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Pichincha, Ecuador, 4 University of NewMexico, Department of Biology and Museum of Southwestern

Biology, Albuquerque, NewMexico, United States of America, 5 Museo de Zoologiá, Escuela de Biologı́a,
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Abstract

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a

major gap in global biosecurity infrastructure: a lack of publicly available biological samples

representative across space, time, and taxonomic diversity. The shortfall, in this case for

vertebrates, prevents accurate and rapid identification and monitoring of emerging patho-

gens and their reservoir host(s) and precludes extended investigation of ecological, evolu-

tionary, and environmental associations that lead to human infection or spillover. Natural

history museum biorepositories form the backbone of a critically needed, decentralized,

global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally

developed, underutilized, underfunded, and disconnected from public health initiatives. Pro-

active detection and mitigation for emerging infectious diseases (EIDs) requires expanded

biodiversity infrastructure and training (particularly in biodiverse and lower income countries)
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and new communication pipelines that connect biorepositories and biomedical communities.

To this end, we highlight a novel adaptation of Project ECHO’s virtual community of practice

model: Museums and Emerging Pathogens in the Americas (MEPA). MEPA is a virtual net-

work aimed at fostering communication, coordination, and collaborative problem-solving

among pathogen researchers, public health officials, and biorepositories in the Americas.

MEPA now acts as a model of effective international, interdisciplinary collaboration that can

and should be replicated in other biodiversity hotspots. We encourage deposition of wildlife

specimens and associated data with public biorepositories, regardless of original collection

purpose, and urge biorepositories to embrace new specimen sources, types, and uses to

maximize strategic growth and utility for EID research. Taxonomically, geographically, and

temporally deep biorepository archives serve as the foundation of a proactive and increas-

ingly predictive approach to zoonotic spillover, risk assessment, and threat mitigation.

“We are not students of some subject matter, but students of problems. And problems may

cut right across the borders of any subject matter or discipline.”–Karl Popper

Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has revealed

critical weaknesses in international biosecurity and pandemic preparedness [1–5]: There are no

global wildlife surveillance systems contributing to biorepositories to enable monitoring of

emerging zoonotic diseases across space and time and, in consequence, international bioreposi-

tory capacities are insufficient to permit researchers to identify pathogens and hosts, rapidly and

reliably. Development of a global pathogen surveillance and biorepository network would facili-

tate proactive pandemic preparedness for the first time by enabling early detection, regular

monitoring, and the development of an evolutionary framework for spillover prediction [6]. A

shift toward a proactive response to emerging infectious diseases (EIDs) would significantly

reduce the human and financial costs of new and reemerging diseases [7–10]. Indeed, coordi-

nated research and surveillance efforts to mitigate EID impacts are recognized as an urgent need

by theWorld Health Organization (WHO), Food and Agricultural Organization (FAO), and

theWorld Organization for Animal Health [11]. The good news is that the beginnings of an

international, decentralized biorepository network already exist in the form of the “Global

Museum,” the geographically dispersed, international community of natural history museums

that is increasingly digitally connected [12–13]. Each natural history museum is also a bioreposi-

tory, dedicated to the long-term preservation of biological materials, including skins, skeletons,

cryogenically frozen tissues, and their associated data (e.g., occurrence, pathogen/symbiont, eco-

logical, environmental, etc.). With modest investment and modifications in infrastructure and

communication systems, these dispersed nodes could be expanded and connected to form a

powerful international system for emerging pathogen surveillance and monitoring [9].

Natural history collections (hereafter, biorepositories) are cumulative records of the bio-

sphere that grow through the accumulation of new specimens over time. For vertebrates, a

specimen may consist of a whole organism or any derivative of an organism (e.g., tissues, sym-

bionts [viruses, bacteria, fungi, and eukaryotic parasites], audiovisual data, etc.), with associ-

ated metadata on where and when the specimen was collected [14–15]. The physical and
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digital information stored and curated in biorepositories is precisely the material needed to

identify the origin(s), source(s), and environmental associations of zoonotic pathogens and

their hosts, which positions biorepositories as a critical component of an updated “One Health”

approach to detecting, characterizing, and mitigating effects of emerging zoonoses [3,16–17].

