were 

used for the CLM transfer learning (“fine-tuning set”). This criterion resulted in a fine-tuning set 

containing 43 molecules.  

 

CLM pretraining and fine-tuning for the generation of SMILES strings. The CLM model was 

implemented in Python (v. 3.6.5) using Keras (v. 2.2.0, https://keras.io/) with the TensorFlow GPU 

backend (v. 1.9.0, https://www.tensorflow.org). The model was implemented as a recurrent neural 
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network with LSTM cells. The neural network was composed of four layers with a total of 

5,820,515 parameters (layer 1: BatchNormalization, layer 2: 1024 LSTM cells, layer 3: 256 LSTM 

cells, and layer 4: BatchNormalization) and trained with SMILES data encoded as one-hot 

vectors. The CLM was trained using the Adam optimizer (learning rate = 10-3) and the categorical 

cross-entropy loss function. Training was performed over 40 epochs, where one epoch was 

defined as one pass over all the training data. Transfer learning was performed by keeping the 

parameters of the first network layer constant and training the second layer with a learning rate 

of 10-4. 

 

ELECTRA pretraining. The E-CLM model was implemented in Python (v. 3.6.5) using Keras (v. 

2.2.0, https://keras.io/) with the TensorFlow GPU backend (v. 1.9.0, https://www.tensorflow.org). 

The ELECTRA model was implemented with the same architecture as that of the generative CLM, 

i.e., as a recurrent neural network with LSTM cells. Model training was performed with the Adam 

optimizer (learning rate = 10-3, 50 epochs) and the binary cross-entropy loss function. 

 

Ordinal classifier training. The hybrid CLM network contained the weights of the pretrained E-

CLM plus an additional feedforward layer with three sigmoidal neurons. The model was trained 

to solve an ordinal classification task, where each of the three output neurons corresponded to 

one class. k-Means clustering (k = 5, Scikit-learn; https://scikit-learn.org/stable/) was performed 

to group the fine-tuning molecules according to their similarity based on Morgan fingerprints. Four 

groups were used for cross-validation and one for classifier testing. The output threshold values, 

the number of transfer learning epochs, and the oversampling values of the less represented 

classes were defined by cross-validation. The best settings were selected on the basis of the 

performance on the test set, which was used once (oversampling: +40 molecules for the two less 

represented classes, sigmoid threshold: 0.4, number of transfer learning epochs: 200). Each of 

the 100 CLM models of the final ensemble was trained with the best settings on all available data. 

The neural network architecture was composed of six layers with a total of 5,646,982 parameters 

(layer 1: BatchNormalization, layer 2: 1024 LSTM cells, layer 3: 256 LSTM cells, layer 4: 

BatchNormalization, layer 5: Dropout, and layer 6: Dense, with three units, each with a sigmoid 

activation function) and was trained with SMILES encoded as one-hot vectors. The models were 

trained with the Adam optimizer and the binary cross-entropy loss function (learning rate = 10-4, 

200 epochs). 

 

Temperature sampling. SMILES characters were sampled using the softmax function 

parameterized by the sampling temperature. The probability of the i-th character being sampled 

from the CLM predictions was computed as (Eq. 1) 

 

!! 	= $%&((!/*) ∑ 		# $%&((#/*)-  , (1) 

where (! is the CLM prediction for character ., * is the temperature, and !! is the sampling 

probability of character .. 
 

Nucleus sampling. SMILES characters were sampled with a temperature value equal to 1 (Eq. 

2), considering only characters whose cumulative probability was greater than the nucleus 

parameter (“top vocabulary”): 
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(2) 

where 4(+) is the top vocabulary, x is an element of the vocabulary, and p is the nucleus 

parameter. 

 

Biochemical kinase binding assay. PI3Kγ binding assays were performed by Eurofins 

Discovery (https://www.eurofinsdiscoveryservices.com) on a fee-for-service basis. 

KINOMEscan™ was used to determine the dissociation constant Kd of compounds 1–16. The 

assay was based on the ability of a test compound to compete with an immobilized active site-

directed ligand. Competition of the test compound with the immobilized ligand was measured via 

quantitative PCR (qPCR) of the DNA tag of DNA-tagged kinase62. An 11-point three-fold serial 

dilution of each test compound was prepared in 100% DMSO at 100× final test concentration and 

subsequently diluted to 1× in the assay (final DMSO concentration = 1%). Dissociation constants 

were estimated with a standard dose-response curve using the Hill equation (Eq. 3)63: 

5$6&786$	 = 	9:;<=>7?8@	 +	 -!./01	&	2034.567/8

$	9	(:	
$
%&''	)'*"

	/	<6=>	%&''	+'*",)
 , (3) 

where the Hill slope was set to -1. Curves were fitted using a nonlinear least square fit with the 

Levenberg-Marquardt algorithm64. 
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