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Leveraging network analysis 
to evaluate biomedical named 
entity recognition tools
Eduardo P. García del Valle1*, Gerardo Lagunes García1,2, Lucía Prieto Santamaría2, 
Massimiliano Zanin3, Ernestina Menasalvas Ruiz1,2 & Alejandro Rodríguez‑González1,2

The ever‑growing availability of biomedical text sources has resulted in a boost in clinical studies 
based on their exploitation. Biomedical named‑entity recognition (bio‑NER) techniques have 
evolved remarkably in recent years and their application in research is increasingly successful. Still, 
the disparity of tools and the limited available validation resources are barriers preventing a wider 
diffusion, especially within clinical practice. We here propose the use of omics data and network 
analysis as an alternative for the assessment of bio‑NER tools. Specifically, our method introduces 
quality criteria based on edge overlap and community detection. The application of these criteria to 
four bio‑NER solutions yielded comparable results to strategies based on annotated corpora, without 
suffering from their limitations. Our approach can constitute a guide both for the selection of the best 
bio‑NER tool given a specific task, and for the creation and validation of novel approaches.

Huge volumes of digital textual content are generated every day in biomedical research and practice, including 
scienti�c papers, electronic medical records (EMRs), and physician notes. �ese sources contain information 
about new discoveries and new insights, providing valuable knowledge for medical applications such as dis-
ease–disease relationships or drug repositioning. However, medical texts consist mainly of unstructured, free-
form textual content that requires manual curation and analysis performed by domain  experts1. Since the manual 
curation and management of such large corpora are infeasible, over the last decades biomedical researchers have 
relied on natural language processing (NLP) methods and techniques to facilitate their use. Biomedical named 
entity recognition (bio-NER) is a form of NLP that identi�es and categorizes biomedical terms in unstructured 
biomedical documents. Gene, protein, drug or disease are some common named entity classes considered in 
biomedical  domain2. In recent years, bio-NER systems have been successfully used in a diverse set of applica-
tions such as bio-medical literature  mining3,4, customer care, community websites or personal information 
 management5.

Notwithstanding these achievements, the application of NER in the clinical domain still presents many 
challenges. Compared to the general NLP domain, determining the right boundaries of clinical named enti-
ties is a di�cult task, since they are o�en multi-token terms with nested structures that include other entities 
inside them. In addition, the biomedical literature does not follow strict naming conventions. Instead, there 
are usually several ways to mention the same named entity and the use of symbols, digits and abbreviations is 
very common. �is variability makes it di�cult for matching-based unsupervised methods to work well in the 
clinical  domain6. As a result, early bio-NER systems such as  cTAKES7 or  MetaMap8, which worked by matching 
text phrases with handcra�ed dictionaries and rules, have been replaced or combined with supervised methods 
that learn to extract and categorize clinical terms from existing data. �us, machine learning and hybrid based 
solutions like  CLAMP9 and Bio-BERT10 have achieved state-of-the-art results in the �eld of bio-NER, although 
they heavily rely on annotated datasets to train and validate their models.

Over the last decade, several annotated corpora have been developed, including both manually annotated 
(known as gold standards) and automated or semi-automated annotated collections (silver standards)11–14. �ese 
corpora contain texts, extracted mainly from scienti�c articles and medical records, and their corresponding 
annotated named entities (e.g., diseases, body parts, treatments)15. Still, their availability is limited due to two 
main factors. First, annotating corpora manually is laborious and expensive, particularly so in the clinical domain 
in which medical expertise is required. Second, the access and exploitation of the source texts is o�en restricted 
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by licensing terms and data privacy regulations, such as the Health Insurance Portability and Accountability Act 
(HIPAA)1,14. As a consequence, the available datasets are old (for instance, NCBI was last revised in August 27, 
2013), require registration (as is the case of i2b2 dataset, now housed in the Department of Biomedical Infor-
matics at Harvard Medical School) and/or force to obtain a human subject training certi�cate (e.g., for ShARe/
CLEF, currently hosted by the MIT Lab for Computational Physiology).

