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Leveraging Multiscale Hessian-Based Enhancement

With a Novel Exudate Inpainting Technique for

Retinal Vessel Segmentation
Roberto Annunziata, Andrea Garzelli, Lucia Ballerini, Alessandro Mecocci, and Emanuele Trucco

Abstract—Accurate vessel detection in retinal images is an im-
portant and difficult task. Detection is made more challenging in
pathological images with the presence of exudates and other ab-
normalities. In this paper, we present a new unsupervised vessel
segmentation approach to address this problem. A novel inpaint-
ing filter, called neighborhood estimator before filling, is proposed
to inpaint exudates in a way that nearby false positives are sig-
nificantly reduced during vessel enhancement. Retinal vascular
enhancement is achieved with a multiple-scale Hessian approach.
Experimental results show that the proposed vessel segmentation
method outperforms state-of-the-art algorithms reported in the
recent literature, both visually and in terms of quantitative mea-
surements, with overall mean accuracy of 95.62% on the STARE
dataset and 95.81% on the HRF dataset.

Index Terms—Exudates, inpainting, retina, vessel segmentation.

I. INTRODUCTION

A
NALYZING the vascular tree structure is useful for: mon-

itoring arteriolar narrowing [1], characterizing plus dis-

ease in retinopathy of prematurity with tortuosity measurements

[2]–[4], and the diagnosis of hypertension and cardiovascu-

lar diseases through accurate vessel width estimation [5], [6].

However, since the manual segmentation of retinal vessels is

extremely time consuming, automated segmentation becomes

crucial. Accurate vessel segmentation is a very difficult task

for several reasons: 1) the presence of lesions, exudates, haem-

orrhages; 2) the variability of the vessel width and length; 3)

the low contrast between the vessels and the background; 4)

the central reflex on large vessels; 5) the presence of small

regions affected by noise; and 6) the occlusion between ves-

sels. Several methods have been developed for retinal blood

vessel segmentation. One of the main weaknesses of previ-
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Italy (e-mail: andrea.garzelli@unisi.it; alemecoc@alice.it).

L. Ballerini and E. Trucco are with the VAMPIRE, CVIP Group, School
of Computing, University of Dundee, Dundee DD1 4HN, U.K. (e-mail:
l.ballerini@dundee.ac.uk; e.trucco@dundee.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JBHI.2015.2440091

ously reported methods is that their results tend to degrade

when applied to pathological eyes. In particular, they produce

a high number of false positives in the presence of exudates,

haemorrhages, and other confounding retinal structures. These

limitations have motivated the development of the framework

described here, which improves on previous algorithms when

applied to abnormal (and also normal) images and manages the

presence of exudates and similar retinal features in a more robust

manner.

The main contribution of this paper is an ad-hoc exudate in-

painting technique. Several works have been presented to solve

the problem of filling holes in digital images by propagating

surrounding structures to synthesize a visually plausible im-

age (for instance, [8]). The goal of our inpainting technique

has a different focus. Indeed, neither texture synthesis nor a

visually plausible image is needed. Our goal is to fill struc-

tures such as exudates in retinal images so that, when vessel

enhancement is applied, the number of nearby false positives

is greatly reduced. This goal is only achieved if exudates are

filled in a smooth way that reduces or eliminates possible edges.

A multiple-scale Hessian-based enhancement is applied to de-

tect retinal vessels. This technique is fast and has proven to be

effective when detecting vessels of normal eyes. However, it

also enhances other retinal structures and, therefore, becomes

unsuitable for a general retinal vessel segmentation framework.

The key idea of the proposed method is to apply Hessian-based

enhancement after exudate inpainting. This reduces false vessel

detection. Although simple in principle, the accuracy achieved

by our method is comparable or higher than those reported

in the literature. Moreover, it yields the best performance on

pathological images, the target of most automated retinal image

analysis tools. Indeed, a vessel segmentation algorithm is usu-

ally the first step for the automated detection of eye diseases.

