
Leveraging Multiviews of Trust and Similarity to Enhance
Clustering-based Recommender Systems

Guibing Guo, Jie Zhang, Neil Yorke-Smith∗

School of Computer Engineering, Nanyang Technological University, Singapore
∗American University of Beirut, Lebanon; and University of Cambridge, UK

{gguo1, zhangj}@ntu.edu.sg, ∗nysmith@aub.edu.lb

Abstract

Although demonstrated to be efficient and scalable to large-scale data sets, clustering-based recommender systems suffer from
relatively low accuracy and coverage. To address these issues, we develop a multiview clustering method through which users
are iteratively clustered from the views of both rating patterns and social trust relationships. To accommodate users who appear
in two different clusters simultaneously, we employ a support vector regression model to determine a prediction for a given item,
based on user-, item- and prediction-related features. To accommodate (cold) users who cannot be clustered due to insufficient
data, we propose a probabilistic method to derive a prediction from the views of both ratings and trust relationships. Experimental
results on three real-world data sets demonstrate that our approach can effectively improve both the accuracy and coverage of
recommendations as well as in the cold start situation, moving clustering-based recommender systems closer towards practical use.

Keywords: Recommender systems, multiview clustering, collaborative filtering, cold start, similarity, trust.

1. Introduction

Collaborative filtering (CF) (Adomavicius and Tuzhilin,
2005) is a widely-exploited technique in recommender systems
to provide users with items that well suit their preferences. The
basic idea is that a prediction for a given item can be gener-
ated by aggregating the opinions (i.e., ratings) of like-minded
users, i.e., the users with similar interest. CF has been exten-
sively studied over decades, and many approaches (Adomavi-
cius and Tuzhilin, 2005; Koren et al., 2009; Guo et al., 2014)
have been proposed in the literature. These approaches can be
classified into two categories: memory-based and model-based
methods. Memory-based methods (Adomavicius and Tuzhilin,
2005; Guo et al., 2014) aim to find similar users (called near-
est neighbors) by searching the entire user space, that is, the
similarity between each user and the active user (who desires
recommendations) needs to be computed using some similarity
measure such as the Pearson correlation coefficient (Adomavi-
cius and Tuzhilin, 2005). Although CF gained popularity due
to its simplicity, the time-consuming procedure of searching for
similar users poses a big challenge when facing large-scale data
sets, which is a typical characteristic of Web 2.0. Other issues
of memory-based methods include data sparsity and cold start
problems (Guo et al., 2014) since the computed similarity may
not be reliable due to insufficient ratings.

In contrast, model-based methods (e.g., Zhen et al. (2009,
2010)) can address these issues by training a prediction model
offline using all the rating data (both relevant and irrelevant
to the active user) rather than only based on the overlapping
ratings between users. Among the various approaches, matrix
factorization (Koren et al., 2009) is arguably the most popu-

lar model-based technique. It factorizes the user-item rating
matrix into small ranks of user-feature and item-feature matri-
ces. Then, the prediction is generated by the inner product of
a user’s feature vector and an item’s feature vector. Generally,
these methods can well adapt to large-scale data sets and cope
with the data sparsity problem. However, a critical drawback
is that the newly-issued ratings cannot be quickly involved for
predictions: retraining a model is usually time-consuming and
costly. This is a drawback because millions of new ratings may
be reported every few hours in real applications. In addition, a
lesson learned from the Netflix competition shows that the best
method is a combination of hundreds of different recommen-
dation algorithms, and none of a single algorithm can achieve
the best performance over the others (Bell and Koren, 2007).
In this regard, it is still meaningful to develop other kinds of
model-based methods. In this work, we focus on the develop-
ment of a clustering-based approach based on both user ratings
and trust information. In this article, we adopt the definition of
trust as “one’s belief towards the ability of others in providing
valuable ratings” given by Guo (2013). By definition, trust has
a much stronger correlation with user preferences than other
general social connections (e.g., friendship).

Clustering-based approaches (Sarwar et al., 2002) offer an
alternative to model-based methods. Instead of decompos-
ing the rating matrix into matrices with small ranks, these ap-
proaches reduce the search space by clustering similar users or
items together. For example, as illustrated in Figure 1, users
can be clustered by either similarity (a) or trust (b) such that the
search space for nearest neighbors can be effectively narrowed
down (to smaller clusters). In this way, new ratings of clustered

Preprint submitted to Knowledge-Based Systems September 19, 2014

u2

u1u4

u3

u5

u6

(a) Similarity Clustering

u2

u1u4

u3

u5

u6

(b) Trust Clustering

u2

u1u4

u3

u5

u6

(c) Multiview Clustering

Figure 1: The user clustering approaches based on similarity and trust information. Circles denote the formed user groups (clusters), and dashed lines indicate the
similarity between two users, while solid lines with arrows represents user trust (social trust is directional): (a) clustering users by similarity; (b) clustering users by
trust; and (c) clustering users by both similarity and trust (i.e., multiviews) where more users can be grouped in one cluster.

users or items can be timely made use of to make predictions.
However, clustering-based methods have not been widely ex-
ploited in recommender systems. Although demonstrated to be
efficient and scalable to large-scale data sets, they are recog-
nized to suffer from relatively low accuracy and coverage (Sar-
war et al., 2002; Xue et al., 2005; Bellogı́n and Parapar, 2012).
This is mainly because similar users can only be selected from
the fixed size of cluster members, and in general a fewer num-
ber of similar users can be identified (than searching the whole
space). In addition, the recommendation performance is also
sensitive to the quality of the clustering methods. As a con-
sequence, relatively low accuracy and coverage are observed,
and these issues severely hinder the practical use of clustering-
based approaches in recommender systems. To sum up, as di-
mension reduction models, clustering-based approaches retain
the advantages of low computational cost (for searching can-
didate users) over memory-based approaches, and are capable
of integrating newly-issued ratings for up-to-date recommenda-
tions relative to matrix factorization-based models. However,
clustering-based approaches are less exploited in the literature,
and suffer from relatively low accuracy and coverage.

To cope with the aforementioned issues, we develop a mul-
tiview clustering method by making use of both the view of
rating patterns and the view of social trust relationships. Specif-
ically, users are iteratively clustered from the two views using a
classic partitional clustering algorithm, and clusters generated
from different views are then combined together (e.g., as illus-
trated in Figure 1 (c)). The underlying assumption is that simi-
larity and trust provide different views of user correlations.

Multiview-based clustering methods have not been well ex-
ploited in recommender systems and most previous works only
function in a single view, namely, the user similarity. The pro-
posed multiview clustering method has several advantages rel-
ative to single view clustering methods. First, since the clusters
of users from different views will be integrated together, there
are more candidate users from which similar users can be iden-
tified. Hence intuitively, both the recommendation accuracy
and coverage will be improved, as we will demonstrate. Sec-
ond, to accommodate users who appear in two different clusters
simultaneously, we employ a support vector regression (SVR)
model (Drucker et al., 1997) to determine a proper prediction
for a given item based on user-, item- and prediction-related

features, described in Section 4.2. By doing so, the recommen-
dation performance can be further improved. Third, to accom-
modate (cold) users1 who cannot be clustered due to insufficient
data, we propose a probabilistic method in Section 5 to derive
a prediction from the viewpoints of both ratings and trust rela-
tionships. A series of experiments are conducted in Section 6
based on three real-world data sets, namely Flixster, FilmTrust
and Epinions. The results confirm that our approach can effec-
tively improve both the accuracy and coverage in comparison
with the other counterparts, and function significantly better in
handling cold users than trivial strategies (such as the average
of all cluster predictions) used in previous approaches.

In summary, the main contributions of this article are:

1. We propose a multiview clustering method to cluster users
from both the views of user similarity and trust. To our
best knowledge, we are the first to propose a multiview
clustering method based on both kinds of information.

2. We propose a support vector regression (SVR) model to
handle the situation where two predictions are generated
from two clusters. A number of user-, item-, prediction-
related features are identified for this purpose.

3. We propose a probabilistic method to resolve the cold start
problem that has not been addressed previously. Both rat-
ings and trust information are adopted in the method.

4. We conduct a series of experiments on three real-world
data sets to verify the effectiveness of the proposed multi-
view clustering method in comparison with other methods.

Our work takes the first step to cluster users from multiple
different views of user preference rather than a single view, and
verifies the ability to mitigate the issues of low accuracy and
coverage using real-world data sets, moving clustering-based
recommender systems closer towards practical use.

