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Abstract
Language-integrated meta-programming and extensible compila-
tion have been recurring themes of programming languages since
the invention of LISP. A recent real-world application of these
techniques is the use of small meta-programs to specify database
queries, as used in the Microsoft LINQ extensions for .NET. It
is important that .NET languages such as F# are able to lever-
age the functionality provided by LINQ and related components
for heterogeneous execution, both for pragmatic reasons and as
a first step toward applying more disciplined, formal approaches
to these problems. This paper explores the use of a modest meta-
programming extension to F# to access and leverage the function-
ality of LINQ and other components. We do this by demonstrating
an implementation of language integrated SQL queries using the
LINQ/SQLMetal libraries. We also sketch two other applications:
the execution of data-parallel quoted F# programs on a GPU via
the Accelerator libraries, and dynamic native-code compilation via
LINQ.

Categories and Subject Descriptors D.3.3 [Programming]: Lan-
guage Constructs and Features

General Terms Languages

Keywords Meta-programming, Functional Programming, LINQ,
GPUs, Reflection, Database Languages, Domain Specific Lan-
guages

1. Introduction
Language-integrated meta-programming has been a recurring theme
of programming languages since the invention of LISP. However,
in the context of the traditional goals of the ML language design
(e.g. type safety, static guarantees, efficient compilation, equational
reasoning and modular programming) meta-programming has had
a poor reputation: until the advent of more disciplined systems
such as Meta ML [30], meta-programs were rightly regarded as
simply abstract syntax trees (“the equational theory of LISP fexprs
is trivial” [33]), dynamic entities offering few static guarantees, and
applications of meta-programming were relatively uncompelling.

An interesting new development is the advent of a broad range
of high-quality components for executing program fragments on
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platforms such as .NET. These are readily accessible through in-
teroperable versions of ML such as F# [28]. As a result applica-
tions can now be surprisingly heterogeneous: programs may gener-
ate both SQL and JavaScript, heterogeneous between server, data-
base and browser. Even the presence of components such as the
.NET CLR or JVM cannot always be taken for granted, as seen in
the growing use of Graphics Processing Units (GPUs) as general
purpose computing devices [19, 31].

Given this heterogeneity it is somewhat inevitable that peo-
ple turn toward extensible compilation and intensional1 meta-
programming to bring a degree of uniformity to programming.
For example, mainstream languages are now using small meta-
programs to specify SQL queries, as in the Microsoft LINQ exten-
sions for Visual Basic 9 and C# 3.0 [20, 9], an initiative that forms
part of the background to this paper. One of the motivations of
LINQ is to re-use existing infrastructure (e.g. rich editing environ-
ments) in the context of embedded domain-specific languages. The
end result is that environments like .NET are moving to incorporate
a layer of intensional meta-programming, including components to
translate meta-programs to languages such as SQL.

This paper explores three applications of intensional meta-
programming on the .NET platform using F# and a modest meta-
programming extension to F#. The application areas and corre-
sponding contributions of this paper are as follows:

1. We present the first implementation of language-integrated
SQL queries for an ML dialect;

2. We present experimental examples of dual-mode GPU execu-
tion for data-parallel programs, where data-parallel array pro-
grams can be run either directly on a CPU or as meta-programs
translated to GPU pixel shader code;

3. We present preliminary results for runtime code generation
based on the LINQ dynamic expression compiler.

This work should be seen as a set of experiments in potential ap-
plication areas for meta-programming: in a sense it is also a se-
ries of experiments in domain-specific language embeddings. How-
ever the focus is on showing how we can reuse existing execu-
tion components, thus indicating that meta-programming may be
escaping its one-language-centered history, at least in the context
of .NET. We do not claim specific advances in the theory of meta-
programming, and indeed if anything examples 2 and 3 highlight
the importance of applying approaches based on partial evaluation

1 By “intensional meta-programming” we mean systems where the equa-
tional properties of program fragments (e.g. extensionality) are not
necessarily preserved through meta-programming, e.g. because meta-
programming exposes entire abstract syntax trees. This covers most forms
of meta-programming, with the notable exception of meta-logic and staged
computation systems.

43



and staged computation, since in both domains sophisticated pat-
terns of program generation are common.

We consider the above results remarkable for what can be
achieved with relatively little effort. This is because we leverage
stable, well-tested and well-designed components written outside
F# — for SQL and dynamic compilation we use the LINQ libraries
from Microsoft, and for GPU execution we utilize the Accelerator
library from Microsoft Research [31].

In the remainder of this section we give background on LINQ
and related approaches. In §2 we describe F# and the quotation
mechanism we use in this paper. In §3 we describe SQL-integrated
queries in F# and their implementation via the LINQ libraries. In §4
we describe experiments with dual-mode CPU/GPU programming,
and in §5 we describe experiments with runtime code generation.
We summarize related work and future directions in §6.

1.1 Approaches to Interoperable, Heterogeneous
Meta-programming

An excellent comparative overview of meta-programming for
domain-specific languages can be found in Czarnecki et al. [7].

A crucial long-term goal of meta-programming research is to
preserve the properties of source languages (e.g. extensionality)
while giving disciplined frameworks for program generation and
execution — in the realm of code generation this has been achieved
through staged computation [30, 29, 25]. Recent work has shown
how to extend staged computation to include the generation of
C code — a form of “implicitly heterogeneous” execution [8]. It
is interesting to look at the viability of these techniques for the
applications described in this paper, a topic we consider in §6.

However, we have not used staged type systems in this paper,
and as such this paper risks infuriating those working on “taming
the beast” of meta-programming through this technique. We ask
for forbearance, on the grounds that sometimes it is necessary
to investigate application areas, both for pragmatic reasons and
in order to develop an understanding of how more disciplined
approaches might be applied to programming in worlds such as
.NET and Java.

1.2 LINQ, DLINQ and LINQ Meta-programming

Part of the background to this paper is the rapid adoption by Mi-
crosoft of the use of meta-programming in the Microsoft LINQ ex-
tensions for C# 3.0 and Visual Basic 9. The appendix describes the
relevant technical features by example. For the purposes of this pa-
per the salient features are:

• C# 3.0 includes a generics, extensions to the Java/.NET nominal
OO model to permit functional/aggregate operations on data
structures, an extensible dot-notation, a modicum of local type
inference and syntactic sugar for the use of functional/aggregate
operations. The functional programming community can take
considerable credit for the inclusion of these features [16, 1, 5].

• The .NET platform will include several important components
which constitute the functionality we seek to leverage in §3 and
§5:

System.Query.dll, containing the definition of the type
Expression<T>, a representation of typed abstract syntax
trees for expressions. This DLL also contains a dynamic
compiler for these, generating garbage-collected .NET IL
code through .NET “light-weight code generation” [23], and
executed as native code;

SQLMetal.exe, a program generator builds type-annotated
object models for database schema;

System.Data.DLinq.dll, a compiler from LINQ expres-
sions that use SQLMetal object models to SQL.

The end result is that C# program fragments such as

db.Employees
.Where(e => e.City = "London")

.Select(e => e.Address);

are executed as SQL code on the database, e.g.