As an alternative to the use of annotated datasets in the development of bio-NER tools, in this study we present 
a method based on the exploitation of omics data and network analysis. On the one hand, the increasing avail-
ability of omics data, such as genomic, proteomic, transcriptomic or metabolomic, resulting from improvements 
in the acquisition of molecular biology, represents an unprecedented resource for clinical researchers. Big data 
originating from biology are complemented with chemical and pharmacological data published by laboratories 
and regulatory  agencies16. On the other hand, the emerging �eld of network medicine o�ers the tools of network 
science for interconnecting these data and discovering new insight about how diseases operate at the molecular 
level and how they are related to each other. Major projects such as  DisGeNET17 and  Hetionet18 have exploited 
this approach to obtain vast complex networks that enable researchers to formulate novel hypothesis on drug 
therapeutic action and drug adverse e�ects, and predict disease gene associations, among other  applications19.

Previous studies have built phenotypic disease networks out of the named entities extracted from medical 
texts using bio-NER tools, and compared them with omics-based  networks20,21. �e results showed a very signi�-
cant overlap between both types of networks, proving that shared terms (symptoms) indicate shared genes and 
proteins, for instance. Additionally, it was observed that disease networks obtained from medical texts tended 
to form clear, highly interconnected communities, which coincided signi�cantly with the disease categories of 
classi�cations systems such as the disease ontology (DO) and the medical subject headings (MeSH)22,23. Given 
these precedents, our hypothesis is that the accuracy of a bio-NER tool can be measured by building a disease 
network from the extracted entities and calculating both its overlapping with omics networks and the coincidence 
of its communities with the categories of disease classi�cation systems.

To test our hypothesis, we selected four bio-NER tools based on unsupervised  (MetaMap8 and MetaMap 
 Lite24), supervised  (CLAMP25) and hybrid  (BERN26) methods. First, we used each tool to extract medical terms 
from a dataset of Wikipedia and Mayo Clinic disease articles, and obtained their associated phenotypic disease 
networks by computing the similarity of the terms vector extracted for each disease. Second, we used the same 
approach to build omics disease networks from public available data sources (see Supplementary Table S6) and 
analyzed their overlapping with each phenotypic network. �ird, we applied network analysis techniques to 
obtain the disease communities of the phenotypic networks and evaluated their coincidence with the top-level 
categories in MeSH, DO and International Classi�cation of Diseases (ICD-10-CM). Finally, we compared the 
results to �nd the best performing tool and contrasted the outcome with classical evaluation approaches. Figure 1 
illustrates the experimental design, which is thoroughly described in the “Methods” section.

Our study con�rmed that the tools with highest accuracy when evaluated with annotated corpora generally 
rank �rst according to our method. In other words, we proved that our method performs similarly to strategies 
based on annotated corpora, without su�ering from their limitations. We also demonstrated both the extensibility 

Figure 1.  Experimental Design. (a) First, data are extracted from textual and omics sources; (b) next, networks 
are generated from the extracted data, and their main characteristics are analysed and compared; (c) �nally, 
network-based criteria are applied to evaluate the accuracy of the bio-NER tool, and the results are compared 
with existing evaluations based on annotated corpora; (d) same method is applied to DISNET’s bio-NER system; 
and (e) the reference set is extended with pharmacologic data.
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of this approach, by including the comparison with disease–disease networks obtained from pharmacological 
data, and its application to the evaluation of an alternative bio-NER tool.