The rest of this article is organized as follows. Section 2
gives an overview of the related research on trust-based and
clustering-based recommender systems. Then, our approach is
elaborated in the three-fold: formulating the multiview cluster-
ing algorithm in Section 3, generating predictions by support

1The cold-start or cold users refer to those who rated only zero or a small
number of items, e.g., less than 5 items.

2

vector regression in Section 4, and handling the cold start prob-
lem in Section 5. After that, experiments based on three real-
world data sets are conducted in Section 6. Finally, Section 7
concludes our present work and outlines the future research.

2. Related Work

Trust has been extensively studied in recommender systems,
working as an additional dimension to help model user prefer-
ence. The principle is that people trusting each other are likely
to share similar preferences (Singla and Richardson, 2008).
Trust is often investigated in memory-based methods. For ex-
ample, Massa and Avesani (2007) build a trust-aware recom-
mender system by replacing user similarity with trust that can
be propagated in the trust networks. They find that trust is able
to mitigate the issues of traditional CF such as data sparsity and
cold start. However, the more common usage of trust is to com-
bine it with similarity in CF. For example, Guo et al. (2014)
merge the ratings of trusted neighbors in order to form a new
and more complete rating profile for the active users based on
which recommendations can be generated by integrating simi-
larity and trust into CF. In addition, trust is also used in model-
based methods. Ma et al. (2009) propose a social trust ensemble
(STE) method, which linearly combines a basic matrix factor-
ization approach and a social trust based approach. This ap-
proach is further enhanced by Jamali and Ester (2010) where
trust propagation is enabled in the social networks. Recently,
Yang et al. (2013) propose a TrustMF method to consider both
the influence of trustors and trustees2 in a matrix factorization
method. They show that better performance can be obtained
using the new model. In conclusion, trust-aware recommen-
dations can improve the performance of rating-based recom-
mender systems, indicating that trust is able to provide an ef-
fective view of user preference in addition to similarity.

On the other hand, clustering-based approaches gain less at-
tention in recommender systems although being demonstrated
to be efficient and scalable to large-scale data sets (Sarwar et al.,
2002; Xue et al., 2005). As a dimension-reduction method,
they are capable of alleviating the sparsity of rating data (Pham
et al., 2011). Most previous works focus on clustering users or
items from the view of similarity. For example, Sarwar et al.
(2002) apply the bisecting k-means algorithm to cluster users
and base the neighborhood formation on the cluster members.
However, they find that the accuracy is decreased around 5%
in comparison with the conventional kNN CF method. Xue
et al. (2005) show that close accuracy can be obtained at the
expense of rating coverage. Recent works such as Bellogı́n
and Parapar (2012) report that by applying more advanced clus-
tering method, the accuracy can be further improved and even
outperform the other CF approaches. However, coverage re-
mains an unresolved issue. In summary, previous clustering-
based approaches suffer from relatively low accuracy and, espe-
cially, coverage. This motivates us to develop a better clustering
method that is capable of alleviating these issues.

2Trustor refers to the users who trust others, and trustees are those who are
trusted by other users.

Few works have attempted to incorporate social relationships
into clustering-based methods with the aim of better perfor-
mance of CF. DuBois et al. (2009) combine a correlation clus-
tering algorithm and trust models together to derive trust from
the connection distance in a trust network. However, only lim-
ited improvement (around 0.0001 in mean absolute error) is ob-
served, and their approach requires the numerical trust values
which are not available in all the existing (to our best knowl-
edge) publicly available recommendation datasets. Another
drawback of the existing approaches is that most of them do
not take care of the cold start problem. In their experiments,
they either simply remove cold users from data sets or adopt
the average value as the prediction. In this work, we presume
that similarity and trust are conditionally independent charac-
teristics (attributes) of user preference, and hence users can be
clustered from both views of similarity and trust rather than
merging them into a single view. In addition, we develop a
probabilistic method to resolve the cold start problem based on
both ratings and trust information. Thus, we open a new way to
cluster users, i.e., from multiple different views of user prefer-
ences.

Multiview methods have been studied only in a very limited
manner in recommender systems. Oufaida and Nouali (2009)
propose a recommendation method that hybrids the recommen-
dations derived from multiple views, including collaborative,
social and semantic views. Rather than to generate recommen-
dation separately, our approach aims to produce individual rec-
ommendations by properly integrating different kinds of infor-
mation. The most related work is published by Li and Mu-
rata (2012), where a multidimensional clustering method is pro-
posed to cluster users separately according to different subsets
of item attributes. They aim to improve the diversity of item
recommendations by avoiding providing many similar items.
In contrast, our work focuses on a more principled multiview
clustering algorithm based on two user features, i.e., similarity
and trust, and targets better predictive accuracy and coverage.
To the authors’ best knowledge, our approach is the first to form
a multiview clustering method merely dependent on users’ rat-
ings and trust information.

3. Multiview Clustering

We first introduce the background of the multiview clustering
algorithm, and then elaborate how to apply it in recommender
systems together with the k-medoids approach (Bishop et al.,
2006).

The multiview clustering algorithm was first introduced by
Bickel and Scheffer (2004). The basic idea is to seek clusterings
in different subspaces of a data space, i.e., the user space in our
case. Users have two different kinds of information, namely
ratings issued on items of interest and trust specified on other
users (e.g., friends). Hence, these types of information describe
users from different views, i.e., rating patterns (user behaviors)
and trust links (social connections). In this section, we aim to
cluster users using both ratings and trust information.

3

3.1. Multiview clustering algorithm
The most well-known partitional clustering methods are the

k-means and k-medoids algorithms due to their simplicity and
effectiveness. The former algorithm is adopted by many works
or used as a baseline approach (Xue et al., 2005; Bellogı́n and
Parapar, 2012), whereas the latter has not been used in recom-
mender systems, to the authors’ best knowledge. Since the k-
means algorithm generates a cluster center (centroid) by aver-
aging all the values of each attribute, it will eliminate important
personal information such as trusted neighbors. Instead, the
k-medoids algorithm chooses a real user as the centroid which
minimizes the summation of pairwise distances within a cluster.
Mathematically, the objective function is given as follows:

J = min
∑
c∈C

∑
u,v∈c

d(u, v), (1)

where C is a set of user clusters, users u, v are members of clus-
ter c ∈ C, and d(u, v) defines the distance of users u and v. We
adopt the k-medoids algorithm in order to preserve individu-
als’ ratings and trust information during the clustering process
described as follows.

First, users are clustered using the rating information. In par-
ticular, user similarity is used as the distance metric to measure
the closeness of two users. For clarity, we keep symbols u, v for
users and i, j for items, and thus denote ru,i as a rating reported
by user u on item i. We denote Iu as the set of items rated by
user u. The Pearson correlation coefficient (Adomavicius and
Tuzhilin, 2005) is often adopted to compute user similarity:

su,v =

∑
i∈Iu,v

(ru,i − r̄u)(rv,i − r̄v)√∑
i∈Iu,v

(ru,i − r̄u)2
√∑

i∈Iu,v
(rv,i − r̄v)2

, (2)

where su,v ∈ [−1, 1] is the similarity between users u and v,
Iu,v = Iu ∩ Iv is the set of items commonly rated by both users,
and r̄u and r̄v represent the average of ratings given by users
u and v, respectively. The user distance is thus computed by
ds(u, v) = 1 − su,v. Based on this, the k-medoids algorithm can
be applied to cluster users.