To fulfill their promise as an international system for zoonotic pathogen surveillance and as

a foundation for effective public health response, biorepository infrastructure and capacity

must be expanded on a global scale to accommodate greater specimen volumes, incoming

from disease-related and other wildlife surveys, and outgoing, for use in EID research [18–22].

Expanded biorepository infrastructure is particularly necessary for lower-income and biodi-

verse countries, which have some of the highest risk and frequency of zoonotic spillover and

greatest lag times between disease emergence and identification of wildlife sources [7]. To

coordinate global wildlife surveillance across space and time, new international communica-

tion pipelines that better unite public health officials, epidemiologists, and local communities

with biorepositories must be developed in parallel with infrastructure improvements. Here, we

outline next steps for the strategic expansion of international biodiversity infrastructure, to

form a decentralized pathogen surveillance network, and propose a new model of interna-

tional, transdisciplinary communication and collaboration.

A proactive approach to EIDs is possible through biorepositories

Wildlife specimens housed in museum biorepositories are proven, but underutilized tools for

detection and identification of zoonotic pathogens and their wildlife hosts [5,23–28]. Archived

tissues were used to track down the zoonotic origins of 1918 Spanish Influenza [29–30] and

1993 outbreaks of Sin Nombre virus in the American Southwest [24,31]. Wildlife sampling of

leaf-nosed bats in Ghana recently identified a wild reservoir of rubella, a viral disease whose

origins and natural reservoirs had remained unknown for>100 years after emerging in

humans [32]. Genetic screening of wildlife in China recently identified horseshoe bats as a

potential reservoir for SARS-CoV-2 [33,34]; however, in this case, a paucity of open-access

voucher specimens has hindered expanded host screening and limited investigation into the

ecology, evolution, and environmental associations of seropositive samples, leaving SARS-

CoV-2 emergence a global mystery [4,35–36].

Most EIDs in humans are zoonotic in origin, including rabies, yellow fever, salmonella,

hantavirus, Ebola, and ringworm, among others, and>60% are transmitted directly from ani-

mal hosts [37–38]. Current understanding of global pathogen diversity remains largely incom-

plete [39–43], with tens of thousands of pathogenic species remaining undiscovered or

undescribed [44–46]. Reactive attempts to sample and screen wildlife after pathogen emer-

gence in humans delays threat mitigation [47]. Waiting until a pathogen triggers an epidemic,

or worse, a global pandemic is expensive [9,48], does little for future pandemic prevention or

preparedness [10,49], and will be diminishingly feasible as human populations become

increasingly globally connected [50]. For example, in reaction to the ongoing SARS-CoV-2

pandemic, there are a suite of new research funding opportunities and major strides have been

made in viral discovery and spillover prediction; yet, of the nearly 75,000 animals recently sur-

veyed by Grange and colleagues [51] as part of the PREDICT Project [52], not one specimen

was permanently archived in a public biorepository, and when there was ambiguity surround-

ing host identity, only a generic-level name was used. This “business as usual” approach to

One Health sampling, excludes biorepositories, their taxonomic expertise, responsible vouch-

ering practices (e.g., long-term sample preservation), and data standardization from disease-

motivated wildlife sampling. In contrast, inclusion of biorepositories in EID sampling work-

flows represents an opportunity to simulate diverse scientific research by documenting and
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serving specimens and important information surrounding hosts, symbionts, and their envi-

ronments, that would otherwise be lost, to the broader scientific community [4,21]. Regular

wildlife sampling and specimen archiving with biorepositories is an essential component of

zoonotic pathogen detection, identification, monitoring, and mitigation, in concert with ongo-

ing human and livestock disease monitoring [6]. The global scale of EIDs, exemplified by the

current SARS-CoV-2 pandemic, calls for an intentional shift away from current reactive

responses to EIDs, toward more proactive models that encourage early detection, identifica-

tion, monitoring, and prevention (e.g., Documentation, Assessment, Monitoring, Action

[DAMA] protocol [6,49]; Fig 1), possible by expanding One Health approaches to include the

Global Museum [23–28]. To this end, we must invest in expanded biorepository capacity,