Results
Characterization of disease networks. Table  1 lists the main characteristics of both the phenotypic 
disease networks generated from the terms extracted with the bio-NER tools, and the reference disease networks 
obtained from genomic, proteomic and pharmacological data, as described in the “Methods” section. Figure 2 
provides a visual representation of the results. In the case of phenotypic networks, while they present a similar 
number of nodes (ranging from 5054 to 6042), there is a signi�cant variation in the number of edges (12,499 
for BERN versus 595,110 for MetaMap Lite). While this implies that the tools are capable of extracting terms 
for approximately the same number of diseases, we found that the number of terms extracted per disease (and 
therefore, the connections between them) di�ers. For example, for Larsen Syndrome, BERN extracts 20 terms, 
compared to 42 for MetaMap. �e density values, which range between 0.008 and 0.033, re�ect this disparity 
and coincide with those of other phenotypic disease networks obtained from medical text  mining27. For their 
part, the reference networks have a lower number of nodes, covering in the best case only 39.38% of the total 
diseases in the Wikipedia and Mayo Clinic article dataset (see “Methods” section), compared to a maximum of 
84.01% for the phenotypic networks. �is indicates a concentration of omics data on a limited set of diseases, 
while textual data cover a broader set. �e density of the reference networks is also lower, with values around 
0.005. Previous studies con�rmed the low density of biological networks, arguing that they are generally sparsely 
connected, since this confers an evolutionary advantage for preserving  robustness28.

As shown in Fig. 2a, the modularity of the reference networks is greater than in the networks obtained from 
texts. �is denotes a greater tendency of omics networks to form communities, although the range of values 
obtained in the phenotypic networks (around 0.5) can also be considered as relatively high. Among them, the net-
work associated with BERN presents the highest modularity. In contrast, the transitivity values of the phenotypic 
networks are generally higher than in the reference networks (see Supplementary Table S1 for more details). �is 
suggests that, even though phenotypic networks have less tendency to cluster in communities, their communi-
ties are more densely connected internally, compared to biological networks. In the literature, networks with a 
0.3 transitivity are considered highly  transitive29. Our results show that the network associated with MetaMap 
Lite with negation detection presents the highest transitivity. Figure 2b displays the log–log plot of the degree 
complementary cumulative distribution function (CCDF) of the networks. For the phenotypic networks, their 
CCDFs show a less abrupt fall than those of the reference networks, especially genomics and proteomics. �is 

Table 1.  Characteristics of the extracted networks. Calculations of the transitivity, including the results of the 
normality tests, are available in the Supplementary Materials (see Supplementary Table S1).

Network Nodes Edges Density Modularity Transitivity (normalized z-score) Assortativity

Genomic 1725 8,208 0.0055 0.783 0.013 − 0.042

Proteomic 713 1,169 0.0046 0.961 0.000 0.356

Pharmacologic 2832 21,817 0.0054 0.712 0.030 0.041

MetaMap 5903 411,282 0.0236 0.481 0.379 0.067

MetaMap (negation) 5900 386,967 0.0222 0.497 0.351 0.070

MetaMap Lite 6042 595,110 0.0326 0.540 0.745 0.230

MetaMap Lite (negation) 5872 585,465 0.0339 0.564 1.000 0.409

CLAMP 5676 171,382 0.0106 0.454 0.256 0.273

CLAMP (negation) 5627 144,936 0.0091 0.468 0.227 0.289

BERN 5683 124,999 0.0077 0.572 0.241 0.368

DISNET 5054 184,274 0.0144 0.505 0.416 0.610

Table 2.  Bio-NER tools used in the study. MetaMap, MetaMap Lite and CLAMP provide con�gurable 
assertion detection (i.e., negation), hence the two performance values in the i2b2 2010 dataset.

Bio-NER Tool Description

Performance (F1 Score)

i2b2 2010 SemEval 2014 NCBI disease

MetaMap An open-source so�ware program developed by the NLM for �nding UMLS concepts in 
biomedical text using dictionary lookup 0.37, 0.38 (negation) 0.469 0.641

MetaMap Lite A lightweight implementation of MetaMap, meant for applications that emphasize process-
ing speed and ease of use 0.38, 0.45 (negation) 0.645 0.725

CLAMP
A clinical NLP toolkit that provides state-of-the-art NLP components and a user-friendly 
graphic user interface to build customized NLP pipelines. CLAMP uses various technolo-
gies, including machine learning-based methods and rule-based methods

0.857, 0.9398 (negation) 0.632 –

BERN (with Bio-BERT)
A neural biomedical named entity recognition and multi-type normalization tool. BERN 
uses the Bio-BERT NER models to tag genes/proteins, diseases, drugs/chemicals, and 
species