Second, separately, users are clustered using the trust infor-
mation. Although a user may specify other users as trusted
neighbors and indicate the extent to which they are trustwor-
thy, generally in real applications we only get binary values of
trust (i.e., trust links) due to the concerns of, for instance, pri-
vacy. This deteriorates the effectiveness of trust inference meth-
ods such as MoleTrust (Massa and Avesani, 2007). Hence, we
define trust values as:

tu,v =
1

du,v
, (3)

where tu,v ∈ (0, 1] is the trustworthiness of user v relative to user
u, and du,v is the minimum distance between two users deter-
mined by a breath-first search in the trust network, where users
are connected with each other by social trust relationships. The
closer two users are located, the higher trustworthiness the users
have. According to the theory of six-degree separation (Watts,
2004), any two users in the social network can be connected

Algorithm 1: Multiview k-medoids Algorithm
Input : distance matrix Ds, Dt; cluster number k
Output: user clusters C

1 p← 0;
2 randomly select k medoids mt from trust users, θ0

t ← mt;
3 C0

t ← v, given min(dt(v,mt));

4 while medoids changed and < max iterations do
5 p← p + 1; // in the view of similarity
6 θ

p
s ← θ

p−1
t ;

7 swap(ms, u), u ∈ Cp−1
t ;

8 calculate sums(u) =
∑

v ds(u, v), v ∈ Cp−1
t ;

9 if sums(u) < sums(mt) then
10 ms ← u;
11 θ

p
s ← ms;

12 Cp
s ← v, for ∀v, find ms s.t. min(ds(v,ms));

13 p← p + 1; // in the view of trust
14 θ

p
t ← θ

p−1
s ;

15 swap(mt, u), u ∈ Cp−1
s ;

16 calculate sumt(u) =
∑

v dt(u, v), v ∈ Cp−1
s ;

17 if sumt(u) < sumt(ms) then
18 mt ← u;
19 θ

p
t ← mt;

20 Cp
t ← v, for ∀v, find ms s.t. min(dt(v,ms));

21 return C ← Integrate(Cp
t ,C

p−1
s);

within a small number of steps: we thus restrict du,v ≤ 6 to
prevent meaningless searching. The trust distance is thus com-
puted by dt(u, v) = 1 − tu,v. Based on this, the k-medoids algo-
rithm can be applied to cluster users.

The pseudocode of our multiview clustering algorithm is pre-
sented in Algorithms 1 and 2. In Algorithm 1 the rating distance
matrix Ds and the trust distance matrix Dt are taken as inputs
to the multiview clustering algorithm which outputs the clusters
of users. We begin with the view of trust3 by randomly select-
ing k users as the initial medoids, and hence form a set θ0

t of
trust medoids at step p = 0 (lines 1-2). Then each user v in the
user space will be assigned to the trust medoid with whom user
v has the minimum distance among all the medoids mt. The
initial user clusters in the view of trust are formed and denoted
as C0

t (line 3). After that, the multiview clustering method will
iteratively (lines 5-12 and lines 13-20) cluster users from the
two different views and combine both views as the final results
(line 21). In particular, during lines 5-12, we initialize the sim-
ilarity medoids by the trust medoids determined in the previous
step (line 6). Then they are updated by swapping each medoid
with other users u within the cluster Cp−1

t (line 7), and by the
users who achieve the minimum summation of the pairwise rat-
ing distances (lines 8-11). Lastly, user clusters Cp

s in the view

3We empirically find that there is little difference with the ordering of views
in the multiview clustering.

4

Algorithm 2: Cluster Integration Algorithm
Input : clusters Ct and Cs, threshold θ
Output: user clusters C

1 set cluster threshold θc ← θ;
2 for each cluster Ci

t in Ct do
3 if |Ci

t | < θc then
4 min dist ← ∞;
5 best id ← −1;
6 for each cluster C j

t in Ct do
7 sum dist ← 0;
8 cnt ← 0;
9 for each user u in Ci

t do
10 sum dist ← sum dist + dist(u,m j

t);
11 cnt ← cnt + 1;

12 avg dist ← sum dist/cnt;
13 if min dist > avg dist then
14 min dist ← avg dist;
15 best id ← j;

16 if best id > −1 then
17 C j

t ← C j
t ∪Ci

t; // merging clusters

18 set Ci
t ← ∅; // pruning clusters

19 goto line 2 with Cs in place of Ct if Cs unprocessed;

20 set C ← Ct;
21 for each cluster C j

s in Cs do
22 Ci ← C j ∪C j

s;

23 return C;

of similarity are generated (line 12). Similarly in the view of
trust (lines 13-20), the previously generated similarity medoids
will be assigned as the initial trust medoids at step p. The trust
medoids are updated in the light of trust distances, and produce
a new set of user clusters Cp

t . This iterative process will con-
tinue until no medoids are changed during lines 9-11 and 17-19,
or the maximum iteration number is reached (line 4). Finally,
the user clusters from different views are combined together by
Algorithm 2 (line 21) as the output of the multiview algorithm.

Algorithm 2 elaborates how to integrate trust and similarity
clusters using merging and pruning operations. The motivation
is that a cluster with few users may fail to produce reliable pre-
dictions for a given item. We observe that it is not necessary
to have the exact number (k) of clusters as indicated, since the
main objective is to reduce dimensionality and generate accu-
rate recommendations. In Algorithm 2, the trust and similarity
clusters are taken as input, and user clusters are obtained as
output. The integration will be triggered by a criterion, i.e., the
number of cluster members being less than a cluster threshold
θc (line 1). In our case, we use the value of 5 as default value
which gives good results in general.4 For each cluster Ci

t in
the clusters Ct (line 2), if the criterion is satisfied (line 3), the

4Further tuning the value of θ may give better performance.

integration will proceed. First, we find another cluster C j
t that

achieves the minimum average distance between each member
u in Ci

t and the medoid centroid m j
t of cluster C j

t (lines 4-15).
If such a cluster is found (line 16), all the members of clus-
ter Ci

t will be merged into cluster C j
t (line 17). Cluster Ci

t will
be pruned regardless of whether it will be merged or not (line
18). After processing trust clusters Ct, we repeat the procedure
by replacing Ct with similarity clusters Cs (line 19). Finally,
the clusters are combined in a pairwise manner and returned as
output (lines 20-23). The pairwise combination is due to the it-
erative procedure where the cluster medoid is derived from the
previous clusters from the other view. One advantage of cluster
integration is that relatively stable and less clusters (≤ k) can be
preserved even if the value of k is not indicated appropriately
(e.g., too large). Thus, it can alleviate the problems of specify-
ing an ideal value of k as input to Algorithm 1.

3.2. Complexity analysis

For each iteration of Algorithm 1, the most time-consuming
parts are to iteratively search and update new similarity and
trust medoids within previously generated clusters (lines 7-8,
15-16). Specifically, the computation time is around O(n2

s +

n2
t) ≈ O(n2), where ns, nt refer to the average number of mem-

bers within a similarity-based and a trust-based cluster, respec-
tively; and n = max{ns, nt}. For Algorithm 2, the main compu-
tation is to identify the cluster to be merged and pruned (lines
6-15). The time complexity is O(nin j), where ni, n j refer to the
average number of users in clusters Ci

t and C j
t , respectively. As

the algorithm will eliminate clusters in line 18, the whole com-
putation time is O(krnin j) ≈ O(n2), where n = max{ni, n j}, and
kr ≤ k is the number of left clusters after reduction. To sum
up, the overall time complexity of the multiview clustering ap-
proach is O(m(n2+n2)) ≈ O(n2), where m is the maximum num-
ber of iterations. In practice, the value of m is small (around 20),
and n will be far smaller than the number of total users, espe-
cially when a number (k) of clusters are generated. To boost
the computation, we can adopt a parallelization technique (e.g.,
multi-threaded) to implement the critical time-consuming parts
(e.g., lines 7-8), since there are no relations among different
clusters. In this way, the time complexity can be reduced to
O(n), i.e., linear to the average number of cluster users.

3.3. An example

Suppose there are six users {u1, u2, u3, u4, u5, u6}, where the
first two users are similar with each other and the same holds
for the last three users. Users {u2, u4} are close friends and users
{u1, u5, u6} are another friend group. These relations are illus-
trated in Figure 2. To start with, we randomly select three users,
e.g., u1, u3 and u4 as the initial trust medoids in the case of
k = 3 clusters. Hence, user u2 and users u5, u6 will be clus-
tered and linked to users u4 and u1, respectively. The generated
three clusters are c1

t = {u2, u4}, c2
t = {u3} and c3

t = {u1, u5, u6}

at step p = 0, from which similarity medoids are initialized by
trust medoids and then updated by swapping the medoid with
any other user in the cluster and computing the summation of
pairwise rating distances within the clusters. Suppose users u2,

5

u4

u1u2

u3

u5

u6

C1 C2

Figure 2: An example of the multiview clustering approach. Similarity is de-
noted by dashed line, while mutual trust is represented by solid lines. For ex-
ample, users u1 and u2 share similar preferences, and users u1, u5 and u6 mu-
tually trust each other. Two clusters are generated by the multiview clustering
approach, namely clusters C1 and C2 based on both similarity and trust.

u3 and u5 are found as new similarity medoids: the user clus-
ters based on similarity obtained are c1

s = {u1, u2}, c2
s = {u3}

and c3
s = {u4, u5, u6}. In the next iteration, trust medoids will

be assigned by using similarity medoids initially and then up-
dated according to trust distances. In this iteration, we note
that users u2, u3 and u5 are the same medoids as the last iter-
ation and hence no update is processed. Until now we have
generated stable trust and similarity clusters separately. Next,
we will integrate them together. Initially, we set the threshold
θc = 2 since only a few users are available. Then the second
cluster of similarity or trust will be processed with merging and
pruning. Specifically, since user u3 has no friends nor is similar
to others, the clusters c2

t and c2
s will be emptied and pruned. Fi-

nally, the other clusters will be pair-wised combined together,
resulting in the final clusters: c1 = {u1, u2, u4}, c2 = ∅ and
c3 = {u1, u4, u5, u6}. Note that users u1 and u4 appear in two
clusters c1 and c3. We will address this issue next in Section 4.

