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Abstract

We focus on estimating the average treatment effect in a randomized trial. If baseline variables are 

correlated with the outcome, then appropriately adjusting for these variables can improve 

precision. An example is the analysis of covariance (ANCOVA) estimator, which applies when the 

outcome is continuous, the quantity of interest is the difference in mean outcomes comparing 

treatment versus control, and a linear model with only main effects is used. ANCOVA is 

guaranteed to be at least as precise as the standard unadjusted estimator, asymptotically, under no 

parametric model assumptions and also is locally semiparametric efficient. Recently, several 

estimators have been developed that extend these desirable properties to more general settings that 

allow any real-valued outcome (e.g., binary or count), contrasts other than the difference in mean 

outcomes (such as the relative risk), and estimators based on a large class of generalized linear 

models (including logistic regression). To the best of our knowledge, we give the first simulation 

study in the context of randomized trials that compares these estimators. Furthermore, our 

simulations are not based on parametric models; instead, our simulations are based on resampling 

data from completed randomized trials in stroke and HIV in order to assess estimator performance 

in realistic scenarios. We provide practical guidance on when these estimators are likely to provide 

substantial precision gains and describe a quick assessment method that allows clinical 

investigators to determine whether these estimators could be useful in their specific trial contexts.
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1. Introduction

We focus on estimating the average treatment effect in a randomized trial that compares an 

experimental treatment versus control. The average treatment effect can be defined, for 

example, as a difference between population means, a relative risk (for binary outcomes), or 

any smooth contrast between the population means under treatment and control.

The unadjusted estimator of the average treatment effect is constructed using only the 

sample means in the treatment group and control group. Advantages of the unadjusted 

estimator include that it is simple to describe and implement, and it is unbiased. However, it 

ignores information in baseline variables that can improve the precision of treatment effect 

estimates.

There has been much debate over the proper use of estimators that adjust for baseline 

variables in randomized trials [1,2]. If baseline variables are strongly correlated with the 

outcome, then estimators that adjust for these variables can increase precision compared 

with the unadjusted estimator, as described in the succeeding paragraphs. This increased 

precision can translate into a reduction in the required sample size to achieve a desired 

power.

Limitations of some adjusted estimators are the following: they can be inconsistent if certain 

parametric model assumptions do not hold, they can have lower asymptotic precision than 

the unadjusted estimator, they can be challenging to implement, and they can require solving 

difficult optimization problems. The analysis of covariance estimator has none of these 

limitations (as shown by Yang and Tsiatis [3]) but is limited to cases where the outcome is 

continuous, the quantity of interest is the difference between mean outcomes comparing 

treatment versus control, and a linear model with only main effects is used.

Recently, estimators have been developed that extend the desirable properties of analysis of 

covariance, described earlier, to much more general settings [4–6]. These estimators have 

been studied in terms of theoretical properties, and each estimator has been separately 

studied in its own finite sample simulation. (An exception is the PLEASE estimator defined 

in Section 4.2, which had not yet been studied in any finite sample context.) However, to the 

best of our knowledge, these recent estimators have not been compared against one another 

in any simulation study. We conduct simulation studies comparing these estimators based on 

resampling data from two completed randomized trials.

In the first set of simulations, the efficiency gained from adjusting for prognostic baseline 

variables is equivalent to a 22–30% reduction in the required sample size to achieve a 

desired power. In the second example, the baseline variables are weakly correlated with the 

outcome, resulting in a very small efficiency gain. We also simulated scenarios where 

baseline variables are independent of the outcome to determine if adjusting for 

uninformative variables causes a loss in efficiency compared with the unadjusted estimator. 

The observed efficiency losses are quite small.

We describe a quick assessment method and simulation approach that an investigator 

planning a phase III trial could apply to determine if an adjusted estimator is likely to 
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provide substantial precision gains. This method can be used as a practical guide to help 

inform what estimator to prespecify in a trial protocol. We provide R and sas code (SAS 

Institute, Cary, NC, USA) for one of the adjusted estimators that is a practical compromise 

between computational complexity and statistical efficiency.

In the next section, we describe the randomized trial data on which our simulations are 

based. In Sections 3 and 4, we present estimators of the risk difference (for binary outcomes) 

that leverage baseline variable information. In Sections 5 and 6, we compare the 

performance of these estimators in simulations. A modified version of the quick assessment 

method of Rubin and van der Laan [7] and Moore and van der Laan [8] is applied to these 

estimators in Section 7. Generalizations to estimate the relative risk and log odds ratio, and 

to handle non-binary outcomes, are given in Section 8. Practical issues related to 

implementing these estimators and areas for future research are discussed in Section 9.

2. Data examples

2.1. MISTIE II trial

MISTIE II is a phase II, multicenter, randomized, prospective trial completed in 2013. 

Participants were randomized to the treatment arm (surgical) or control arm (standard 

medical care). We define the treatment arm as those assigned to one of the following surgical 

treatments: MISTIE (minimally invasive surgery and clot lysis with rt-PA to remove 

intracerebral hemorrhage (ICH)), or ICES (intraoperative stereotactic CT-guided endoscopic 

surgery) [9]. The primary outcome is the participant's score on the modified Rankin Scale 

(mRS), which measures functional disability. A mRS score of 3 or less is defined to be a 

successful outcome. The following baseline variables are strongly associated with the 

primary outcome: age, ICH volume, and National Institutes of Health Stroke Scale (NIHSS). 

The strength of the association was determined by calculating a modified version of R2 in 

the ordinary least squares sense defined in Section 7, which represents the proportion of the 

outcome variance accounted for by treatment and baseline variables (age, ICH volume, and 

NIHSS) beyond that accounted for by treatment alone. The modified R2 was 22% (Section 

7).

The average treatment effect of interest is the risk difference, that is, the difference between 

the population proportion of successes under assignment to treatment versus control. The 

unadjusted estimator is the difference between the observed proportion of successes in 

treatment versus control. Its value is 12.0% (95% CI: −5.9 to 30.2%) comparing the 66 

MISTIE II participants to the 37 standard medical care participants. (The randomization 

ratio was 2 : 1 treatment to control.) The estimator we describe in Section 4.2, which adjusts 

for the aforementioned baseline variables, results in the estimate and confidence interval: 

14.4% (95% CI: 1.3 to 32.8%). The width of this confidence interval is 12.7% smaller than 

that of the unadjusted estimator. This gives an initial indication that there may be gains in 

precision from appropriately leveraging prognostic information in baseline variables. We 

show this holds in simulation studies in Section 5.