Fig 1. Schematic detailing the central role of biorepositories in fueling EID research and response, based on the DAMAmodel proposed by Brooks and colleagues
[6,49]. To be most effective for EID research and response, multidisciplinary and collaborative specimen sourcing followed by permanent archiving with biorepositories
will be necessary to document and assess baseline conditions of pathogens and hosts. Periodic resampling of established localities is essential tomonitoring change
through time, whereby the availability of both baseline and resampling specimens and data through biorepositories catalyzes transdisciplinary research (e.g., virology,
ecology, evolutionary biology, etc.) or assessment. Research, in turn, informs both veterinary and human medicine and, when effectively communicated through
publications, presentations, and new networks of international and interdisciplinary communication (e.g., Project ECHO), this information drives action in the form of
public health policy and natural resource management, creating a positive feedback loop that contributes to improved pandemic preparedness, proactive public health
policies, and a better informed society. DAMA, Documentation, Assessment, Monitoring, Action; EID, emerging infectious disease; ECHO, Extension for Community
Healthcare Outcomes.

https://doi.org/10.1371/journal.ppat.1009583.g001
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quality, and expertise to meet the needs of EID research, an approach to building infrastruc-

ture that has not yet been normalized across disciplines [4–5].

Uniting biomedicine and biorepositories in EID research and response

Although museum biorepositories exist in nearly all countries, their collections too often

remain insufficient to meet the needs of EID research, including the key steps of host identifi-

cation and wildlife surveillance over time and across geography. Tissue collections, in particu-

lar, remain woefully underdeveloped for most biodiverse regions of the planet, for a number of

reasons. Challenges to biorepository establishment, maintenance, and growth in these regions

include political turmoil, environmental conditions that challenge long-term environmental

stability required for specimen maintenance (e.g., heat, humidity), and insufficient financial

resources to support infrastructure, collections growth, database management, and permanent

personnel [53–57]. For example, South America harbors more than double the mammal diver-

sity of North America [58], but biorepositories in this region only house approximately 15% of

all mammal specimens in the Western Hemisphere [57]. In addition, the majority of collec-

tions in South America do not yet meet gold-standard environmental conditions for long-

term specimen preservation, with only 2 South American biorepositories accredited by the

American Society of Mammalogists: Universidad Nacional de Tucumán, Colección de Mami-

feros Lillo (CLM, Argentina) and Pontificia Universidad Católica del Ecuador, Museo de Zool-

ogı́a-Mamiferos (QCAZ, Ecuador) [57].

How can the scientific community initiate and establish a more integrated and effective

approach to zoonotic pathogen detection, mitigation, and prevention, and ensure global adop-

tion? Enormous value lies in leveraging the Global Museum, the existing, decentralized, global

network of biorepositories, which already has collected, preserved, cataloged, and indexed tis-

sue samples from>1 million wild vertebrate specimens worldwide (vertnet.org; accessed Feb-

ruary 28, 2021). Strategic investment in biorepository infrastructure, including updated

cryogenic tissue storage facilities, climate-controlled specimen housing, digital databases, and

permanent positions for trained personnel, particularly in biodiverse countries, will be essen-

tial to building and scaling a high-quality network of global collections that meet established

best practices and allow rapid response to EIDs [6,59–60]. In many biodiverse countries, biore-

positories are housed at governmental institutions where infrastructure and staffing expansion

may be hampered by slow, bureaucratic processes. Given the urgency of EIDs, new partner-

ships among institutions from different countries or with nongovernmental organizations

offer new and alternative ways to grow in-country biorepository capacities more quickly.

Expanded global biodiversity infrastructure is critical to ensuring sufficient biorepository

capacity to stimulate, support, and respond to the growing needs of EID research as emergence

frequency and severity increases.

Project ECHO: A global communication network to unite biorepositories
and biomedicine

Infrastructure alone will not ensure strategic collections growth or broad utilization of collec-

tions in EID research. Rather, meeting these goals will require new models of communication

and collaboration that connect biorepositories more effectively with biomedical and public

health communities [17,61]. To achieve this goal, we propose an extension of Project ECHO

(Extension for Community Healthcare Outcomes [62–65]), an innovative, “community of

practice” model of virtual communication, to better connect biorepositories with biomedicine

across international borders. Originally developed in a clinical context, Project ECHO uses

video conferences to support virtual, case-based, collaborative problem-solving, mentoring,
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and group learning among multidisciplinary teams of healthcare providers through nearly

1,000 programs engaging thousands of participants in>100 lower-income countries. Under

this model, small groups of interested participants, geographically dispersed across countries

and continents, meet regularly via video conference to share best practices across disciplines

and resolve barriers through collective experience and expertise and is a proven-effective cost-

saving approach to international communication and collaboration [66].