SELECT [t0].[Address]
FROM [Employees] AS [t0]
WHERE [t0].[City] = London

Further C# examples are given in the Appendix. Above we we use
underlining to indicate implicitly quoted fragments of the program.

The specification of acceptable constructs and their translation
to SQL is itself a lengthy document, part of the LINQ distribution
[20]. This specification notes many constructs that are not translat-
able (and which will give runtime errors), as well as some delib-
erate semantic differences between C# and C#-expressions-when-
implicitly-quoted-and-run-as-SQL, which we’ll call LINQ-SQL.
For example SQL’s date/time values are rounded to .000, .003 or
.007 seconds, so are less precise than .NET’s, and “Math.Round” is
given a different semantics. In real-world heterogeneous program-
ming this kind of mismatch seems unavoidable.

2. F# and F# Quotations
In this section we describe F#, and then describe the quotation
mechanism we use in this paper.23

2.1 F#

F# is a multi-paradigm .NET language explicitly designed to be an
ML suited to the .NET environment. It is rooted in the Core ML
design, and in particular has a core language largely compatible
with that of OCaml.

F# takes interoperability as axiomatic. By this we mean that the
language design must enable and encourage the use of functionality
implemented outside the language, whether that functionality is
accessed via programmatic frameworks such as .NET or by other
means. Interoperability has been an increasingly important theme
of ML language design: e.g. OCaml highlights the importance of
simple, direct models of compilation and representation, partly to
enable a simple C FFI; MLj [3] and SML.NET [2] highlight the
importance of utilizing runtime components from environments
such as the JVM and .NET. F# extends these themes, particularly
that of high-level interoperability [27].

Linguistically, F# includes:

• The standard constructs of Core ML, essentially as imple-
mented by OCaml;

• Type inference based on an instantiation of HM(X) with sub-
type and operator overloading constraints [21];

• A .NET-style nominal object model including classes, single in-
heritance, object expressions, properties and nominal interfaces
associated with object values;

• A dot notation, where overloading is resolved in a type-directe
fashion based on the type information available on a left-to-
right, outside-in analysis of a file.

2 F# is described in detail on the F# website [28], but has not been described
in detail in previous publications.
3 The finalized design of meta-programming support for F# may vary
greatly from that described here, and indeed the process of writing this pa-
per has clarified many issues to the author. We encourage interested readers
to consider this an invitation to assist in the design process!
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• Nested modules and module signatures, but not functors. Mod-
ules may not be used as values or re-constrained under different
signatures.

Like other .NET languages, F# derives much of its power from its
reliance on .NET:

• Garbage collection;

• JIT and “install-time” compilation;

• Cross-language, interoperable generics;

• Relatively high performance, especially for floating point;

• Concurrent GC and SMP support;

• A vast array of high-quality libraries, including Windows Forms
and Managed DirectX;

• Debuggers, CPU profilers and memory profilers;

• Portability across any Common Language Infrastructure (CLI)
[10] implementation, of which Microsoft’s .NET Framework is
one.

Some F# specific tools are added:

• A cross-module optimizing compiler;

• F# for Visual Studio — an interactive development environment
with on-the-fly type checking, automatic drop-down menus and
balloon tips based on contextual type information;

• F# Interactive — an interactive read/eval loop, optionally
hosted in Visual Studio. .NET libraries can be dynamically
loaded, and code entered interactively is optimized and run as
native code.

F# embraces interoperability with CLI paradigms, for example:

• F# types and code can be used directly from other CLI lan-
guages;

• F# both generates and consumes generic CLI code, i.e. ML
polymorphism is compiled as CLI generics, and generic defi-
nitions from other CLI languages can be used as polymorphic
definitions to F# code;

• A simple, direct model of compilation is used, and optimization
settings do not change the binary interface of F# components;

As far as ML dialects go, F# supports an atypical number of dy-
namic techniques. For example, all F# type variables have inten-
sional representations available at runtime, largely as a side effect
of the use of CLI generics to implement type parameterization.
Thus the type-erasure property does not hold for F# code, but care-
ful use of this feature allows generic code to return code special-
ized by type representation and also permits the implementation of
some interesting polytypic functions. We make use of intensional
type representations at several points in this paper. CLI implemen-
tations typically pass and store of type representations in a man-
ner reminiscent of the dictionaries use to implement Haskell’s type
classes, in particular the Typeable class of Haskell.

Similarly, F# supports both subtyping and type-rediscovery
through downcasts, this time as a side-effect of the fact that all
.NET reference type values carry runtime types. All F# types
are safely4 convertible to a universal type obj (System.Object),
where the original type is rediscovered by using a pattern-matching
downcast. This permits the easy implementation of generic func-
tions such as a generic pretty printer print any.

Some other points relevant to this paper are:

4 Here we use the word “safely” in the sense of “avoiding memory corrup-
tion.”

val (|>) : ’a -> (’a -> ’b) -> ’b
val (>>) : (’a -> ’b) -> (’b -> ’c) -> ’(’a -> ’c)

type seq<’a> = System.Collections.Generic.IEnumerable<’a>
module IEnumerable : sig

val map : (’a -> ’b) -> #seq<’a> -> seq<’b>
val filter : (’a -> bool) -> #seq<’a> -> seq<’a>

end

Figure 1. Some functions and type abbreviations used in this paper

• Some signatures from the F# standard library are shown in
Fig 1;

• Both prefix and postfix syntax can be used for types, e.g. int
list and list<int> are equivalent;

• The syntax #τ is used to mean “τ or any of its subtypes”,
shorthand for a new type variable α with a subtype constraint at
its (inferred) binding site;

• Subtyping does not extend through any structural types, e.g.
the tuple, list and function type constructors are all invariant.
This avoids many of the technical difficulties of combining
subtyping with ML type inference, at the expense of requiring
the insertion of some explicit coercions;

• Operator overloading is supported, based on .NET standards,
typically resolved according to the inferred nominal type infor-
mation of the left-hand parameter of a binary operator;

• The default semantics for hashing, equality and comparison can
be specified for each new concrete F# type definition, where
concrete types are records, unions and class definitions.

F# shares many similarities with SML.NET [2], though there
are important differences, both as languages and in terms of the
intended use of the language implementations. Both languages
have interoperability extensions. SML.NET is a highly-optimizing
whole-program compiler for a standard language, while F# is a
more experimental language for efficient, interactive symbolic pro-
gramming, often in data-rich contexts. It is partly the desire to bring
type-safety and language integration to interactive data acquisition
that has led to the work described in this paper.

2.2 F# Quotations

This paper utilizes a modest experimental meta-programming ex-
tension to F# called F# quotations. These allow the capture of
type-checked expressions as structured terms, typically of type
Quotations.Typed.Expr<α> for some α (here abbreviated
α expr), or as a non-type-annotated “raw” quotation of type
Quotations.Raw.Expr (abbreviated rexpr). These structured
terms can then be interpreted, analyzed and compiled to alternative
languages. The terms are presented after type-checking and after
the removal of pattern matching into discriminate/project form.