Colantuoni and Rosenblum Page 3

Stat Med. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. PEARLS trial

The Prospective Evaluation of Anti-retroviral Combinations for Treatment Naive, HIV 

Infected Persons in Resource-limited Settings (PEARLS) trial was completed in 2010. It is a 

phase IV, randomized, open-label multinational clinical trial in HIV-1 infected, 

antiretroviral-naive participants comparing three different drug combinations [10]. We 

considered the 1044 participants assigned to either of the first two therapies (called A and 

B). Poor response to therapy is defined as at least one of the following occurring during 

follow-up: virologic failure (two consecutive plasma HIV-1 RNAs > 1000 copies/mL at 

week 16 onwards), HIV-1 disease progression (AIDS), or death. Baseline variables that are 

weakly associated (modified R2 of 3.6%) with the primary outcome include gender, plasma 

viral load, and CD4+ cell count. The unadjusted and adjusted estimators of the risk 

difference of poor response comparing treatment A with B are −5.9% (95% CI: −10.7 to 

−1.4%) and −6.0% (95% CI: −10.5 to −1.3%), respectively, using the aforementioned 

baseline variables. There was essentially no reduction in the confidence interval width from 

adjusting for baseline variables. This is not surprising given the weak association between 

the primary outcome and baseline variables within the PEARLS trial. A goal of this paper is 

to investigate the practical benefits and costs of adjusting for weakly prognostic variables, as 

well as strongly prognostic variables.

3. Notation, definitions, and desired estimator properties

3.1. Notation

Consider a randomized trial where each participant's data is a vector (W, A, Y), where W is 

a vector of baseline variables, A is the treatment arm indicator (A = 1 for treatment, and A = 

0 for control), and Y is the primary outcome. We assume the variables included in the vector 

W are determined before the trial starts. Throughout, we focus on the case of binary Y with 

no missing outcomes, that is, Y ∈ {0, 1} and is observed for all participants. We provide 

generalizations for non-binary Y in Section 8 and describe extensions to handle missing 

outcomes in Section 1 of the Supplementary Material.

We consider 1 : 1 randomization, that is, each participant is randomized to treatment or 

control with probability 1/2, independent of the participant's baseline variables. However, 

the estimators we consider can also be applied to data from trials with unequal 

randomization probabilities. We consider a nonparametric model  for the data generating 

distribution P for (W, A, Y), which includes the following assumptions:  is 

dominated by a common, σ-finite measure, and A is independent of W because of 

randomization. Although A and W are independent in the data generating distribution P, 

there may be chance imbalances between study arms in any given realization of study data 

.

The aim is to estimate the population average treatment effect

(1)
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based on n independent, identically distributed realizations  of the random 

vector (W, A, Y), each drawn from the (unknown) probability distribution P. Although most 

of the paper focuses on estimating the difference between P(Y = 1|A = 1) and P(Y = 1|A = 

0), a similar approach can be used to estimate other contrasts between these quantities such 

as the relative risk P(Y = 1|A = 1)/P(Y = 1|A = 0) or the log odds ratio

(2)

where logit(x) = log{x/(1 − x)}. Estimation of these contrasts is described in Section 8.

The primary analysis in a confirmatory randomized trial typically involves estimation of the 

average (also called marginal) treatment effect, which is our goal. We do not aim to estimate 

conditional treatment effects such as P(Y = 1|A = 1, W) − P(Y = 1|A = 0, W), that is, the risk 

difference comparing treatment with control within strata of the baseline variables W. An 

advantage of the average treatment effect is that it be consistently estimated from a 

randomized trial without any parametric model assumptions; in contrast, the conditional 

treatment effect generally requires model assumptions when baseline variables are 

continuous or are discrete with many levels.

To illustrate the difference between conditional and marginal effects, consider an example 

where the true distribution is P(Y = 1|A, W) = logit−1(1 + A + W) for W ~ N(0,1), A having 

probability 1/2 of being 0 or 1, and A and W are independent by randomization. Then the 

conditional treatment effect of A given W on the logit scale is

that is, a conditional log odds ratio of 1. In contrast, the average (unconditional) treatment 

effect of A is a log odds ratio of 0.86 (rounded to two decimal places) computed by 

numerical integration and (2) using

where PW(w) is the marginal distribution of W; the first equality in the previous display 

follows from A and W being independent. Consider the maximum likelihood estimator  of 

β1 in the logistic regression model logit−1(β0 + β1A + β2W). This estimator converges to 1, 

i.e., the conditional effect, as sample size goes to infinity; it is therefore not a consistent 

estimator of the average treatment effect of 0.86. This example involved a distribution that 

satisfies the assumptions of a logistic regression model. In cases where the logistic 

regression model is misspecified,  will generally converge to a limit that is neither a 
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conditional nor an average effect (or it may fail to converge). For more discussion of average 

versus conditional effects, see, for example, [11,12].

3.2. Definitions

An estimator  of the population parameter ψ is called consistent if  with 

probability 1, for any data generating distribution . It is called asymptotically normal 

if for any ,  converges to a Gaussian distribution. Similar to [5], we 

assume throughout that the regularity conditions of Theorems 5.9 and 5.21 of [13] hold. 

These conditions and the randomization assumption from Section 3.1 imply that the 

estimators we compare are consistent and asymptotically normal.

Consider two estimators ,  of ψ at sample size n, with variances , , 

respectively. Their relative efficiency (also called average relative efficiency) is defined as 

 [13]. If both estimators are consistent and asymptotically normal, 

then the relative efficiency equals the asymptotic ratio of sample sizes required by each 

estimator to achieve a desired power (e.g., 80%) at local alternatives; equivalently, the 

relative sample size reduction from using  instead of , to achieve a desired power at 

local alternatives, converges to 1 − (1/RE).

For a given submodel , an estimator  is called semiparametric, locally efficient 

(or just locally efficient) with respect to  if  achieves the semiparametric efficiency 

bound for  at each . Intuitively, this means that, when the true distribution P 

satisfies the model assumptions of , the estimator  has the best possible (asymptotic) 

precision among all estimators for ψ that are regular and asymptotically linear in the full 

model . In our context, the submodel  is defined by a generalized linear model for Y 

given A and W. We require our estimators to be consistent regardless of whether the 

assumptions of the generalized linear model are true; that is, we require our estimators to be 

consistent for any , even if . If the assumptions of the submodel do hold 

(i.e., if ), we would like our estimators to achieve the semiparametric efficiency 

bound.

The unadjusted estimator of ψ, which ignores the baseline variables W, is defined as

(3)

It is consistent and asymptotically normal. A disadvantage is that it ignores information in 

the baseline variables W. In doing so, it may sacrifice considerable precision compared with 

estimators discussed in the succeeding paragraphs.

All of the estimators we consider, except the unadjusted estimator, use at least one working 

model. A working model, in our context, is a parametric model used in constructing an 

estimator, which we do not assume to be correctly specified. That is, the population 
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distribution P is not assumed to obey the constraints of the working model. For example, for 

a binary outcome, if the working model for P(Y = 1|A, W) is logit−1(β0 + β1A + β2W), we 

neither assume that the correct terms are included in the model nor assume that P(Y = 1|A, 

W) has this functional form.