Here, we highlight recent development of a regional, pilot ECHO network that aims to

unite biorepositories with biomedical and public health communities across the Americas:

Museums and Emerging Pathogens in the Americas (MEPA). As of April 2021, the MEPA

ECHO network is composed of researchers, practitioners, policy makers, and advanced stu-

dents from 9 countries in Central, North, and South America and is growing (Fig 2). MEPA

aims to foster communication and coordination of zoonotic pathogen detection, host identifi-

cation, and emerging pathogen research and surveillance through mutual sharing of best prac-

tices, cross-disciplinary training, and collaborative specimen sourcing. MEPA now serves as a

model of international communication among biorepository and biomedical communities

that can be adopted globally, regionally, or nationally. Although access to reliable internet is an

anticipated barrier to this communication model, global internet connectivity is expanding,

with 86% of the world population now using mobile broadband services [67]. The virtual plat-

form also allows groups or institutions to join virtually from a single location where many

individuals benefit from a single internet access point. Informal, web-based communication

platforms like MEPA may further function as an early warning system for emerging diseases

[68], as proved effective for SARS [69] and influenza A (H1N1, swine flu) [70].

The importance of biorepositories is acknowledged broadly in human medicine [71–72],

but wildlife biorepositories remain absent from many EID research programs and, impor-

tantly, from many One Health programs, evidenced by the absence of voucher specimen col-

lection from recent, large-scale wildlife and wildlife pathogen surveys (e.g., PREDICT/STOP

Spillover [73] and NEON [74–75]). Without voucher specimens, wildlife sampling events rep-

resent missed opportunities for scientific rigor and limit the extensibility and replicability of

the original science. Coordinated sampling through MEPA will promote wildlife surveys that

are temporally deep, spatially extensive, and taxonomically broad so that biorepositories can

be probed rapidly and effectively in the event of disease emergence to identify reservoirs and

ecological and environmental associations contributing to emergence or spillover. Opening

dialogues between biorepository and biomedical communities is a first step toward building

new specimen-transfer pipelines, whereby specimens collected for biomedical surveillance or

other initiatives are deposited in biorepositories and then loaned back to biomedical and other

scientific communities for research. The MEPA network aims to connect ongoing and future

biomedical wildlife surveillance with new and existing in-country biorepositories to avoid

unnecessary duplication of sampling effort, by building new specimen pipelines that collec-

tively contribute to the strategic growth of international biorepositories.

Through mutual sharing of best practices in a virtual community of practice, biorepository

personnel can standardize and prioritize the types of materials and preservations most useful

to EID research. Likewise, the EID community can better integrate biorepository data stan-

dards into specimen collection and sampling procedures [5,21,76–78]. Darwin Core (dwc.

tdwg.org) stable identifiers, for example, represent a common vocabulary intended to facilitate

the sharing of information about biological diversity and specimens [79]. Darwin Core identi-

fiers are regularly employed by biorepositories for organizational and data management

purposes, but extended use in emerging disease research has the potential to increase standard-

ization, expedite data and specimen retrieval and integration into biorepositories, and facilitate

comparisons across studies by digitally linking host–pathogen information to wildlife
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conservation and public health [77]. Cross-discipline communication between biorepositories

and the EID community will also help normalize specimen deposition in biorepositories as an

expected component of biomedical and public health workflows [4]. As a working example

of this model, in 2000, the Gorgas Institute in Panama responded to a lethal outbreak of

Fig 2. Distribution of institutions participating in MEPA as of February 2021. At least 1 participating institution is labeled per country (plus all leadership institutions).
Continent base layer from Natural Earth, available online at https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/. MEPA,
Museums and Emerging Pathogens in the Americas.

https://doi.org/10.1371/journal.ppat.1009583.g002
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Hantavirus Pulmonary Syndrome (HPS) by contacting the Museum of Southwestern Biology

(University of NewMexico) for guidance on surveying small mammals for viral pathogens.