In the terminology and analysis of Czarnecki et al. [7], F# quo-
tations are a manifestation of “template” meta-programming (or
perhaps a category called “term” meta-programming is justified).
Quotation literals are parsed and type-checked statically, but quo-
tations can also be created programatically at runtime. They permit
the reuse of the F# parser and type-checker, though not the F# code
generator — the purpose of the mechanism is to reuse alternative
execution machinery unrelated to F#. They statically guarantee the
syntactic validity of quoted fragments and the typing of quoted lit-
erals. They permit the inspection of quoted fragments, at least by
“library writers” (see below). They are a sub-language of F#, as
you can’t quote entire F# modules, and support a limited form of
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“cross-stage persistence” (see §2.8). They can be used in separately
compiled modules.

2.3 Quotations as Terms

Putting syntax aside, F# quotations are similar to many other rep-
resentations of typed lambda expressions, and other systems use
techniques close to those described here, e.g. see ReFLect [14].
However, from the perspective of interoperability it is important to
understand how F# quotations relate to existing reified constructs
on the .NET platform. We also use the syntax of quotation literals
extensively in this paper.

Quotations are intended to be used in two modes: one where
the “library writer” performs intensional analysis on raw terms, and
one where “average users” write quotation literals and use function-
ality provided by the library writer. Quotation processing libraries
effectively act as a form of compiler extension. This distinction is
not currently enforced, but in future versions .NET security permis-
sions [17] may be required to access intensional representations.

As far as the library writer is concerned raw quotation terms
are an abstract type that can be projected to the typical “code”
algebra up to a family of constants rconst, a type of variable
names rvname, and an reified representation of types rtype (types
and constants are discussed in §2.6):5

type rexpr �
| Const of rconst * rtype list
| App of rexpr * rexpr
| Var of rvname * rtype
| Lam of (rvname * rtype) * rexpr

Two extra constructs represent holes and nested quotations:

type rexpr �
...
| Quote of rexpr
| Hole of rtype

Raw quotation terms carry internal type annotations. They can be
constructed programmatically, but runtime checks are applied to
ensure only well-typed rexprs are constructed, in the style of
the term algebras for LCF theorem proving systems [13].6 Vari-
able names are effectively strings, and are observable, but the de-
fault equality, hashing and comparison routines are up to alpha-
equivalence.

Type-annotated terms (α expr) are also an abstract type,
though library writers can access raw terms from typed terms, and
a casting operator is available to annotate a raw term.

Typed.to_raw : ’a expr -> rexpr
Typed.of_raw : rexpr -> ’a expr

Typed.of raw applies a runtime type check to ensure that the type
annotation is correct based on internal type annotations in the raw
expression and F#’s intensional representation of the type variable
’a, thus enforcing a correspondence between the language type
system and the runtime type annotations on raw terms.7

2.4 Quotation Literals

Quotation literals quote expressions and are any uses of the family
of parenthetical operators beginning <@... ...@>, e.g. <@ @>

5 We use� to indicate that the abstract type can effectively be projected
(viewed) as the given algebra through the use of auxiliary functions, see
§2.7. The algebra doesn’t exist as an algebraic data type in the F# quotation
library.
6 These runtime checks are not present in the released implementation at the
time of writing, though we don’t foresee any problems in adding them.
7 Again, these runtime checks are not present in the released implementation
at the time of writing.

and <@| |@>. Here are some simple instances of typed quotation
literals:

<@ 1 + 1 @> : int expr
<@ (fun x -> x + 1) @> : (int -> int) expr

User-defined operators are also permitted, e.g. <@+ +@>. Each op-
erator captures a typed abstract syntax tree form of the enclosed ex-
pression and invokes the given operator on the result. Quotation op-
erators involving @@ (e.g., <@@ @@>) are “raw” operators, typically
used within implementations of quotation processing libraries. The
following illustrate some simple instances of raw quotation:

<@@ 1 + 1 @@> : rexpr
<@@ (fun x -> x + 1) @@> : rexpr

As far as average users are concerned, quotations are “hygienic”
because quotation literals must be closed, up to the use of “top-
level” definitions. As in ReFLect [14], top-level definitions are part
of the algebra of constants and include all public definitions in any
accessible F# module as well as definitions entered in the read-eval
loop.

A current limitation is that rexprs do not include quantification
over type variables (there are no ∀ or ∃ types or Λ terms): only
top-level constants may be polymorphic. Thus generalization is not
performed at let bindings within quoted terms, so the following
quotation term will give a compile-time error:

<@@ let f x = (x,x) in f 1, f "1" @@>

2.5 Quotation Template Literals

Quotation literals may also contain holes _, which allow them
to be used as functions that generate expressions at runtime by
“splicing in” other expressions (a form of anti-quotation), or as
templates by matching against input expressions. Some example
uses of templates are:

<@ 1 + _ @> : int expr -> int expr
<@ 1 + _ + _ @> : int expr -> int expr -> int expr
<@@ 1 + _ @@> : rexpr -> rexpr

The query form is often used in a pattern match as follows:

let decompose inp =
match <@@| sin(_) * sin(_) |@@>(inp) with
| Some(v1,v2) -> ...
| None -> ...

Library writers can define operators that give alternative meanings
to templates, e.g. the holes may be interpreted according to a differ-
ent (e.g. higher-order) matching algorithm (c.f. higher-order match-
ing for code pattern literals [24]). We do not use literal templates
extensively in this paper, so do not describe them in detail here.
However they are used throughout the implementations of the quo-
tation processing functions we describe.

When a library writer defines a new raw quotation operator
the template is passed to the implementation of the operator as
type Raw.Template<τ1,τ2> (abbreviated rtempl<τ1,τ2>). Here
τ1 and τ2 are phantom types indicating the number of quotation
holes in the quoted term. The pre-defined raw quotation literal
operators have the following types:

(<@@. .@@>) : rtempl<’a,’b> -> rtempl<’a,’b>
(<@@| |@@>) : rtempl<’a,’b> -> rexpr -> ’a option
(<@@ @@>) : rtempl<’a,’b> -> ’b

The phantom types are, respectively, a tuple of the types returned
by a successful query, and the iterated function type representing
the use of the template as a generator. A similar mechanism is used
for the “typed” quotation operators, e.g. the pre-defined quotation
literal operators have the following types:
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(<@. .@>) : templ<’a,’b,’c> -> templ<’a,’b,’c>
(<@| |@>) : templ<’a,’b,’c> -> ’a expr -> ’b option
(<@ @>) : templ<’a,’b,’c> -> ’c

Operators to fill and match templates are defined as polytypic
functions in the F# library, but could just as easily be redefined
by the library writer. At present quotations literals may not contain
holes for types, though this would clearly be useful when working
with polymorphic constructs.

2.6 Quoted Types

The reified types and constants of the quoted language correspond
to the types of .NET and the constants of the F# language. Reified
types (rtypes) use a standard first-order representation of types,
where type variables are indexed by integer index.

type rtype �
| VarType of int
| AppType of rtycon * rtype list

The algebra of reified types is tantalizingly close to the reified
representation of types on the .NET platform itself, i.e. the .NET
type System.Type. It would be an enormous simplification if F#
could leverage this representation and avoid any additional reified
representation of types. For ground types this works satisfactorily,
with some caveats for large tuple types mentioned below. However,
the System.Type representation uses “graph binding” for type
variables, where type variables are effectively pointers to a direct,
exact binding location within a .NET program. This would require
all type variable binders in F# source code to have a corresponding
binding in compiled .NET code, an unacceptable constraint when
compiling an ML language.

