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Abstract

We introduce Procgen Benchmark, a suite of 16

procedurally generated game-like environments

designed to benchmark both sample efficiency

and generalization in reinforcement learning. We

believe that the community will benefit from in-

creased access to high quality training environ-

ments, and we provide detailed experimental pro-

tocols for using this benchmark. We empirically

demonstrate that diverse environment distribu-

tions are essential to adequately train and eval-

uate RL agents, thereby motivating the exten-

sive use of procedural content generation. We

then use this benchmark to investigate the effects

of scaling model size, finding that larger models

significantly improve both sample efficiency and

generalization.

1. Introduction

Generalization remains one of the most fundamental chal-

lenges in deep reinforcement learning. In several recent

studies (Zhang et al., 2018c; Cobbe et al., 2019; Justesen

et al., 2018; Juliani et al., 2019), agents exhibit the capac-

ity to overfit to remarkably large training sets. This evi-

dence raises the possibility that overfitting pervades classic

benchmarks like the Arcade Learning Environment (ALE)

(Bellemare et al., 2013), which has long served as a gold

standard in RL. While the diversity between games in the

ALE is one of the benchmark’s greatest strengths, the low

emphasis on generalization presents a significant draw-

back. Previous work has sought to alleviate overfitting in

the ALE by introducing sticky actions (Machado et al.,

2018) or by embedding natural videos as backgrounds

(Zhang et al., 2018b), but these methods only superficially

address the underlying problem — that agents perpetually

encounter near-identical states. For each game the question

must be asked: are agents robustly learning a relevant skill,
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or are they approximately memorizing specific trajectories?

There have been several investigations of generalization in

RL (Farebrother et al., 2018; Packer et al., 2018; Zhang

et al., 2018a; Lee et al., 2019), but progress has largely

proved elusive. Arguably one of the principal setbacks has

been the lack of environments well-suited to measure gen-

eralization. While previously mentioned studies (Zhang

et al., 2018c; Cobbe et al., 2019; Justesen et al., 2018; Ju-

liani et al., 2019) reveal intriguing trends, it is hard to draw

general conclusions from so few environments.

We seek the best of both worlds: a benchmark with over-

all diversity comparable to the ALE, comprised of environ-

ments that fundamentally require generalization. We have

created Procgen Benchmark to fulfill this need. This bench-

mark is ideal for evaluating generalization, as distinct train-

ing and test sets can be generated for each environment.

This benchmark is also well-suited to evaluate sample ef-

ficiency, as all environments pose diverse and compelling

challenges for RL agents. The environments’ intrinsic di-

versity demands that agents learn robust policies; overfit-

ting to narrow regions in state space will not suffice. Put

differently, the ability to generalize becomes an integral

component of success when agents are faced with ever-

changing levels. All environments are open-source and can

be found at https://github.com/openai/procgen.

2. Procgen Benchmark

Procgen Benchmark consists of 16 unique environments

designed to measure both sample efficiency and generaliza-

tion in reinforcement learning. These environments greatly

benefit from the use of procedural content generation, the

algorithmic creation of a near-infinite supply of highly ran-

domized content. In these environments, employing proce-

dural generation is far more effective than relying on fixed,

human-designed content.

Procedural generation logic governs the level layout (John-

son et al., 2010), the selection of game assets, the loca-

tion and spawn times of entities, and other game-specific

details. To master any one of these environments, agents

must learn a policy that is robust across all axes of varia-

tion. Learning such a policy is both more challenging and

more relevant than overfitting to a handful of fixed levels.

https://github.com/openai/procgen
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Figure 1. Screenshots from each game in Procgen Benchmark.

Screenshots from each environment are shown in Figure 1.

We note that the state transition function is deterministic in

all environments.1

2.1. Environment Desiderata

We designed all environments to satisfy the following

criteria.

High Diversity: Procedural generation logic is given

maximal freedom, subject to basic design constraints. The

diversity in the resulting level distributions presents agents

with meaningful generalization challenges.

Fast Evaluation: Environment difficulty is calibrated such

that baseline agents make significant progress training

over 200M timesteps. Moreover, the environments are

optimized to perform thousands of steps per second on

a single CPU core, including the time required to ren-

der observations. This enables a fast experimental pipeline.

Tunable Difficulty: All environments support two well-

calibrated difficulty settings: easy and hard. This difficulty

refers to the level distribution and not to individual levels;

in both settings, the difficulty of individual levels has

high variance. Unless otherwise specified, we report

results using the hard difficulty setting. We make the easy

1Although the Chaser environment is deterministic, the enemy
AI will make pseudorandom decisions conditioned on the level
seed.

difficulty setting available for those with limited access

to compute power, as it reduces the resources required to

train agents by roughly a factor of 8.