4. Prediction by Support Vector Regression

We elaborate how to generate item predictions according to
the user clusters obtained by the multiview clustering algo-
rithm, and how to determine a proper prediction when some
users appear in two different clusters due to the cluster integra-
tion.

4.1. Generating predictions

Once users are clustered by the multiview clustering algo-
rithm, for each active user u, we may find a cluster Cu to which
u belongs, and hence make an item prediction by aggregating
the ratings of cluster members v ∈ Cu who are similar to user u:

pu, j =

∑
v∈Cu

wu,v · rv, j∑
v wu,v

, (4)

where pu, j is the prediction for user u of an item j, and wu,v

is the importance weight of user v’s ratings relative to user u.
Hence, more important users will have more influence on the

prediction. Section 5 will handle the case where the active users
cannot be clustered.

The user weight wu,v consists of two parts, namely similarity
su,v and trust tu,v. O’Donovan and Smyth (2005) suggest to use
the harmonic mean to integrate both similarity and trust. This
is because high values can only be obtained when both simi-
larity and trust values are high. We adopt the same strategy to
compute the user weight:

wu,v =

2 · (1 + su,v) · (1 + tu,v)

su,v + tu,v + 2
if tu,v exists,

1 + su,v otherwise.
(5)

Since harmonic mean requires positive values and su,v ∈

[−1, 1], we use 1 + su,v instead of su,v in Equation 5, and hence
1 + tu,v accordingly. In case that two users do not have a trust
value tu,v, we merely adopt 1 + su,v as user weight wu,v for con-
sistency.

4.2. Prediction regression

In our multiview k-medoids algorithm, the clusters generated
based on ratings and the clusters based on trust will be com-
bined together. One resultant phenomenon is that some users
may appear in two different clusters at the same time. For ex-
ample, in Figure 2 user u4 is grouped to cluster C1 due to her
trust to user u2 while she is also grouped to cluster C2 due to her
similarity to users u5 and u6. In other words, these cases happen
most likely to the users who have trust connections to the other
users, and who also share similar preferences with other users.
According to Equation 4, two possible predictions may be gen-
erated from different clusters. Under the assumption that users’
real preferences can be well approximated using the two predic-
tions from different clusters, we model the prediction determi-
nation as a regression problem: how to effectively combine the
two predictions such that the estimated value will approximate
the ground truth, i.e., user’s real preference as close as possi-
ble. Note that a simpler regression (e.g., a harmonic mean) is
ineffective in this case, because the two predictions may not
be equally useful to determine a proper regression value. Sec-
tion 6.4 will demonstrate that our approach works better than
a simple average method. Formally, given that the two predic-
tions are denoted as p1

u, j and p2
u, j, we train a regression function

f to map the two predictions to a value that will minimize the
following loss function J(f):

f = min
f

J(f) = min
f

∑
u, j

(
f (u, j, p1

u, j, p2
u, j) − ru, j

)2
, (6)

where the regression function f is associated with the active
user u, target item j and two predictions p1

u, j and p2
u, j. This

is because even in two different cases where the two predic-
tions are the same, e.g., 3.5 and 5.0 (suppose that ratings are
ranged from 1 to 5), the ground truth for different users towards
different items may differ. For example, user u may have real
preference toward item j as 4.0 whereas user v prefers 5.0 in
practice.

6

Table 1: The features that we use to represent the user-item predictions for the SVR training
User-related features Item-related features Prediction-related features

1. number of ratings 1. number of ratings 1. number of ratings
reported by active user u received on target item j given by the similar users

2. average of ratings 2. average of ratings 2. average of user weights
3. standard deviation of ratings 3. mode of ratings 3. maximum of weights
4. rating distance ds(ms, u) 4. maximum of ratings 4. minimum of weights
5. rating distance ds(mt, u) 5. minimum of ratings 5. standard deviation of weights
6. rating distance ds(ms,mt) 6. number of positive ratings 6. standard deviation of ratings

7. number of negative ratings 7. prediction value
8. standard deviation of ratings 8. number of similar users from Cs

9. absolute difference between mode and prediction 9. number of similar users from Ct

10. ratios of ratings in each rating scale over all ratings 10. certainty of prediction cu, j

To resolve this regression problem, we apply a well-known
method: support vector regression (SVR)5 (Drucker et al.,
1997) stemmed from the support vector machine (SVM). SVM
is a classification method for both linearly and nonlinearly sep-
arable data. It is widely applied in many applications due to its
high accuracy. It always finds a global solution rather than be-
ing stuck with a local maximum. Most importantly, SVR with
a proper kernel helps avoid the difficulty of using linear func-
tions in high dimensional feature space. In particular, we use
the Gaussian radial basis function (rbf):

rbf: exp(−γ|xi − x j|
2), γ > 0 (7)

as the kernel6, where xi and x j are two training examples, and
parameter γ defines how much influence a single training ex-
ample has. Larger γ indicates the closer the other training ex-
amples to be affected. Another parameter of SVM methods is C
which reflects the tradeoff between misclassification of training
examples and simplicity of the decision hyperplane. A low C
makes the decision surface smooth whereas a high C tends to
treat all training examples noiseless. We defer the settings of
these parameters till Section 6. The features that we investigate
include user-, item- and prediction-related features.

4.2.1. User-related features
Six kinds of features are identified to describe users: three

are related to user behaviors (i.e., ratings) and three related to
user positions within a cluster. Specifically, the former three
attributes include the number, the average and standard devi-
ation of the ratings reported by the user. These features cap-
ture the rating activity and bias of user behaviors. The latter
three attributes are the rating distances to the similarity and trust
medoids from the user respectively, and the rating distance be-
tween the similarity and trust medoids. These features describe
the user’s relative position within a specific cluster.

5The SVR used in the article is implemented by a Python module sklearn
(http://scikit-learn.org/stable/).

6Generally, the rbf kernel is able to achieve good performance (Schölkopf
and Smola, 2002). Although its time consumption is much higher than the
linear kernel, this issue is not critical in our case since a relatively small number
of features are used.

4.2.2. Item-related features
Ten kinds of features are identified to describe items. The

first feature is the number of ratings received by the item, de-
scribing the item’s popularity. The rest of the features depict the
distributions of received ratings, including the (average, mode,
maximum, minimum and standard deviation) of ratings, the ra-
tio of ratings in each rating scale over all ratings, the absolute
difference between mode and prediction, the number of posi-
tive and negative ratings (see definitions below). These features
reflect the general opinions of users in the community.

4.2.3. Prediction-related features
Ten kinds of features are identified to represent the item pre-

dictions, where nine features regard the generation of the pre-
dictions, and the last feature is associated with the quality of
predictions. Specifically, the nine features are the number and
standard deviation of collected ratings, the average, maximum,
minimum and standard deviation of user weights, the weighted
average of user ratings (i.e., the prediction value), and the num-
ber of users identified from similarity cluster and trust cluster
respectively. The first seven attributes are directly related with
the generation of predictions whereas the last two attributes
may help distinguish the composition of the similar users.

One more feature regarding the quality of predictions is the
rating certainty (Wang and Singh, 2007), considering both the
number of ratings involved and the conflicts between positive
and negative opinions. The intuition is that the more ratings are
aggregated and the higher consistency among these ratings, the
more certain that the prediction is correct. Formally, Wang and
Singh (2007) define the certainty as follows:

cu, j =
1
2

∫ 1

0

∣∣∣∣ xmu, j (1 − x)nu, j∫ 1
0 xmu, j (1 − x)nu, j dx

− 1
∣∣∣∣dx, (8)

where cu, j ∈ (0, 1] is the certainty of prediction pu, j, modelled
as a function of mu, j and nu, j referring to the number of positive
and negative opinions (ratings) provided by the similar users
regarding target item j, respectively; x is the probability of a
rating being positive. We denote a rating as positive if its value
is greater than the median rating scale; otherwise it is negative.