On the other hand, we accept a 1:1 correspondence between
bindings of F# concrete type constructors (e.g. records and unions)
and the existence of named .NET type definitions: this correspon-
dence is, for example, part of the reason why it is easy to inter-
operate with F# code from other .NET languages. Thus our rei-
fied view of type constructors does leverage the corresponding
.NET representation of type constructors (which also happens to
be System.Type — the .NET construct serves multiple roles). We
add an additional case to handle large F# tuple types, which only
have a corresponding isomorphic matching set of System.Type

constructors up to a fixed tuple size:8

type rtycon �
| TupleTyOp of int // length
| NamedTyOp of System.Type

No syntax currently exists for quoted rtype literals. F# already in-
cludes a construct to reify F# types as .NET System.Type values,
e.g. “type int” or “type (’a * ’a)”. An F# library functions
exist to project these into the rtycon and rtype algebra.

2.7 Programmatic access through expression families

The expression types α expr and rexpr are abstract, and are built
and deconstructed using projection/injection pairs, which we call
“families”:

type (’a,’b) family =
{ Make: ’a -> ’b;
Query: ’b -> ’a option; }

A library of compositional operators is provided for this type, e.g.

8 In the current released version of F# the algebra of type constructors also
includes cases for arrays and function types. These are not required, since
satisfactory System.Type values exist to represent these.

val fMap : (’a -> ’b) * (’b -> ’a)
-> (’a,’c) family -> (’b,’c) family

val fOrElse : (’a,’b) family
-> (’a,’b) family
-> (’a,’b) family

The following families form a complete decomposition of raw
expressions:9

type ’a rexprFamily = (’a, rexpr) family
val rvar = (rvname * rtype)

val efVar : rvname rexprFamily
val efHole : rtype rexprFamily
val efApp : (rexpr * rexpr) rexprFamily
val efLambda : (rvar * rexpr) rexprFamily
val efQuote : rexpr rexprFamily
val efConst : (rconst * rtype list) rexprFamily

Decomposition operations are not provided directly on the α expr
type due to the difficulty of statically maintaining correct type
annotations.10

The algebra of constants rconst is not directly accessible but
is revealed through expression families, e.g., the following families
reveal the existence of constants for sequencing and integers:

val efInt32 : int32 rexprFamily
val efSeq : (rexpr * rexpr) rexprFamily

There are currently 30 expression families which together cover all
constant constructions. Some of these cover the use of methods and
types from other .NET languages, e.g. efMethodCall.

The library defines a number of additional families and combi-
nators for performing more interesting queries on raw expressions,
e.g.

val efLambdas : (rvar list * rexpr) rexprFamily
val efAnd : (rexpr * rexpr) rexprFamily
val efLet : (rvar * rexpr) rexprFamily

These both abstract the encoding of F# language constructs into
the term syntax, and help control the complexity of expression
manipulation and construction.

A final family of constants permits the reification of any .NET
object value into the term structure:

val efLiftedValue : obj rexprFamily

Constants of this kind can be generated using the following func-
tion:

val lift : ’a -> ’a expr

2.8 Optional persistence of top-level definitions

The primary technical distinction between F# quotations and C#
(implicit) quotations is that top-level F# definitions can be option-
ally compiled to exhibit “persistence”, i.e. compiled as both as
F# compiled code and as reified definitions for use by quotation
processing environments. This applies to F# code compiled with
the --quotation-data flag. This only applies to “top-level” def-
initions in the sense of §2.4.

Uses of top-level definitions appear as a variety of constant node
in the algebra of expressions:

9 As usual, the lack of “views” [32] in ML-family languages means we
lose the static information that the families form a disjoint and complete
decomposition of the type.
10 GADTs [34] could be used to permit an algebraic view of the α expr
type that preserves type information.
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type topDefData
val efAnyTopDefn : (topDefData * rtype list) rexprFamily

The topDefData represents linking information (i.e. the name of
a top-level definition and the .NET library it lives in), and the
type arguments represent the instantiation for uses of polymorphic
functions.

The reified definition of top-level constructs can be accessed
using the library function resolveTopDefn:

let sinExpr = <@@ sin @@>;;

// Show that this is a use of a top-level definition:
let sinTopDefData,sinTypeArgs =
match efAnyTopDefn.Query(sinExpr) with
| Some(res) -> res
| None -> failwith "no match";;

// Resolve the top level definition to its body
resolveTopDefn(sinTopDefData,sinTypeArgs);;

val it : rexpr option
= Some <@@ fun x -> System.Math.Sin(x) @@>

which indicates that the F# sin function is implemented as a .NET
method call to the method System.Math.Sin. resolveTopDefn
may return None if the definition is not available or includes some
of the corner constructs not supported by quotations (e.g. “inline
.NET assembly code”, used in some places by the F# library).
This function also applies the type instantiation to the body of the
definition.

Persistent definitions let us use common functions as macros in
embedded languages. For example, we frequently use the operator
|> within quotations, knowing that most quotation translations will
implement the expansion of the macro, typically by inserting let-
bindings to maintain sharing, rather then by substitution:

let (|>) x f = f x

3. Language Integrated SQL Queries with F#
We now turn to the three applications where we leverage .NET
components through quotation meta-programming, which we label
FSQL (running quoted F# programs as SQL via the LINQ DLinq
libraries), FGPU (likewise as GPU pixel shader code via the Ac-
celerator libraries) and FCPU (native code generation from closed
quotations using the LINQ dynamic compiler). We emphasize three
things:

• Our aim is to show that it is possible to leverage .NET meta-
programming components via F#, and meta-programming in
particular. Whether it is desirable to do so depends on the
technical qualities of the component being accessed, among
other things.

• We concentrate on examples where we don’t programmatically
generate quoted programs. For example, we don’t take an input
list and generate a fresh SQL query based on a fold over that list.
We speculate that an emphasis on program generation would
immediately lead to a stronger emphasis on staged computation,
and indeed that a staged computation mechanism could be
useful and orthogonal to the mechanisms used here.

• The use of F# meta-programming is not, strictly speaking, nec-
essary to access the underlying components — you can explic-
itly create the relevant data (e.g. expression tree values) and call
the libraries directly. However in two of three cases this feels
considerably more awkward — for the case of GPU program-
ming the tradeoffs feel more marginal.

For FSQL and FCPU we assume the existence of the following
function, accessible to meta-programming library writers, that
translates F# quotations to LINQ expression trees, for the subset
of F# expressions that correspond to C# expressions:

val proj2: (’a -> ’b) expr -> Expression<Func<’a,’b>>

Our first example, FSQL, is language-integrated SQL in F# by
using the LINQ-SQL libraries. We ignored a number of details, e.g.
the use of nulls in SQL tables, which is handled largely through
.NET Nullable types. We first show the simplistic translation of
the C# example from §1.2 to F#. However, in the case of queries
that combine and refine multiple relations (e.g. joins, or grouping)
the F# version reveals non-orthogonalities hidden by the implicit
typing of the C# presentation. We then give an alternative approach
for F# to account for this. For examples we use the .NET object-
model API to the “Northwind” database provided with the LINQ
Preview [20]. This API was generated by the SQLMetal tool and
was also used in the examples in §1.2. For completeness, here is
how a database connection is established from F#:11

let connString =
@"AttachDBFileName=’c:\My Documents\Northwind.mdf’;
Server=’.\SQLEXPRESS’;
Integrated Security=SSPI;
enlist=false"

let db = new Northwind(connString)

Here db has type Northwind, which has, among other things,
properties Customers and Employees of types of the same names,
each subtypes of query<Customer> and query<Employee> (we
abbreviate IQueryable<τ> as query<τ>).

3.1 Simple Queries

A direct translation of the first C# example from §1.2 would
involve the use of operations on the LINQ IQueryable type,
shown in Fig 2. Here db has type Northwind, a subtype of
System.Query.IQueryable<Employee>.

let query =
db.Employees
|> IQueryable.where <@ fun e -> e.City = "London" @>
|> IQueryable.select <@ fun e -> e.Address @>

We have used database names such as where and select —
later we need more sophisticated database operations such as joins,
and a consistent database naming terminology helps identify the
permitted language subset and its correspondence to the LINQ
specification. Type-checking and inference ensure that e is known
to have type Employee, which in turn allows us to resolve the dot-
notation overload City. The corresponding SQL code is the same
as in §1.2:

SELECT [t0].[Address]
FROM [Employees] AS [t0]
WHERE [t0].[City] = London

The (approximate) intended semantics of the LINQ-SQL libraries
is that the execution of the meta-programs should be the same as
if the programs were converted to equivalent programs over in-
memory lists, where the database table is treated as an in-memory
enumerable data structure. Indeed, the .NET type IQueryable<τ>
is a subtype of IEnumerable<τ>, indicating (but in no way enforc-
ing) the intended correspondence. As it happens, the following F#
program would achieve the same result, at the expense of dragging
the entire database table in-memory:

11 As in C#, strings beginning with ’@’ are “verbatim” strings that can
include backslashes.
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type seq<’a> = System.Collections.Generi c.IE num erab le< ’a>
type q<’a> = System.Query.IQueryable<’a>
module IQueryable : sig

val select : (’a -> ’b) -> #q<’a> -> q<’b>
val where : (’a -> bool) -> #q<’a> -> q<’a>
val selectn: (’a -> seq<’b>) -> #q<’a> -> q<’b>

end

module Sequence : sig
val select : (’a -> ’b) -> #seq<’a> -> seq<’b>
val where : (’a -> bool) -> #seq<’a> -> seq<’a>
val selectn: (’a -> seq<’b>) -> #seq<’a> -> seq<’b>

end

module IQueryable = struct
open System.Query
let where qf c =
System.Query.Queryable.Where (c,proj2 qf)

...
end

module Sequence = struct
open System.Query
let F1 f = new Func<_,_>(f)
let where f c = System.Query.Sequence.Where (c,F1 f)
...

end

Figure 2. Operators needed for the first, awkward approach: use
an F# view of the LINQ IQueryable and ISequence opera-
tors. System.Query.Queryable.Where etc. are the fully quali-
fied names for the C# extension methods used in §1.2.

open IEnumerable;;
let query =

db.Employees
|> IEnumerable.filter (fun e -> e.City = "London")
|> IEnumerable.map (fun e -> e.Address)

Here IEnumerable.filter is one the operations defined shown
in Fig 1.

3.2 The Problem of Nested Queries

The use of subsets of functional languages as query languages is
largely understood, e.g. see Buneman et al. [6]. Neither F# nor C#
2.0 are relational languages, so it is not surprising that specifying
relational programs becomes a little harder than shown in the pre-
vious section. C# 3.0 and other languages have worked around this
limitation by adding a relational comprehension notation explicitly
for use with linearly ordered data structures. For example, consider
the following C# comprehension:

from e in db.Employees,
et in e.EmployeeOffices

where e.City == "Seattle"
select new e.Name, et.Office;

Adding a comprehension notation to F# is beyond the scope of this
paper, so here we work only with the explicit forms. The above C#
code is syntactic sugar for the following (SelectMany corresponds
to map >> concat):

db.Employees
.SelectMany(e =>
((IEnumerable<Office>)e.EmployeeOffices)

.Where(et => e.City == "London")

.Select(et => new (e.Name,et.Office)))

Note the irregularities in the explicit C# code: the inner lambda ex-
pressions are quoted only once, and the inner tables are treated as
IEnumerable “in memory” data structures rather than IQueryable
database tables. The natural direct translation of this code to F# is:

db.Employees
|> IQueryable.selectn <@ fun e ->

e.EmployeeOffices
|> IEnumerable.where (fun et -> e.City = "London")
|> IEnumerable.select (fun et -> e.Name, et.Office) @>

and indeed we can arrange things such that the above program
generates correct SQL. However, on the outside of the quota-
tion we manipulate values of type IQueryable and on the inside
IEnumerable. This is unappealing, and stems from artifices used
in the C# presentation that give the outward appearance that the
outer structure of the query is composed from a number of quoted
fragments. However, this structure goes only “one level deep.” We
suspect that C# programmers seeking to understand the feature “in
depth” may also find the C# approach strange, and indeed that it
would make the programmatic generation of larger SQL queries
more difficult.

3.3 The Second Approach

To avoid the lack of uniformity outlined in the last section we take
the following approach:12

1. Represent queries by closed quoted programs that manipulate
IEnumerable values;

2. Define SQL comprehension-building operators that work over
IEnumerable values;

3. Provide a function SQL that compiles this the query program to
the corresponding LINQ expression trees.

In particular, we define a function:

val SQL : (’db -> IEnumerable<’a>) expr
-> ’db -> IEnumerable<’a>

This function succeeds if the quoted F# program represents a valid
SQL query, in the subset outlined in Fig 4. Some of the operators
used to build queries are shown in Fig 3. Here is an example of its
use:

open Query

let results =
db |> SQL <@ fun db ->

db.Employees
|> selectn (fun e ->

e.EmployeeOffices
|> where (fun et -> e.City = "London")
|> select (fun et -> e.Name, et.Office)) @>

The SQL function processes the quoted term to the form described
above, then translates the remaining fragments to LINQ expres-
sions using proj2. When the resulting LINQ expression/program
is processed by LINQ-SQL library this generates:

SELECT [t0].[Name], [t1].[Office]
FROM [Employees] as [t0], [EmployeeOffices] as [t1]
WHERE ([t0].[City] = ’London’)

AND ([t1].[EmployeeID] = [t0].[EmployeeID])

Although syntactically slightly longer, this approach has a number
of advantages:

12 This technique does not appear in the currently released F#/Linq sample
in the F# distribution, as the process of writing this paper clarified the need
for a uniform treatment of inner queries. We expect to release a full sample
implementation prior to the workshop.
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type seq<’a> = IEnumerable<’a>
module Query : sig

val select : (’a -> ’b) -> #seq<’a> -> seq<’b>
val where : (’a -> bool) -> #seq<’a> -> seq<’a>
val selectn: (’a -> #seq<’b>) -> #seq<’a> -> seq<’b>
...

end

module Query = struct
let F1 f = new Func<_,_>(f)
let where f c = System.Query.Sequence.Where(c,F1(f))
...

end

Figure 3. The better approach: query operations operate on IEnu-
merable.