Level Solvability: The procedural generation in each

environment strives to make all levels solvable, but this is

not strictly guaranteed. For each environment, greater than

99% of levels are believed to be solvable.

Emphasis on Visual Recognition and Motor Control:

In keeping with precedent, environments mimic the style

of many Atari and Gym Retro (Pfau et al., 2018) games.

Performing well primarily depends on identifying critical

assets in the observation space and enacting appropriate

low level motor responses.

Shared Action and Observation Space: To support a

unified training pipeline, all environments use a discrete 15

dimensional action space and produce 64 × 64 × 3 RGB

observations. Some environments include no-op actions to

accommodate the shared action space.

Tunable Dependence on Exploration: These environ-

ments were designed to be tractable for baseline RL agents

without the need for custom exploratory rewards. How-

ever, many of these environments can be made into more

challenging exploration tasks if desired. See Appendix B.1

for a discussion on evaluating exploration capability.

Tunable Dependence on Memory: These environments

were designed to require minimal use of memory, in

order to isolate the challenges in RL. However, several

environments include variants that do test the use of

memory, as we discuss in Appendix B.2.

By satisfying these requirements, we believe Procgen

Benchmark will be a valuable tool in RL research. De-

scriptions of each specific environment can be found in Ap-

pendix A.

2.2. Experimental Protocols

By default, we train agents using Proximal Policy Op-

timization (Schulman et al., 2017) for 200M timesteps.

While this timestep choice is arbitrary, it follows the prece-

dent set by the ALE. It is also experimentally convenient:

training for 200M timesteps with PPO on a single Proc-

gen environment requires approximately 24 GPU-hrs and

60 CPU-hrs. We consider this a reasonable and practical

computational cost. To further reduce training time at the

cost of experimental complexity, environments can be set to
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Figure 2. Generalization performance in each environment as a function of training set size. We report the mean raw episodic return,

where each episode includes a single level. The mean and standard deviation is shown across 4 seeds.

the easy difficulty. We recommend training easy difficulty

environments for 25M timesteps, which requires approxi-

mately 3 GPU-hrs with our implementation of PPO.

When evaluating sample efficiency, we train and test agents

on the full distribution of levels in each environment. When

evaluating generalization, we train on a finite set of levels

and we test on the full distribution of levels. Unless other-

wise specified, we use a training set of 500 levels to evalu-

ate generalization in each environment. For easy difficulty

environments, we recommend using training sets of 200

levels. We report results on easy difficulty environments in

Appendix I.

When it is necessary to report a single score across Proc-

gen Benchmark, we calculate the mean normalized return.

For each environment, we define the normalized return to

be Rnorm = (R − Rmin)/(Rmax − Rmin), where R is

the raw expected return and Rmin and Rmax are constants

chosen to approximately bound R. Under this definition,

the normalized return will almost always fall between 0

and 1. We use the mean normalized return as it provides

a better signal than the median, and since there is no need

to be robust to outliers. We designed all environments to

have similar difficulties in order to prevent a small subset

from dominating this signal. See Appendix C for a list of

normalization constants and a discussion on their selection.

2.3. Hyperparameter Selection

In deep RL, hyperparameter tuning is often the difference

between great and mediocre results. Unfortunately, this

process can be costly in both time and computation. For

those who are more comfortable with the existing ALE

benchmark, minimal hyperparameter tuning should be re-

quired to train on Procgen environments. This is partially

by design, as Procgen Benchmark heavily draws inspira-

tion from the ALE and Gym Retro. To provide a point of

comparison, we evaluate our Procgen-tuned implementa-

tion of PPO on the ALE, and we achieve competitive per-

formance. Detailed results are shown in Appendix F.

As a convenience, we choose not to use any frame stacking

in Procgen experiments, as we find this only minimally im-

pacts performance. See Appendix H for further discussion.

By default, we train agents with the convolutional architec-

ture found in IMPALA (Espeholt et al., 2018), as we find

this architecture strikes a reasonable balance between per-

formance and compute requirements. We note that smaller

architectures often struggle to train when faced with the

high diversity of Procgen environments, a trend we explore

further in Section 4.
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Figure 3. Train and test performance when training with a deterministic sequence of levels. We report the mean raw episodic return,

where each episode may include many sequential levels. The mean and standard deviation is shown across 4 seeds.

3. Generalization Experiments

3.1. Level Requirements

We first evaluate the impact of training set size on general-

ization. For each environment, we construct several train-

ing sets ranging in size from 100 to 100,000 levels. We

train agents for 200M timesteps on each training set using

PPO, and we measure performance on held out levels. Re-

sults are shown in Figure 2. See Appendix D for a list of

hyperparameters and Appendix E for test curves from each

training set.