The estimators we consider require two types of working models: an outcome regression 

model for P(Y|A, W) and a propensity score model for the study arm assignment given 

baseline variables P(A|W). For binary Y, logistic regression working models are used for 

both P(Y|A, W) and P(A|W). By randomization, A and W are independent, which implies 

P(A = a|W) does not depend on W. Therefore, the working propensity score model will be 

correctly specified as long as it contains at least an intercept term.

3.3. Desired estimator properties

Our goal is to identify a consistent estimator for the risk difference ψ with all the following 

properties:

(A) It can lead to substantial gains in precision compared to the unadjusted 

estimator, when baseline variables are correlated with the outcome.

(B) It has been been proved that the estimator has equal or greater asymptotic 

precision than the unadjusted estimator, for any .

(C) It is locally, semiparametric efficient with respect to a given logistic regression 

model (denoted by Q in Section 4).

(D) It is simple to implement using standard statistical software and does not 

require solving a non-convex optimization problem.

(E) It is always in the interval [−1, 1] (and so always lies in the parameter space 

determined by the risk difference).

Lacking property B means that, to the best of our knowledge, it has not been proved that the 

estimator has equal or better asymptotic precision than the unadjusted estimator for each 

.

4. Estimators

A multitude of estimators have been developed that achieve some or all of the 

aforementioned properties. All of the estimators in this section are consistent for any 

. These estimators vary in their other asymptotic properties and whether they involve 

solving challenging optimization problems. We describe some of these estimators in the 

succeeding paragraphs and focus on properties B–E because these are theoretical properties 

that are straightforward to check. The performance of a subset of these estimators is 

compared through simulations in Sections 5 and 6. Table I summarizes which properties 

among A–E are achieved by this subset of estimators.

4.1. Estimators achieving a subset of properties B–E

We first define the inverse probability weighted (IPW) estimator. Let W̃ be a column vector 

of prespecified functions of the baseline variables W in which the first component is the 

Colantuoni and Rosenblum Page 7

Stat Med. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constant 1, for example, W ̃= (1,W1,W2,W1W2,W3)T, where the superscript T denotes the 

transpose. Let α be a column vector the same length as W̃ and define expit(x) = logit−1(x) = 

exp(x)/{1 + exp(x)}. Let g(W̃, α) = expit (αT W̃) denote a logistic regression working model 

for P(A = 1|W), and let  be the corresponding maximum likelihood estimator of α.

The IPW estimator of ψ is

(4)

The IPW estimator satisfies properties B (as shown by Shen et al. [14] building on results of 

Robins et al. [15] and Rotnitzky et al. [16]) and D, but neither C nor E. The practical impact, 

as shown in [14], is that, although these estimators can improve efficiency compared with 

the unadjusted estimator, they may fail to fully leverage information in baseline variables 

compared with locally efficient estimators; our simulation studies are consistent with this 

finding.

The model standardization approach [8, 17, 18] utilizes a working outcome regression model 

to estimate ψ. Let β(0) and β(1) each be column vectors of the same length as W̃. For each 

study arm a ∈ {0, 1}, define a logistic regression working model Q(a)(W̃, β(a)) for P(Y = 1|A 

= a, W), for example, Q(a)(W,̃ β(a)) = expit(β(a)TW̃). Define Q = (Q(0), Q(1)). The terms in 

these models and in g(W,̃ α) need not be the same, but we use the same terms here for 

simplicity. Fit the logistic regression model Q(1)(W̃, β(1)) for P(Y = 1|A = 1, W) by 

maximum likelihood estimation using only data from participants with A = 1; similarly, fit 

the logistic regression model Q(0)(W̃, β(0)) for P(Y = 1|A = 0, W) by maximum likelihood 

estimation using only data from participants with A = 0. Let  and , respectively, 

denote the coefficient vectors corresponding to these model fits. The model standardization 

estimator of ψ is defined as

(5)

Each sum in (5) is taken over all n participants, regardless of their study arm assignment A. 

Expression (5) is an outcome regression estimator because it is computed by taking 

empirical means of a regression model fit. Outcome regression estimators are guaranteed to 

be within the range of the regression function, for example, in the range [−1, 1] when Q(a) is 

a logistic regression model as aforementioned. Moore and van der Laan [8] prove that this 

estimator is consistent for any  (even under arbitrary misspecification of the working 

models Q(a)) and has properties C, D, and E. However, it lacks property B.

The doubly-robust weighted least squares (DR-WLS) estimator is attributed to Marshall 

Joffe by Robins et al. [19]. It is similar to the model standardization estimator, except that 

each working model Q(a) for P(Y = 1|A = a, W), is fit using weighted logistic regression. 
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The model Q(1) is fit using weights  and uses only data from participants with A 

= 1; the model Q(0) is fit using weights 1/{1 − g(W̃, )} and uses only data from participants 

with A = 0. Denote the corresponding estimates of β(0), β(1) by , , respectively. The 

DR-WLS estimator of ψ is (5) except that each  is replaced by . The DR-WLS 

estimator has properties C, D, and E, but not B.

Additional estimators exist that achieve some, but not all, of properties B–E. The ‘direct’ 

implementation of the method by Zhang et al. [20] using a logistic regression working 

model fit with iteratively reweighted least squares has properties C, D. and E, but not B. The 

estimators of Scharfstein et al. [21, Section 3.2], Moore and van der Laan [8], Tsiatis et al. 

[22], and Rosenblum and van der Laan [18] have properties C, D, and E, but not B. The 

estimators of Rubin and van der Laan [7], and Cao et al. [23] have properties B, C, and E, 

but not D. A variety of estimators are presented in Kang and Schafer [24], and Robins et al. 

[19] that have subsets of properties B–E; Tan [4] and Rotnitzky et al. [5] provide detailed 

comparisons of the theoretical properties of these estimators.

4.2. Estimators that achieve all properties A–E

We define an estimator based on the general class of estimators in Section 3 of Rotnitzky et 

al. [5], which we modified to fit our context of a randomized trial. The estimator is a 

simplified version of a special case from this general class. It uses the quantities calculated 

in the DR-WLS estimator and is designed to achieve property B while preserving properties 

C, D, and E. We refer to this estimator as PLEASE, which stands for ‘precise, locally 

efficient, augmented, simple estimator.’ First, ,  are computed as described earlier for 

the DR-WLS estimator. For each study arm a ∈ {0, 1}, define the initial estimator of E(Y|A 

= a) (equivalently, of P(Y = 1|A = a)) to be

(6)

Let γ = (γ0, γ1). PLEASE consists of two additional steps:

Step 1: For each a ∈ {0, 1}, using  and  computed as described earlier, 

define the following new variable:

Fit the following augmented logistic regression model for P(A = 1|W):

to obtain estimated coefficients , .
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Step 2: Recompute the DR-WLS estimator, using  in place of 

 in the weights.