In order to be used in clinical practice, these methods should

be robust enough to analyze pathological and nonpathological

images without requiring user interaction. We propose a fully

automated algorithm. Our results suggest that joint detection of

vessels and other retinal structures could finally solve the prob-

lem of accurate and reliable retinal vessel segmentation suitable

to various practical scenarios.

This paper is organized as follows. Section II gives an

overview of the state-of-the-art vessel segmentation meth-

ods, Section III describes the datasets we used. Section IV

presents in detail the proposed method. Experimental results

are provided in Section V. Finally, we conclude the paper in

Section VI.
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II. RELATED WORK

Many retinal vessel segmentation methodologies have been

proposed: supervised and unsupervised. A recent detailed re-

view of these methods can be found in [7]. In general, the

performance of supervised methods is higher than that of unsu-

pervised ones. On the other hand, supervised methods require

a preliminary training phase which is time consuming because

it needs a training set of manually segmented images for each

camera setup.

Supervised segmentation methods use ground truth data for

classifying each image pixel, based on given features. For in-

stance, k-nearest neighbor was used by Staal et al. [9] to classify

feature vectors obtained by a ridge detector. In [10], six features

are computed using multiscale analysis of Gabor wavelet trans-

form. The approach adopts two kinds of classifiers: Gaussian

Mixture Model Bayesian and Linear Minimum Squared Error.1

Ricci and Perfetti [12] used line operators and by support vector

machine classification. A recent supervised approach is based

on mathematical morphology and moment invariant features,

followed by a neural network classifier [13]. Fraz et al. [14] em-

ployed an ensemble of bagged decision trees and a feature vector

based on the orientation analysis of gradient vector field, mor-

phological transformation, line strength measures, and Gabor

filter responses. Finally, combining hand-crafted features with

learned context filters has been recently shown to improve per-

formance on challenging curvilinear structures such as corneal

nerve fibers and neurites [15].

Unsupervised methods include techniques based on matched

filtering, morphological processing, vessel tracking, multiscale

analysis, and model-based algorithms [7]. In [16], matched fil-

tering is used; it is based on 2-D linear structural element with

a Gaussian cross section, rotated through many orientations. A

thresholding technique is then applied to obtain the segmented

vessels. In [17], a different approach is proposed, based on a

multithreshold probing scheme. Mathematical morphology in

combination with matched filtering for centerline detection is

exploited by Mendonça and Campilho [18]. Martinez-Perez [19]

proposed a method in which the vascular tree is obtained by us-

ing a multiscale feature extraction approach. The local maxima

of the gradient magnitude over different scales, the maximum

principal curvature of the Hessian matrix [20], and a region

growing scheme are combined to segment the retinal image.

In [21], a similar enhancement step is applied, but a different

pre-processing step is proposed to decrease the disturbance of

bright structures before vessel extraction. Azzopardi et al. [22]

introduced a method based on the combination of shifted filter

responses with promising results. Recently, a novel hand-crafted

feature scale and curvature invariant ridge detector (SCIRD), has

been proposed to achieve multiple invariances when segmenting

tortuous and fragmented structures [23].

Although a lot of work has been done on automated retinal

vessel segmentation, very little exists on vessel detection ap-

proaches in which other retinal structures are taken into account

during vessel detection. For instance, a divergence vector field

1Currently the VAMPIRE software suite [11] implements a version of Soares’
algorithm as the best compromise between speed and accuracy.

is proposed by Lam and Yan [24] and adapted to handle bright

lesions. Recently, Lam et al. [25] proposed a model-based ap-

proach with differentiable concavity measure to handle both

healthy and unhealthy retinal images.

Exudate detection methods reported in the literature range

from region growing methods [26] for candidate detection to

morphological reconstruction for obtaining a precise localiza-

tion of the exudate boundaries [27]. Complex machine learning

methods can also be used along with different sorts of features

[28]. However, we present here a simple method for exudate

detection, since our goal is not accurate exudate segmentation

for pathology detection and analysis, but their removal before

Hessian-based vessel enhancement.

