Leveraging Multi-Domain Prior Knowledge in Topic Models

Zhiyuan Chen⁺ Arjun Mukherjee⁺ Bing Liu⁺ Meichun Hsu⁺ Malu Castellanos⁺ Riddhiman Ghosh⁺

⁺University of Illinois at Chicago, ⁺HP Labs {czyuanacm, arjun4787}@gmail.com, liub@cs.uic.edu, meichun.hsu, malu.castellanos, riddhiman.ghosh}@hp.com UNIVERSITY OF ILLINOIS AT CHICAGO

Introduction

- Problem Definition: Given prior knowledge from multiple
 - domains, improve topic modeling in the new domain.
 - Knowledge in the form of *s-set* containing words sharing the same semantic meaning, e.g., {Light, Heavy, Weight}.
 - A novel technique to transfer knowledge to improve topic models.

Generalized Pólya Urn Model

- Generalized Pálya urn model [Mahmoud, 2008]
 - When a ball is drawn, that ball is put back along with a certain number of balls of similar colors.
- Promoting s-set as a whole
 - \Box If a ball of color w is drawn, we put back $\mathbb{A}_{s,w',w}$ balls of each

- Existing Knowledge-based models
 - DF-LDA [Andrzejewski et al., 2009], Seeded Model (e.g.,
 [Mukherjee and Liu, 2012]).
 - Two shortcomings: 1) Incapable of handling multiple senses, and
 Adverse effect of Knowledge.

MDK-LDA

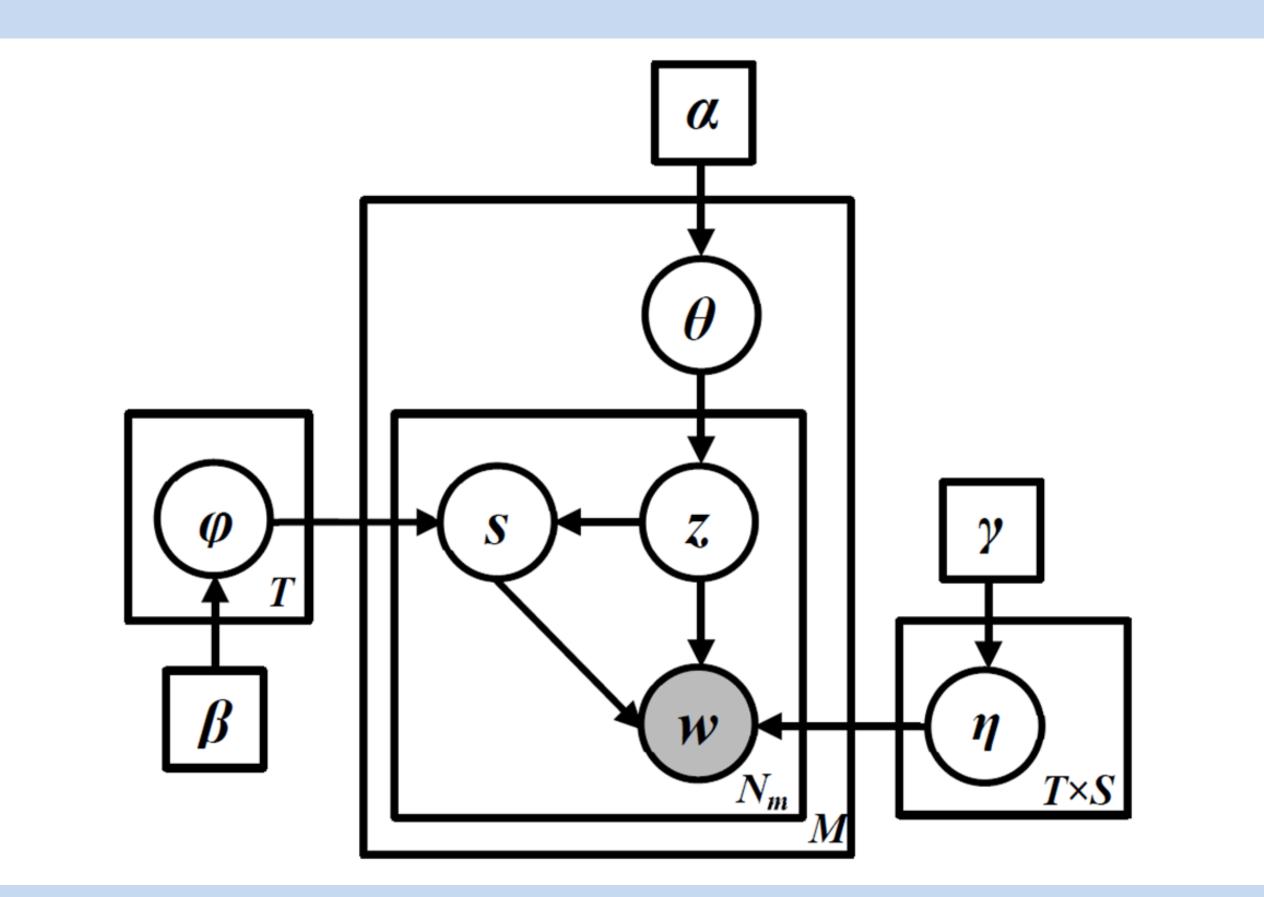
Generative Process

- 1. For each topic $t \in \{1, \dots, T\}$
 - i. Draw a per topic distribution over s-sets, $\varphi_t \sim Dir(\beta)$
 - ii. For each s-set $s \in \{1, ..., S\}$
 - a) Draw a per topic, per s-set distribution over words, η_{t,s} ~ Dir(γ)
 For each document m ∈ {1, ..., M}
 i. Draw θ_m ~ Dir(α)
 ii. For each word w_{m,n}, where n ∈ {1, ..., N_m}
 a) Draw a topic z_{m,n} ~ Mult(θ_m)
 b) Draw an s-set s_{m,n} ~ Mult(φ_{zm,n})
 c) Emit w_{m,n} ~ Mult(η_{zm,n}s_{m,n})

color $w' \in \{1, ..., V\}$ where w and w' share s-set s.