0.865 0.779 0.8936
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indicates that the maximum degree in phenotypic networks is much higher than in biological networks, which 
is due to a greater interconnection of diseases through their symptoms, than through their associated genes or 
proteins. In other words, symptom-based connections are less speci�c than those based on genes or  proteins30,31. 
Our results also show that phenotypic networks tend to be assortative, meaning that disease hubs tend to con-
nect with each other. �is property is also observed in social networks, for  example32. In contrast, proteomic and 
genomic networks have low or negative assortativity, since their nodes tend to link to nodes with fewer interaction 
partners rather than to other hubs. Protein interaction networks and neural networks are documented examples 
of disassortative  networks32. �is con�rms the greater speci�city of biological bonds compared to phenotypic 
ones, previously observed with the degree distribution.

�e pharmacological network, added in this study as an example of extension of the reference networks, pre-
sents mixed characteristics. On the one hand, its density, modularity and transitivity are similar to those of the 
omics networks. On the other hand, its topology (degree distribution and assortativity) is closer to phenotypic 
networks. �is re�ects that pharmacology is derived from both phenotypic and biological disease knowledge.

Overlap of phenotypic and biological networks. Supplementary Table S2 lists the number of com-
mon nodes (diseases) and edges between each phenotypic network associated with a bio-NER tool, and the 
reference networks, as well as the z-scores obtained when comparing the values with those expected at random, 
and the p values corresponding to the Shapiro–Wilk test (see “Methods” section). Phenotypic networks share 
a similar number of nodes with reference networks. For example, the network associated with MetaMap Lite 
has 1506 nodes in common with the genomic network (87.30%), compared to 1470 (85.22%) of CLAMP and 
1487 (86.21%) of BERN. �is result was expected since, as presented in the previous section, the networks 
obtained from bio-NER tools have a similar number of nodes. In the same way, given that they have an uneven 
number of links, it was also expected that the number of overlapping links would be di�erent, as re�ected in the 
results. �us, while MetaMap Lite shares 759 links with the genomic network (9.25%), MetaMap only shares 
437 (5.32%). In all cases, the z-score, which indicates the signi�cance of this overlap with respect to the random 
case, is higher for the phenotypic network associated with BERN. CLAMP performs second best, followed by 
MetaMap Lite and MetaMap. Only in the case of MetaMap Lite, the network obtained with negation detection 
presents a clearly superior performance than without this function.

Supplementary Table S3 contains the results for the overlap of the phenotypic networks with all the reference 
networks simultaneously. In this case the number of shared nodes and links is drastically reduced. Only around 
340 diseases in phenotypic networks are present in the genomic, proteomic and pharmacological networks, 
and the number of overlapping edges ranges from 18 to 33. �e z-score con�rms the ranking obtained when 
using the reference networks separately, which suggests that the type of reference network used to measure the 
overlap with the phenotypic networks has little in�uence. Taking into account this result and that the size of the 
combined network would limit the validation of bio-NER to a reduced set of diseases, we discarded this test in 
favor of the overlapping with individual omics networks.

Coincidence of communities in phenotypic network with disease categories. Supplementary 
Table S4 shows the number of communities obtained with the Louvain method for each phenotypic network 
(see “Methods” section), as well as their ratio of coincidence with the top-level categories in MeSH, DO and 
ICD-10-CM, the z-scores computed by comparing the values with those obtained for random networks, and 

Figure 2.  Comparison of network characteristics. (a) Location of the analysed networks in the normalized 
transitivity versus modularity plane. �e size and the color of the bubbles represent the density and assortativity 
of the networks, respectively; (b) log–log plot of the degree CCDF of the networks.
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corresponding p-values of the Shapiro–Wilk test. �e evaluation of bio-NER tools assessed with this method 
is generally consistent across disease classi�cation systems, and also with that obtained by measuring the edge 
overlap with the reference networks.