We find that agents strongly overfit to small training sets

in almost all cases. To close the generalization gap, agents

need access to as many as 10,000 levels. A peculiar trend

emerges in many environments: past a certain threshold,

training performance improves as the training set grows.

This runs counter to trends found in supervised learning,

where training performance commonly decreases with the

size of the training set. We attribute this trend to the im-

plicit curriculum provided by the distribution of levels. A

larger training set can improve training performance if the

agent learns to generalize even across levels in the training

set. This effect was previously reported by (Cobbe et al.,

2019), and we now corroborate those results with a larger

number of environments.

3.2. An Ablation with Deterministic Levels

To fully emphasize the significance of procedural genera-

tion, we conduct a simple ablation study. Instead of re-

sampling a new level at the start of every episode, we train

agents on a fixed sequence of levels. In each episode, the

agent begins on the first level. When the agent successfully

completes a level, it progresses to the next level. If the

agent fails at any point, the episode terminates. With this

setup, the agent can reach arbitrarily many levels, though

in practice it rarely progresses beyond the 20th level in any

environment. This approximately mimics the training setup

of the ALE. To make training more tractable in this setting,

we use the easy environment difficulty.

At test time, we simply remove the determinism in the level

sequence, instead choosing level sequences at random. Re-

sults are shown in Figure 3. We find that agents become

competent over the first several training levels in most envi-

ronments, giving an illusion of meaningful progress. How-

ever, test performance demonstrates that the agents have in

fact learned almost nothing about the underlying level dis-

tribution. We believe this vast gap between train and test

performance is worth highlighting. It reveals a crucial hid-

den flaw in training on environments that follow a fixed se-

quence of levels. These results emphasize the importance

of both training and evaluating with diverse environment

distributions.
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Figure 4. Generalization performance from 500 levels in each environment. The mean and standard deviation is shown across 3 seeds.

3.3. 500 Level Generalization

Due to the high computational cost, it is impractical to reg-

ularly run the experiments described in Section 3.1. To

benchmark generalization, we recommend training on 500

levels from each environment and testing on held out lev-

els, as in (Cobbe et al., 2019). We choose this training set

size to be near the region where generalization begins to

take effect, as seen in Figure 2. At test time, we measure

agents’ zero-shot performance averaged over unseen lev-

els. When evaluating generalization, we do not explicitly

restrict the duration of training, though in practice we still

train for 200M timesteps.

Baseline results are shown in Figure 4. We see a high

amount of overfitting in most environments. In some en-

vironments, the generalization gap is relatively small only

because both training and test performance are poor, as dis-

cussed in Section 3.1. In any case, we expect to see sig-

nificant improvement on test performance as we develop

agents more capable of generalization.

4. Scaling Model Size

We now investigate how scaling model size impacts both

sample efficiency and generalization in RL. We conduct

these experiments to demonstrate the usefulness of Proc-

gen Benchmark metrics, and because this is a compelling

topic in its own right. We follow the experimental proto-

cols described in Section 2.2, evaluating the performance

of 4 different models on both sample efficiency and gener-

alization.

The first 3 models use the convolutional architecture found

in IMPALA (Espeholt et al., 2018) with the number of con-

volutional channels at each layer scaled by 1, 2 or 4. Note

that scaling the number of channels by k results in scaling

the total parameter count by approximately k2. The final

model uses the smaller and more basic convolutional archi-

tecture found in (Mnih et al., 2015), which we call Nature-

CNN. We include this architecture as it is often used to train

agents in the ALE.

We train the Nature-CNN model with the same learning

rate as the smallest IMPALA model. When we scale the

number of IMPALA channels by k, we also scale the learn-

ing rate by 1
√

k
to match the scaling of the weights, ini-

tialized with the method from (Glorot and Bengio, 2010).

The learning rate is the only hyperparameter we vary be-

tween architectures. We performed sweeps over other hy-

perparameters, including the batch size and the number of

epochs per rollout, and we found no other obvious gains.

Results are shown in Figure 5. We find that larger architec-

tures significantly improve both sample efficiency and gen-

eralization. It is notable that the small Nature-CNN model

almost completely fails to train. These results align with

the results from (Cobbe et al., 2019), and we now establish

that this trend holds across many diverse environments. Al-

though larger models offer fairly consistent improvements,

we note that some environments benefit from the larger

models to a greater extent. See Appendix G for detailed

training curves from each environment.
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Figure 5. Performance of different model sizes, measuring both sample efficiency (left) and generalization (right). The mean and stan-

dard deviation is shown across 3 seeds.