In all, we have identified 26 kinds of features regarding each
user-item prediction, summarized in Table 1. By linking pair-

7

wise features together (Vicente et al., 2011), we double the
number of features. Since the two predictions are orderless,
during the training stage we also exchange the orders of the
two predictions and hence gain a new training example.

5. Handling Cold Users

A known drawback of traditional clustering-based recom-
mender systems is the inability to deal with cold users. This is
because user-cluster correlations cannot be reliably computed
based on few item ratings shared by cold users (Guo et al.,
2013b). In fact, many existing works ignore such a case when
evaluating their clustering-based recommender systems, or sim-
ply adopt the average predictions from all the clusters. In this
article, we propose a probabilistic approach to identify the like-
lihood that a user is affiliated with a certain cluster based on
both ratings and trust information.

5.1. Rating-based cluster likelihood
A rating-based likelihood is derived from the ratings reported

by the cold users. Our method is based on the assumption: the
ratings (of a specific item) given by users within the same clus-
ter follow a Gaussian distribution, since users in the same clus-
ter tend to have similar preferences, i.e., close ratings on the
items commonly rated. Hence, we classify a user as an anomaly
to a cluster if the average of his/her ratings does not follow the
rating distribution. Specifically, the rating-based likelihood is
calculated in the following three steps.

1. A Gaussian distribution N(µi, δi) for each item i ∈ Iu rated
by the cold user u is fitted, according to the ratings given
by the cluster users. Hence, the likelihood of user u’s rat-
ing ru,i following such a distribution is:

Pr(ru,i; µi, δi) =
1√
2πδ2

i

exp
(
−

(x − µi)2

2δ2
i

)
, (9)

where µi, δi are the mean and standard deviation of the rat-
ings on item i, respectively.

2. The likelihood of belonging to cluster c is computed by
the average of likelihoods over the item set Iu:

Pr(u; c) =
1
|Iu|

∑
i∈Iu

Pr(ru,i; µi, δi). (10)

Unlike the general density-based anomaly detection where
probability product is used (Chandola et al., 2009), we
adopt the average of probabilities due to the fact that the
number of ratings for each cold user may be different.
Hence, a product value will be more biased to the users
with smaller number of ratings.

3. An anomaly is detected if the likelihood is lower than a
small value ε. Otherwise, the square value of Pr(u; c) is
taken to further increase the discrepancy of likelihoods in
different clusters. Thus, the rating-based cluster likelihood
is given by:

l(u; c) =

{
0, if Pr(u; c) < ε;
Pr(u; c)2, otherwise. (11)

In this work, we set ε = 0.05 by default. The effect of ε
will be left as future work. Nevertheless, it can be analyzed
that smaller value of ε means a more relaxed constraint
on the probability, and could involve more clusters in the
prediction at the expense of a higher risk, whereas a higher
value leads to smaller number of clusters for prediction but
with more certainty.

5.2. Trust-based cluster likelihood
A trust-based likelihood is computed using the user trust re-

lationships reported by the cold users. The intuition is that if
the users trusted by a cold user are also trusted by a cluster,
the cold user is likely to join the cluster. Specifically, the trust-
based cluster likelihood is obtained as follows.

1. Represent the trusted neighbors of a cold user u as a value
vector: Tu = (tu,v1 , tu,v2 , ..., tu,vm), where m is the number of
users co-trusted by user u and cluster c. Note here we use
lower case c to denote a cluster.

2. Compute the global trust of the trusted neighbors of the
cold user, and represent it as a vector: Tc = (t·,v1 , t·,v2 , . . . ,
t·,vm), where t·,vi represents the global trust for user vi in
cluster c, derived by:

t·,vi =
1
|Uc,i|

∑
v j∈Uc,i

tv j,vi , (12)

where Uc,i represents the set of users in cluster c who have
a trust value with user vi.

3. The trust-based likelihood is derived from the similarity
between Tu and Tc. In cold conditions, cosine similarity
is more preferred than the Pearson correlation coefficient
since the former is computable when the length of vectors
is less than 2. Thus the likelihood is:

l(u; t) = cos(Tu,Tc)2 =

(∑n
j=1 tu,v j · t·,v j√∑n

j=1 t2
u,v j

√∑n
j=1 t2

·,v j

)2

. (13)

As with Equation 11, trust-based likelihood also adopts the
square value to increase the discrepancy of cluster likelihood.
A notable issue is that a cold user in social networks may also
connect to very few trusted neighbors other than have rated only
small items. In this case, both trust vectors Tu and Tc are quite
short in length. Nevertheless, we are still able to compute the
trust-based likelihood by Equation 13. Therefore, the proposed
approach is also applicable to such an extreme case.

5.3. Generating predictions
The possibility that a cold user belongs to a specific cluster

is derived by aggregating the two kinds of cluster likelihoods:

wu,c = l(u; c) + α · l(u; t), (14)

where α ∈ [0, 1] is a parameter indicating the importance of
the trust-based likelihood. In other words, we suggest that the
similarity-based likelihood may be more reliable than the trust-
based one, because the former likelihood is directly related with
ratings whereas the latter functions more likely as an indicator.

8

Table 2: Summary statistics of the three real-world data sets
Data set users items ratings trust density
Flixster 5,000 13,527 264,540 2,898 0.39%
FilmTrust 1,508 2,071 35,497 2,853 1.14%
Epinions 2,438 25,786 49,230 2,240 0.08%

It makes sense in that trusted users may not share similar pref-
erence. Finally, a rating prediction is generated by averaging
the predictions from different clusters according to the weights
wu,c, given by:

pu, j =

∑
c wu,c · pu, j,c∑

c wu,c
, (15)

where pu, j,c is the prediction generated from cluster c for user
u on item j, derived by the average of all the ratings given by
users in cluster c. In case that all the weights wu,c are equal
to 0 and Equation 15 is not computable, we may regard all the
weights equally and adopt the average of cluster predictions (if
any) as the final prediction.

6. Evaluation

We conduct empirical experiments in order to study two main
research questions: (1) whether incorporating multiple views
of user correlations can improve the performance of recom-
mendations in terms of accuracy and coverage; (2) whether our
method can effectively cope with the cold users.

6.1. Data sets

Three real-world data sets are used in the experiments,
namely Flixster, FilmTrust and Epinions. Flixster.com is a
movie sharing and discovering website where users can report
their movie ratings in the range from 0.5 to 5.0 with step 0.5.
We randomly sample 5,000 users from the original data set7 as
well as the user ratings and trust ratings. Note that, different
from the other two data sets, the trust information in Flixster is
symmetric. Similarly, FilmTrust8 allows users to share movie
ratings and explicitly specify other users as trusted neighbors.
We adopt the data set provided by Guo et al. (2013b) where rat-
ings are ranged from 0.5 to 4.0 with step 0.5. It contains 2,853
trust ratings issued by 609 users. Epinions.com is a website in
which users can express their opinions about products (such as
books, software, etc.) by assigning numerical ratings (from 1
to 5 with step 1) and can indicate other users as trustworthy.
The original data set is generated by Massa and Avesani (2007)
from which we randomly sample a subset by selecting the users
who have rated at least three items. The statistics of data sets is
shown in Table 2, where Epinions has the highest data sparsity
(having a large number of items but receiving a small number of
user ratings) and a relatively small amount of trust information.

7http://www.cs.sfu.ca/~sja25/personal/datasets/
8http://www.librec.net/datasets.html

6.2. Experimental settings
As discussed in Section 2, the only previous trust-based clus-

tering approach (DuBois et al., 2009) takes as input the nu-
merical trust values that are not available in our data sets.
No other state-of-the-art trust-based clustering approaches have
been proposed to date. Multi-dimensional clustering ap-
proaches (Oufaida and Nouali, 2009; Li and Murata, 2012) take
either semantic information or item contents as extra dimen-
sions to cluster users, i.e., they do not use trust information.
However, in our cases only user-item ratings and user-user trust
information are available. In addition, most previous studies
use the k-means as the basic clustering algorithm whereas we
adopt the k-medoids to preserve individuals’ ratings and trust
information. Therefore, there is a lack of proper clustering-
based approaches to have a fair comparison with. Further con-
sidering that the main purpose of our experiments is to demon-
strate the effectiveness of our multiview clustering approach
with respect to other single view-based approaches, we imple-
ment and compare with the following clustering-based meth-
ods:

• KCF is a baseline method where users are clustered ac-
cording to the rating information by a k-medoids method,
and item predictions are generated using similarity as user
weights.