Figure 3 shows the percentage of diseases classi�ed in the 10 largest top-level categories of DO (Fig. 3a), 
MeSH (Fig. 3b) and ICD-10-CM (Fig. 3c), for the best performer (BERN) and worst performer (MetaMap), 
as a result of the previous analysis. For reference, it also displays the actual percentage of diseases that belong 
to those categories in each classi�cation system. E.g., out of a total of 2501 diseases in the dataset mapped to 
a DO concept, 402 (16.07%) have the category DO 863 (diseases of the nervous system). We observe that the 
communities of the phenotypic networks present a similar degree of coincidence for the equivalent categories 
in the di�erent classi�cation systems. In the case of BERN, we �nd greater coincidences in the categories MeSH 
C04, DO 162 and ICD-10-CM C00-D49 (neoplasms/cancer); MeSH C05, DO 17 and ICD-10-CM M00-M99 
(diseases of musculoskeletal system); and MeSH C14, DO 1287 and ICD-10-CM I00-I99 (cardiovascular dis-
eases/diseases of circulatory system). For its part, MetaMap presents greater coincidences in MeSH C10, DO 
863 and ICD-10-CM G00-G99 (diseases of the nervous system). �is suggests that bio-NER tools are capable 
of extracting terms, and ultimately relationships between diseases, consistently with classi�cations of diseases, 
as described in the  literature22, 23.

Comparison with gold‑standard based evaluation. �e spider web chart in Fig. 4a summarizes visu-
ally the results of the tests described in the previous sections. �e network associated with BERN performs best 
both in the overlap with the reference networks and in the coincidence of its communities with the disease 
categories. Overall, the two CLAMP variations (with and without negation detection) have the second-best 
performance. Only in the overlap with the pharmacological network, the results of MetaMap Lite (with and 
without negation) are similar to those of CLAMP. MetaMap obtains comparatively the worst results, except in 
the coincidence of communities with MeSH categories, where MetaMap Lite performs worse.

In order to compare the global results of both tests, Fig. 4b represents their normalized mean values. Accord-
ing to our proposed evaluation of bio-NER tools, the better the results in the tests (that is, the further up and 
right in the chart), the greater the accuracy of the tool. To validate our approach, we contrasted our evaluation 
results with those obtained through traditional methods based on annotated corpora. In Fig. 3b, the area of the 
bubble represents the normalized mean F-1 value of the tool (see Table 2). We observe that there is a notable 
correlation between the position and the size of the plots, with BERN outperforming the other tools, CLAMP 
ranking second, followed by MetaMap Lite and MetaMap.

Our assessment coincides even for the variations within the same tool. Both MetaMap and MetaMap Lite 
perform better when negation detection is enabled. Only for CLAMP, we observed a di�erence with respect to 
the F-1-based ranking. Its accuracy is higher with negation detection, according to the evaluation performed 
with the i2b2 dataset (the only data available for this case), but our method gives a slightly greater accuracy to 
the variation without detection.

Figure 3.  Coincidence of network communities with disease categories. �e bar plots show the proportion 
of diseases associated with the 10 largest �rst-level categories in the DO (a), ICD-10-CM (b) and MeSH (c) 
classi�cation systems, compared with the proportion obtained for the best performer (BERN) and worst 
performer (MetaMap).
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Application to DISNET. To test the application of our evaluation method to an alternative bio-NER tool, 
we performed the same tests with DISNET’s text extraction system, which is built on top of MetaMap with 
an additional dictionary-based validation of terms. �e tables and �gures in the previous sections include the 
results for this tool. According to our evaluation, the accuracy of DISNET’s bio-NER is higher than that of Meta-
Map alone. �is was expected, since the validation system eliminates false positives caused by the ambiguity of 
the terms detected by  MetaMap8,33. DISNET has an accuracy comparable to that of MetaMap Lite, but noticeably 
worse than solutions based on more advanced NER methods such as CLAMP or BERN.