This is the PLEASE estimator.

The R and SAS codes for the aforementioned estimator are provided in the Supplementary 

Materials. We generalize the aforementioned procedure to estimate any smooth contrast 

between P(Y = 1|A = 1) and P(Y = 1|A = 0), for example, the log odds ratio (2) or the 

relative risk and to handle non-binary outcomes such as continuous-valued or count-valued 

Y, in Section 8.

We next discuss the intuition behind the IPW, model standardization, DR-WLS, and 

PLEASE estimators. All except the model standardization estimator involve the propensity 

score model g for P(A = 1|W). Fitting such a model may appear odd because, in a 

randomized trial, A and W are independent by design, so that P(A = 1|W) = P(A = 1). Why 

fit a model for a relationship that is already known? Intuitively, the model fit  is 

designed to capture chance imbalances of prognostic covariates between study arms in a 

given data set. As a simple example, let W be a binary indicator of severe disease at 

baseline, and let W̃ = (1, W)T; if, proportionally, more participants with W = 1 are in the 

treatment arm A = 1 in a given data set, the logistic regression model fit 

 will have . The IPW estimator uses  to 

upweight outcomes of participants who are under-represented in a given arm, and to 

downweight outcomes that are over-represented. The result is a rebalanced estimator of the 

average treatment effect. The model standardization estimator achieves a similar goal by first 

estimating the relationship between Y and W within each arm, and then standardizing to the 

empirical distribution of W pooled across arms. The DR-WLS estimator combines these two 

methods of rebalancing into a single estimator.

The only property among A–E that DR-WLS lacks is property B. The PLEASE estimator 

builds on DR-WLS to achieve property B by augmenting the propensity score model g with 

the carefully selected covariates u0, u1. These covariates are simplifications of the covariates 

proposed by Rotnitzky et al. [5]; the simplification is possible because we are in the context 

of a randomized trial, while [5] handled the general case of observational studies. As 

discussed by [5], adding any baseline covariate to the propensity score model in the DR-

WLS estimator is guaranteed to improve or leave unchanged the asymptotic variance of this 

estimator. This was a key insight of Robins et al. [15]. By examining the influence function 

of the DR-WLS estimator, [5] cleverly deduced covariates that ensure property B. 

Intuitively, the covariate  is intended to approximate the 

difference E(Y|A = a, W) − E(Y|A = a). This difference represents how much the population 

mean of Y within strata of W in arm A = a differs from the population mean of Y in arm A = 

a. The difference E(Y|A = a, W) − E(Y|A = a) roughly characterizes the mean influence of 

adding one more participant with covariate value W to arm a on the unadjusted estimator of 

E(Y|A = a). Because of this, ua(W̃) is a particularly appealing covariate to adjust for.
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The PLEASE is closely related to the estimator from Section 3.1 of the Harvard University 

technical report of Robins et al. [25], denoted there as ; that 

estimator has properties A–E for separately estimating P(Y = 1|A = a) for each a ∈ {0, 1} 

but (unlike PLEASE) does not have property B when it is used to estimate the risk difference 

ψ by taking the difference of its estimates of P(Y = 1|A = 1) and P(Y = 1|A = 0). This is not 

surprising because the estimator of [25] was not designed to achieve this latter goal.

Another estimator that achieves all of properties B–E is the estimator  of Tan [4], who 

provides software using the R package iWeigReg. This estimator can be modified to also 

achieve improved local efficiency (described in the succeeding paragraphs) as shown in 

Section 5.4 of [4], but this requires solving a non-convex optimization problem; we use the 

version without this modification (called ate.clik in the package iWeigReg) in our 

simulation study, and call it the Tan estimator.

4.3. Estimators with enhanced efficiency properties that require solving a non-convex 

optimization problem

The general classes of estimators of Rotnitzky et al. [5], and of Gruber and van der Laan [6] 

have properties B, C, and E, but lack property D because each requires solving a non-convex 

optimization problem. We consider an example from each of these classes of estimators. Let 

Rotnitzky et al.K=1 denote an estimator from the class of Rotnitzky et al. [5] with K = 1, 

which involves similar augmenting covariates as in PLEASE except u0 and u1 are divided by 

 and , respectively, and there are two additional covariates included in 

the model for P(A = 1|W) in Step 1. These additional covariates are defined in [5, Section 

2.2] as a solution to a non-convex optimization problem given there. By adding these 

covariates, the estimator Rotnitzky et al.K=1 of ψ achieves improved local efficiency as 

defined by Tan [4], which means the estimators are as or more precise, asymptotically, as 

each estimator in a certain class of locally efficient estimators. We give these additional 

covariates in Section 2 of the Supplementary Material.

Rotnitzky et al. [5] constructed these covariates by first deriving a formula for the 

asymptotic variance of a large class of estimators that augment DR-WLS as in Steps 1 and 2 

of PLEASE. This formula is a function of the augmenting variables. They next define a 

parametric class of potential augmenting covariates indexed by the parameter vector η. They 

then minimize an empirical estimate of the resulting asymptotic variance over all possible 

values of η, using the general technique of empirical efficiency maximization from Rubin 

and van der Laan [7]. Denote the minimizer by η*. The last step is that Rotnitzky et al. [5] 

augment the propensity score model using the covariate corresponding to η*.

The aforementioned minimization problem is not convex in η, and therefore, existing solvers 

(such as optim or nlm in R) are not guaranteed to converge to the true optimum (or even to a 

local optimum). This leads to practical concerns if convergence is not achieved for a given 

dataset. We note that the estimator is still well defined even in the case of non-convergence 

(using the final value output by the optimization algorithm). A second concern is that these 

estimators are only guaranteed to be consistent if the computed solution to the optimization 
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problem converges in probability to some limit as the sample size goes to infinity; as pointed 

out by Rubin and van der Laan [26], this convergence is not guaranteed.

In exchange for added computational complexity, the estimators of Rotnitzky et al. [5], and 

Gruber and van der Laan [6] achieve improved local efficiency. In our simulations, we used 

the R code of [5, Supplementary Material], which we modified to target the parameter ψ, as 

described in Section 2 of our Supplementary Material. We use the R code of Gruber and van 

der Laan [6, Appendix] to implement the estimator that we call the Gruber and van der Laan 

estimator.