The resulting public health–biorepository collaboration leveraged multi-institutional resources

and expertise to identify wildlife reservoirs of the disease quickly and provide appropriate pub-

lic health guidance. The collaboration [80] resulted in>11,000 archived specimens over 2

decades, which now serve as a foundation for continued monitoring of and research into han-

taviruses and their hosts, in addition to other symbionts and pathogens. Similar responses to

HPS emergence in Chile and Argentina spawned parallel specimen-based research efforts that

identified new hantavirus strains in a number of rodent species [81–83], underscoring the

power of public health–biorepository collaborations to build comprehensive biological

archives useful for EID research and response. Fundação Oswaldo Cruz (Fiocruz, Brazil) pro-

vides another precedent of successful biorepository and public health integration to maximize

EID research and response. Fiocruz is contracted by the Brazilian Department of Health to

respond to disease outbreaks by sampling and archiving potential reservoirs. Samples are then

available to the EID research community and also used in ecological, evolutionary, and envi-

ronmental investigations. Fiocruz also offers a taxonomy reference service to ensure accurate

host identification. MEPA uses case-studies like these to guide formation of effective new col-

laborations between biorepositories and public health. Several other international initiatives,

like the Global Taxonomy Initiative formulated by the Convention on Biological Diversity and

the Belgian Development Cooperation, have also made steps to increase access to best prac-

tices, although enormous knowledge and resource gaps remain [84–88].

Preservation of specimens collected for EID research and surveillance is expected to mas-

sively increase the volume of archived materials. With expanded infrastructure and support

for trained personnel, as outlined above, biorepositories will be well equipped to meet this

challenge, as they already have streamlined accession and loan procedures, international

import/export permits, and the wet lab and, in many cases, appropriate BioSafety Level certifi-

cations to safely process large volumes of biological material. A lack of funds, training, and

support for permanent personnel has hindered biorepository productivity and capacity, partic-

ularly in biodiverse, lower- to middle-income countries where basic taxonomy and baseline

conditions too often remain uncharacterized [89,90]. In response, biodiversity literacy and

training form another core mission of MEPA. The Biodiversity Informatics Training Curricu-

lum [91] provides a mixture of in-person courses across Africa and online courses and

resources served via YouTube (332,000+ views and 45,000+ hours of viewing to date) to lever-

age natural history collections data [91] and provides a model of a digital format, open-access

training tool for MEPA to build from. Advancing Integration of Museums into Undergraduate

Programs (AIM-UP! [92]), Biological Collections in Ecology and Evolution Network

(bceenetwork.org), and Biodiversity Literacy in Undergraduate Education (BLUE [93]) are

similar digital learning tools that can be expanded and served to the international biodiversity

community to build a global workforce capable of developing, organizing, and managing bio-

logical materials and data, but also able to wield the latest technologies to connect bioreposi-

tory resources to issues of societal concern. Hybrid training programs that integrate medical

(human and veterinary) and public health expertise with biodiversity science are urgently

needed to improve the translation of natural history research into actionable policy [6,94–96].

Moving forward: Stakeholder recommendations for building better
biorepositories

Together, expanded global biorepository infrastructure and new communication pipelines can

help prevent future zoonotic pandemics before they occur [49] and reinforce efforts to mitigate
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EIDs, as recommended by current One Health approaches. There are long-term, highly suc-

cessful examples of international collaborations between biomedical and biorepository com-

munities (e.g., the Gorgas Institute-Panama and Museum of Southwestern Biology-USA;

Fiocruz and National Museum of Brazil) that serve as models for building new collaborative

relationships. EID research and response are inherently multidisciplinary endeavors; thus, we

encourage all stakeholders (public health officials, curators, veterinarians, doctors, epidemiolo-

gists, virologists, parasitologists, basic and clinical research scientists, wildlife managers, field

station managers, natural resource managers, funding agencies, and policy makers, among

others) to contribute to the collective growth and availability of wildlife samples and associated

informatics through open-access biorepositories (Fig 3) [97]. Local buy-in for field-based

activities and collections and incorporation of perspectives based on traditional ecological

knowledge [10,98] are also essential in the feedback process that links basic biodiversity

research about hosts and pathogens to actionable processes for people at local and regional lev-

els. To this end, we have identified a series of priority actions for the diverse stakeholders in

this network.