• KCFT is a variant of KCF method that computes user
weights by the harmonic mean of similarity and trust (see
Equation 5) for rating prediction. Note that except for
KCF, all the other methods use this way to compute user
weights. Both KCF and KCFT are single view clustering
methods using rating patterns.

• KTrust is a single view clustering method using social
trust information, i.e., users are clustered according to the
trust distances by a k-medoids method.

• MV is our multiview k-medoids method that clusters users
using both ratings and trust information. As mentioned in
Section 4.2, two parameters need to be set, namely γ and
C for the SVR model. In the experiments, the parame-
ters are determined by varying their values in the range
[0, 1]9. Specifically, we apply exhaustive grid search in
the sets {0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0} for γ, and C = 1.0
(suggested by the sklearn module), and the best values are
chosen using 5-fold cross validation on the training sam-
ple, guided by the mean square errors (MSE).

We apply 5-fold cross validation to evaluate the performance
of each method. That is, all data sets are randomly split into
five folds. At each time, the data of four folds are used as the
training set and the last one as the test set. We repeat this proce-
dure five times until all folds are tested and average the results.
The performance is measured in terms of accuracy and cover-
age. Mean absolute error (MAE) and root mean square error

9In case of value 0, the setting we use is γ = 1/n, where n is the number of
features used for regression.

9

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 50 100 150 200 250 300 350 400 450 500

M
A

E

number of clusters

U
I

P
UI

UP
IP

UIP

(a) Flixster (MAE)

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 10 20 30 40 50 60 70 80 90 100

M
A

E

number of clusters

U
I

P
UI

UP
IP

UIP

(b) FilmTrust (MAE)

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 10 20 30 40 50 60 70 80 90 100

M
A

E

number of clusters

U
I

P
UI

UP
IP

UIP

(c) Epinions (MAE)

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 50 100 150 200 250 300 350 400 450 500

R
M

S
E

number of clusters

U
I

P
UI

UP
IP

UIP

(d) Flixster (RMSE)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 50 100 150 200 250 300 350 400 450 500

R
M

S
E

number of clusters

U
I

P
UI

UP
IP

UIP

(e) FilmTrust (RMSE)

 1.34
 1.35
 1.36
 1.37
 1.38
 1.39
 1.4

 1.41
 1.42
 1.43
 1.44
 1.45

 50 100 150 200 250 300 350 400 450 500

R
M

S
E

number of clusters

U
I

P
UI

UP
IP

UIP

(f) Epinions (RMSE)

Figure 3: The effect of categorized features in our approach on different data sets

(RMSE) are popular predictive metrics to measure the close-
ness of predictions relative to the ground truth:

MAE =

∑
u,i∈Ω |ru,i − pu,i|

|Ω|
,

RMSE =

√∑
u,i∈Ω(ru,i − pu,i)2

|Ω|
;

(16)

where Ω is the set of test ratings, and |Ω| denotes the cardinality
of the set Ω. Comparing with MAE, RMSE is useful to identify

undesirably large errors. In general, smaller MAE and RMSE
values indicate better accuracy. In addition, the rating cover-
age (RC) is usually defined as the ratio of the number (PR) of
predictable ratings over that of all test ratings, given by:

RC =
PR
|Ω|

. (17)

Note that the performance of the k-medoids algorithm is sen-
sitive to the number k of clusters and the initially selected
medoids. Given that different data sets have different statistics,

10

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 50 100 150 200 250 300 350 400 450 500

M
A

E

number of clusters

MV
Avg

(a) Flixster (MAE)

 0.705

 0.71

 0.715

 0.72

 0.725

 0.73

 0.735

 0.74

 0.745

 0.75

 10 20 30 40 50 60 70 80 90 100

M
A

E

number of clusters

MV
Avg

(b) FilmTrust (MAE)

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 10 20 30 40 50 60 70 80 90 100

M
A

E

number of clusters

MV
Avg

(c) Epinions (MAE)

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 50 100 150 200 250 300 350 400 450 500

R
M

S
E

number of clusters

MV
Avg

(d) Flixster (RMSE)

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

number of clusters

MV
Avg

(e) FilmTrust (RMSE)

 1.34

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

number of clusters

MV
Avg

(f) Epinions (RMSE)

Figure 4: The effect of the SVR model in our approach on different data sets

especially the amount of ratings and trust information, the value
of k is varied in different ranges for different data sets. More
specifically, the values of k are varied from 50 to 500 with step
50 in Flixster, and from 10 to 100 with step 10 in FilmTrust and
Epinions. In addition, each method is executed five times and
its results averaged.

6.3. Effect of categorized features

We investigate the impact of different categories of features
on the predictive performance. To facilitate the discussion,
we denote U, I, P as user-, item- and prediction-based fea-
tures, respectively, and concatenate these letters to represent
different combinations of categorized features, e.g., UI mean-
ing that both user- and item-related features are used whereas
prediction-related features are not. The results on all the data
sets are illustrated in Figure 3. Although the differences among
all these variants in performance are not significant and vary,
the combination of UI achieves consistently the best accuracy
on the three data sets. Since the trends on Flixster and FilmTrust
are more clear and consistent, we base our conclusions on their
performance. Specifically, for a single category of features,
user-related features (U) perform better than item-related ones
(I) which are superior to the prediction-related (P). One possi-
ble explanation is that our method can be seen as a user-based
approach in distinguishing user clusters and hence determin-
ing predictions. For the combinations of categorized features,
UI outperforms all the others, including all the possible fea-
tures UIP. Two points can be made: (1) more features do not
necessarily result in better performance, rather, noisy features
(P) could decline the accuracy; (2) a proper prediction is more

relevant with the nature of the active user and the target item
themselves than how the prediction is generated.

6.4. Effect of the SVR model
The second series of experiments study the effect of the SVR

model used in our approach, comparing with the trivial strategy
of the average to determine a prediction (denoted by ‘Avg’).
The results on the three data sets are shown in Figure 4. It can
be seen that our method with the SVR model (MV) consistently
and significantly perform better than the variant of ‘Avg’, as the
number of clusters gradually increases. Hence, it is important
for our method to involve the SVR model in order to achieve a
proper and accurate prediction from those of two possible clus-
ters.

6.5. Comparison with other approaches
We apply the multiview k-medoids and the other methods on

the three real-world data sets to investigate their predictive per-
formance in terms of accuracy and coverage. Specifically, we
take the data of users who have rated at least five items or spec-
ified at least five trusted neighbors as the training data in order
to ensure reliable clustering. The performance on different data
sets is illustrated in Figure 5.

The results show that the multiview clustering method (MV)
consistently achieves significant better performance than the
counterparts in terms of both accuracy and rating coverage.
Specifically, as the number of clusters increases, the perfor-
mance on Flixster and FilmTrust is decreased accordingly. This
is because less similar users can be identified within each clus-
ter when more clusters are generated. However, on Epinions

11

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 50 100 150 200 250 300 350 400 450 500

M
A

E

number of clusters

KCF
KCFT

KTrust
MV

(a) Flixster (MAE)

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 10 20 30 40 50 60 70 80 90 100

M
A

E

number of clusters

KCF
KCFT

KTrust
MV

(b) FilmTrust (MAE)

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

M
A

E

number of clusters

KCF
KCFT

KTrust
MV

(c) Epinions (MAE)

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 50 100 150 200 250 300 350 400 450 500

R
M

S
E

number of clusters

KCF
KCFT

KTrust
MV

(d) Flixster (RMSE)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

number of clusters

KCF
KCFT

KTrust
MV

(e) FilmTrust (RMSE)

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

number of clusters

KCF
KCFT

KTrust
MV

(f) Epinions (RMSE)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350 400 450 500

ra
tin

g
co

ve
ra

ge

number of clusters

KCF
KCFT

KTrust
MV

(g) Flixster (RC)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60 70 80 90 100

ra
tin

g
co

ve
ra

ge

number of clusters

KCF
KCFT

KTrust
MV

(h) FilmTrust (RC)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 10 20 30 40 50 60 70 80 90 100

ra
tin

g
co

ve
ra

ge

number of clusters

KCF
KCFT

KTrust
MV

(i) Epinions (RC)

Figure 5: The performance of all the methods on different data sets

the performance is varied and tends to be relatively stable as
the number of clusters increases. This may be due to the ex-
treme sparsity of the data relative to the other data sets (see Ta-
ble 2). Hence, there are few users who can be clustered and they
are likely to be clustered in the same group. The performance
varies because of the different initially selected k medoids in
each iteration. In this regard, the performance on Epinions may
indicate more about the robustness of algorithms than that in
the other data sets.