• We only use one set of operators, over the type IEnumerable.

• The function SQL represents the essence of the underlying tech-
nique: it implements an embedded domain-specific language.

• The quoted program corresponds directly to the query operating
over in-memory data-structures, and indeed can be run as such.

• The query program is closed (hence must accept the database
as a parameter, though use of the |> notation makes this palat-
able). This means we can reuse it against other databases (or
multiple connections to the same database, each of which SQL-
Metal represents by a different database object), and, if the
functionality were made available by LINQ, we could amortize
the cost of the translation to SQL.

3.4 The FSQL Embedded Language

The essence of the embedded quotation language accepted by the
SQL function is shown in Fig 4. Some aspects of the language
are dictated by the translatable primitives of the LINQ-SQL li-
braries, specified in the LINQ-SQL documentation. Furthermore,
as shown in Fig 3, the operators such as where are themselves
simply defined in terms of LINQ operators. The SQL function
remaps all uses of System.Query.Sequence.* to the correspond-
ing System.Query.Queryable.* operations. This means that the
F# subset is effectively that specified by the LINQ-SQL documen-
tation, with some additions such as the use of F# quotation macros.
This means we defer most aspects of the specification of the ac-
cepted subset to the LINQ-SQL documentation.

LINQ-SQL query programs may also have a “terminating com-
putation” that processes the results generated by an SQL query. For
example, the following program constructs F# tuple values as part
of the final selection. LINQ-SQL knows nothing of F# tuples, but
automatically detects the residue that must be run in-memory.

let query =
db |> SQL <@ fun db ->
db.Employees
|> where (fun e -> e.City = "London")
|> select (fun e -> (e.Name,e.Address))

@>

4. Accelerating F# Code on the GPU
We next describe the use the Accelerator and DirectX libraries [31]
to execute quoted F# programs on a GPU. To quote:

There is significant interest in using GPUs for general-
purpose programming... GPUs have an explicitly parallel
programming model and deliver much higher performance
for some floating-point workloads than comparable CPUs.
It is, however, difficult for most programmers to make use of

query = fun (db : ’db) -> seq
seq

= unary-seqop seq
| binary-seqop (seq,seq)
| db.TableName
| ... (See notes)

unary-seqop
= select proj
| where proj
| selectn(fun var -> seq)
| ... (See notes)

binary-seqop
= join proj proj (fun v -> unary-seqop)
| ... (See notes)

proj
= (fun var -> expr)

expr
= expr.PropertyName
| var
| let var = expr in expr
| expr {+,=,*,-,/,%} expr (Over a limited range of types)
| ... (See notes)

Figure 4. The embedded FSQL language. The specification is in
terms of operators from the Query module. The expr category
also includes the large expressions translated by LINQ-SQL. All
syntax categories include the use of F# quotation macros with
expr arguments (see §2.8), translated by substitution. Addition-
ally, any operators that also macro-expand to uses of the LINQ
System.Query.Sequence.* operations and which are specified
as SQL-acceptable by the LINQ-SQL documentation are also
translatable.

this computing power.... The Accelerator programs ... often
significantly outperform the C++ programs, by up to 18x.

The Accelerator library provides a programmatic API for the de-
scription of data-parallel array programs in terms of point-wise op-
erations (+, *, etc.), reduction operations (sum-across-rows, sum-
across-columns etc.) and transformation operations (shift, replicate,
section, pad, transpose and others). These operations manipulate
“parallel array types” that represent GPU programs over particular
data types (e.g. FPA for floating-point array computations). Pro-
grammers must explicitly convert between data-parallel arrays and
normal arrays.

4.1 An Example

Our aim in this section is to show the execution of a limited subset
of closed quotation programs via Accelerator. We use the Game of
Life as our sample. Fig 5 shows the nextGeneration function of
the Game of Life written using standard functional programming
over integer and boolean in-memory 2D F# arrays (using the F#
Array2 module).

We first show how to explicitly generate and evaluate the cor-
responding GPU program via calls to the Accelerator API. Fig 6
shows the F# code that generate a GPU program to compute one
generation, using floating point numbers to represent the grid.

The style of programming shown in Fig 6 is quite reasonable,
as ML makes an excellent meta-language for explicitly calling
program-generation APIs.

However, there are benefits if we can see GPU execution as
a special case of executing CPU programs: for example we may
eventually wish to support the optimized execution of existing F#
matrix programs. As a step in this direction, we have prototyped a
function accelerate that takes a quoted program fragment over
2D arrays and compiles it to a GPU program:
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let matrix f = Array2.init dimx dimy f
let K c = matrix (fun _ _ -> c)
let ttrue, ffalse = K true, K false
let zero, one, two, three = K 0, K 1, K 2, K 3
let (.&&) a b = matrix (fun i j -> a.(i,j) && b.(i,j))
let (.||) a b = matrix (fun i j -> a.(i,j) || b.(i,j))
let (.-) a b = matrix (fun i j -> a.(i,j) - b.(i,j))
let (.+) a b = matrix (fun i j -> a.(i,j) + b.(i,j))
let (.=) a b = matrix (fun i j -> a.(i,j) = b.(i,j))
let neg a = matrix (fun i j -> - a.(i,j))
let rotate a dx dy =

matrix (fun i j -> a.((i+dx)%dimx,(j+dy)%dimy))
let count a = matrix (fun i j -> int_of_bool a.(i,j))

let nextGeneration(a) =
let N dx dy = rotate (count a) dx dy in
let sum = N (-1) (-1) .+ N (-1) 0 .+ N (-1) 1

.+ N 0 (-1) .+ N 0 1

.+ N 1 (-1) .+ N 1 0 .+ N 1 1 in
(sum .= three) .|| ((sum .= two) .&& a);;

Figure 5. The F# code to compute the Game of Life on the
CPU using in-memory two-dimensional arrays. We assume the
dimx/dimy parameters are fixed.

open Microsoft.Research.DataParallelArrays

let shape = [| dimx; dimy |]
let zero = new FPA(0.0f, shape)
let one = new FPA(1.0f, shape)
let two = new FPA(2.0f, shape)
let three = new FPA(3.0f, shape)
let And (a:FPA) (b:FPA) = FPA.Min(a, b)
let Or (a:FPA) (b:FPA) = FPA.Max(a, b)
let Rotate (a:FPA) i j = a.Rotate([| i;j |])

let Equals (a:FPA) (b:FPA) =
let cond = -(FPA.Abs(a - b)) in
FPA.Cmp(cond, one, zero)

let NextGeneration (a:FPA) =
let N dx dy = Rotate a dx dy in
let sum = N (-1) (-1) + N 0 (-1) + N 1 (-1)

+ N (-1) 0 + N 1 0
+ N (-1) 1 + N 0 1 + N 1 1 in

Or (Equals sum three) (And (Equals sum two) a)

let initial = Array2.init(fun i j -> i=0 or j=0 or i=j)
let step0 = new FPA(initial);;
let step1 = NextGeneration(step0).Eval();