In this paper, we propose a new pipeline for retinal vessel

segmentation whose main component is an ad-hoc exudate in-

painting filter aimed at reducing false detection generated by the

strong contrast around exudates. This makes our retinal vessel

segmentation framework more general than previously reported

methods, since it is suitable for both healthy and unhealthy eyes

affected by exudate regions and similar structures.

III. MATERIALS

To evaluate the performance of the vessel segmentation ap-

proach described in the next section, two publicly available

datasets are used: the low-resolution structured analysis of the

retina (STARE)2 dataset [16] and the high-resolution fundus

(HRF)3 image dataset [29].

The STARE database contains 20 retinal images captured by

a TopCon TRV-50 fundus camera at 35◦ field of view (FOV).

The images were digitized to 700 × 605 pixels, 8 bits per color

channel. The FOV in the images are approximately 650 × 550
pixels. Unlike other datasets, STARE covers several abnormal

cases, using ten retinal images. There are patients who have

serious problems such as large regions of exudates, multiple

haemorrhages, and vessel occlusions that can affect vessel seg-

mentation. Only the first observer’s manual segmentations were

used to validate our method, a common choice for this dataset

(e.g., in [10] and [22]).

The HRF image dataset contains retinal images taken with a

CANON CF-60UVi fundus camera, with an attached CANON

EOS-20D digital camera at 60◦ FOV. Each image is digitized

to 3504 × 2336 pixels, 8 bits per color channel and compressed

in JPEG format. This high resolution is comparable to the com-

mon resolution in clinical use. The dataset contains 45 images

divided into three subsets: healthy fundus, diabetic retinopathy

(DR), and glaucoma. The retinal images of DR patients present

pathological changes, such as neovascular nets, haemorrhages,

bright lesions, and spots after laser treatment. Patients with glau-

coma present symptoms of focal and diffuse nerve fiber layer

loss. These last two subsets allow evaluation of segmentation

methods on pathological retinas. Each subset has 15 images

with FOV masks and manual segmentation gold standard.

2STARE http://www.ces.clemson.edu/
3HRF http://www5.informatik.uni-erlangen.de/research/data/fundus-images
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Fig. 1. Stepwise illustration of the proposed technique.

IV. PROPOSED METHOD

An overview of the proposed approach is depicted in Fig. 1.

The following steps can be identified:

(1) image preprocessing for exudate detection;

(2) exudate inpainting;

(3) multiscale Hessian eigenvalue analysis for vessels en-

hancement;

(4) percentile-based thresholding.

Only the green channel of the RGB original image was used

as it offers the best vessel-background contrast.

A. Image Preprocessing for Exudate Detection

Typically, exudates appear much brighter than vessels (see

Fig. 5(a), for example). However, nonuniform illumination and

inhomogeneities make unfeasable a simple gray-level thresh-

olding for identifying them. Indeed, exudate pixels in a retinal

image may have the same gray level of poorly contrasted thin

vessel pixels. To address these issues, a preprocessing phase

similar to [13] is applied. This phase consists of

(1) nonuniform illumination correction;

(2) image homogenization;

We use a large median filter (69 × 69 for STARE and 139 ×
139 for HRF) for background estimation. This filter has been

selected because it is particularly effective at roughly removing

blood vessels without blurring edges of larger regions in the

background. This median filter is applied to the region of interest

(ROI). The ROI has been previously expanded to avoid border

artefacts [see Fig. 2(a) and (f)]. Then, the estimated background

Imed [see Fig. 2(b) and (g)] is subtracted from the green channel

of the original image I to obtain the difference image D:

D(x, y) = I(x, y) − Imed(x, y). (1)

The illumination corrected image IC [see Fig. 2(c) and (h)] is

obtained by linearly stretching the gray-levels of D to cover the

whole range of possible intensity values ([0, 255], for an 8-bit per

pixel image). The homogenization step is carried out as follows

[13]: The histogram of the brightness-corrected image IC is

displaced toward the middle of the gray scale, by modifying

pixels intensity according to

gOutput =











0, if g < 0

255, if g > 255

g, otherwise

(2)

where

g = gInput + 128 − gInputM
(3)

and gInput and gOutput are the gray-level values of the input

and the output images (IC and IH , respectively). The value

denoted by gInputM
is the mode in the histogram of IC . The

homogenization step is based on the idea that the background

consists of much more pixels than the foreground (vessels in

this case), so the intensity value corresponding to the mode of

the histogram represents the background value. Then, a 3 ×
3 median filter is applied to the homogenized image IH for

removing residual noise [see Fig. 2(d) and (i)].