$$\mathbb{A}_{s,w',w} = \begin{cases} 1 & w = w' \\ \sigma & w \in s, w' \in s, w \neq w' \\ 0 & \text{otherwise} \end{cases}$$

Collapsed Gibbs Sampling


$$P(z_{i} = t, s_{i} = s | \mathbf{z}^{-i}, \mathbf{s}^{-i}, \mathbf{w}, \alpha, \beta, \gamma, \mathbb{A}) \propto \frac{n_{m,t}^{-i} + \alpha}{\sum_{t'=1}^{T} (n_{m,t'}^{-i} + \alpha)} \\ \times \frac{\sum_{w'=1}^{V} \sum_{v'=1}^{V} \mathbb{A}_{s,v',w'} \cdot n_{t,s,v'}^{-i} + \beta}{\sum_{s'=1}^{S} (\sum_{w'=1}^{V} \sum_{v'=1}^{V} \mathbb{A}_{s',v',w'} \cdot n_{t,s',v'}^{-i} + \beta)} \times \frac{n_{t,s,w_{i}}^{-i} + \gamma_{s}}{\sum_{v'=1}^{V} (n_{t,s,v'}^{-i} + \gamma_{s})}$$

Experiments

- Datasets: reviews from six domains from Amazon.com.
- Baseline Models

Plate Notation

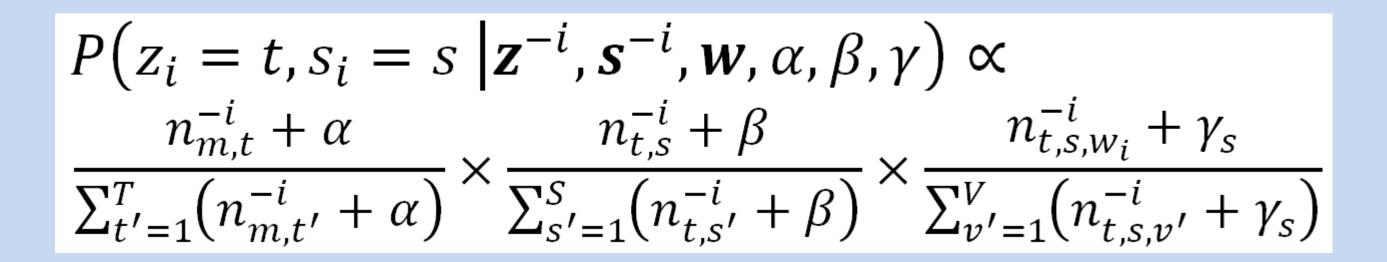
2.

□ LDA [Blei et al., 2003], LDA_GPU [Mimno et al., 2011], and

DF-LDA [Andrzejewski et al., 2009].

- Topic Discovery Results
 - Evaluation measure: *Precision @ n (p @ n)*.
 - Quantitative results in Table 1, Qualitative results in Table 2.
- Objective Evaluation
 - □ Topic Coherence [Mimno et al., 2011].

Domains	LDA	LDA_GPU	DF-LDA	MDK-LDA(b)	MDK-LDA
Camera	0.80	0.50	0.67	0.81	0.93
Computer	0.67	0.60	0.56	0.70	0.88
Food	0.87	0.61	0.67	0.84	0.91
Care	0.81	0.64	0.72	0.92	0.91
Average	0.79	0.59	0.66	0.82	0.91


Table 1 (Quantitative): Avg. precision of each model across domains.

Camera (Battery) Computer (Price) Food (Taste) Care (Tooth)

Figure 1: Plate notation of the proposed framework.

Collapsed Gibbs Sampling

 \Box Blocked Gibbs Sampler: Sample topic *z* and s-set *s* for word *w*

Camer	a (Battery)	Comput	ter (Price)	F 000	(laste)	Care (1 ooth)			
LDA	MDK	LDA	MDK	LDA	MDK	LDA	MDK			
battery	extra	acer	cheap	taste	flavor	price	tooth			
screen	charge	power	price	salt	sweet	tooth	gum			
life	life	base	inexpensive	almond	sugar	amazon	dentist			
<u>lcd</u>	replacement	year	money	fresh	salty	pen	dental			
water	battery	button	expensive	pack	tasty	shipping	whitening			
<u>usb</u>	charger	amazon	cost	tasty	tasting	gum	pen			
cable	aa	control	dollar	oil	delicious	dentist	refill			
case	power	price	buck	roasted	taste	whitening	year			
charger	rechargeable	color	worth	pepper	salt	refill	date			
hour	time	purchase	low	easy	spice	worth	product			
Table 2 (Qualitative): Example topics (MDK is short for MDK-										
LDA); <i>errors</i> are marked in red/italic.										

Poster Unique Code: 3e2315