5. Simulation study based on the MISTIE II trial

5.1. Simulation design

We construct data generating mechanisms based on resampling in order to closely mimic the 

relationships between baseline variables and outcomes observed in the MISTIE II trial 

described in Section 2.1. The baseline variables for each participant are W = (W1, W2, W3) 

= (age, ICH volume, and NIHSS). We compare the following estimators of the risk 

difference: unadjusted, IPW, model standardization, DR-WLS, Tan, PLEASE, Rotnitzky et 

al.K=1, and Gruber and van der Laan. We refer to all but the first of these as adjusted 

estimators because they adjust for baseline variables.

Simulations are conducted under the following four types of data generating distributions 

(called scenarios):

Scenario 1: Y and W dependent; zero average treatment effect;

Scenario 2: Y and W dependent; positive average treatment effect;

Scenario 3: Y and W independent; zero average treatment effect; and

Scenario 4: Y and W independent; positive average treatment effect.

In scenarios 1 and 2, W is prognostic for Y, and there is potential for gaining precision by 

adjusting for W; the modified R2 (defined in Section 7) due to adjustment is 27% in scenario 

1 and is 22% in scenario 2.

In scenarios 3 and 4, baseline variables are not prognostic for the outcome; therefore, the 

estimators that adjust for chance imbalances in W are adjusting for noise. We examine this 

case to determine how much efficiency is lost because of adjusting for variables with no 

prognostic value. Although such losses disappear as sample size goes to infinity, it is 

important to determine the magnitude of such potential efficiency losses at realistic sample 

sizes.

For each scenario, we generated 100,000 simulated randomized trials, each with n = 412 

participants. This sample size was selected to approximately mimic the projected size of the 

planned phase III trial that is a follow-up to the MISTIE II trial.

A simple way to define a data generating distribution P based on the MISTIE II trial data, 

would be to use the empirical distribution. This distribution can be simulated by resampling 
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triples (W, A, Y) with replacement from the MISTIE II trial data. Unfortunately, A and W 

are dependent under this distribution because A and W have non-zero correlations in the 

MISTIE II trial data (as would be expected for essentially any trial data set). Generating 

simulated trials from this empirical distribution would violate the randomization assumption 

from Section 3.1 that, under P, A is assigned independent of W. We next describe 

modifications to the empirical distribution that were performed in order to satisfy the 

randomization assumption.

For scenarios 1 and 2, we resampled pairs (W, Y) with replacement from the MISTIE II trial 

data. This preserves the relationship between baseline variables and the outcome from the 

MISTIE II trial data. In scenario 1, we generated A independent of (W, Y), with probability 

1/2 of being treatment or control. For this data generating distribution, we have P(Y = 1|A = 

1) = P(Y = 1|A = 0) = 0.32, which implies that the average treatment effect is ψ = 0.

For scenario 2, we construct a data generating distribution similar to scenario 1, except with 

average treatment effect ψ = 0.12; we chose this value of ψ because it is the average 

treatment effect observed in the MISTIE II trial based on the unadjusted estimator. The 

initial step in scenario 2 is that data is generated as in scenario 1. Next, to induce the positive 

average treatment effect ψ = 0.12, for each simulated participant who was initially assigned 

A = 1 and Y = 0, we randomly replaced Y by 1 with probability q = 0.18 (by an independent 

Bernoulli draw for each such participant). The value q = 0.18 was determined by the formula 

q = 0.12/(1 − 0.32) (rounded to two decimal places), that is, the target average treatment 

effect 0.12 divided by the probability of Y = 0 given A = 1 based on the initial step (where 

data was generated as in scenario 1). The combination of the aforementioned two steps 

results in P(Y = 1|A = 0) = 0.32 and P(Y = 1|A = 1) = 0.32 + (1 − 0.32)q = 0.44, which 

implies ψ = 0.12. The value of q was set before running any of the simulations.

For scenarios 3 and 4, baseline variables W for each participant were randomly drawn with 

replacement from the MISTIE II trial data. This results in the marginal distribution of W 

being the empirical distribution of the MISTIE II trial data. Study arm assignment A was 

generated independent of W, with probability 1/2 of being treatment or control. In scenario 

3, Y is a random draw from a Bernoulli distribution with probability 0.32 (the marginal 

probability of Y = 1 in the MISTIE II trial, pooling all participants). Because A is generated 

independent of (W, Y), this results in ψ = 0. In scenario 4, the conditional distribution of Y, 

given A = a and W is set to be Bernoulli with probability pa of Y = 1, where pa is the 

observed proportion of successes in each treatment group in the MISTIE II trial (p0 = 0.24, 

and p1 = 0.36). This results in an average treatment effect of ψ = 0.36 − 0.24 = 0.12.

Each estimator uses the same initial working models in each scenario (though the 

augmenting variables differ by estimator). The propensity score working model and the 

outcome regression working model each have an intercept and a main term for each 

component of W. Because treatment is randomized in all scenarios, we have P(A = 1|W) = 

1/2; so the propensity score working model is correctly specified. The working outcome 

regression model is misspecified in scenarios 1 and 2 because the true joint distribution of 

(W, Y) is based on resampling from the MISTIE II trial data, which does not obey the 

constraints imposed by the logistic regression working model. Nonetheless, the adjusted 
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estimators using this working model can still gain substantial efficiency compared with the 

unadjusted estimator, as we show in the succeeding paragraphs. In scenarios 3 and 4, (A, Y) 

is independent of W, which implies for each a ∈ {0, 1}, P(Y = 1|A = a, W) = P(Y = 1|A = a). 

Because the working outcome regression model has separate components Q(a) for each a ∈ 
{0, 1} it is correctly specified in scenarios 3 and 4.

5.2. Simulation results

Table II displays the results of the simulation study for scenarios 1–4. The bias of all 

estimators is quite small and is similar for all estimators and scenarios. In scenarios 1 and 2, 

where W is prognostic for Y, there were large gains in relative efficiency for all the adjusted 

estimators relative to the unadjusted estimator. Unsurprisingly, the locally efficient 

estimators (model standardization, DR-WLS, Tan, PLEASE, Rotnitzky et al.K=1, and Gruber 

and van der Laan) were all more precise than the IPW estimator. The efficiency gains for 

PLEASE are slightly larger than those for the DR-WLS estimator, and this difference is due 

to the augmentation Steps 1 and 2. The relative efficiency was generally similar for the 

model standardization, DR-WLS, Tan, PLEASE and Gruber and van der Laan estimators, 

while Rotnitzky et al.K=1 had greater relative efficiency than all of these. A possible 

explanation for the increased efficiency gains for Rotnitzky et al.K=1 is that it uses two 

additional covariates in the augmented propensity score model.

To illustrate how efficiency gains in scenarios 1 and 2 translate into reductions in sample 

size to achieve a desired power at a given alternative, consider PLEASE. Its relative 

efficiency compared with the unadjusted estimator in scenario 1 is 1.43, which is equivalent 

(asymptotically) to a 1 − (1/1.43) ≈ 30% reduction in the sample size required to achieve a 

desired power. Similarly, in scenario 2, the relative efficiency 1.29 translates into a 1 

− (1/1.29) ≈ 22% sample size reduction.

In scenarios 3 and 4, where baseline variables are not prognostic, the relative efficiency loss 

of the adjusted estimators ranged from 0.7% to 2.8% (compared with the unadjusted 

estimator). The efficiency loss of the PLEASE and Rotnitzky et al.K=1 estimators, though 

small, exceeded that of the other adjusted estimators.

Two types of convergence problems occurred in some estimators. First, for estimators that 

involve solving a convex or non-convex optimization problem, the algorithm computing this 

may fail to converge. In this case, the optimization algorithm may still output a solution 

(e.g., the best value achieved by the optimization algorithm during its iterations) or may 

output no solution. If a solution is provided, the estimator can still be computed using this 

solution. In our simulations, the optim algorithm used by Rotnitzky et al.K=1 always 

converged when we set the maximum number of iterations at 2000. For the estimators of 

Gruber and van der Laan, and of Tan, the optimization algorithm did not output any solution 

if the algorithm did not converge. For the Gruber and van der Laan estimator, this occurred 

with frequency 1.4% and 0.1% of the simulated trials for scenarios 1 and 2, respectively. For 

the Tan estimator, this occurred with frequency 0.1% of the simulated trials for each scenario 

1 and 2.
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The second type of convergence problem is that the maximum likelihood estimator for the 

augmented propensity score model for Rotnitzky et al.K=1 failed to converge because of 

quasi-complete separation [27] in 0.3% and 0.03% of the simulated studies for scenarios 1 

and 2, respectively; this caused the weighted logistic regression in Step 2 to fail to converge 

as well. In such cases, we set the final output of Rotnitzky et al.K=1 to be the estimator 

obtained prior to augmentation, that is, the DR-WLS estimator.

6. Simulation study based on PEARLS trial

6.1. Simulation design

We used baseline variables W = (W1, W2, W3) = (gender, RNA viral load, CD4+ cell count) 

from the PEARLS trial. Similar scenarios as 1–4 from Section 5 were used, except replacing 

all empirical distributions by those in the PEARLS trial. Details are given in Sections 3 and 

4 of the Supplementary Material. In each scenario, we generated 100,000 trials of size 1044 

participants, which is the sample size of the PEARLS trial counting those in treatment arms 

A and B.

6.2. Simulation results

Table III displays the results of the simulation study. All estimators performed similarly. In 

scenarios 1 and 2, the efficiency gains of the adjusted estimators range from 2–3%. This set 

of simulations shows that, when baseline variables are weakly prognostic for the outcome, 

the efficiency gains from adjusting for these variables is small, as may be expected. This 

raises the question of how prognostic the baseline variables need to be in order to result in 

substantial efficiency gains. We discuss this in the next section.

In scenarios 3 and 4, the loss of efficiency ranged from 0% to 0.9%. These smaller efficiency 

losses compared with the MISTIE II trial simulations from Section 5 are not surprising 

because of the larger sample size in the PEARLS simulations.

7. Quick assessment of whether adjusting for baseline variables can give 

substantial gains

The primary statistical analysis for a confirmatory trial must be fully specified before the 

trial is started. If using an adjusted estimator, all details of its implementation need to be 

specified, for example, the working models to be used and the variables to be included in 

them. When there are many baseline variables, identifying which to include in the working 

models is a practical concern. In planning a phase III trial, data from the corresponding 

phase II trial could be used in a quick assessment of whether a few baseline variables have 

potential to substantially improve efficiency, using a method of [7,8].

Given data from a completed trial, the procedure involves computing the modified R2 (in the 

ordinary least squares sense), which we define next. The modified R2 compares an outcome 

regression model that includes A and the baseline variables W versus an outcome regression 

model including only A. First, one computes the sample mean among those assigned to 

treatment (denoted m1) and among those assigned to control (denoted m0). Second, for each 
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study arm a ∈ {0, 1}, one fits an outcome regression model Q(a)(W,̃ β(a)) for E(Y|A = a, W). 

Lastly, one computes

(7)

The intuition for (7) is that it captures how much additional variance in the outcome is 

accounted for by the baseline variables, above what is explained by A alone. The expression 

(7) gives a rough approximation of how much relative efficiency may be gained by using an 

adjusted estimator based on an outcome regression working model, compared with the 

unadjusted estimator. However, (7) only reflects the precision gains from using the outcome 

regression model and does not account for additional precision gains from augmenting the 

propensity score model as in the estimators: Tan, PLEASE, Rotnitzky et al.K=1, and Gruber 

and van der Laan. Also, expression (7) does not account for the correlation between the 

adjusted estimators of E(Y|A = 1, W) and of E(Y|A = 0, W), which can impact the variance 

of the risk difference estimator.

We propose to compute a modified version of (7) using leave-one-out cross-validation. The 

purpose is to avoid being fooled by a model overfit; for example, even independent baseline 

variables will explain a portion of the outcome variance because of chance variation in a 

given data set. The more variables one adds to the outcome regression working model, the 

more variance will be explained, but this may fail to translate into precision gains if it is 

because of overfitting. The cross-validation is implemented by, for each data point (Wi, Ai, 

Yi), fitting the outcome regression model for P(Y = 1|A = Ai, W) on all data in arm A = Ai 

except observation i, then computing the squared difference between Yi and the model-based 

prediction for Yi; this is done for each i and then summed to compute the cross-validated 

version of the numerator in (7). For the denominator, for each i the sample mean in arm A = 

Ai is computed using all data from this arm except observation i, and then the squared 

difference between Yi and this sample mean is computed; this is done for each i and then 

summed to compute the cross-validated version of the denominator in (7).

The output of this quick assessment method can help determine whether it is worth the effort 

to perform a simulation study to evaluate if an adjusted estimator is likely to provide 

substantial precision gains. A rule of thumb is to conduct such a simulation study if the 

cross-validated version of (7) is 10% or greater. The value of (7) without cross-validation 

was 34% and 5% for the MISTIE and PEARLS trial data, respectively, and with cross-

validation was 22% and 3.6%, respectively. We demonstrated in the simulations the potential 

large efficiency gains from using an adjusted estimator in the MISTIE trial data and modest 

efficiency gains within the PEARLS trial data.
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8. Generalization of PLEASE to estimate relative risk and log odds ratio, 

and to handle non-binary outcomes

Consider any smooth contrast f(P(Y = 1|A = 1), P(Y = 1|A = 0)) between P(Y = 1|A = 1) and 

P(Y = 1|A = 0). The following generalization of PLEASE can be used to estimate this 

contrast: replace Step 2 by

1.
Step 2’: For each a ∈ {0, 1}, let  denote the estimated coefficient 

vector in the weighted logistic regression fit of Q(a) as defined for the DR-

WLS estimator, except using  in place of  in the 

weights. Define  to be (6) except with  replaced by . The 

estimator of the contrast f(P(Y = 1|A = 1), P(Y = 1|A = 0)) is .