5. Comparing Algorithms

We next compare our implementation of PPO to our im-

plementation of Rainbow (Hessel et al., 2018) on Procgen

Benchmark. We evaluate sample efficiency, training and

testing on the full distribution of levels in each environ-

ment. As with PPO, we train Rainbow agents using the

IMPALA convolutional architecture, collecting experience

from 64 parallel environment copies into a single replay

buffer. We first experimented with the default Rainbow

hyperparameters (with an appropriate choice for distribu-

tional min/max values), but we found that agents struggled

to learn any non-trivial behaviour. We hypothesize that the

diversity of our environments can lead to high variance gra-

dients that promote instability. We therefore reduced gradi-

ent variance by running the algorithm on 8 parallel workers,

using shared model parameters and averaging gradients be-

tween workers. This greatly improved performance.

To improve wall-clock time for Rainbow, we also increased

the batch size and decreased the update frequency each by

a factor of 16, while increasing the learning rate by a factor

of 4. While this change significantly reduced wall-clock

training time, it did not adversely impact performance. We

confirmed that the new learning rate was roughly optimal

by sweeping over nearby learning rates. See Appendix D

for a full list of Rainbow hyperparameters.

Results are shown in Figure 6. PPO performs much more

consistently across the benchmark, though Rainbow offers

a significant improvement in several environments. We’re

not presently able to diagnose the instability that leads to

Rainbow’s low performance in some environments, though

we consider this an interesting avenue for further research.

6. Related Work

Many recent RL benchmarks grapple with generalization in

different ways. The Sonic benchmark (Nichol et al., 2018)

was designed to measure generalization in RL by separat-

ing levels of the Sonic the HedgehogTM video game into

training and test sets. However, RL agents struggled to gen-

eralize from the few available training levels, and progress

was hard to measure. The CoinRun environment (Cobbe

et al., 2019) addressed this concern by procedurally gener-

ating large training and test sets to better measure gener-

alization. CoinRun serves as the inaugural environment in

Procgen Benchmark.

The General Video Game AI (GVG-AI) framework (Perez-

Liebana et al., 2018) has also encouraged the use of proce-

dural generation in deep RL. Using 4 procedurally gener-

ated environments based on classic video games, (Justesen

et al., 2018) measured generalization across different level

distributions, finding that agents strongly overfit to their

particular training set. Environments in Procgen Bench-

mark are designed in a similar spirit, with two of the en-

vironments (Miner and Leaper) drawing direct inspiration

from this work.

The Obstacle Tower environment (Juliani et al., 2019) at-

tempts to measure generalization in vision, control, and

planning using a 3D, 3rd person, procedurally generated

environment. Success requires agents to solve both low-
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Figure 6. A comparison between Rainbow and PPO. In both cases, we train and test on the full distribution of levels from each environ-

ment. The mean and standard deviation is shown across 3 seeds.

level control and high-level planning problems. While

studying generalization in a single complex environment

offers certain advantages, we opted to design many hetero-

geneous environments for Procgen Benchmark.

bsuite (Osband et al., 2019) is a set of simple environments

designed to serve as “an MNIST for reinforcement learn-

ing.” Each environment targets a small number of core

RL capabilities, including the core capability of general-

ization. bsuite includes a single environment that requires

visual generalization in the form of an MNIST contextual

bandit, whereas visual generalization is a primary source of

difficulty across all Procgen environments.

Safety Gym (Achiam et al., 2019) provides a suite of

benchmark environments designed for studying safe explo-

ration and constrained RL. While generalization is not an

explicit focus of this benchmark, all Safety Gym environ-

ments perform extensive randomization to prevent agents

from overfitting to specific environment layouts. In doing

so, these environments enforce a need for generalization.

The Animal-AI Environment (Beyret et al., 2019) uses

tasks inspired by the animal cognition literature to evalu-

ate agent intelligence. Since these tests are not encountered

during training, high performance depends on generalizing

well from the specific training configurations. The use of a

single unified environment makes the prospect of general-

ization significantly more plausible.

Meta-World (Yu et al., 2019) proposes several meta-

learning benchmarks, using up to 50 unique continuous

control environments for training and testing. As with the

Animal-AI Environment, the shared physics and mechanics

between train and test environments gives rise to the plau-

sible expectation of generalization, even when the details

of the test task are novel.

7. Conclusion

Training agents capable of generalizing across environ-

ments remains one of the greatest challenges in reinforce-

ment learning. We’ve designed Procgen Benchmark to help

the community to contend with this challenge. The intrin-

sic diversity within level distributions makes this bench-

mark ideal for evaluating both generalization and sample

efficiency in RL. We expect many insights gleaned from

this benchmark to apply in more complex settings, and we

look forward to leveraging these environments to design

more capable and efficient algorithms.
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