The trends of accuracy of different methods are consistently
observed in all data sets in terms of both MAE and RMSE.
Of the methods that cluster users only based on user similar-
ity (i.e., KCF and KCFT), KCFT generally outperforms the
KCF method on Flixster and FilmTrust since the former takes
into consideration trust values when predicting items’ ratings
whereas the latter does not. Hence, the weights of users in
KCFT can be computed more accurately because only those
who obtain both high similarity and trust (see Equation 5) will

be regarded as more important users. On Epinions, the over-
all performance of the two methods is comparable, but KCFT
tends to be more stable with less variances, especially when
the number of clusters is less than 30. For the method (KTrust)
that only uses trust information to cluster users, its performance
varies in different data sets compared with that of KCF and
KCFT. KTrust performs better than KCF and KCFT on Flixster
and Epinions, but worse on FilmTrust. In other words, trust
is more effective than similarity on Flixster and Epinions but
not on FilmTrust. Hence, the conclusion drawn from the re-
sults is that the utility of trust may not be the same in different
data sets and may depend on the distribution of the trust infor-
mation. This also provides one more support for us to combine
both similarity and trust to further improve the recommendation
performance. As expected, this combination (MV) achieves the
best accuracy in all data sets. Comparing with the second best
method in each data set, the maximum improvements in ac-
curacy are up to 0.04 (in MAE) and 0.06 (in RMSE) on all

12

Table 3: The significance t-tests in all data sets
Methods d f t p-value

Flixster MV vs. KCF 9 -21.0731 < 10−8

MV vs. KCFT 9 -29.6059 < 10−9

(MAE) MV vs. KTrust 9 -18.0801 < 10−7

MV vs. KCF 9 -19.3386 < 10−8

MV vs. KCFT 9 -25.7053 < 10−9

(RMSE) MV vs. KTrust 9 -5.6177 <0.001

FilmTrust MV vs. KCF 9 -5.5937 <0.001
MV vs. KCFT 9 -7.9514 < 10−4

(MAE) MV vs. KTrust 9 -55.6413 < 10−12

MV vs. KCF 9 -4.2349 <0.01
MV vs. KCFT 9 -3.4091 <0.01

(RMSE) MV vs. KTrust 9 -44.8339 < 10−11

Epinions MV vs. KCF 9 -7.4795 < 10−4

MV vs. KCFT 9 -16.0826 < 10−7

(MAE) MV vs. KTrust 9 -8.7858 < 10−5

MV vs. KCF 9 -11.1419 < 10−6

MV vs. KCFT 9 -23.9154 < 10−9

(RMSE) MV vs. KTrust 9 -10.7601 < 10−6

three data sets. Koren (2010) points out that even small decre-
ments of predictive errors may lead to significant improvements
in real applications. Therefore, the achievements that we ob-
tain are important. Statistically, we conduct the two-sample
paired t-tests (with confidence 0.95) between the MV method
and the other methods to demonstrate the significance of im-
provements. The alternative hypothesis is that the mean of
MAE (RMSE) derived by MV is less than that derived by other
methods. The results in all the data sets are illustrated in Ta-
ble 3. It is observed that since all the p values are quite small
in term of both MAE and RMSE, the null hypothesis will be
rejected and the alternative is accepted. In other words, our
approach outperforms the others, and the improvement is sta-
tistically significant (at the confidence level 0.95).

Rating coverage provides another dimension to compare the
performance of different methods. It indicates the extent to
which the ratings of target items are predictable. The results
are presented in Figure 5 (g, h, i). Specifically, the trust-only
method (KTrust) covers the least items due to the small amount
of trust information relative to user ratings on Flixster and
FilmTrust (see Table 2). Similarity-based approaches achieve
better coverage than the KTrust method. However, in the sparse
case (i.e., Epinions), trust information helps cover more items
than ratings do, and as the number of clusters increases, the
coverage decreases accordingly. Since user weights can also
depend on trust, KCFT outperforms KCF in coverage in all data
sets. Further, for the multiview clustering method (MV), since
the clusters obtained from similarity and the clusters generated
from trust are combined together, more users can be identified
for predictions and hence more items can be recommended to
the active users. Consistently, the MV method obtains the high-
est rating coverage and up to 20% improvements relative to the
second best method on Flixster and FilmTrust and up to 5%
on Epinions. In conclusion, our multiview clustering method

achieves the best performance both in accuracy and coverage,
comparing with other single view-based clustering methods.

6.6. Performance for cold users

We next investigate the effectiveness of our approach in deal-
ing with cold-start users. Specifically, the users who have rated
less than 5 items (including users who rated no items) in the
training set are chosen and their test ratings are used as the test
set. As there is no other clustering-based approach that has been
proposed to handle the cold users, the most commonly adopted
strategy is to take the average of predictions from all the clus-
ters as predictions. We denote it as ‘Avg’ for simplicity. Note
that we did not use Epinions data set because only few users
(70 out of 503 test users) have trust information, and hence the
resultant performance may not be representative.

6.6.1. Effect of parameter α
To select a proper value for parameter α (i.e., the importance

of trust-based cluster likelihood) in Equation 14, we first fix the
number of clusters in each data set, and adjust the settings of α
from 0.0 to 1.0 stepped by 0.1. The setting resulting in the best
performance (both in accuracy and coverage) will be adopted
for the latter experiments. More specifically, we fix k = 100 on
Flixster, and k = 50 on FilmTrust. The performance of varying
different values of α is illustrated in Figure 6. The results on
Flixster show that varying α values will not significantly influ-
ence the predictive accuracy both in MAE and RMSE, but have
a great impact on the rating coverage when α ∈ [0, 0.1]. Since
α indicates the importance of trust-based cluster likelihood in
determining the cluster weights, we can see that incorporat-
ing such likelihood (α > 0) can improve the rating coverage
while maintaining competitive accuracy. Specifically, we select
α = 0.7 as the best setting considering both accuracy and cover-
age. Similar results are observed on FilmTrust, where the best
value for α is 0.6.

6.6.2. Overall performance
Adopting these settings of α, we then tune the number of

clusters to show the overall performance in the cold start sce-
nario. The results on Flixster and FilmTrust are presented in
Figure 7. It is noted that our method is capable of achieving
significantly better accuracy across over the two data sets in
comparison with the baseline strategy, demonstrating the effec-
tiveness of our approach in handling cold users.

7. Conclusion and Future Work

Recommender systems have become ubiquitous across the
web. This article proposed a multiview clustering method that
clustered users both from the view of rating-based similarity
and from the view of connection-based social trust, aiming to
alleviate the issues of clustering-based approaches in recom-
mender systems, i.e., the relatively low accuracy and coverage.
To the authors’ best knowledge, we are the first to develop a
multiview clustering algorithm for recommender systems us-
ing both users’ ratings and trust information. Specifically, the

13

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

M
A

E

alpha

MAE
RC

(a) Flixster (MAE, RC)

 1.21

 1.215

 1.22

 1.225

 1.23

 1.235

 1.24

 0 0.2 0.4 0.6 0.8 1

R
M

S
E

alpha

RMSE

(b) Flixster (RMSE)

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0 0.2 0.4 0.6 0.8 1

M
A

E

alpha

MAE
RC

(c) FilmTrust (MAE, RC)

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0 0.2 0.4 0.6 0.8 1

R
M

S
E

alpha

RMSE

(d) FilmTrust (RMSE)

Figure 6: The effect of varying different values of α on Flixster and FilmTrust

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 50 100 150 200 250 300 350 400 450 500

M
A

E

number of clusters

Avg
MV

(a) Flixster (MAE)

 1.21

 1.215

 1.22

 1.225

 1.23

 1.235

 1.24

 1.245

 1.25

 50 100 150 200 250 300 350 400 450 500

R
M

S
E

number of clusters

Avg
MV

(b) Flixster (RMSE)

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 10 20 30 40 50 60 70 80 90 100

M
A

E

number of clusters

Avg
MV

(c) FilmTrust (MAE)

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

number of clusters

Avg
MV

(d) FilmTrust (RMSE)

Figure 7: The performance of our method in cold conditions on Flixster and FilmTrust

users were iteratively clustered according to similarity-based
distances and trust-based distances by applying a classic k-
medoids method until stable clusters were obtained. Then, the
clusters generated based on similarity and the clusters gener-
ated based on trust were combined together to obtain the final
clusters. A support vector regression method was employed
to determine a proper prediction in the case where two predic-
tions were generated for the users who were grouped in two
different clusters due to the cluster combination. For this pur-
pose, we proposed and identified a number of user-, item- and
prediction-related features in order to describe the characteris-
tics of user-item predictions. In addition, to accommodate the
cold users who cannot be clustered and the issue of which has
not been address in the previous works, we proposed a proba-
bilistic method to identify the likelihood of belonging to each
possible cluster using both ratings and trust information.