Finally, thanks to the previous homogenization, a simple

threshold can be used to obtain exudate masks since the gray

level of the vessel is now much lower than that of the exudate.

We experimentally observed that selecting a threshold in the

range [160, 170] does not change the final performance for both

datasets. We tuned this threshold taking into account the tradeoff

between having a percentage of undetected exudates and false

positives.

B. Exudate Inpainting

We propose a novel inpainting filter (Algorithm 1), called

neighborhood estimator before filling (NEBF) to fill detected

exudate regions.

Algorithm 1 NEBF

ExudMask ← dilate(ExudMask);

TmpInp ← OrgImg(ExudMask �= 0) = 0;

while all exudates are not inpainted do

ExudMask ← erode(ExudMask);

TmpInp ← call ExudInp(TmpInp, ExudMask);

end while

ImgInp ← TmpInp;
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Fig. 2. Exudate detection and inpainting on images 1 and 3 from STARE dataset: (a), (f) ROI expansion of the green channel. (b), (g) Background estimation.
(c), (h) Nonuniform illumination correction. (d), (i) Homogenized image. (e), (j) Exudate inpainting.

Algorithm 2 I = ExudInp(I , ExudMask)

PxToFill ← ExudMask - erode(ExudMask);

∀ p ∈ PxToFill | PxToFill(p) �= 0

I(p) = mean I(q)

q ∈ Np

I(q) �= 0

Np = {q ∈ N, |q − p| ≤ r}

The algorithm proceeds iteratively in a radial way towards

the exudate’s core. Using a conservative threshold to detect ex-

udates (set to reduce false positives, therefore allowing more

false negatives) typically undersegments each individual exu-

date, leaving a narrow border of undetected pixels. For this

reason, we dilate the detected exudate mask after thresholding

with a circle of radius 3 for STARE and 6 for HRF. We then

proceed radially toward the exudate’s core. The structuring ele-

ment for the erosions in the Algorithms 1 and 2 is a circle with

radius of 1 pixel for STARE and 3 pixels for HRF. Our goal is

to fill exudates in a very smooth way. As Algorithm 2 shows,

this is accomplished by averaging both background and already

estimated values falling in the eight-connected neighborhood of

each pixel (the radius r = 3 for STARE and r = 7 for HRF).

During the averaging process, detected exudate pixels (set to 0)

are not taken into account. In fact, iteration by iteration, the in-

fluence of background pixels decreases, while that of estimated

pixels increases.

Notice that NEBF is applied to the original image (not to the

homogenized one used only to detect exudates).

Estimating the neighborhood before filling is a key advan-

tage of NEBF, since it reduces greatly radial strips and edges

creation within filled regions (see Fig. 3). These artefacts would

lead to many false positives in the following enhancement and

Fig. 3. Exudates inpainted by the NEBF filter. (a) Without neighborhood
estimation. (b) With neighborhood estimation. Note smoother edges within
exudate region in (b).

segmentation steps. As we show in Section V-C (see Fig. 9),

our method is more suitable than a state-of-the-art inpainting

technique. In fact, we aim at creating smooth inpainted regions

rather than filling exudates in a visually plausible way.

A linear-opening-by-reconstruction [30] is used to remove

smaller and poorly contrasted exudates not detected in the pre-

vious steps. It can be mathematically stated as

min(γB (I), I) (4)

where γB (I) is defined as the morphological opening of I using

B as structuring element (line 15 × 1 for STARE and 30 × 1
for HRF).

Notice that linear-opening-by-reconstruction preserves all the

structures except small undetected exudates. As a result, thin

vessels’ color and morphometric characteristics are not altered.