Biorepositories. Biorepositories (e.g., natural history museums or biobanks) must actively

align their long-term archives with issues of societal concern, which often revolve around

changing conditions (e.g., climate warming, globalization, emerging pathogens, food security,

and invasive species). Biorepositories cannot afford to serve only a limited set of users; instead,

they must embrace new specimen sources and formats, as well as new technologies and appli-

cations [21,99,100]. As trusted sources of biodiversity information and science, biorepositories

are well positioned to unify existing stakeholders in EID research, preparedness, and response

Fig 3. Multi-stakeholder Project ECHO learning loop or “hub” model that unites biorepository (e.g., museum), biomedical, natural resource, and
research (e.g., EID, biodiversity, ecology, evolution, virology, pathobiology, etc.) communities, among others, to reciprocally share best practices
and develop global wildlife sampling strategies for effective EID research and response, as well as studies of biodiversity.Under this model,
geographically and taxonomically diverse specimens collected across disciplines and projects will be permanently archived in biorepositories for (a) long-
term care, maintenance, and digitization, and (b) continued use and reuse by the global research community. EID, emerging infectious disease; ECHO,
Extension for Community Healthcare Outcomes.

https://doi.org/10.1371/journal.ppat.1009583.g003
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and communicate scientific results and discoveries that bridge humans, wildlife, and the envi-

ronment to policy makers and the public.

To this end, specimens and their associated data must be made readily available to the

entire scientific community [4] and most importantly, to the countries from where the speci-

mens originate [13,14,101]. The Nagoya Protocol is an international agreement designed to

foster the sharing of benefits arising from the utilization of genetic resources in a fair and equi-

table manner [102–106]. Equitable benefits sharing is essential to successful integration of bio-

medical and biorepository communities; however, despite its intention, the Nagoya Protocol

has had a number of unintended negative consequences on international biodiversity research,

making it increasingly difficult for researchers and scientists to access and share specimens

across borders [103]. Historically, legislation surrounding benefits sharing and the use of

genetic resources pertained primarily to commercial profits and products, but the concept of

benefits sharing also includes nonmonetary products (e.g., royalties, publications, and data)

and should be further expanded to include reciprocal support for in-country infrastructure

development (e.g., gold-standard liquid nitrogen tissue cryobanks) and trained personnel,

essential to capacity building in biodiverse countries.

The scale of EID research and monitoring proposed herein also critically relies on open

access and sharing of biodiversity data, and especially genetic sequence data (GSD). Biodiver-

sity data portals have been implemented at very large scales with>225 million specimens

(approximately 31 million of which belong to Chordata) digitized worldwide (gbif.org,

accessed January 5, 2021), but these data must be quality checked and updated regularly and

enriched via standardization of key fields, such as reproductive status, age, sex, geographic

coordinates, etc.. Trained personnel are essential to ensuring databases are kept accurate and

up to date. Examples of digital biodiversity databases include the Global Biodiversity Informa-

tion Facility (GBIF; gbif.org), VertNet (vertnet.org), iDigBio (idigbio.org), the Sistema de

Inforcação Sobre a Biodiversidade Brasileira (SiBBR; sibbr.gov.br), the Global Genome Biodi-

versity Network (GGBN; ggbn.org), and speciesLink (splink.cria.org.br). Other examples, such

as BioWeb (bioweb.bio), the largest biodiversity data repository in Ecuador, and the Arctos

museum database (arctos.database.museum), a digital database that publicly serves data from

37 biorepositories across 3 countries, are useful examples of existing biodiversity databases

available for new and growing biorepositories to join. Biorepository databases must be

research grade quality, that is, openly available, based on standardized vocabularies [79], and

interoperable with other large data streams (e.g., GenBank, GIS platforms, and IsoBank

[21,77,107,108]). Dunnum and colleagues [57] and iDigBio (idigbio.org/content/dna-banks-

and-genetic-resources-repositories-united-states) have published lists of biorepositories in the

Western Hemisphere and the United States, respectively, but similar lists are critically needed

for other geographic regions to encourage specimen use and deposition.