Figure 6. Generating the GPU version of the Life program by
explicit calls to Accelerator. We assume the shape parameter is
fixed.

let nextGenerationGPU = accelerate <@ nextGeneration @>
let step1 = nextGenerationGPU(step0)

Figure 7. Generating the Life program by quoting the CPU pro-
gram and calling the accelerate quotation compiler.

array-prog = fun (arr-var : ’db[,]) -> arr
arr

= Array2.init const const (fun idx-var idx-var -> elem-exp)
| arr-var
| ... (See notes)

elem-exp
= arr-var.(idx-exp,idx-exp)
| const
| (+,-,*,/,%,&&,||,min,max,=,>,<,<=,>=,<>) elem-exp*
| if elem-exp then elem-exp else elem-exp
| ... (See notes)

idx-exp
= idx-var
| idx-exp (+,-) const (%) const (Shift/Rotate)
| ... (See notes)

const = any numeric constant

Figure 8. The embedded language of data-parallel array compre-
hensions accepted by our prototype of accelerate. The input
must be well-typed. All syntax categories include the use of F#
quotation macros and let-bindings (see §2.8), translated by substi-
tution.

val accelerate: (’a[,] -> ’a[,]) expr -> ’a[,] -> ’a[,]

Fig 7 shows the use of this with a quotation of the nextGeneration
function. Note that Fig 7 achieves essentially the same thing as
Fig 6 in just one line.

4.2 The FGPU language

The language accepted by our prototype of accelerate is shown
in Fig 8.13 This language clearly relates to a subset of APL data-
parallel programs [15]. In future work we will seek to extend this
language to a richer and more complete subset of F#.

Programs such as those in Fig 7 are handled correctly by
accelerate. This is a form of dual mode execution where the
same program text can be run as either a CPU program or a data-
parallel GPU quoted program.

However, while dual-mode execution is convenient it comes at
the cost of semantic precision, as GPUs do not implement true 32-
bit IEEE arithmetic. We return to this topic in §6. Furthermore dual-
mode execution may only make sense if substantial programs are
already available, in a form suitable for GPU compilation through
the accelerate function.

We have not, as yet, verified that the performance gains over
C++ [31] also apply to code generated via F# quotations. However,
given that the cost of quotation processing can be easily amortized
we see no reason why this should not be the case.

For completeness we show part of the implementation of the
accelerate function. This portion specifies the translation of the
binary operators of this language is shown below. This emphasizes
the role that raw quotation literals (see §2.4) play in the specifica-
tion of declarative quotation processors:

13 There are some minor discrepencies with our implementation, e.g. rota-
tion is handled by a more adhoc case.
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let rec compileComprehension arrv sz1 sz2 v1 v2 eleme =
// Case (fun i j -> ... op <l> <r> ... )
match
List.first

(compileBinOp arrv sz1 sz2 v1 v2 eleme)
[ <@@ max @@>, (fun l r -> FPA.Max(l,r));
<@@ min @@>, (fun l r -> FPA.Min(l,r));
<@@ (||) @@>, (fun l r -> FPA.Max(l,r));
<@@ (&&) @@>, (fun l r -> FPA.Min(l,r));
<@@ (+) @@>, (fun l r -> FPA.Add(l,r));
<@@ (-) @@>, (fun l r -> FPA.Sub(l,r));
]
with

| Some res -> res
| _ -> ...

5. Runtime Native Code Generation from F#
Quotations

For completeness we show the generation of code from F# quota-
tion values. We emphasize that staged computation provides a more
controlled framework for arbitrary code generation. However, even
without such a framework runtime code generation or interpretation
may be a necessary workhorse when implementing portions of an
embeddded language, e.g. when post-processing results being re-
turned from a database connection. Furthermore, staged computa-
tion has not yet been implemented in combination with native-code
generation, and the code generated by the LINQ dynamic compiler
has a very special combination of properties:

• It is compiled and run as native code, via JIT compilation to
CIL;

• It is garbage collected, through the use of .NET “light-weight
code generation”.14

In many long-lived applications the GC of generated code is essen-
tial, so much so that programs work around the lack of code GC by
spawning new processes or .NET application domains. Thus this
combination makes an excellent example of how non-trivial exe-
cution machinery can be leveraged by F#. It also, we hope, acts as
a motivation for the implementation of staged compilation on the
.NET platform.

A native code generator for a large subset of quoted F# code
can be implemented by projecting to the LINQ Expression<T>
type, here using the function proj2 mentioned in §3. We then call
the corresponding LINQ code generator Expression.Compile,
generating a .NET delegate value which we explicitly invoke.

val compile : (’a -> ’b) expr -> (’a -> ’b)
let compile q =

let f = (proj2 q).Compile() in
fun x -> f.Invoke(x);;

(compile <@ fun x -> x + 3,3 @>) 3;;
val it : (int * int) = (6,6)

While program generation is easier with F# quotations than with
other comparable techniques available on the .NET platform, it is
substantially more difficult than in properly staged systems such as
MetaOCaml [29]. For example, when generating code for the pro-
totypical recursive pown function we must either build the quota-
tion terms programmatically or manually apply beta-reduction op-

14 This is an under-emphasized feature of the .NET Common Language
Runtime originally designed and implemented by Russi, Meijer and Pobar
[23]. We know of no commercial-quality native-code generating virtual
machine that provides a similar feature, though would be delighted to hear
otherwise.

N F# F# F# ocamlopt ocamlc
pow pown pown pow pow

(native) (native) (LINQ) (native) (byte)
1 0.56 0.12 2.45 0.78 16.9
5 1.40 1.34 4.09 2.56 32.5

10 3.40 3.06 7.62 5.92 52.1
100 49.6 51.8 56.6 71.4 392.6

Figure 9. Execution time (sec) for 108 executions of the pow and
pown functions, 3Ghz Pentium 4. Native pown represents the hand-
expanded and statically compiled version of the code generated by
quotation programming.

timizations to the generated code during compilation. If the latter
is done then pown can be generated for a given n as follows:

let rec pown n =
if n = 0 then <@ fun x -> 1 @>
else (<@ fun x -> x * x @> (pown (n - 1)))

Based on our initial tests, .NET native code compilation gives
decent performance for generated code. For example, the execution
times of the following comparative program for varying N is shown
in Fig 9. We also show comparative times for OCaml native and
byte code.

let rec pow (acc:int) n x =
if n = 0 then acc else pow (x * acc) (n-1) x;;

// LINQ-generated
let p = pown N in for i = 1 to 100000000 do p 1 done;;
// Statically compiled
for i = 1 to 100000000 do pow 1 N 3 done;;

As it happens, for F# the figures show a marginal slow-down for
the generated code, which is a linear sequence of multiplications,
in contrast to the accumulating loop of the static pow function.
This indicates that the pow function has been well-compiled with
excellent branch-prediction for the JIT-generated native code. The
slower relative performance of LINQ-compiled code in the case
of N = 1 indicates that dynamically generated code has a small
per-call overhead (approx 0.02μs/call). Not all Core ML expression
constructs can be dynamically compiled via LINQ: for example the
LINQ expression language lacks a recursion construct (though can
call existing recursion operators) and will not compile tailcalls as
such.