Fig. 2 shows all the steps of our exudate inpainting on two

retinal images in STARE dataset.

C. Multiscale Hessian Eigenvalue Analysis for Vessels

Enhancement

Hessian-based methods have proven effective in retinal ves-

sel enhancement [19]–[21], [31]. The key idea is to extract

principal directions in which the local second-order structure of
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Fig. 4. Vessels enhancement applied to a normal case and to two abnormal
cases from the STARE dataset.

the image can be decomposed. Analyzing a vessel, the largest

eigenvalue (λ2) of the Hessian matrix is relative to the smallest

eigenvector, which is ideally orthogonal to vessel’s walls. On

the contrary, the smallest eigenvalue (λ1) corresponding to the

largest eigenvector is aligned with the vessel.

We carry out eigenvalue analysis at multiple spatial scales

(s ∈ {2, 3, 4} for STARE and s ∈ {2, 3, 4, 5, 6} for HRF) to

enhance vessels regardless their width.

The largest eigenvalue over scales, λmax , is obtained as

λmax = max
s

λ2(s)

s
. (5)

Notice that normalizing by the scale factor s in (5) leads to

unbiased comparison among scales [19].

We found that using only the largest eigenvalue is sufficient

for vessel enhancement, unlike previously reported methods

[19]–[21], [31], which make use of both λ1 and λ2 .

The first row in Fig. 4 shows vessel enhancement carried out

on a normal case: our multiscale approach is capable to enhance

both wide and thin vessels; furthermore, false positives near the

optic nerve’s border are greatly reduced. The second and the

third rows in Fig. 4 show vessel enhancement on two abnormal

cases with large and small exudates: our preprocessing step

greatly reduced false positives at exudate borders.

D. Percentile-Based Thresholding

We employ a simple thresholding algorithm based on the

percentile to obtain the final vessel segmentation. Indeed, we

threshold the cumulative histogram of the Hessian enhanced

image. The chosen threshold is the intensity value keeping a

certain percentage of pixels, whose value is estimated on the

training dataset using the observers segmentation as reported in

[10].

Finally, small nonvessel isolated connected components are

removed by area thresholding. Notice that our segmented vas-

cular trees have great connectivity; therefore, our framework is

not very sensitive to this specific postprocessing parameter.

V. EXPERIMENTAL EVALUATION

A. Performance Measures

In order to quantify performance, we use Sensitivity (Se),

Specificity (Sp), Positive Predictive Value (PPV), Negative Pre-

dictive Value (NPV), and Accuracy (Acc). These measures are

defined as

Se =
TP

TP + FN
(6)

Sp =
TN

TN + FP
(7)

PPV =
TP

TP + FP
(8)

NPV =
TN

TN + FN
(9)

Acc =
TP + TN

TP + FN + TN + FP
(10)

where TP (true positives), FP (false positives), FN (false nega-

tives), and TN (true negatives) are obtained by considering only

pixels within the FOV. Se and Sp measures are the ratio of well-

classified vessel and non-vessel pixels, respectively. PPV is the

ratio of correctly classified vessel pixels. NPV is the ratio of

correctly classified nonvessel pixels. Finally, Acc is the propor-

tion of true results (both true positives and true negatives) in the

population of pixels. We also measured performance using of

receiver operating characteristic (ROC) curves by varying the

percentile threshold. The area under the ROC curve (AUC) is

also used. Following previous work (e.g., [21], [22], [25]), we

computed all performance measures for each image and then re-

ported averages. Accuracy and AUC are used to rank methods in

terms of overall performance and other performance measures

are used to highlight differences among methods for specific

tasks (e.g., Se—the ability to detect vessel pixels; Sp—the abil-

ity to reduce FP).