Best practices for biorepository development for pathogen exploration exist [15,60,76] and

provide a guide for additional infrastructure development [109]. Collaboration with the EID

community requires biorepositories to reinvest in student training and capacity-building mis-

sions, especially in biodiverse and lower-income countries, ideally with reinvigorated public

investment, to ensure the next generation of biodiversity scientists are trained in skills that

bridge the 2 communities. Future generations must have the ability to identify and access key

samples, use the materials and data in biorepositories via the latest technologies, and fully

engage in initiatives related to human and ecosystem health. Construction of in-country cryo-

genic tissue storage facilities, as a major component of updated biorepository infrastructure,

complements student training in molecular sciences, provides access to primary scientific

resources, and provides the basic infrastructure required for improved, rapid response to EIDs

in addition to the regular collection, preservation, and study of baseline material. Although
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some biorepositories in the Global North have histories of colonial collection practices

[13,110–111], MEPA focuses on capacity building in the Global South, with expanded invest-

ment in international biodiversity training [112] and sharing of existing and refined best prac-

tices [5,60,76,109] with the goal of building a more inclusive, diverse, and effective global

network of biodiversity science.

Field biologists. Holistic collection of high-quality, information-rich specimen materials,

suitable for pathogen research [15,109,113], and regular specimen archiving within bioreposi-

tories must become a normalized, standard practice across all disciplines [4–5,21]. If holistic

sampling is not possible (e.g., due to logistical or conservation reasons), voucher specimens

should be collected for representatives of each sex and species for each site surveyed. Sampling

must be strategically distributed across taxonomic diversity and temporal and spatial scales to

sample mosaic environments, at multiple ecosystem interfaces (including urban and rural

environments) to strengthen the ability of biorepositories to identify and monitor potential

zoonotic reservoirs over space and time (Fig 1; see DAMA protocol [49]. In addition to sam-

pling hosts with a high incidence of zoonotic spillover (e.g., bats and rats), wildlife sampling

should also include broad geographic and taxonomic surveys at a range of environmental

interfaces, critical to establishing a temporal record of pathogen presence/absence and preva-

lence [19,109,114]. Historic collections may then be leveraged as baselines for longitudinal

assessments of pathogen dynamics through time, such that resurveys of long-term sampling

sites may be especially powerful. MEPA aims to connect field biologists with biorepositories to

ensure responsible specimen deposition, data standardization, and access for EID and other

research interests.

Natural resource agencies. By leveraging logistical resources and field networks, pro-

tected reserves, park and forest administrators, field stations, and wildlife management and

development agencies can contribute significantly to biorepository growth by facilitating the

collection and preservation of diverse samples over time and space (Fig 3) [4,115,116]. Many

remote and protected areas are under the jurisdiction of natural resource agencies and repre-

sent some of the last environments not heavily impacted by humans. As such, these areas pro-

vide important baseline information on pathogens and their natural reservoirs that provides a

reference for understanding disturbed and human-modified landscapes. Collections made by

natural resource agencies should be archived permanently with a biorepository, not housed

under potentially unsuitable environmental conditions at field stations or in lab freezers, to

avoid specimen degradation and data dissociation over time, and also to ensure that resources

for specimen maintenance, curation, and data digitization are available. MEPA and related

ECHO networks aim to connect natural resource agencies with local biorepositories to facili-

tate long-term specimen preservation under ideal environmental conditions and in accessible

formats. Specimen access through biorepositories maximizes the scientific impact of each sam-

pling event, which can increase the amount of information available to decision-makers. We

recommend that natural resource agencies, especially those involved in permitting collections-

based research or seizure of illegally trafficked wildlife, establish collaborations with local bior-

epositories to regularly archive specimens, ideally as part of the permitting process [4,117].