Discussion
In this study, we hypothesize that the increasingly available omics data can be used in combination with network 
analysis to evaluate bio-NER tools, as an alternative to traditional methods based on annotated corpora. To 
demonstrate our hypothesis, we �rst built a dataset of medical texts associated with diseases from public textual 
sources and used 4 bio-NER tools with known F-1 value to extract their clinical terms. Next, by computing the 
pairwise similarity between diseases based on the extracted terms, we generated the disease-disease phenotypic 
network corresponding to each tool. Additionally, we collected publicly available data on disease-gene and 
disease-protein associations to build reference omics networks, following the same method. �e analysis of the 
networks, illustrated in Fig. 2, shows that their characteristics coincide with those of other networks generated 
in a similar way, con�rming the validity of our process up to this point.

In a �rst test, we measured the overlapping of the phenotypic network of each bio-NER tool with the omics 
networks. In a second test, we evaluated the coincidence of the communities of the phenotypic networks with 
the top-level categories of various classi�cation systems. �e obtained results show that a better performance 
of the bio-NER tool in the network overlapping and community coincidence tests is associated with a greater 
precision of the tool when it is evaluated using gold-standards. �erefore, as proposed in our hypothesis, a met-
ric composed of the results of both network-based tests can replace the F-1 obtained through validation with 
annotated corpora, as illustrated in Fig. 4b.

Since annotated datasets are generally scarce, limited access and outdated, our method o�ers researchers 
an alternative based on more abundant, accessible and updated omics data. Furthermore, our approach allows 
other sources to easily be incorporated, as we demonstrated when using disease-drug associations. However, 
our solution has some limitations. First, although it makes it possible to clearly di�erentiate the accuracy of two 
di�erent tools, it is less precise when comparing variations within the same tool, as we observed in the case of 
CLAMP with and without negation detection. Second, using this method requires disease-associated text sets, 
such as the Wikipedia and Mayo Clinic articles used in the study. Clinical texts such as EMRs, where several 
disorders might be discussed simultaneously, are not suitable. Last, our method only measures the accuracy of 
bio-NER tools, without evaluating other important aspects such as their speed or their usability.

To improve the precision of our method, in the case of the overlap with reference networks, we propose the 
exploitation of new sources (e.g., transcriptomics, metabolomics, epigenomics) to build a more complete set of 
reference networks. Regarding the coincidence of the communities with the disease categories, on the one hand 
it is necessary to evaluate whether alternative community detection methods o�er better results. And on the 

Figure 4.  Evaluation of the bio-NER accuracy according to the proposed model. (a) Results of the network 
overlapping and community coincidence tests and (b) normalized average results for the two tests, compared 
with the normalized average F-1 score of the bio-NER tools obtained from gold-standard based evaluations.
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other hand, we recommend studying the di�erent hierarchical levels of the classi�cation systems, in order to 
�nd the most appropriate level for this test. Finally, by extending the study to more bio-NER tools with known 
accuracy (e.g., from NER challenges in this area), it should be possible to determine which reference networks 
or classi�cation systems in particular o�er results closer to the reference ones, and favor their use to improve 
the e�ciency of our method.

Methods
Experimental design. �e goal of our research is to provide an alternative to the use of annotated corpora 
for the evaluation of bio-NER tools. Based on the previous work presented in the introduction, our hypothesis is 
that the accuracy of a bio-NER tool can be assessed through the analysis of the disease network generated from 
the extracted terms, including its overlap with omics networks and the coincidence of its communities with the 
categories of disease classi�cation systems.

Figure 1 describes the experimental design to demonstrate our hypothesis. We �rst used several bio-NER tools 
to extract disease-term pairs from a dataset of medical articles, and mined omics sources to obtain disease-gene 
and disease-protein pairs (Fig. 1a). Next, we built the phenotypic and reference disease–disease networks out of 
the disease-term pairs and disease-omics pairs, respectively, and analysed their characteristics (Fig. 1b). Finally, 
we evaluated the overlap between the phenotypic and omics networks as well as the coincidence of the pheno-
typic network communities with di�erent disease categorizations, and contrasted the results with the bio-NER 
tool evaluations obtained with annotated datasets (Fig. 1c). Additionally, we demonstrated the applicability of 
our method to the assessment of an alternative bio-NER (Fig. 1d) and its extensibility by expanding the set of 
reference networks with pharmacological data (Fig. 1e).