B. Experimental Setup

We adopt the same experimental setup as most of the pre-

vious works, separating datasets into training and testing sets

for a fair comparison. The parameters of our method have been

manually tuned using a subset of training images, taking into

account the resolution of each dataset. For the STARE dataset,
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TABLE I
PERFORMANCE COMPARISON OF VESSEL SEGMENTATION METHODS ON THE STARE DATASET

STARE

Method Se Sp NPV PPV AUC Acc

Unsupervised Hoover et al. [16] 0.6747 0.9565 – – 0.759 0.9275

Jiang and Mojon [17] – – – – 0.9298 0.9009

Mendonça et al. [18] 0.6996 0.973 – – – 0.9479

Martinez-Perez et al. [19] 0.7506 0.9569 – – – 0.941

Al-Rawiet al. [32] – – – – 0.9467 0.909

Ricci and Perfetti [12] – – – – 0.9602 0.9584

Al-Diri et al. [33] 0.7521 0.9681 – – – –

Lam et al. [25] – – – – 0.9739 0.9567

Yu et al. [21] 0.7112 0.9709 – – – 0.9463

Azzopardi et al. [22] 0.7716 0.9701 – – 0.9563 0.9497

No inpainting 0.6911 0.9813 0.9648 0.8085 – 0.9511

Proposed method 0.7128 0.9836 0.9677 0.8331 0.9655 0.9562

Supervised Staal et al. [9] – – – – 0.9614 0.9516

Soares et al. [10] 0.7207 0.9747 – – 0.9671 0.948

Ricci and Perfetti [12] – – – – 0.968 0.9646

Marı́n et al. [13] 0.6944 0.9819 0.9659 0.8227 0.9769 0.9526

Fraz et al. [14] 0.7548 0.9763 – – 0.9768 0.9534

the medial filter size used in the homogenization step has been

set to 69 × 69 following [13]; the average filter size used in

the NEBF has been set to 7 × 7 to achieve a good compromise

between speed and exudate smoothing; the size of the struc-

turing element in (4) has been set to 15 × 1 since 15 pixels is

approximately the maximum vessel width; the number of scales

in the Hessian eigenvalue analysis has been set considering the

minimum and the maximum vessel width; the threshold 165

for the exudate detection has been set to reduce the amount

of false positives at the expenses of true positives that were in

general very small [for this reason, we apply the linear opening

by reconstruction in (4)]. Notice that the homogenization step

which corrects for nonuniform illumination changes and centers

the histogram of each image allows us to set a single threshold

across all datasets. For the HRF dataset, since the maximum

vessel width is approximately 30 pixels, we doubled all filters

width (and height) to test the generalization performance of our

method on a different set of images.

C. Vessel Segmentation Results

1) STARE: Our approach is tested on the STARE dataset

[16] using the first observer’s manual segmentation as ground

truth.

Table I shows comparison with state-of-the-art methods.

Performance measures in Table I show that our unsupervised

method outperforms most of the state-of-the-art unsupervised

and supervised algorithms. The algorithms presented by Ricci

and Perfetti [12] and Lam et al. [25] reported an accuracy higher

than our algorithm. However, Ricci and Perfetti built their clas-

sifier by using a training set comprising samples randomly ex-

tracted from test images while we use a leave-one-out strategy

to set the percentile threshold. Indeed, Lam et al. [25] reim-

plemented their method reporting an accuracy of 0.9422. Lam

et al.’s [25] approach greatly reduces the detection of false posi-

tives hence increasing accuracy. Our approach achieves the same

goal with a much simpler and faster algorithm. In fact, time to

TABLE II
PERFORMANCE COMPARISON OF VESSEL SEGMENTATION METHODS ON THE

PATHOLOGICAL IMAGES OF THE STARE DATASET

STARE - Abnormal Images

Method Acc

Unsup Jiang and Mojon [17] 0.9337

Mendonca and Campilho [18] 0.9426

Lam et al. [24] 0.9474

Line (Impl. in [25]) 0.9352

Lam et al. [25] 0.9556

No inpainting 0.9449

Proposed method 0.9565

Sup Soares et al. [10] 0.9425

Marin et al. [13] 0.9510

Accuracy values are from [25] and [13].

run each STARE image for Lam et al.’s technique is approx-

imately 13 min as reported in [25], while our procedure takes

about 1 min. We implemented the proposed method in MAT-

LAB, running on a PC with an AMD A4-3300M APU at 1.90

GHz and 6-GB RAM. In a prototype implemented using C\C++

without any optimization, the time decreased to less than 25 s.