The experimental results on three real-world data sets
showed that: (1) the combination of user- and item-related fea-
tures were the most useful in determining a proper prediction;
(2) the proposed support vector regression worked much better
than a simple baseline scheme; (3) our method outperformed
other approaches in term of both the accuracy and coverage;
(4) the probabilistic method can effectively handle the issue of
cold-start users. To sum up, the proposed method effectively
enhances clustering-based methods by virtue of the multiviews
of trust and similarity, moving clustering-based recommender
systems closer toward practical use.

The present work leverages trust information for users who
can be connected in the trust network. One requirement of the
proposed multiview clustering approach is that both user–item
ratings and user–user trust information are available in the sys-

tem such that users can be clustered according to different views
of user preferences. However, in a general form of multiview
clustering, it is possible to cluster users according to all kinds of
information sources—rather than subject to ratings and social
trust only—which are able to describe user preferences such as
prior ratings (Guo et al., 2013a). In other words, the multiview
clustering approach may be applicable to the situations where
at least two kinds of information sources describing user pref-
erences are available; otherwise it is not applicable.

Thus, one potential limitation to the present work is that
we only consider the situations involving ratings and trust, al-
though it may be straightforward to revise or extend it to inte-
grate other information sources. Another limitation is that we
adopt a relatively simple method to compute continuous trust
values (see Equation 3). For future research, we intend to con-
sider a more sophisticated trust inference approach and to con-
sider the use of implicit trust links to enrich user trust informa-
tion. It will also be interesting to empirically verify our analysis
regarding the effect of ε (see Equation 11) on predictive perfor-
mance. To cope with cold users, we made an assumption in
Section 5.1 that ratings on a specific item given by users within
a cluster follow a Gaussion distribution. For future work, we
will investigate if such an assumption is valid for all the users.

Acknowledgements

Guibing Guo thanks the Institute for Media Innovation for
a PhD grant at Nanyang Technological University, Singapore.
Neil Yorke-Smith thanks the Operations group at the Judge
Business School and the fellowship at St Edmund’s College,
Cambridge. We also thank the anonymous reviewers for their

14

comments which have helped improve the article from its orig-
inal version.

References
Adomavicius, G., Tuzhilin, A., 2005. Toward the next generation of recom-

mender systems: A survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineering (TKDE) 17, 734–
749.

Bell, R.M., Koren, Y., 2007. Lessons from the netflix prize challenge. ACM
SIGKDD Explorations Newsletter 9, 75–79.

Bellogı́n, A., Parapar, J., 2012. Using graph partitioning techniques for neigh-
bour selection in user-based collaborative filtering, in: Proceedings of the
6th ACM Conference on Recommender Systems (RecSys), pp. 213–216.

Bickel, S., Scheffer, T., 2004. Multi-view clustering, in: Proceedings of the
IEEE International Conference on Data Mining (ICDM).

Bishop, C., et al., 2006. Pattern recognition and machine learning. volume 4.
Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: a survey.

ACM Computing Surveys (CSUR) 41, 15.
Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V., 1997. Sup-

port vector regression machines. Advances in neural information processing
systems , 155–161.

DuBois, T., Golbeck, J., Kleint, J., Srinivasan, A., 2009. Improving recom-
mendation accuracy by clustering social networks with trust. Recommender
Systems & the Social Web , 1–8.

Guo, G., 2013. Integrating trust and similarity to ameliorate the data sparsity
and cold start for recommender systems, in: Proceedings of the 7th ACM
Conference on Recommender Systems (RecSys).

Guo, G., Zhang, J., Thalmann, D., 2014. Merging trust in collaborative filtering
to alleviate data sparsity and cold start. Knowledge-Based Systems (KBS)
57, 57 – 68.

Guo, G., Zhang, J., Thalmann, D., Yorke-Smith, N., 2013a. Prior ratings: A
new information source for recommender systems in e-commerce, in: Pro-
ceedings of the 7th ACM Conference on Recommender Systems (RecSys),
pp. 383–386.

Guo, G., Zhang, J., Yorke-Smith, N., 2013b. A novel bayesian similarity mea-
sure for recommender systems, in: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI), pp. 2619–2625.

Jamali, M., Ester, M., 2010. A matrix factorization technique with trust prop-
agation for recommendation in social networks, in: Proceedings of the 4th
ACM Conference on Recommender Systems (RecSys), pp. 135–142.

Koren, Y., 2010. Factor in the neighbors: Scalable and accurate collaborative
filtering. ACM Transactions on Knowledge Discovery from Data (TKDD)
4, 1:1–1:24.

Koren, Y., Bell, R., Volinsky, C., 2009. Matrix factorization techniques for
recommender systems. Computer 42, 30–37.

Li, X., Murata, T., 2012. Using multidimensional clustering based collaborative
filtering approach improving recommendation diversity, in: Proceedings of
the 2012 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology (WI-IAT), pp. 169–174.

Ma, H., King, I., Lyu, M., 2009. Learning to recommend with social trust en-
semble, in: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), ACM. pp.
203–210.

Massa, P., Avesani, P., 2007. Trust-aware recommender systems, in: Proceed-
ings of the 2007 ACM Conference on Recommender Systems (RecSys), pp.
17–24.

O’Donovan, J., Smyth, B., 2005. Trust in recommender systems, in: Pro-
ceedings of the 10th International Conference on Intelligent User Interfaces
(IUI), pp. 167–174.

Oufaida, H., Nouali, O., 2009. Exploiting semantic web technologies for rec-
ommender systems a multi view recommendation engine, in: Proceedings
of the 7th Workshop on Intelligent Techniques for Web Personalization Rec-
ommender Systems (ITWP).

Pham, M., Cao, Y., Klamma, R., Jarke, M., 2011. A clustering approach for col-
laborative filtering recommendation using social network analysis. Journal
of Universal Computer Science 17, 583–604.

Sarwar, B., Karypis, G., Konstan, J., Riedl, J., 2002. Recommender systems
for large-scale e-commerce: Scalable neighborhood formation using cluster-
ing, in: Proceedings of the 5th International Conference on Computer and
Information Technology (ICCIT), pp. 158–167.

Schölkopf, B., Smola, A.J., 2002. Learning with kernels: support vector ma-
chines, regularization, optimization and beyond. the MIT Press.

Singla, P., Richardson, M., 2008. Yes, there is a correlation: from social net-
works to personal behavior on the web, in: Proceedings of the 17th Interna-
tional Conference on World Wide Web (WWW), pp. 655–664.

Vicente, S., Rother, C., Kolmogorov, V., 2011. Object cosegmentation, in:
Proceeding of the 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2217–2224.

Wang, Y., Singh, M., 2007. Formal trust model for multiagent systems, in: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1551–1556.

Watts, D.J., 2004. Six Degrees: The Science of a Connected Age. WW Norton
& Company.

Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., Chen, Z., 2005. Scal-
able collaborative filtering using cluster-based smoothing, in: Proceedings
of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pp. 114–121.

Yang, B., Lei, Y., Liu, D., Liu, J., 2013. Social collaborative filtering by trust,
in: Proceedings of the Twenty-Third international joint conference on Arti-
ficial Intelligence (IJCAI), pp. 2747–2753.

Zhen, L., Huang, G.Q., Jiang, Z., 2009. Recommender system based on work-
flow. Decision Support Systems (DSS) 48, 237 – 245.

Zhen, L., Jiang, Z., Song, H., 2010. Distributed recommender for peer-to-peer
knowledge sharing. Information Sciences 180, 3546–3561.

15