6. Related Work and Future Challenges
We have shown three applications of meta-programming where we
have used F# to access three heterogeneous execution components
available in the context of .NET, using a modest meta-programming
extension called F# quotations.

Most other meta-programming research focuses on execution
“within” a language implementation, through the use of code gen-
eration. Our primary contribution is to demonstrate the importance
of interoperable heterogeneous meta-programming in the context
of ML, particularly in cases where the execution machinery compo-
nents are external to a language implementation. We also consider
this a starting point for the application of disciplined techniques
for meta-programming in the context of .NET, and a partial ratio-
nal reconstruction of the meta-programming being adopted in the
Microsoft LINQ initiative.

This work does not claim to be a contribution to the theory
of meta-programming, but is an exploration of its importance in
the context of a framework and language where numerous inter-
esting heterogeneous execution components are readily available.
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Above all it is driven by the belief that if you’re going to do meta-
programming and symbolic manipulation in the context of .NET,
you may as well do it with one of the best symbolic programming
languages available on the platform.

The three applications we have outlined all require additional
development and refined specifications before they consitute pol-
ished domain-specific languages. In future work we plan to con-
tinue to the development and refinement of the components and to
focus on the potential application of staging techniques and type
systems to these domains.

6.1 Toward Semantically Clean Heterogeneous
Meta-programming?

The author approaches meta-programming with the usual suspi-
cions of an ML advocate: some uses of meta-programming are not
compelling; combinators are often a sufficient substitute; core ML
itself is itself an excellent meta-language; and over-zealous use can
play havoc with our abilities to reason about programs.

In the context of typed functional languages recent work has
been primarily focused on staged-computation systems that are
very careful to preserve the equational properties of the language
at all levels. This is not something we have attempted to do in
this paper. Staged computation works especially well in the con-
text of code-generation and compile-time macros. Relevant sys-
tems include Meta ML and its derivatives, MacroML [12], Tem-
plateHaskell [25] and the distributed language MetaKlaim [11].

Recent work has shown how to extend staged compilation to in-
clude the generation of C code through “off-shoring” — a form of
“implicitly heterogeneous” execution [8]. It is interesting to con-
sider the challenges and pre-requisites for the application of im-
plicitly heterogeneous staged computation in the domains of use
explored by this paper. For example, we would need formal (and
preferably machine-checkable) specifications of the execution se-
mantics implemented by devices such as databases and GPUs.
However, machine-checked proofs of correctness for the imple-
mentations of compiler extensions would themselves require ex-
tensive meta-programming in the form of theorem proving, a long
standing interest of the author [26]. A form of intensional meta-
programming has already been used to prove properties of F# pro-
grams that implement web services [4].

Disturbingly, two of the three target execution techniques (GPU,
SQL) have, by specification, inconsistencies and quirks which
mean they are not perfect off-shoring executors of F# code. For
example, GPUs do not implement precise 32-bit IEEE floating
point, by the very nature of the hardware used, and indeed, many
GPUs come without a precise specification of their numerical char-
acteristics, though that doesn’t make them useless as computational
devices. Additionally, the LINQ-SQL specification lists a number
of ways in which the SQL code generated does not implement
precisely the same semantics as the unquoted versions of the C#
meta-programs. Pragmatically speaking, the existence of these het-
erogeneous execution components leaves the semantically-minded
language provider with an unenviable choice: ban the use of such
components within a meta-programming framework in order to
preserve semantic purity; make their use difficult (e.g. by forcing
the use of programmatic APIs or meta-programs which manipu-
late different types and thus reveal all semantic distinctions); or
permit their use via intensional meta-programming (despite the ex-
istence of minor semantic discrepancies). For this paper we chose
to demonstrate the latter route.

6.2 Other Related Work

The Accelerator library is by Ogelsby, Tarditi and Puri [31]. Com-
piling array aggregate expressions has a long history starting with
APL [15]. LINQ originates from the C# design group led by Hejls-

berg. Many projects have implemented language-integrated data-
base bindings for high-level programming languages: indeed, the
relative lack of such bindings for means ML is the exception rather
than the rule [18, 22, 5].
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A. LINQ and LINQ Meta-programming
Part of the background to this paper is the rapid adoption by Mi-
crosoft of the use of meta-programming in the Microsoft LINQ ex-
tensions for C# 3.0 and Visual Basic 9. We briefly summarize this
project, partly because one of the aims of meta-programming in F#
is to ensure that F# programmers can take advantage of the “high-
value” components being developed in the context of LINQ. LINQ
is described by Microsoft as

a set of extensions to the .NET Framework that encompass
language-integrated query, set, and transform operations. It
extends C# and Visual Basic with native language syntax
for queries and provides class libraries to take advantage of
these capabilities...

Part of LINQ is a set of modifications to the Java/.NET nominal OO
model to permit functional/aggregate operations on data structures.
These modifications include syntactic lambda-expressions, an ex-
tensible dot-notation and a modicum of local type inference, giving
C# 3.0 program fragments such as:

var shortDigits = digits.Where(d => d.Length < 10);

where the environment contains (in pseudo-ML syntax):

digits : IEnumerable<string>;
.Length: string -> int
.Where : (IEnumerable<α>, Func<α,bool>)

-> IEnumerable<α>

The “extension method” Where is better known to functional pro-
grammers as a filter.

As a result of LINQ the .NET platform will include a stan-
dard DLL System.Query.dll containing the definition of a type
Expression<T>, a representation of typed expression syntax trees
for both C# and Visual Basic expressions. This type and the li-
braries which accept and manipulate values of this type con-
stitute the meta-programming layer of .NET we seek to lever-
age in §3 and §5 of this paper. C# syntactic lambda expressions
are implicitly reified whenever they are used as a value of type
Expression<Func<A,B>>.15 For example, consider

var shortDigits = db.Where(d => d.Length < 10);

where the environment contains:

db: IQueryable<string>
.Where: (IQueryable<α>, Expression<Func<α,bool>>)

-> IQueryable<α>

The call to Where uses the underlined syntactic lambda expression
as type Expression<Func<string,bool>>, so the expression is
passed as an abstract syntax tree (for clarity we use underlining
wherever C# code is implicitly reified). In this example db repre-
sents a handle to a database table and IQueryable represents both
a table (in the case of db) and a composed query over the table (in
the case of the overall expression).

The LINQ SQLMetal tool builds type-annotated object mod-
els for database schema. For example, if a schema contains table
Employees with columns City and Address a set of class defini-
tions is generated, building an environment:

type Employees : IQueryable
.City: Employees -> System.String
.Address: Employees -> string

The reification of LINQ is a fairly limited facility: only expres-
sions may be reified, and the LINQ expression type contain no
nodes for recursion. Control constructs are generally absent since
in OO languages they belong to the world of statements.

LINQ reified expressions must be closed apart from the use of
constructs such as named types, methods, properties and fields, an
approach we also use for F# quotations. Other expressions may be
“spliced into” expression trees, and ground values may be lifted to
expressions. Libraries are free to do what they want with quoted
expressions.

15 Func< , > is one of several representations of arity-1 function values on
the .NET platform.
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