Notice that reported performance of supervised methods is

generally higher than unsupervised ones. On the other hand, su-

pervised approaches need a preliminary time-consuming train-

ing phase that requires manually segmented images. Our perfor-

mance is comparable or superior to that of state-of-the-art super-

vised methods, without the need for this time-consuming stage.

To facilitate comparisons, we report PPV and NPV as done by

Marı́n et al. in [13], a top-ranking supervised method. Table I

shows that the proposed method detects more of the vasculature

(Se = 0.7128 versus 0.6944 for Marı́n et al.) while reducing the

FP count (a 1% increase in PPV for the proposed method). This

table also reports our method performance without the ad-hoc

exudate inpainting stage (“No inpainting”). We observe that us-

ing exudate inpainting, PPV increases from 0.8085 to 0.8331
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Fig. 5. Segmentation of a pathological and normal image of STARE. (a) Original image “im0001.ppm.” (b) Vessel segmentation of (a) using our method. (c)
Manual segmentation (a) by observer 1. (d) Original image “im0081.ppm.” (e) Vessel segmentation of (d) using our method. (f) Manual segmentation of (d) by
observer 1.

Fig. 6. Qualitative evaluation in detecting thin and poorly contrasted vessels in six challenging areas of image of the STARE dataset.

showing a strong reduction of false positives with a slightly

better NPV.

Table II shows results on the ten abnormal images of the

STARE database.4 The accuracy of our method is the best among

all the unsupervised and supervised methods on this subset of

images. Indeed our accuracy on abnormal images is, on average,

comparable to that of the whole dataset (i.e., 0.9565 versus

4As stated at http://www.ces.clemson.edu/ ahoover/stare/diagnoses/all-mg-
codes.txt, abnormal images are: im0001.ppm, im0002.ppm, im0003.ppm,
im0004.ppm, im0005.ppm, im0044.ppm, im0139.ppm, im0291.ppm,
im0319.ppm and im0324.ppm.

0.9562). Notice that the average accuracy of our pipeline without

the exudate inpainting stage (“No inpainting”) is 0.9449, which

indicates the effectiveness of our exudate inpainting procedure

as preprocessing step.

Fig. 5 shows a normal and abnormal case from the STARE

dataset, our automatic segmentation, and their respective ground

truth. Notice that due to our exudate inpainting step, few false

positives are created near exudate regions.

Fig. 6 shows qualitative evaluation of our method on six

challenging areas: most of the poorly contrasted and tortuous

vessels are detected.
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Fig. 7. Thin structured missed by observer 1 and detected by our algorithm.
(a) Original image. (b) Vessel enhancement. (c) Manual segmentation by ob-
server 1.

Fig. 8. Comparison of vessels enhancement with and without the exudate
inpaiting technique.

The proposed method achieves top-rank performance when

using Observer 1 as ground truth. However, manual segmenta-

tion of thin vessels is a challenging task even for experienced hu-

man observers as reported elsewhere (e.g., [21]). Further visual

inspection of our enhanced images reveals that these structures

are often detected by our algorithm but missed by Observer 1 as

shown in Fig. 7. Notice that this aspect yields a slight decrease

of measured accuracy since thin vessels missed by the observer

and segmented by our method are regarded as false positives.

Fig. 8 shows a comparison of vessel enhancement with and

without the inpainting technique applied to the fundus image in

Fig. 5(a).

Furthermore, Fig. 9 shows a comparison between the NEBF

and the inpainting technique proposed by Criminisi et al. [8]

applied to the fundus image in Fig. 5(a). As can be seen in

Fig. 9(a), estimated exudates are efficiently inpainted in a way

that is visibly consistent with the background. However, that

technique can create artefacts that can potentially lead to false

positives. Instead, Fig. 9(c) and (d) shows the results obtained

applying the NEBF. A few artefacts or edges are visible within

the inpainted exudates.

2) HRF: We evaluated our method performance on HRF

dataset containing higher resolution images [29]. Table III shows

a comparison with the previously reported methods for the HRF:

Yu et al. [21] and Odstrcilik et al. [29]. Our method shows a

lower Se with respect to others, as we employ a simple yet fast

algorithm for vessel detection. Nevertheless, higher Sp makes

the proposed approach the best in terms of overall accuracy on

the whole dataset. This higher accuracy level is entirely driven

by a much lower number of FPs, thus confirming the key role

of our inpainting strategy. A further analysis on each subset

(i.e. Healthy, DR, and Glaucoma) reveals that our approach

outperforms the others in terms of accuracy mostly on the un-

Fig. 9. Comparison between NEBF and Criminisi et al. method for exudate
inpainting. (a) Criminisi et al. inpainting, (b) Enhancement image after Criminisi
et al. inpainting. (c) NEBF inpainting. (d) Enhancement image after NEBF
inpainting.

TABLE III
PERFORMANCE COMPARISON OF VESSEL SEGMENTATION METHODS ON THE

HRF DATASET

HRF

Data set Methods Se Sp NPV PPV Acc

H Odstrcilik et al. [29] 0.7861 0.9750 – – 0.9539

Yu et al. [21] 0.7938 0.9767 – – 0.9566

Our method 0.6820 0.9935 0.9614 0.9271 0.9587

DR Odstrcilik et al. [29] 0.7463 0.9619 – – 0.9445

Yu et al. [21] 0.7604 0.9625 – – 0.9460

Our method 0.6997 0.9787 0.9729 0.7428 0.9554

G Odstrcilik et al. [29] 0.7900 0.9638 – – 0.9497

Yu et al. [21] 0.7890 0.9662 – – 0.9518

Our method 0.7566 0.9785 0.9783 0.7567 0.9603

ALL Odstrcilik et al. [29] 0.7741 0.9669 – – 0.9494

Yu et al. [21] 0.7811 0.9685 – – 0.9515

Our method 0.7128 0.9836 0.9709 0.8089 0.9581

healthy patients where exudates produce a high number of FPs

in other methods. Fig. 10 shows segmentation results for the

same healthy, DR and Glaucoma cases as reported by Odstrcilik

et al. [29] (“06_dr” is also reported by Yu et al. [21]).

VI. CONCLUSION

An improved Hessian-based approach for unsupervised

retinal blood vessel segmentation using an ad-hoc exudate

inpainting technique has been described. The application of the

proposed exudate inpainting technique, followed by a simple en-

hancement and thresholding method, yields results comparable

to state-of-the-art techniques that use specialized, sophisticated

enhancement, and classification algorithms. Our approach
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Fig. 10. Comparison of our method segmentation results (second column) with corresponding ground truth (third column) (HRF). (a) Original image “13_h.jpg”
from the Healthy dataset. (b) Segmentation results of (a). (c) Manual segmentation of (a). (d) Original image “06_dr.jpg” from the Diabetic Retinopathy dataset.
(e) Segmentation results of (d). (f) Manual segmentation of (d). (g) Original image “12_g.jpg” from the Glaucoma dataset. (h) Segmentation results of (g). (i)
Manual segmentation of (g).

performs better than previously reported methods on the several

challenges of retinal vessel detection.

Experimental results demonstrate the excellent performance

of our segmentation method both in pathological and nonpatho-

logical retinas included in the STARE and HRF datasets.

The NEBF filter has revealed great effectiveness in removing

isolated exudates. However, short vessels passing through an

exudate may be lost due to the NEBF filter application, thus

preventing the estimation of biomarkers such as tortuosity. This

problem could be solved by taking into account connectivity

and shape information or employing a more accurate exudate

detection technique.

Our results suggest that joint detection of vessel and other reti-

nal structures combined together could finally solve the problem

of accurate and reliable retinal vessel segmentation suitable to

various practical scenarios. In future work, we plan to extend

this idea to other structures such as drusen and haemorrhages

to make vessel segmentation even more robust against false

positives generated by the presence of such structures.
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