Research scientists. To democratize science and enable transdisciplinary approaches to

EID research and response, biological materials collected by researchers, regardless of the

investigator’s discipline, motivation for collection, or affiliation, must eventually be archived

permanently in a biorepository [5,118]. Research scientists should plan and budget for speci-

men (e.g., skin, skull, skeleton, tissues, parasites, etc.) and data deposition prior to collection as

a routine step toward repeatable and responsible science [4,21]. Stable identifiers [108] are cru-

cial to identifying specimens uniquely and can be arranged in advance with the receiving bior-

epository [4,21]. Researchers can connect with local biorepositories through the MEPA
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network, other virtual communication networks (e.g., regional ECHOs), or by reaching out to

collections staff directly. Further, MEPA provides a platform for communicating new discov-

eries regarding EIDs and wildlife sampling to multi-stakeholder groups, including policy mak-

ers in public health and wildlife managers, which may expedite public health response [69–70].

Medical professionals and public health officials. Wildlife sampling motivated by public

health interests must involve intentional specimen vouchering and archival with permanent

and public biorepositories as a best practice. Biorepositories are reciprocally available to medi-

cal professionals and public health officials as foundational resources to draw on for rapid

response to emerging zoonoses. Government-funded disease surveillance programs have ethi-

cal and fiduciary duties to voucher collected specimens appropriately, as this best practice has

clear public health benefits [3–5]. Coordinating sampling of vertebrate reservoirs with perma-

nent biorepositories to build rigorous infrastructure over time will ensure a foundation for

future pandemic preparedness and investigations of pathogen maintenance and transmission,

ecology and evolution, environmental associations, and prevalence, among other topics of

direct interest to public health [3,19,22]. MEPA and other such communication networks pro-

vide a platform for building such cross-disciplinary connections.

Funding agencies and foundations. EIDs represent a major threat to global biosecurity

and have cascading negative impacts on society, as illustrated by the SARS-CoV-2 pandemic.

In response, national science foundations [21], international development agencies (e.g.,

USAID, Department for International Development [DFID] Brazil), national security organi-

zations, private philanthropy, and the United Nations represent potential platforms for pro-

moting large-scale international, in-country biorepository infrastructure expansion.

Reframing research funding initiatives to prioritize long-term impacts, rather than immediate

or short-term (3 to 4 years) responses to emerging threats or short-term research projects, will

substantially increase ability to proactively address emerging pathogens. By inviting members

of these funding organizations to actively participate in MEPA problem-solving sessions, we

aim to increase awareness of the role of biorepositories in societal issues and identify and

apply for novel funding opportunities to grow international biorepository infrastructure and

biomedical capacities.

Conclusions

The need for in-country biorepository infrastructure development and international commu-

nication channels is not limited to the Americas; the MEPA ECHO network is a pilot project,

modeling effective interdisciplinary communication and collaboration across international

borders that can and should be replicated and expanded to include other corners of the globe

such as biodiversity hotspots in Africa and East and Southeast Asia. Emulating Project

ECHO’s “hub and spoke” model, we envision multiple regional ECHO networks bridging

biorepositories and biomedicine that meet regularly to coordinate wildlife surveillance, com-

municate new discoveries, and standardize sample collection and preservation procedures.

Regional networks would then periodically connect with related biodiversity-based ECHO

networks at a global level for meta-regional meetings coordinated by MEPA. Meta-regional

meetings will feature a brief roundtable of intercontinental updates and focus collectively on

problem-solving current issues in emerging disease.

Biorepositories are the primary biodiversity infrastructure of the planet and form the foun-

dation of the wildlife branch of a One Health (human–wildlife–environment) approach to

EIDs. Although traditionally funded through basic science, the biorepository funding base

must expand to include funding sources that support research into scientific issues of

direct benefit to human society (e.g., accelerating climate warming, EIDs, food security,
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globalization, biodiversity loss, and invasive species). Costs of new and expanded biodiversity

infrastructure, including updated cryogenic facilities and support for trained personnel, and

new communication channels are minimal when weighed against the impact of lives lost,

economies disrupted, and trillions of dollars spent combating EIDs (e.g., the>$20 trillion US

dollars spent in the first year of the SARS-CoV-2 pandemic in the US [119]; $21 to $31 trillion

spent in the global arena [120]). Expanded in-country biodiversity infrastructure and open

channels of communication that foster interchange and collaboration among the Global

Museum and biomedical communities offer an opportunity to leverage ongoing wildlife sur-

veillance to begin a transformation of EID research into an increasingly proactive and predic-

tive science to enable rapid public health response and reduce both the chances and costs of

future outbreaks.
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