Bio‑NER tools. In our study, we used four bio-NER tools:  MetaMap8, MetaMap  Lite24,  CLAMP25 and 
 BERN26. We selected these tools based on three aspects: (1) they are publicly available; (2) they use di�erent 
bio-NER approaches (rule-based, dictionary-based, ML and hybrid); and (3) their accuracy has been evalu-
ated against di�erent gold standards. �ese criteria ensure the reproducibility, generalizability and evaluability 
(respectively) of our method. Table  2 shows a brief description for each tool and its performance evaluated 
against the i2b2  201012, SemEval  201434 and  NCBI11 datasets. For more detailed information on the tools, includ-
ing the version and con�guration used in the study, see Supplementary Table S5.

Disease–disease networks from text datasets. For the extraction of medical terms through the bio-
NER tools, we used a dataset consisting of excerpts of 7500 Wikipedia articles and 620 Mayo Clinic articles, 
obtained between 2019 and 2020 as part of the DISNET  project35. Each article is associated with a single disease, 
and there may be more than one article for the same disease. As a whole, the dataset contains texts for 7192 
diseases, with a total of 3,330,001 words and an average of 463.01 words per disease (standard deviation = 56.57). 
We used the Crosswalk Vocabulary API of the Uni�ed Medical Language System (UMLS) to map the diseases by 
their identi�ers in di�erent  terminologies36. See Supplementary Table S6 for more details.

We processed the dataset with each bio-NER tool and extracted the named entities associated with every 
disease. Next, we computed the pairwise similarities between diseases expressed as vectors of the extracted terms, 
using the Jaccard  distance37. Finally, we built the disease-disease networks, in which two nodes (diseases) are 
connected with an edge weighted by the similarity of their extracted terms. To limit the size of the networks, only 
pairs with a similarity above the 95th percentile were considered. For the tools that support negation detection 
(MetaMap, MetaMap Lite and CLAMP), we obtained two networks, with and without this option.

Disease–disease networks from biological sources. Data of gene-disease associations were obtained 
from  DisGeNET17. For its part, the implications of proteins in diseases were extracted from  Uniprot38. In order 
to demonstrate the aggregation of new sources to our system, we also incorporated data of disease-drug associa-
tions extracted from the Stanford Network Analysis  Project39. Again, we used UMLS to cross-map the disease 
identi�ers in the di�erent sources. As in the case of text-extracted terms, we built the genomic, proteomic and 
pharmacological disease–disease weighted networks from the pairwise similarity of their genes, proteins and 
drugs, respectively. Due to the greater speci�city of omics data, the number of obtained pairs was much lower 
than with the text terms, so they were not �ltered. See Supplementary Table S6 for more details.

Network characterization. As a previous step to the application of our method in the evaluation of the 
bio-NER tools, we performed an analysis of the characteristics of their associated networks using the NetworkX 
Python  library40.

First, we measured three dimensions of the network structure: density, modularity, and transitivity. �e 
network density is de�ned as the number of existing relationships relative to the possible number. For its part, 
the modularity measures the degree to which the network tends to segregate into relatively independent groups. 
It is computed as the fraction of the edges that fall within the groups, minus the expected fraction if edges were 
distributed at random. Biological networks have a signi�cantly higher modularity compared to random networks, 
which proves their modular  nature41. However, it has been shown that modularity su�ers a resolution limit and, 
therefore, it is unable to detect small communities. On the other hand, the transitivity of a network is the rela-
tive proportion of triangles among all connected triads it contains. It can be interpreted as the probability of 
�nding a direct connection between two nodes having a common neighbor. In general, high transitivity allows 
obtaining a community structure. However, high transitivity is not a prerequisite to the existence of a strong 
community  structure42.
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Next, we obtained data on the network topology, including the degree distribution and assortativity. �e 
degree distribution P(k) of a network is the probability that a randomly chosen node has k connections (or 
neighbours). In most complex networks (including biological networks), the degree distribution is highly asym-
metric due to the presence of a small number of highly connected nodes (hubs)43,44. To compare the degree 
distributions of the networks, we computed the complementary cumulative distribution function (CCDF), also 
known as tail  distribution45. If the resulting plot of one distribution falls above the other, we may conclude that 
the upper one has a heavier tail (i.e., decays slower) than the lower. �e assortativity is another measure related 
to the network topology, and indicates the preference for a network’s nodes to attach to others that are similar 
in some way. �us, a network is called assortative (i.e., its assortativity ranges from 0 to 1) if the vertices with 
higher degree have the tendency to connect with other vertices that also have high degree of connectivity. If the 
vertices with higher degree have the tendency to connect with other vertices with low degree, then the network 
is called disassortative (i.e., the assortativity is between 0 and − 1).

Finally, we compared the results obtained for the phenotypic and reference disease-disease networks with 
each other and with the existing literature.

Network overlapping. For each bio-NER tool, we obtained the edges shared between its associated disease 
network and the reference networks, using NetworkX. Next, we compared the number of observed overlapping 
edges to what would be expected with random networks. �e Statistical Analysis section describes the statistical 
methods used in more detail.

Community detection. As explained in the introduction, several studies have reported signi�cant over-
laps between communities in phenotypic networks and disease  categories22,23. To replicate this analysis, we �rst 
obtained the disease categories of �rst hierarchical level from the MeSH, ICD-10-CM, and DO classi�cation 
systems. MeSH descriptors were downloaded from the NLM site. Only categories of type C (Diseases) and F03 
(Mental Disorders) were considered. �e ICD-10-CM code descriptions were downloaded from the website of 
the Centers for Medicare and Medicaid Services, and concepts of the DO were obtained from the code reposi-
tory of the project. Finally, UMLS and DO mappings were used to associate the categories with the diseases in 
the networks (see Supplementary Table S6).

To detect the communities in the disease networks, we used Louvain’s method, which optimizes modularity as 
the algorithm  progresses46. First, for each disease network associated with a bio-NER tool, we obtained the best 
partition using the Community library from the Python-Louvain Python  package47. �en, for each community 
obtained, we computed its associated disease category in each classi�cation system (i.e., the most frequent among 
its diseases) and the proportion of community members that belonged to that category. �e result indicated the 
ratio of coincidence of the network communities with the disease categories. Finally, as in the case of network 
overlaps, we compared the value obtained with that expected at random (see Statistical Analysis).

Comparison with DISNET extraction tool (TVP). �e DISNET database integrates phenotypic and 
genetic-biological characteristics of diseases and information on drugs from several expert-curated sources and 
unstructured textual  sources35. Phenotypic data is extracted from Wikipedia, PubMed, and Mayo Clinic texts, 
using MetaMap and a validation system called term validation process (TVP). �e TVP aims to eliminate false 
positives detected by MetaMap and increase the precision of the results. It could be thought of as a dictionary-
based extension to MetaMap. Evaluating this extraction mechanism against an annotated dataset shows a per-
formance improvement over MetaMap  alone33. In order to demonstrate the application of our approach to a new 
bio-NER tool, we used the DISNET extraction system to obtain the terms of our dataset and performed the same 
analyses as for the rest of the tools.

Statistical analysis. To evaluate the statistical signi�cance of the network transitivity, the overlap of the 
phenotypic and reference layers, and the coincidence of the network communities with the disease categories, we 
obtained for each bio-NER tool a network with the same number of randomly connected nodes and performed 
the same analysis. We repeated the randomization process 1000 times and recorded the results to obtain a dis-
tribution that served as a null model. We veri�ed the normality of this distribution through the Shapiro–Wilk 
test (i.e., p value > 0.05 implies that it is normal). Finally, we calculated the z-scores of the results observed in the 
original networks with respect to the null model. A higher magnitude of the z-score (either positive or negative) 
indicates a greater statistical signi�cance of the result. When a better comparability of the z-scores was needed, 
we used min–max normalization to scale their range in [0, 1]. �e p values of the Shapiro–Wilk normality tests 
and the z-scores are included in the Supplementary Materials.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Information. �e datasets generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.
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