For example, the contrast f(x, y) = x − y corresponds to the risk difference (1); in which 

case, Step 2’ reduces to Step 2. The contrast f(x, y) = logit(x) − logit(y) corresponds to the 

log odds ratio (2). The contrast f(x, y) = x/y corresponds to the relative risk. If f is a 

continuously differentiable function (as is the case for the examples earlier as long as each 

P(Y = 1|A = a) is neither 0 nor 1), then properties B–D and an extension of property E 

(where we replace the interval [−1, 1] by the range of f ) hold for the aforementioned 

generalization of PLEASE, as proved in Section 5 of the Supplementary Material.

Consider the case where Y is non-binary valued, for example, Y is continuous-valued or 

count-valued. Let the parameter of interest be any smooth contrast f(E(Y|A = 1), E(Y|A = 

0)), for example, the difference in population means f(x, y) = x − y. The PLEASE estimator 

can be generalized to handle this case by replacing Step 2 by Step 2’ as aforementioned and 

replacing the working logistic regression model Q(a) by a corresponding generalized linear 

model with canonical link function. For example, a standard linear regression model (with 

identity link function) could be used if Y is continuous-valued, or a Poisson regression 

model (with log link function) could be used if Y is count-valued. For the resulting 

estimator, generalizations of properties B–E hold, where we replace ‘logistic regression’ in 

C by the corresponding generalized linear model, and we replace the interval [−1, 1] in E by 

the range of f.

9. Discussion

If the quick assessment method from Section 7 indicates potential for a substantial precision 

gain (e.g., at least 10%) from adjusting for prognostic baseline variables, we recommend 

considering one of the following adjusted estimators: Tan, PLEASE, Rotnitzky et al.K=1, and 

Gruber and van der Laan. Trade-offs to consider when selecting an estimator include 

complexity of implementation, theoretical properties, and ease of communicating the 

approach. The estimators of Rotnitzky et al., and Gruber and van der Laan require non-

convex optimization so are computationally more complex than PLEASE and the Tan 

estimator; however, the estimators of Rotnitzky et al. and Gruber and van der Laan have 

enhanced efficiency properties, as described in Section 4.2. PLEASE is the simplest 
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estimator to describe among those recommended. The greatest efficiency gain was from 

Rotnitzky et al., which outperformed all other estimators in scenarios 1 and 2 of the MISTIE 

simulations; it also had the largest efficiency loss when the baseline variables were not 

prognostic (i.e., independent) of the outcome. If one is planning a phase III trial, the 

aforementioned trade-offs for different estimators could be informed by conducting a 

simulation study based on phase II trial data using the general approach of Section 5.

The decision of which estimator to use depends on the trial designer's preferences regarding 

the aforementioned trade-offs. These preferences may be influenced by prior knowledge of 

the likelihood of different scenarios (e.g., how likely is it that the prognostic variables 

identified from a phase II trial will be similarly prognostic in a future phase III trial), and on 

the relative value of different magnitudes of precision gains/losses. In principle, this problem 

could be formalized using decision theory, where one specifies a loss function representing 

the penalty for different types of mistakes (e.g., selecting the unadjusted estimator when in 

truth an adjusted estimator would have provided much more precision or selecting an 

adjusted estimator when the baseline variables are not prognostic) and then determines an 

optimality criterion such as the weighted average of the loss function over likely scenarios. 

This is an area of future research and could be informed by examining pairs of phase II/

phase III trial data to determine how often prognostic variables in the phase II trial are 

similarly prognostic in the phase III trial.

In practice, we recommend a priori specification of a few key baseline variables to be 

included in the adjusted estimator. We caution against trying many combinations of variables 

to see which leads to the maximum efficiency gain; the danger is that one may inadvertently 

be selecting for noise if too many comparisons are performed. It is an area of future work to 

consider a variety of potential variables and working models and to use cross-validation to 

select the most promising. Another area of future research is to explore the impact of 

selecting which baseline variables to use from the trial data itself (rather than from a prior 

dataset). This has been considered by Tian et al. [28] and Yuan et al. [29].

We focused on improving precision for estimation of the average treatment effect, but the 

same ideas can be used to increase power in hypothesis tests. For example, a Wald statistic 

can be constructed by dividing an adjusted estimator by its estimated standard error 

computed, for example, using the nonpara-metric bootstrap. The efficiency gains for 

estimation then directly translate into power gains for testing the null hypothesis of zero 

average treatment effect.

In planning a trial in which adjusted estimators will be used, several options are available. A 

conservative approach is to plan as if there will be no efficiency gain from adjustment and 

setting the total sample size accordingly. Then precision gains from using an adjusted 

estimator, if they occur, will translate into improved power compared with what is planned 

for. A less conservative approach would be to plan the sample size assuming a relative 

efficiency gain will be achieved; however, this is risky because there is no guarantee that the 

correlation structure in, for example, a phase II trial will be identical to that in a follow-up 

phase III trial.
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It is straightforward to incorporate adjusted estimators into group sequential designs that 

involve preplanned interim analyses where the trial may be stopped early for efficacy or 

futility. One would simply use an adjusted estimator at each interim analysis. Because the 

joint distribution of its value computed at each interim analysis has a canonical joint 

distribution [30], standard group sequential methods can be used.

We focused on the case where the trial data consists of n-independent, identically distributed 

realizations  of the random vector (W, A, Y) as defined in Section 3.1. This 

corresponds to randomization that is independent for each participant. The estimators in this 

paper can also be applied in the case where block randomization is used, either with or 

without stratification by a baseline covariate (that we assume can take a finite set of values). 

For the case of block randomization stratified by a baseline covariate S (e.g., study site), any 

of the estimators from Section 4.2 could be applied separately within each stratum S = s to 

estimate E(Y|A = a, S = s) for each arm a ∈ {0, 1}; the weighted combination of stratum-

specific estimates, with weights equal to the empirical value of each proportion P(S = s), can 

be used as an adjusted estimator of E(Y A = a) for each arm a ∈ {0, 1}. This takes advantage 

of both the stratification by design, and the potential for precision gains by adjusting for 

prognostic baseline variables other than S. The reason we recommend applying an adjusted 

estimator for each stratum of S separately, and then combining the estimates, is that the 

resulting estimator is then consistent without having to assume that patient populations are 

identical at different values of S (e.g., at different sites). In general, we expect the precision 

gains from adjustment to be reduced if certain covariates are already balanced by design. 

However, the number of covariates that can be balanced by design is limited, and additional 

precision gains can be achieved by adjusting for covariates that are not balanced by design. 

