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 35 

Abstract 36 

Large-scale exome sequencing of tumors has enabled the identification of cancer drivers using 37 

recurrence and clustering-based approaches. Some of these methods also employ three-38 

dimensional protein structures to identify mutational hotspots in cancer-associated genes. In 39 

determining such mutational clusters in structures, existing approaches overlook protein 40 

dynamics, despite the essential role of dynamics in protein functionality. In this work, we present 41 

a framework to identify driver genes using a dynamics-based search of mutational hotspot 42 

communities. After partitioning 3D structures into distinct communities of residues using 43 

anisotropic network models, we map variants onto the partitioned structures. We then search for 44 

signals of positive selection among these residue communities to identify putative drivers. We 45 

applied our method using the TCGA pan-cancer atlas missense mutation catalog. Overall, our 46 

analyses predict one or more mutational hotspots within the resolved structures of 434 genes. 47 

Ontological and pathway enrichment analyses implicate genes with predicted hotspots to be 48 

enriched in biological processes associated with tumor progression. Additionally, a comparison 49 

between our approach and existing hotspot detection methods that use structural data suggests 50 

that the inclusion of dynamics significantly increases the sensitivity of driver detection. 51 

 52 
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Introduction 66 

Large-scale cancer genome studies such as The Cancer Genome Atlas (TCGA) project1,2 and the 67 

International Cancer Genome Consortium (ICGC)3,4 have generated comprehensive catalogs of 68 

somatic alterations for various cancer cohorts. The majority of these somatic variants incur little 69 

or no functional consequence on tumor progression, and are thus often termed neutral 70 

‘passengers.’ In contrast, a handful of ‘driver’ mutations are considered to provide a selective 71 

advantage to cancer cells. One of the critical goals of TCGA and ICGC projects has been to 72 

distinguish between these positively selected "driver mutations"5–7 from a large number of 73 

neutral passenger mutations. 74 

 75 

A majority of the cancer driver detection algorithms quantify the recurrence of mutations to 76 

identify significantly mutated genes and non-coding genomic elements8–11. However, the somatic 77 

mutation landscapes of cancer genomes are highly heterogeneous12–14 and exhibit a long tail of 78 

low-frequency mutations11,13,15–17. The presence of this long tail of rare somatic mutations, along 79 

with limited cohort sizes, makes recurrence-based driver identification very challenging. An 80 

alternative is to employ algorithms that aggregate mutation recurrence on gene/element-81 

levels18,19 or to predict the molecular functional impact of mutations20 to distinguish drivers from 82 

passengers. Compared to protein-truncating mutations and large structural variants, missense 83 

mutations induce subtle changes, which are often difficult to interpret on the phenotypic level. 84 

Thus, identifying missense driver mutations based on their molecular functional impact is also 85 

challenging. In contrast, the signal of positive selection aggregated on functional elements or 86 

sub-regions of the coding genome (such as protein domains21–23, post-translational modification 87 

sites (PTMS)24–26, protein interaction interfaces27,28 and mutation cluster/hotspots29–31) has been 88 

shown to be effective, despite their intrinsic limitations. 89 

 90 

Prior studies have identified driver mutations based on their presence in mutational clusters29–31, 91 

which are sometimes called “hotspot” regions. These mutational clusters are defined based on 92 

the proximity of somatic mutations within the primary sequence29,31 or three-dimensional 93 

structure of a given protein32–36. Sequence-based mutation cluster identification algorithms29,31,37 94 

discover significantly mutated genes while considering an appropriate background mutation 95 

model, trinucleotide context of mutations and distribution of silent mutations. However, 96 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2018. ; https://doi.org/10.1101/508788doi: bioRxiv preprint 

https://doi.org/10.1101/508788
http://creativecommons.org/licenses/by-nd/4.0/


sequence-based approaches miss many hotspot regions, as they ignore spatial proximity between 97 

residues that may be far apart in sequence but can be very close in 3-dimensional(3D) space38,39, 98 

in the context of the fully-folded protein or protein ensembles. In contrast, despite being 99 

inherently limited due to incomplete structural coverage of the proteome, 3D structure-based 100 

mutational cluster definitions provide physical intuition or mechanistic insight into the roles of a 101 

mutational cluster in cancer progression32–36. These structure-based methods compute residue 102 

distances or generate residue-residue contact networks in the 3D structures of proteins to identify 103 

a group of spatially proximal residues. Furthermore, mutation shuffling is performed to identify 104 

significantly mutated residue clusters or hotspots on a protein structure. However, it is important 105 

to note that, current approaches under this framework have failed to consider protein dynamics.  106 

 107 

Proteins are inherently dynamic bio-molecules and sample large ensembles of conformations40–108 
43. The energy landscape underlying the distribution of structures in these ensembles are often 109 

altered based on external (thermodynamic)44,45 or internal (allosteric) signals43,46. Previous 110 

biophysical studies have clearly shown the crucial role of protein motions in conferring protein 111 

functionality47. Thus, one could argue that prior structure-based driver detection methods that 112 

employ only the static structure of proteins are less sensitive when attempting to identify 113 

functional residues through the mutation clustering approach.  114 

 115 

In particular, a static crystalized structure provides only one limited snapshot of the protein, most 116 

likely close to (or at) the bottom of the free energy landscape. In contrast, motion-weighted 117 

community detection approach better reflects physical reality where proteins undergo two 118 

general types of dynamics. First, a protein can dynamically oscillate around the bottom of the 119 

energetic well or in second type of dynamics the underlying free energy landscape changes in 120 

distinct ways, thereby shifting the protein conformation to an alternative functional state. In each 121 

of these scenarios, communication between different communities plays a pivotal role in the 122 

proper functioning of the protein. We posit that hotspot communities exist in large part because 123 

certain select communities either play especially essential roles in these functional dynamics or 124 

because their contributions to such dynamics are especially sensitive to mutations. Static 125 

representations of protein structures presumably fail to define communities in light of their 126 
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essential roles in dynamics, and thus function. Furthermore, they potentially miss many critical 127 

mutational clusters with a potential role in cancer progression. 128 

 129 

In the current work, we address this issue by explicitly incorporating protein dynamics into our 130 

new framework to identify mutational hotspot communities in protein structures. We applied this 131 

framework to the TCGA pan-cancer atlas catalog of missense mutations to identify genes with 132 

significantly mutated residue communities in protein structure. Our pan-cancer analysis 133 

identifies 424 unique genes with at least one hotspot community in the corresponding protein 134 

structure. The majority of these genes are involved in critical biological processes and pathways 135 

involved in cancer progression including DNA repair, signal transduction, immune response, 136 

apoptosis, and post-translational modifications. As expected, we observe higher cross-species 137 

conservation score and greater functional impact scores for mutations present in these hotspot 138 

communities. Furthermore, our prediction includes previously characterized driver genes with 139 

hotspot communities in corresponding protein structure. Additionally, we also identify novel 140 

genes with at least one hotspot community that were not detected by other mutation cluster 141 

algorithms lacking protein dynamics information. Finally, we highlight some examples of driver 142 

genes containing hotspot communities which are predicted to play a vital role in cancer 143 

progression. 144 

 145 

Material and Methods 146 

 147 

SNV dataset and mapping onto protein structure 148 

In this study, we leveraged the MC3(multiple-center mutation calling in multiple cancer)48 149 

somatic mutation dataset generated as part of the TCGA pancan atlas project. Briefly, the MC3 150 

call set was generated using approximately 10,000 tumor/normal whole exome sequences 151 

belonging to 33 different cancer types. Multiple callers, including MuTect49, RADIA50, 152 

SomaticSniper51, and VarScan52 were applied to obtain high-confidence variant calls. Subsequent 153 

filtering removed mutations due to lack of coverage, potential germline contamination, and other 154 

artifacts. We utilized version 2.8 of the publicly accessible MC3 variant call set5. Furthermore, 155 

we only analyzed missense mutations that were designated as ‘PASS’ based on the filtering 156 

criterion. Moreover, we only analyzed variants from samples that were included in the whitelist 157 
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samples and were not hyper-mutated. This subset comprises 2.85 million mutations from 8937 158 

samples in the pancan atlas project. Approximately 2.29 million mutations in this subset occupy 159 

the coding regions of the genome that consists of 1.5 million missense mutations, 1.18 million 160 

silent mutations, 0.6 million nonsense mutations, and 3.7K splice mutations. 161 

 162 

We applied the Variant Annotation Tool (VAT)53 to map TCGA missense mutations onto protein 163 

structures. For each missense mutation, VAT provides an annotation that includes gene name, 164 

transcript name, and the position of the residue getting affected in the translated protein 165 

sequence. Additionally, it also provides the residue identity of the original and mutated residues. 166 

Subsequently, we integrated VAT annotations with a BioMart54 derived identifier map, which 167 

consists of the gene identifier, transcript identifier, and the corresponding PDB ID, if available. 168 

We restrict our analyses to mutations that map to crystal structures with resolution better than 3.0 169 

Å. This restriction was applied to in order to most precisely identify residue communities in 170 

protein structures. Overall, we mapped 0.329 million missense mutations on approximately 171 

17,300 crystal structures in the current study. 172 

 173 

Workflow to identify three-dimensional hotspot communities in cancer 174 

As discussed above, our framework to predict driver genes through identification of hotspot 175 

communities is novel compared to prior approaches as we explicitly include protein dynamics 176 

information in our workflow (Fig 1). Briefly, our integrative workflow includes three distinct 177 

components. First, we model large-scale conformational changes of a protein to identify dynamic 178 

sub-regions of proteins (or “communities”). The large-scale conformational changes are modeled 179 

using anisotropic network models (ANMs)46,55. Subsequently, we model protein structure as a 180 

residue-interaction network, where each residue constitutes a node in the network, and edges (or 181 

connections between these nodes) form the physical interactions between these nodes. 182 

Furthermore, edges in a network can be ‘weighted’ using the extent to which contacting residues 183 

exhibit correlated movements within the dynamic structure of the protein. Highly correlated 184 

motion (or movement vectors) between two residues that are physically in contact (though not 185 

necessarily covalently linked) suggest that knowledge of the motions for one residue can provide 186 

a great deal of information regarding the motions of the other residue. This mutual knowledge, in 187 

a sense, suggests a strong degree of informational flow between residues. The weight for each 188 
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edge in the network corresponds to the “effective distance” of this edge, in which a strong degree 189 

of correlated motion results in a short distance, and a weak correlation in the motions results in a 190 

long distance. With this motion-weighted protein network, communities of resides are defined 191 

with the Girvan-Newman algorithm56. Communities are then defined as residue groups in which 192 

each residue of a given community is connected to other residues of the community, and only 193 

tangentially connected to residues outside the immediate community. These network-weighted 194 

communities thus form densely inter-connected neighborhoods. 195 

 196 

In order to identify mutational hotspot communities on a given protein structure, we mapped 197 

missense mutations from TCGA cohorts onto three-dimensional protein structures. 198 

Subsequently, we computed the frequency of mapped mutations for each community on the pan-199 

cancer level as well as in specific cancer cohorts. Furthermore, for each community with mapped 200 

mutations, we performed a Fisher exact test to determine whether variants fall within a given 201 

community is more frequently mutated than what would be expected by chance. This 202 

significance test assigns an empirical p-value, which we correct for multiple hypothesis testing 203 

using the Benjamini Hochberg method to identify significantly mutated hotspot communities on 204 

protein structure for a given gene. We note that, for a substantial number of genes, there are 205 

multiple PDB structures available. We remove this structural redundancy using structural 206 

coverage (highest fraction of residues covered in the structure) as a filter to provide one to one 207 

mapping between PDB structure and corresponding gene. The source code for the workflow is 208 

available on the project’s Github page (https://github.com/gersteinlab/HotComms). 209 

 210 

 211 

Downstream Analyses 212 

We performed many downstream analyses to further validate our predictions. We extracted 213 

PhyloP57 and CADD58 score for each mutation mapping onto protein structures. Furthermore, we 214 

classified mutations into hotspot and non-hotspot mutations based on whether mutations are 215 

mapped onto residues belonging to hotspot communities or otherwise. Subsequently, we 216 

compared the phyloP score and CADD score distributions for hotspot and non-hotspot 217 

mutations. We performed two-sided Kolmogorov-Smirnov(KS) test to assess the significance of 218 

conservation score differences between hotspot and non-hotspot mutations. We apply the same 219 
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method to quantify such disparities for the molecular functional impact (CADD) score for 220 

hotspot and non-hotspot mutations. Here, our null hypothesis is that the conservation or impact 221 

score for hotspot and non-hotspot mutations are on average not different as they are being drawn 222 

from the same distribution.  223 

 224 

We also performed gene ontology(GO) enrichment and pathway enrichment analyses to further 225 

validate the role of our putative driver genes in tumor progression. For the GO analysis, we 226 

calculated the enrichment based on biological processes available from the GO database59, and 227 

we performed pathway enrichment analysis using the Reactome60 as well as the KEGG 228 

database61. We visualized the enrichment analysis result using the clusterProfiler62 package 229 

available in Bioconductor.  230 

 231 

Additionally, we also compared our predicted driver gene list derived from our hotspot 232 

community analysis with other approaches that detect driver genes based on the presence of 233 

mutation clusters on sequence or structure levels. One of the key differences between our 234 

approach and other approaches is that we employ information on protein dynamics (along with 235 

structural data) to determine hotspot communities. For structure-based methods, we obtained 236 

driver gene list predicted from HotSpot3D35, 3DHotSpot34, HotMap36 algorithms. All three of 237 

these algorithms were previously applied on the TCGA Pancan Atlas data5, which allows us to 238 

make meaningful comparisons with our work. However, we also note small differences in our 239 

workflow compared to other structure-based approaches. For instance, HotMap tools employ 240 

homology-model derived structures compared to other methods that rely only of experimentally 241 

determined structure. Moreover, our method was applied only on crystal structure at higher 242 

resolution compared to other methods that included NMR as well as crystal structures at higher 243 

resolution. Finally, we also employed predicted driver genes from sequence-based cluster 244 

analysis tool (OncodriverClust31) and previously curated driver genes in the cancer gene 245 

census(CGC) database63,64. We note that we excluded driver genes in CGC that play role in 246 

cancer through INDELs, copy number aberrations or other structural variations. We used 247 

UpsetR65 package in R to visualized the multiway comparisons among predicted driver genes 248 

from various tools and CGC database. 249 

 250 
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Finally, we also performed gene expression analysis to validate the role of our putative driver 251 

genes in cancer at the transcriptome level. For this analysis, we obtained the TCGA RNA-Seq 252 

quantification available for samples in the Pancan Atlas project2. For each gene in our putative 253 

driver gene list (based on hotspot community information), we compared the gene expression 254 

distribution for sampled that harbored missense mutations to those that are not mutated. We 255 

performed a two-sided KS test to evaluate the significance value for each gene in our putative 256 

gene list. These significance tests were carried out separately for each cancer-type. However, we 257 

combined the significance level(p-value) for each gene across multiple cancer types using the 258 

Fisher method. We visualized significantly differentially expressed genes using a standard QQ 259 

plot. 260 

 261 

Results 262 

Pan-cancer analysis of genes containing mutations clusters 263 

We applied our workflow to identify significantly mutated hotspot communities for each cancer 264 

cohort as well as on the pan-cancer level. As expected, we observed a comparatively higher 265 

number of genes with at least one hotspot community on the pan-cancer level compared to 266 

cancer-specific analysis. Our pan-cancer analysis identifies hotspot communities present on 267 

protein structures of 434 unique genes (Fig 2a, supplement table S1). In contrast, a cancer-268 

specific analysis revealed 56 potential driver genes with 186 significantly mutated hotspot 269 

community in the corresponding protein structure (Supplement table S2). Some of these genes 270 

(including TP53, PIK3CA, BRAF, SPOP, KRAS, HRAS, and PTEN) have been previously 271 

shown to be a driver for different cancer types. However, we also identified numerous novel 272 

genes containing hotspot communities that might drive cancer progression. Previous studies 273 

suggest that some of these novel genes including RHOC, NCOA1, and KLHL12 are involved in 274 

various signaling pathways. Similarly, PSPC1, FOXO3, and XRCC5 are known to be pivotal for 275 

immune response, apoptosis, and DNA repair, respectively. Furthermore, among these 434 276 

genes, 12 genes had five or more hotspot communities whereas 352 genes had just one hotspot 277 

community on their corresponding protein structure. These observations highlight the efficacy of 278 

our approach in identifying novel and low-frequency putative driver genes with hotspot 279 

communities. 280 

 281 
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Mutation cluster-based approaches assume that residues constituting such clusters are essential 282 

for protein functions. Thus, a majority of cancer missense mutations occupying these hotspot 283 

communities are very likely to disrupt the protein function. In order to validate this assumption, 284 

we quantified the cross-species conservation measure (PhyloP score57) for mutations in hotspot 285 

as well as non-hotspot communities on protein structures. As expected, we observe higher 286 

average conservation score for mutations mapping to residues in hotspot communities compared 287 

to those, which are present outside. Furthermore, the observed difference in conservation is 288 

statically significant (two-sided KS test, p-value < 2e-5) (Fig 2b). Similarly, the putative 289 

molecular functional impact (CADD score58) of mutations occupying hotspot communities was 290 

significantly higher compared to those mapping to non-hotspot communities (two-sided KS test, 291 

p-value < 2e-5) (Fig 2c). 292 

 293 

We also preformed gene ontology62 and pathway enrichment analysis to decipher the biological 294 

function of genes with predicted hotspot communities. The biological process based gene 295 

ontology enrichment analysis indicate role of putative driver genes in diverse biological function 296 

including immune response, cell differentiation, kinase activities, post-translational 297 

modifications, apoptosis and DNA repair (Fig 2d & Supplement table S3). Similarly, reactome 298 

pathway60 based enrichment analysis suggest role of putative driver genes with hotspot 299 

communities in various signaling pathways (Supplement table S4) including NTRK signaling, 300 

DAP12 signaling, EGFR signaling and MAP kinase-associated signaling. Additionally, these 301 

genes are also enriched among DNA repair and non-homologous end-joining associated 302 

pathways (Fig 2e). Furthermore, KEGG pathway66 based enrichment analysis indicate role of our 303 

putative driver genes in various cancer subtypes (bladder, pancreatic, breast, CML, melanoma, 304 

AML, glioma) (Supplement Fig1 & Supplement table S5). 305 

 306 

Comparison of 3D structure based clustering methods 307 

We performed consensus analysis between our approach to the driver genes curated in the 308 

COSMIC67 database. Furthermore, we also performed a comparison between putative driver 309 

genes identified using our workflow and genes identified as drivers by other mutation cluster 310 

detection algorithms that do not take protein dynamics into account. The majority of these 311 

additional algorithms employ the three-dimensional structure of a protein to identify mutational 312 
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cluster except the OncoDriveClust31 tool, which searches for hotspot mutations on the sequence 313 

level. Overall, our workflow identified many additional genes (288 genes) with hotspot 314 

communities compared to other mutation hotspot analysis tools (Fig 3a). One exception being 315 

the HOTMAP36 algorithm that utilizes protein homology model in addition to protein structure. 316 

Thus, it identifies significantly higher number of unique genes (620 genes) with mutation cluster 317 

compared to any other tool. Furthermore, our approach identified 146 genes (34% of our gene 318 

list) with hotspot communities that are either curated as a driver gene in COSMIC or predicted to 319 

contain a mutation cluster by another tool (Fig 3a). Among these 146 genes, 89 genes 320 

overlapped with putative driver genes identified by HOTMAP algorithm, whereas 63 genes 321 

overlapped with drivers in COSMIC. As expected, we observed the lowest overlap (33 genes, 322 

7% of our putative driver gene list) with sequence-based method (OncoDriveClust; Fig 3a). 323 

 324 

Additionally, we analyzed TCGA expression data to obtain additional evidence corroborating the 325 

biological validity of putative driver genes identified through our workflow. Intuitively, one 326 

would expect a significant difference in gene expression level between samples with and without 327 

mutation for genes that were predicted to contain a significantly mutated hotspot community. For 328 

each candidate gene, we quantified the statistical significance in expression distribution 329 

differences using two-sided KS test. Furthermore, we performed this test for individual cancer 330 

type, and the corresponding p-values were combined across cancer types using Fisher’s method 331 

to provide a pan-cancer significance measure. Overall, our analysis identified 60 genes including 332 

TP53(p-value 3.59e-66), SPTA1 (p-value 8.58e-32), PIK3CA (p-value 7.06e-25), KRAS (p-333 

value 5.73e-11), and EGFR (p-value 2.78e-06) that were differentially expressed across cancer 334 

types (Fig 3b & Supplement table S6). A subset of these differentially expressed genes such as 335 

MYH7 (p-value 4.22e-15), ROS1 (p-value 3.26e-13), TIAM1 (p-value 2.48e-12), PTPRD (p-336 

value 3.96e-23), and HUWE1 (p-value 4.84e-10) are potentially novel driver genes with 337 

predicted hotspot communities (Fig 3b & Supplement table S6). Moreover, we note that 76% 338 

of our putative driver gene list with significantly mutated hotspot communities were 339 

differentially expressed in at least one TCGA cancer cohort. 340 

 341 

Finally, we performed GO and pathway enrichment analysis on novel genes that we predict to 342 

contain mutational hotspot communities. However, these genes were neither present in the 343 
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COSMIC driver database nor were predicted to encompass mutation cluster through other 344 

hotspot identification tools. We observed significant enrichment of these genes in crucial 345 

biological processes (Supplement table S7) including DNA conformation change, regulation of 346 

immune response, regulation of stem cell differentiation, nucleosome organization, and 347 

endothelial cell apoptotic process (Supplement Fig2). Similarly, pathway enrichment analysis 348 

implicates their role in DNA repair, SUMOylation, RHO GTPase activity, telomere 349 

maintenance, and various signaling pathways (Fig 3c & Supplement table S8). 350 

 351 

Case studies highlighting the roles of hotspot communities in deciphering driver 352 

mechanisms 353 

Integration of protein 3D-structure and protein dynamics to identify driver genes has a clear 354 

advantage over other methods that do not leverage protein structure or protein dynamics 355 

information. Our method allows us to investigate disruption in protein structure and function 356 

induced by missense mutations that occupy within predicted hotspot communities. We also note 357 

that the majority of our hotspot communities encompass residues that are pivotal for important 358 

protein functions including allostery, bimolecular signaling, protein binding, and post-translation 359 

modifications. The sensitive detection of functional sites on protein structure helps to decipher 360 

the underlying biophysical mechanism that plays a crucial role in cancer growth. Here, we 361 

highlight three examples testifying the utility of our framework in gaining biophysical insight 362 

into cancer progression through disruption of predicted hotspot communities. These examples 363 

include an oncogene(BRAF), tumor suppressor gene(PIK3R1), and a novel putative driver 364 

gene(PTPRD) that are predicted to contain multiple hotspot communities on their respective 365 

protein structure. 366 

 367 

Missense hot spot communities: PIK3R1 368 

The PI3KR1 gene encodes the alpha subunit of the enzyme Phosphatidylinositol 3-kinase 369 

regulatory, which plays a crucial role in a variety of cellular processes including cell survival, 370 

regulation of gene expression, cell metabolism and cytoskeletal rearrangement68. Mutations in 371 

PIK3KR1 gene has previously been implicated as a tumor suppressor gene in breast cancer. 372 

Recent therapeutic studies have targeted PI3K inhibition resulting in a decrease in cellular 373 

proliferation and reduced metastasis in the mouse model. PI3Ks are obligate heterodimers 374 
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composed of a p110 subunit and a regulatory subunit. