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Synopsis Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental

change, commonly used modeling approaches exhibit mixed performance because they omit many important aspects of

how organisms respond to spatially and temporally variable environments. Integrating models based on organismal

phenotypes at the physiological, performance, and fitness levels can improve model performance. We summarize current

limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for

sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how

organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental

variability. We then discuss key challenges in translating environmental conditions into organismal performance includ-

ing accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including

the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the

creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code

and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts

over the next decade.

Introduction

Many organisms have responded to recent climate

change by shifting their distribution or phenology,

experiencing population shifts, acclimating, or evolv-

ing (Scheffers et al. 2016). Yet, we have little ability

to predict how particular species will respond based

on their traits (Buckley and Kingsolver 2012;

MacLean and Beissinger 2017). Considering the

complexities of how organisms respond to their

environments and to other organisms, our poor pre-

dictive ability is not particularly surprising.

Prediction is particularly challenging because organ-

isms will increasingly experience environments that

are novel with regard to their evolutionary histories

(Veloz et al. 2012; Maguire et al. 2015). A core chal-

lenge is to identify which aspects of organismal bi-

ology are essential to consider and which can be

omitted from predictive models.

Predicting responses to environmental change

offers an opportunity to test our understanding of

organismal biology. Indeed, making accurate predic-

tions requires addressing most of the grand chal-

lenges in organismal animal biology identified by

the Society for Integrative and Comparative Biology

(SICB) (Schwenk et al. 2009). In particular, physio-

logical insight is needed to integrate across levels of

biological organization (Mykles et al. 2010), whether

organisms use behavior to buffer their environment

must be considered (Sih et al. 2010), and appropri-

ately characterizing organism–environment interac-

tions requires an interplay between theory and

empirical research (Angilletta and Sears 2011).

Robust forecasts require operationalizing knowledge

gained from the grand challenges (Denny and

Helmuth 2009).

Statistical environmental niche models (ENMs) re-

main the most common forecasting tool, but their

performance is mixed (Maguire et al. 2015). For ex-

ample, using ENMs to prioritize reserve design for

mammals during a past period of rapid climate

change yielded performance that was little better

than random prioritization (Williams et al. 2013).

One point of ENMs failure is poor extrapolation

into novel environments (Veloz et al. 2012).

Mechanistic modeling approaches that incorporate

environmental data and phenotypes to estimate
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physiology, performance, and ultimately fitness

(rather than relying on statistical associations be-

tween environmental conditions and organism pres-

ence as do ENMs) should extrapolate better into

novel environments (Buckley et al. 2010; Urban

et al. 2016).

Effective forecasts must address how organisms

respond to spatially and temporally variable environ-

ments. Many distribution models such as ENMs can

readily incorporate finer spatial data but generally

require temporally averaged environmental data.

They thus omit many important aspects of organis-

mal responses including thresholds, non-linearities,

and thermal histories. Mechanistic models are well

suited to handle time series of environmental data,

but their application is limited by the availability of

biophysical models and organismal data (Helmuth

et al. 2005; Buckley et al. 2010; Urban et al. 2016).

Here we summarize data and modeling limitations

for ecological and evolutionary forecasting and high-

light promising directions. Limitations to environ-

mental data, and to associated climatic, biophysical,

and niche models, undermine our ability to accu-

rately forecast responses to climate change (Dillon

and Woods 2016; Nadeau et al. 2017). The availabil-

ity of environmental data is increasing rapidly, but

they generally are not provided at the fine spatial

and temporal scales relevant to the physiology, ener-

getics, and demography of organisms (Potter et al.

2013). Limited data on morphological and physio-

logical phenotypes (and their inter-individual and

interpopulation variation) hinder modeling organis-

mal responses to environmental conditions (Urban

et al. 2016). Existing knowledge is largely inadequate

to predict how organisms evade (through behavior

or other forms of plasticity) or cope with environ-

mental stresses, particularly given that the incidence

and magnitude of environmental stress varies

temporally.

Most of these limitations have been reviewed else-

where (e.g., Helmuth et al. 2005; Kearney and Porter

2009; Buckley et al. 2010; Huey et al. 2012; Dillon

and Woods 2016; Sinclair et al. 2016; Urban et al.

2016; Dietze et al. 2018), but we see value in a syn-

thetic assessment of challenges for ecological and

evolutionary forecasting and a roadmap for their po-

tential remedies. We highlight recent progress

toward addressing the limitations, which combined

substantially enhance our forecasting capacity. We

consider better leveraging organismal biology as cen-

tral to meeting the remaining challenges. Our assess-

ment concentrates on ectothermic animals for

tractability, but many of the limitations are general

across taxa.

We advocate integrating models at the physiolog-

ical, performance, and fitness levels to connect envi-

ronmental conditions, phenotypes, and the ecological

and evolutionary consequences of climate change

(Buckley and Kingsolver 2012). We divide our re-

view into three sections corresponding to compo-

nents of the modeling approach (Fig. 1). First, the

environment must be sensed at scales relevant to

organismal physiology. Second, these microclimatic

conditions must be filtered through organismal phe-

notypes to estimate body temperature and organis-

mal energy and water balances (Porter and Tracy

1983). These patterns can be integrated with organ-

ismal performance data to predict consequences for

survival, development, and reproduction. Third,

these different fitness components can be combined

to predict population demography and fitness.

Sensing the environment at scales
relevant to organismal physiology

Online databases and dissemination tools are rapidly

expanding access to environmental data. However,

few tools are equipped to deliver data with suffi-

ciently fine spatial and temporal resolution to be

immediately biologically relevant (but see our

group’s efforts at trenchproject.github.io). Fine scale

data are also limited. Air temperature data are widely

available, but estimating the body temperatures of

terrestrial organisms minimally requires data on sur-

face temperature, radiation, and wind speed and en-

ergy budget models for integrating those data.

Unfortunately, temperature data tend to be available

at spatial resolutions 10,000-fold coarser than the

size of focal animals and 1000-fold coarser than

the size of focal plants (Potter et al. 2013). Most

point or interpolated data are derived from weather

stations with a height of 2 m, where temperatures

can be drastically different from those close to the

ground, where organisms often occupy surface

boundary layers (see also microclimate model section

below).

Dataloggers and sensors

Many researchers try to circumvent these problems

by using data loggers to collect their own microcli-

mate data (Bramer et al. 2018). iButtons and similar

sensors are relatively inexpensive and easily used to

record air or water temperature. Their utility can be

enhanced by embedding them in physical models of

organisms or live organisms so that they indicate

body temperatures (Bakken 1992; Dzialowski 2005;

Helmuth et al. 2016). However, many organisms

are too small to make iButtons practical.
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The thermocouples or thermistors compatible with

many data loggers are likewise too bulky for many

small organisms. Small thermocouples or thermistors

generally require channels that measure voltage or re-

sistance levels, which can be prohibitively expensive.

Single loggers with a sufficient number of channels

can cost thousands of dollars, resulting in complex

tangles of thermocouple or thermistor wires connect-

ing to single data loggers. Data loggers suitable for the

fine-scale measurements needed by organismal biolo-

gists remain difficult to obtain and deploy and lag far

behind the technological innovations available for

other applications (e.g., industrial).

Low-cost microcontrollers (e.g., the Arduino

open-source electronic prototyping platform) built

onto single circuit boards are rapidly expanding sen-

sor and data logging options, but biologists often

lack the electronics skills required to deploy the

microcontrollers. Communities of electronic hackers

(create.arduino.cc, hackster.io, instructables.com) as-

sist aspiring creators, but easy to implement plans

for environmental data loggers are needed (but see

github.com/millerlp/Thermocouple_datalogger).

Although low-cost solutions have improved consid-

erably, investment of time and energy is required to

make them reliable (Barnard et al. 2014).

Deployment (e.g., cabling and waterproofing) and

long-term viability in the field remains a challenge

(Lockridge et al. 2016). Approaches for creating

wireless networks of data loggers are also needed.

Sensing spatial variation: IR cameras, drones, and

satellites

Low-cost, versatile data loggers promise improved spa-

tial and temporal resolution for environmental data,

but complementing dataloggers with spatial sensing

tools can improve characterizations of microclimate

variability across landscapes. Information on how ani-

mals use microclimate variability is also needed. As

animals move through landscapes, particularly for be-

havioral thermoregulation, their experience of the en-

vironment can differ drastically from mean conditions

(Huey et al. 2012; Potter et al. 2013; Woods et al.

2015). The spatial distribution of microclimates influ-

ences the efficacy of thermoregulation (Sears et al.

2016). Lightweight tracking devices offer information

on how organisms are moving through and using

microclimates (Kays et al. 2015).

Remote sensing can effectively characterize micro-

climate landscapes in some habitats (Anderson and

Gaston 2013) but is sensitive to methodological

issues such as sensing distance and differences in

emissivity among organisms and surfaces (Faye

et al. 2016). Remote sensing is thus particularly pow-

erful when validated using on the ground sensors

(Sutton and Lakshmi 2017). Promising technologies

for assessing surface temperatures and other environ-

mental variables include thermal cameras mounted

on drones and satellites (Faye et al. 2016). Thermal

cameras are becoming more affordable and accessi-

ble. Options include inexpensive cameras that attach

to smartphones (e.g., FLiR one, SEEK), but they of-

fer limited resolution and accuracy relative to more

traditional thermal cameras. Additionally, few inex-

pensive options offer the ability to expediently ex-

tract temperatures for each pixel or to collect time

series. Reduced restrictions on flying drones are

expanding their use in assessing microclimate land-

scapes (Allan et al. 2015). Although satellite data are

proliferating, many satellites do not collect appropri-

ate thermal IR data for estimating land surface tem-

perature. Hopefully the situation will improve as

new initiatives and private companies expand data

availability (Boyle et al. 2014; Turner et al. 2015).

Fig. 1 An ecological forecasting framework using (1) environmental conditions and an organism’s phenotype to predict its physiological

condition such as heat and water balance. (2) Estimates of organismal performance as a function of physiological condition can be used

to (3) predict fitness components such as survival and fecundity and ultimately demography and distributions. The numbers correspond

to sections of our review.
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Microclimate and biophysical models

Once fine-scale data are obtained, the challenge

remains to estimate how organisms filter the micro-

climates into body temperatures. The challenge con-

sists of two components: (1) estimating the

microclimate experienced by organisms and (2) esti-

mating body temperatures based on microclimate.

Both empirical (sensors) and modeling tools exist

to address each challenge. Sensors mimicking the

physical properties of organisms (e.g., see

“robomussel” section below) indicate body temper-

atures in particular microclimates, but have limited

utility for estimating body temperatures in other

sites, for other organisms, or at other times.

Alternatively, models of energy fluxes within the en-

vironment (e.g., soil) or between organisms and the

environment provide a general approach to predict

temperatures (Kearney et al. 2014; Levy et al. 2016),

but errors can be generated due to both the quality

of the input environmental data and the models’

approximations. We describe modeling approaches

below with the hope of encouraging further devel-

opment and application.

Biophysical equations have long been available to

predict the microclimates and body temperatures

available to organisms based on environmental data

(Porter and Gates 1969; Gates 1980; Campbell and

Norman 2000). Porter and colleagues have pioneered

the development of biophysical models in ecology,

but adoption has been limited due to model inac-

cessibility. Their release of the NicheMapR R package

has recently expanded access to these tools (Kearney

and Porter 2017), but the source code is only avail-

able for a subset of functions at this stage. Other

functions are released only as Fortran executables,

which limits their utility because they cannot be

modified and one must rely on documentation to

understand their performance. Others, including

our research group (trenchproject.github.io), are

working to increase the transparency and adaptabil-

ity of microclimate models by releasing open-source

versions.

For the first challenge component, microclimate

modeling tools can simulate diurnal variation and

estimate temperature and wind speed profiles, which

can scale data from the measurement height (usually

�2 m) to the height relevant to organisms (Porter

et al. 1973; Campbell and Norman 2000).

Microclimate models can also be used to estimate

unmeasured variables. For example, soil energy bal-

ances can be modeled to estimating surface and soil

temperatures based on air temperature, wind speed,

and radiation (Kearney and Porter 2017). Solar

radiation responsible for heating organisms can be

modeled, but cloudiness is an important determinant

of heating and difficult to estimate (Porter and Gates

1969; Porter et al. 1973; Campbell and Norman

2000; Kearney et al. 2014; Norris et al. 2016).

For the second challenge component, energy bud-

get models balance heat losses and gains from ther-

mal and solar radiation, conduction with the

ground, and convection with the surrounding air

or water to estimate organismal body temperatures

(Porter and Gates 1969; Gilman et al. 2006; Kearney

and Porter 2017). The models require phenotypic

data (e.g., solar and thermal absorptivity, morphol-

ogy, and physical properties) in addition to environ-

mental data. Air temperature is often used as a proxy

for body temperature in climate change studies, but

body temperatures can differ substantially from air

temperatures for organisms that absorb solar radia-

tion or evaporatively cool (Sunday et al. 2014).

Increasing availability of biophysical modeling tools

should improve estimates of how organisms experi-

ence microclimates.

Accounting for environmental variability and

extremes

Most techniques for measuring and analyzing envi-

ronmental variability and organismal responses have

focused on mean or constant environmental condi-

tions. Failing to consider environmental variability

and extremes may compromise forecasts. The non-

linearity of biological rates, with rate increases in

warm temperatures occurring faster than linear, leads

mean biological rates in variable environments to

differ from, and generally exceed, biological rates at

mean temperatures (i.e., Jensen’s inequality [Martin

and Huey 2008; Denny 2017]). The asymmetry of

the temperature dependence of organismal perfor-

mance additionally makes accounting for environ-

mental variability essential (Martin and Huey 2008;

Huey et al. 2012; Vasseur et al. 2014; Sinclair et al.

2016).

Extreme climatic events are a biologically impor-

tant component of climate variability, but their in-

herent rarity poses a challenge for assessing their

biological relevance. Environmental statistics offers

techniques for describing the incidence and magni-

tude of environmental extremes, but the approaches

have been only sparsely applied to biology (Denny

and Gaines 2002; Denny et al. 2009). Statistical dis-

tributions that depart from normality (e.g., extreme

value distributions) can accurately characterize the tails

of temperature distributions and improve forecasts of

future extremes (Kingsolver and Buckley 2017).
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Translating time series of environmental data into

frequencies can aid understanding time scales of

environmental variation and biological responses

(Dillon et al. 2016). In addition to the challenge

of quantifying environmental extremes, relatively

few measurements of biological responses and rates

(other than critical thermal and survival limits) are

made at temperatures corresponding to the tails of

distributions (Kingsolver and Buckley 2017).

Quantifying responses in variable and extreme envi-

ronments will be central to accurate ecological and

evolutionary forecasts.

Case study: assessing environmental variability and

extremes for intertidal mussels

Helmuth and colleagues have deployed an extensive

network of robomussels-thermal data loggers with

physical properties similar to mussels and thus

with similar body temperatures. The data demon-

strate the ubiquity of body temperature variation

both within and among sites (Helmuth 2002;

Helmuth et al. 2010, 2016). Here we leverage their

published database (Helmuth et al. 2016) to illustrate

the environmental variation within and among sites

on the US west coast. Quantifying environmental

variability and extremes can inform forecasting tools

and enables generating realistic environmental data

for incorporation in ecological and evolutionary

forecasts.

We downloaded data for all sites in Washington,

Oregon, and California from http://datadryad.org/re-

source/doi:10.5061/dryad.6n8kf. We analyzed all

years of available data and all tidal elevations. We

conducted a frequency analysis (employing the spe-

c_lomb_phase R function available at github.com/

georgebiogeekwang/tempcycles/) to analyze the am-

plitude of environmental variation as a function of

frequency (Wang and Dillon 2014; Dillon et al.

2016). We consider a sequence of 400 frequencies

ranging from 0.001 to 1 days�1. Finally, we apply

generalized extreme value (GEV) statistics (as in

Kingsolver and Buckley 2017) to characterize the in-

cidence of extreme thermal stress events. We fit GEV

distributions to maximum daily robomussel temper-

atures using maximum likelihood and the gev.fit

function in the ismev R package. We fit stationary

distributions, but note that non-stationary fits can be

used to account for shifts in the distribution due to

climate change. We use the generalized Pareto dis-

tribution to characterize the tails of the distribution.

We fit the distribution using maximum likelihood

with the fpot function from the R package evd.

Our R code is available at github.com/lbuckley/

ClimateBiology.

The maximum daily temperatures of robomussels

vary considerably within sites across the summer sea-

son due to microclimate differences (Fig. 2a). Local

microclimates are particularly variable for intertidal

mussels because heat extremes are experienced when

the mussels are exposed to solar radiation during low

tide. Thermal extremes depart from a typical latitu-

dinal pattern, dramatically so because low tides tend

to occur at midday in summer at the northern sites

(Helmuth 2002; Helmuth et al. 2016). For example,

the mid latitude site in Oregon reaches more extreme

daily maxima than the southern California site

(Fig. 2a). Microclimate variation is particularly pro-

nounced for mussels due to their occupying different

tidal elevations, but we note that similar vertical mi-

croclimate gradients occur in other habitats such as

forests (Scheffers et al. 2014; Kaspari et al. 2015).

Employing a Fourier transform to partition the

environmental variability into a sum of sine waves

with different phases allows examining how the am-

plitude of environmental variation varies as a func-

tion of time interval (Wang and Dillon 2014; Dillon

et al. 2016). Applying the analysis to robomussel

data from three exemplar sites reveals that intervals

of temporal variation are fairly characteristic within

sites (Fig. 2b). We highlight the amplitude of varia-

tion at intervals of 1 week, 2 weeks, 1 month, and

1 year. Each of the sites exhibits extensive variation

at the 2-week interval, corresponding to tidal cycles

(Fig. 2b). Diurnal variation is substantial. The sites

also experience pronounced interannual variation,

likely reflecting regional climate oscillations.

Expanding the analysis to additional sites confirms

that patterns of thermal stress depart from smooth

latitudinal clines (Fig. 3). Northern sites tend to ex-

perience the most pronounced seasonal variation.

While summers are generally cooler, the northern

sites exhibit the warmest summer extremes due to

large tidal fluctuations (Helmuth 2002; Helmuth

et al. 2016).

GEV statistics can quantify the latitudinal patterns

of variation (Kingsolver and Buckley 2017). GEV

distributions are appropriate for distributions that

depart from normality due to thick tails correspond-

ing to a high prevalence of thermal extremes.

Although GEV analyses have more frequently been

applied to rare extreme events, they are increasingly

being applied to daily maximum or minimum tem-

perature data (Kingsolver and Buckley 2017). GEV

distributions are described by three parameters: lo-

cation indicates the position along the x axis, scale

indicates the breadth, and shape indicates the

42 L. B. Buckley et al.
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heaviness of the tail (illustrated in Kingsolver and

Buckley 2017). Fitting GEV distributions to robo-

mussel data reveals that most subsites have heavy

tails (shape parameters> 0 corresponding to a

Frechet [type II] distribution). A minority of sites

have shape parameters near zero (Gumbel [type I]

distribution with a light tail) or less than zero

(Weibull [type III] distribution with a bounded tail).

Although the mean robomussel data depart from a

latitudinal cline, GEV analyses reveal latitudinal pat-

terns of environmental variation. The southern sites

exhibit warmer conditions on average (in part reflect-

ing water temperatures), indicated by the GEV distri-

bution being centered at higher temperatures (Fig. 4

location parameter). However, the northern sites tend

to have fatter tails reflecting a higher incidence of

thermal extremes (Fig. 4 shape parameter). The

breadth of the temperature distribution does not

exhibit a latitudinal cline (Fig. 4 scale parameter).

There is considerable variation in GEV parameters

within sites corresponding to microclimate variation.

GEV distributions—centered at warmer temperatures

at the southern sites but possessing a heavier tail at

northern sites—produce similar magnitudes of tem-

peratures that are potentially stressful for organisms

such as mussels. Consequently, neither the percent of

days with temperatures above a 35�C threshold nor

the maximum daily temperatures expected to be

reached within 100 year intervals (100 year return in-

terval) exhibit pronounced latitudinal patterns (Fig. 4).

Quantitative tools such as Fourier transforms and

extreme value statistics are well suited to make sense

of complex patterns of environmental variation.

Both frameworks can be used to generate future en-

vironmental data for incorporation in ecological and

evolutionary forecasts (Dillon et al. 2016). Applying

Fig. 2 (A) Seasonal patterns of robomussel maximum daily temperature are variable both among (column labels: site names and

latitudes) and within (colors: subsites, which vary in tidal height and habitat within sites). We depict data from 2002. Thermal extremes

do not follow latitudinal gradients. See huckleylab.shinyapps.io/ClimateBiology/ for an interactive version. (B) Patterns of temporal

variability can be characterized by analyzing the amplitude of variation as a function of frequency. Vertical lines indicate intervals of

(from right to left) 1 week, 2 weeks, 1 month, and 1 year.
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the tools highlights the importance of considering

spatial variation within sites as well as variation in

body temperatures rather than simply environmental

temperatures, particularly for sessile organisms such

as mussels.

Translating environmental conditions
into organismal performance

Laboratory and field measurements of the tempera-

ture dependence of organismal performance (e.g.,

thermal performance curves, TPCs) allow estimating

responses to the environment. However, the meth-

odology, conditions, and metrics of physiological

and performance measurements often poorly reflect

the spatially and temporally variable environments

that organisms occupy (Sinclair et al. 2016). We

summarize three key pitfalls in applying TPCs to

estimate responses to the environment and propose

future research needed to address the pitfalls: (1)

timescales of measurements are often misaligned

with the timescales of organismal response; (2) or-

ganismal responses often exhibit threshold temper-

atures, which are poorly captured in measurements;

and (3) organisms respond differentially to temper-

ature across their lifecycle, but measurements are

generally restricted to a single life stage (Williams

et al. 2016). We additionally advocate for

compilations of laboratory and field measurements

to facilitate their incorporation in forecasts.

Timescales of responses

Data are increasingly showing that environmental

variability and extremes strongly influence organis-

mal responses. For acute thermal stress responses,

assessment methods, particularly the rate at which

temperature ramps, can bias estimates of critical

thermal limits (Terblanche et al. 2007; Rezende

et al. 2011). Over longer times scales, growth and

development rates vary with whether they are mea-

sured at a series of constant temperatures, as is gen-

erally done, or in fluctuating temperatures

(Kingsolver and Woods 2016). Translating between

the timescale of measurement and of organismal

responses to environmental variation is an important

future objective.

Environmental history also shapes how organisms

respond to their environments. The duration, sever-

ity, and frequency of past environmental stress deter-

mines whether organisms are less sensitive to the

stress due to acclimation or more sensitive due to

incurred damage or energetic costs (Williams et al.

2016). For example, organisms from variable, stress-

ful environments tend to continuously express heat

shock proteins, but have less capacity to induce ad-

ditional expression in response to an acute thermal

stress (Cavicchi et al. 1995; Hofmann and Todgham

2010). Environmental history also influences whether

organisms respond to multiple stressors synergisti-

cally, additively, or antagonistically (Gunderson

et al. 2016). We note that our review focuses on

forecasting approaches based on temperature because

physiological responses to temperature are better

quantified than responses to other environmental

conditions. Ignoring other stressors could invalidate

forecasts, but we feel it is most tractable for general

forecasting approaches to start with forecasting

responses to temperature and subsequently build in

responses to other, potentially interacting, stressors.

Forecasts of responses to multiple stressors for par-

ticular organisms will inform future, general fore-

casts. Resource availability additionally interacts

with temperature to determine organismal perfor-

mance (reviewed by Sinclair et al. 2016).

Thresholds

Organismal responses to environments are generally

non-linear and dependent on whether thresholds are

crossed. These thresholds include temperatures at

which mortality or reproductive failure occurs, activ-

ity is limited, or energy or metabolic expenditure

Fig. 3 The mean (across years) of monthly maxima of robo-

mussel daily temperatures departs from smooth latitudinal clines

in summer months. Northern sites tend to experience the

greatest seasonal fluctuations and the warmest summer

extremes. The latitudinal axis is non-linear and the white line

delineates northern and southern sites.
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exceeds supply (Williams et al. 2016). Characterizing

thresholds for an organism is a challenge for integra-

tive biologists, particularly because the thresholds are

sensitive to timescales of environmental variability

and environmental history. For example, dividing a

period of cold exposure into shorter, repeated expo-

sures reduced the mortality and also the fitness of

flies relative to a single exposure (Marshall and

Sinclair 2009). Variation in thresholds also occurs

across factors including seasonality, life stage, habi-

tat, and oxygen levels (reviewed by Sinclair et al.

2016).

Integrated consideration of the life cycle

Life stages differ in exposure and sensitivity to their

environment (Kingsolver et al. 2011). They vary in

microhabitat, coloration, and mobility. Differences

can be as dramatic as marine organisms inhabiting

pelagic environments as juveniles but intertidal envi-

ronments as adults (Helmuth et al. 2005). Yet, meas-

urements of thermal sensitivity tend to simplify life

cycles or to be restricted to a single life stage (Levy

et al. 2015). A comprehensive understanding of the

impact of the environment on fitness requires an

integrated consideration of environmental exposure

and sensitivity across the life cycle that additionally

considers environmental seasonality (Williams et al.

2015).

Databases of phenotypes, physiology, and

performance measurements

Generalizing to numerous species will require data-

bases compiling physiology and performance meas-

urements. Those measurements that are currently

available are often difficult to compare and buried

in papers, unpublished theses, and gray literature.

Initial traits to include in a database of animals

might include critical and lethal thermal limits, pre-

ferred body temperatures, physiologically optimum

temperatures, and TPCs for key performance meas-

ures. Thermal tolerance databases are available

(Bennett et al. 2018), but broad databases for animal

physiology largely are not (Urban et al. 2016).

Morphological and life history data are increasingly

available (Jones et al. 2009; Wilman et al. 2014;

Myhrvold et al. 2015). Researchers, including those

attending a SICB Macrophysiology workshop (http://

www.sicb.org/meetings/2013/macrophysiology.php),

have called for a comprehensive database for animal

phenotypes, physiology, and performance measure-

ments, but progress has been limited.

Databases for animals have lagged behind those

for plants (Kattge et al. 2011) in part because plant

ecologists and physiologists have agreed upon stan-

dard measurements and measurement techniques

(Cornelissen et al. 2003). Agreement on protocols

was eased by most plants having an important and

Fig. 4 Generalized extreme value (GEV) statistics provide insight into the likelihood of extreme thermal stress events for intertidal

mussels. Within each panel corresponding to a GEV metric, sites are presented along a latitudinal cline on the US West Coast. The

vertical line delineates northern and southern sites. The GEV distribution is centered at higher values at southern sites (location

parameter) but has a longer tail of extremes at the northern sites (shape parameter). The breadth (scale parameter) is similar across

sites. Consequently, the percent of days above a 35�C threshold and the highest temperature estimated to be reached over a 100 year

return interval (100 year return) does not exhibit a latitudinal cline.
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restricted unit of focus (leaves) and appropriate and

widely available tools (e.g., Licor 6400 photosynthesis

system) to quantify relevant traits. Although consen-

sus protocols may be more elusive for animals, they

are essential. A recent paper compiles protocols for

functionally-relevant traits of terrestrial invertebrates

(Moretti et al. 2017) and may provide an initial step

toward a comprehensive database. Machine learning

initiatives (e.g., the opensource DeepDive and Snorkel

initiatives) designed to extract data from publica-

tions have succeeded in constructing paleontology

databases and may aid construction of an animal

phenotype database (Peters et al. 2014). However,

vetting and hand curating are often required to ex-

tract data from unstructured content.

The Global Biotraits Database (Dell et al. 2013)

primarily compiles the thermal responses of ecolog-

ical rather than physiological traits, but it illustrates

the database challenges. Measurements tend to span

a restricted range of temperatures relative to those

organisms experience and to omit stressful or ex-

treme temperatures (Fig. 5a). Measurements are of-

ten taken at a low number of constant temperatures

(Fig. 5b), which makes it challenging to understand

responses to variable environments (Kingsolver and

Woods 2016; Williams et al. 2016). These character-

istics reduce accuracy and often lead to extrapolation

when describing thermal responses.

Ecological and evolutionary
consequences of climate change

A particularly challenging component of forecasts is

estimating fitness components from performance.

Environmental variation and subsequent perfor-

mance variation makes the estimation especially

challenging (Martin and Huey 2008; Vasseur et al.

2014; Denny 2017). A viable approach is to translate

performance into fecundity via the currencies of en-

ergy or time (Dunham 1993). Periods of low perfor-

mance or conditions that preclude performance may

reduce survival. One problem with fitness estimates

is that most modeling is based on assuming linear

(proportional and unidirectional) responses to mean

environmental conditions. Yet, almost all organismal

responses are non-linear and variable over short time

periods.

As environmental and biological data increase in

availability, techniques for temporal aggregation that

reflect how organisms integrate climatic histories

over their lives are needed (Huey et al. 2012). The

sequence of environmental conditions, particularly

time for recovery, determines the incidence of ther-

mal stress. An appropriate aggregation would reflect

non-linearities in biological responses (such as rap-

idly increasing biological rates with increasing tem-

peratures) and thresholds (such as temperature

cutoffs for activity). Translating environmental con-

ditions into metrics such as body temperatures, per-

formance, or energetics at temporal intervals

matching that of biological responses enables appro-

priate aggregation. These aggregation approaches

would complement many ecological forecasting

models, such as ENMs that are generally based on

mean environmental conditions (Buckley et al.

2010).

Forecasting approaches that estimate fitness asso-

ciated with phenotypes can be used to predict evo-

lution. They allow estimating selection as well as

considering the fitness consequences of acclimation

and plasticity (defined to include all forms of phe-

notypic change, from long-term irreversible to short-

term reversible). The interplay of plasticity and se-

lection will be central to responses to climate change.

Plasticity can slow evolution by buffering selection.

For example, behavioral thermoregulation by lizards

can initially buffer thermal stress associated with cli-

mate change, but can ultimately confer sensitivity to

climate change by reducing selection (Huey et al.

2012; Buckley et al. 2015). Conversely, plasticity

can facilitate evolution by enabling persistence or

reducing variability in the direction and magnitude

of selection associated with environmental variability

(Chevin et al. 2010; Hendry 2015). Linking pheno-

types to fitness suggests that the latter is the case for

Colias butterflies: phenotypic plasticity can reduce

variation in selection in response to both seasonality

and interannual temperature variability and ulti-

mately facilitate evolution in response to climate

warming (Kingsolver and Buckley 2017).

Much additional research is needed to develop

robust and general approaches to estimating fitness

based on information about phenotypes and envi-

ronments. For example, field experiments assessing

selection in variable natural environments are needed

to confirm predicted linkages between phenotypes,

performance, and fitness. Emerging “omic”

approaches (such as using genomics to infer the ge-

netic basis of adaptation, using epigenetics to assess

plasticity, and using metabolomics to assess the en-

ergetic implications of environments) offer promise

in uncovering the genetic basic of responses to the

environment as well as plasticity and selection in

response to environmental variability and change

(Bay et al. 2017). This information from omics will

enable forecasts to better translate from environmen-

tal conditions to performance to fitness and evolu-

tion. Omic approaches will be particularly valuable
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for ecological forecasting when coupled with con-

trolled laboratory or field environmental manipula-

tions, common gardens, or reciprocal transplants

(Hoffmann and Sgr�o 2011). Many evolutionary fore-

casts will likely need to rely on quantitative genetic

models because many traits involved in temperature

dependence are determined by complex genetic

mechanisms (Reusch and Wood 2007; Gienapp

et al. 2008; Shaw and Etterson 2012). Finally, experi-

ments are needed to assess heritability of such traits

for use in evolutionary forecasts.

Models translating from environmental conditions

and phenotypes to performance and ultimately fit-

ness may be considered null models for forecasting.

Other factors including species interactions and dis-

persal limitations that we omit here may strongly

impact fitness and population dynamics and should

subsequently be incorporated (Buckley et al. 2010;

Urban et al. 2016). Although we have focused on

estimating fitness from performance, the approach

is complementary to other approaches being devel-

oped (Dietze 2017).

Forecasting challenges

Progress toward meeting these challenges has been

occurring steadily since previous reviews (e.g.,

Helmuth et al. 2005; Kearney and Porter 2009;

Buckley et al. 2010; Huey et al. 2012), but many chal-

lenges persist (Sinclair et al. 2016; Urban et al. 2016;

Dietze et al. 2018). Improving our capacity for eco-

logical and evolutionary forecasting depends on ad-

equately characterizing organismal responses to

spatially and temporally variable environments.

Physiological, performance, and fitness responses to

environmental fluctuations and extremes are charac-

terized by nonlinearities and thresholds. Responses

and whether they are modified by stress, acclimation,

or plasticity are contingent on the environmental

histories organisms have experienced.

Environmental sensitivities vary across organisms’

lifecycles. Microclimate selection and other forms

of behavioral buffering alter how organisms experi-

ence environmental fluctuations. Accounting for all

these complications of organism–environment inter-

actions can be daunting, but emerging data and

models promise to improve forecasts (Urban et al.

2016).

Much progress toward meeting these challenges

has come in the form of delving into the empirical

details of how the environment influences organis-

mal performance and fitness and building forecasting

approaches for particular organisms. The accumula-

tion of these studies has positioned the research

community to meet the challenges by generalizing

understanding and approaches. Meeting the chal-

lenges is likewise aided by nearly 10 years of effort

toward meeting the SICB grand challenges in organ-

ismal biology (Schwenk et al. 2009).

Fig. 5 The Global Biotraits Database (Dell et al. 2013) illustrates limitations in thermal response measurements. Measurements tend to

be (A) focused on a restricted range of temperatures relative to those that organisms experience and (B) include a low number of

constant temperatures. Traits are divided according whether they are internal (internal to the organism); individual (at the level of

individual organisms that include mechanical interactions with the external environment); population (processes for a group of con-

specific individuals); or interaction (involving interaction between two or more species).
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Over the next decade, we hope to see substantial

progress toward solving the following challenges:

1. Sensing the environment at scales relevant to or-

ganismal physiology:

a. We need low-cost dataloggers with probes capa-

ble of collecting data on multiple environmental

variables at scales appropriate to organisms.

This goal will be facilitated by developing simple

manuals and knowledge sharing initiatives for

building data loggers from low-cost, simple-to-

use microcontrollers and other technologies.

b. We require descriptions of spatial microclimates

that can be obtained by environmental sensing

technology including drones and satellites.

Citizen science projects and private initiatives

(e.g., www.planet.com) have the potential to

rapidly augment data availability and enhance

data accuracy and spatiotemporal resolution.

c. We need microclimate and biophysical models

capable of integrating data to accurately predict

the body temperatures and conditions of

organisms in their microclimates. The

NicheMapR package is increasing awareness

and usability of these tools but we encourage

the release of source code to increase transpar-

ency. We invite anyone interested to contribute

to our open-source initiative (trenchproject.

github.io) or others.

Assessment: Emerging technologies and a push

toward open computing should enable meeting this

challenge within the decade.

2. Translating environmental conditions into or-

ganismal performance:

a. We need more and better biological data if our

forecasts are to improve. We hope to see the

development of a database compiling animal

phenotypic, physiological, and performance

measurements relevant to forecasting. Design of

the database should be done by consensus of a

group willing to struggle with the methodological

issues outlined above. What methodologies will

be tractable while retaining the essential details of

organisms’ non-linear responses to their environ-

ments? Are there standard kinds of microclimatic,

physiological, and environmental data that

should be collected? Large scale initiatives to col-

lect data for numerous species in a systematic

manner will be required to fill and maintain

the database (Urban et al. 2016).

Assessment: We see the development of databases,

particularly those containing phenotypes, as the most

urgent forecasting challenge, which we hope funders

will help meet.

3. Ecological and evolutionary consequences of cli-

mate change:

a. Publishing well-documented code (Mislan

et al. 2016), release of software packages,

and ideally developing common standards

for model parameterization and data formats

(e.g., Zoon R package, github.com/zoonproject/

zoon) will speed modeling progress. Models and

data collection efforts need to proceed in

concert.

b. Although forecasting techniques are proliferat-

ing, many remain poorly tested (Maguire et al.

2015). Historical data, including environmental

data, phenotypes, and ecological survey data, are

necessary to test models. Necessary ecological

data include phenology, distribution, and abun-

dance data. Focusing on a select but diverse set

of organisms (e.g., initially several ectothermic

[insect and lizard] species, but eventually

endotherms) would aid tractability. We need

to assemble and disseminate both recent and

paleo datasets for testing models. Historical

data for model testing are currently limited,

but we must collect data in a manner such

that it can be used for future model testing.

c. The development of forecasting approaches

should be forward-thinking and harness the

potential of new types of data (e.g., omics)

that may be readily available in the near future.

Assessment: General forecasting models are likely

a distant reality, but practicing open-source science

aimed at increasing reproducibility (Parker et al.

2016) and prioritizing model testing and adaptability

will accelerate progress.

These and other challenges have led to continued

predominance of statistical forecasting techniques

that ignore important aspects of organism–environ-

ment interactions and perform poorly at predicting

responses to past environmental changes (Maguire

et al. 2015). Forecasting approaches that better ac-

count for temporal and spatial environmental varia-

tion and its influence on organismal physiology,

performance, and fitness are overdue. Despite the

difficulty, it is time to dedicate substantial effort

and resources to improving forecasting models and

collecting necessary data for parameterization. We

need to accelerate the search for a middle ground

to forecasting-models that are sufficiently simple to

be generalized to numerous species but that include

the complexities of how organisms respond to their

temporally and spatially variable environments
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necessary for robust forecasts. And we need the help

of diverse organismal biologists from within SICB

and beyond.
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