Exploring the interaction between stratified randomization and the aforementioned adjusted 

estimators is an area of future research.

Designs with covariate-adaptive randomization are another alternative; these are logistically 

more complicated than the aforementioned designs because each participant's randomization 

probability depends on the data from all previous participants. It is generally recommended 

to adjust for covariates used in the adaptive randomization procedure, and it is still possible 

to gain precision by additional adjustment for prognostic baseline variables not included in 

the randomization procedure [31].

An alternative to resampling pairs (W, Y) from the MISTIE II data would be to generate Y 

given W using, for example, a logistic regression model for Y given W. An advantage of 

conducting simulations based on resampling is that they more closely mimic the 

relationships between baseline variables and outcomes in a trial. Another advantage of 

simulations based on resampling is that they avoid the pitfall of generating data using a 

model similar in form to the working models used in estimators; this can lead to overly 

optimistic results because, in practice, one expects that the outcome regression model will be 

at least somewhat misspecified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table I

Properties for each adjusted estimator used in our simulation studies.

Estimator A B C D E

IPW X X X

Model standardization X X X X

DR-WLS X X X X

Tan X X X X X

PLEASE X X X X X

Rotnitzky et al.K=1 X X X X

Gruber and van der Laan X X X X

IPW, inverse probability weighted; DR-WLS, doubly-robust weighted least squares; PLEASE, precise, locally efficient, augmented, simple 

estimator. All estimators in the table are consistent.
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Table II

Results of the 100,000 simulated randomized trials of size n = 412 patients based on the MISTIE II trial. For 

each of the seven adjusted estimators, relative efficiency is defined as the variance of the unadjusted estimator 

divided by the variance of the adjusted estimator.

Estimator Bias Variance MSE Rel.Efficiency

Scenario 1: Y and W dependent; zero average treatment effect

Unadjusted −0.000060 0.0021 0.0021 1.000

IPW −0.000080 0.0016 0.0016 1.310

Model standardization −0.000075 0.0015 0.0015 1.380

DR-WLS −0.000074 0.0015 0.0015 1.390

Tan −0.000072 0.0015 0.0015 1.440

PLEASE −0.000058 0.0015 0.0015 1.430

Rotnitzky et al.K=1 −0.0000051 0.0013 0.0013 1.630

Gruber and van der Laan −0.000073 0.0015 0.0015 1.380

Scenario 2: Y and W dependent; positive average treatment effect

Unadjusted 0.00021 0.0023 0.0023 1.000

IPW 0.00020 0.0018 0.0018 1.230

Model standardization 0.00024 0.0018 0.0018 1.250

DR-WLS 0.000060 0.0018 0.0018 1.260

Tan −0.00086 0.0018 0.0018 1.280

PLEASE −0.00043 0.0018 0.0018 1.290

Rotnitzky et al.K=1 0.00015 0.0016 0.0016 1.400

Gruber and van der Laan 0.00039 0.0018 0.0018 1.250

Scenario 3: Y and W independent; zero average treatment effect

Unadjusted −0.000033 0.0021 0.0021 1.000

IPW −0.000037 0.0021 0.0021 0.992

Model standardization −0.000041 0.0021 0.0021 0.992

DR-WLS −0.000037 0.0021 0.0021 0.992

Tan −0.000042 0.0021 0.0021 0.986

PLEASE −0.000055 0.0021 0.0021 0.979

Rotnitzky et al.K=1 −0.000038 0.0022 0.0022 0.972

Gruber and van der Laan −0.0000015 0.0021 0.0021 0.991

Scenario 4: Y and W independent; positive average treatment effect

Unadjusted −0.00016 0.0020 0.0020 1.000

IPW −0.00018 0.0020 0.0020 0.992

Model standardization −0.00017 0.0020 0.0020 0.993

DR-WLS −0.00019 0.0020 0.0020 0.992

Tan −0.00017 0.0021 0.0021 0.987

PLEASE −0.00016 0.0021 0.0021 0.980

Rotnitzky et al.K=1 −0.00020 0.0021 0.0021 0.972

Gruber and van der Laan 0.000082 0.0020 0.0020 0.991
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Table III

Results of the 100,000 simulated randomized trials of size n = 1044 patients based on resampling from the 

PEARLS trial. For each of the seven adjusted estimators, relative efficiency is defined as the variance of the 

unadjusted estimator divided by the variance of the adjusted estimator.

Estimator Bias Variance MSE Rel.Efficiency

Scenario 1: Y and W dependent; zero average treatment effect

Unadjusted −0.000087 0.00055 0.00055 1.000

IPW −0.000071 0.00054 0.00054 1.020

Model standardization −0.000075 0.00054 0.00054 1.020

DR-WLS −0.000075 0.00054 0.00054 1.020

Tan −0.000079 0.00054 0.00054 1.030

PLEASE −0.000068 0.00054 0.00054 1.020

Rotnitzky et al.K=1 −0.000078 0.00054 0.00054 1.030

Gruber and van der Laan −0.000080 0.00054 0.00054 1.020

Scenario 2: Y and W dependent; positive average treatment effect

Unadjusted 0.000052 0.00062 0.00062 1.000

IPW 0.000044 0.00061 0.00061 1.020

Model standardization 0.000040 0.00061 0.00061 1.020

DR-WLS 0.000048 0.00061 0.00061 1.020

Tan 0.000053 0.00061 0.00061 1.020

PLEASE 0.000070 0.00061 0.00061 1.020

Rotnitzky et al.K=1 0.000054 0.00061 0.00061 1.020

Gruber and van der Laan 0.000096 0.00061 0.00061 1.020

Scenario 3: Y and W independent; zero average treatment effect

Unadjusted 0.00011 0.00056 0.00056 1.000

IPW 0.00010 0.00056 0.00056 0.997

Model standardization 0.00010 0.00056 0.00056 0.997

DR-WLS 0.00010 0.00056 0.00056 0.997

Tan 0.00011 0.00056 0.00056 0.995

PLEASE 0.000091 0.00056 0.00056 0.992

Rotnitzky et al.K=1 0.00010 0.00056 0.00056 0.991

Gruber and van der Laan 0.00013 0.00056 0.00056 0.998

Scenario 4: Y and W independent; positive average treatment effect

Unadjusted 0.000011 0.00055 0.00055 1.000

IPW 0.0000034 0.00056 0.00056 0.997

Model standardization 0.0000023 0.00056 0.00056 0.997

DR-WLS 0.0000039 0.00056 0.00056 0.997

Tan 0.0000044 0.00056 0.00056 0.995

PLEASE 0.000018 0.00056 0.00056 0.993

Rotnitzky et al.K=1 0.000011 0.00056 0.00056 0.991

Gruber and van der Laan 0.000025 0.00055 0.00055 1.000
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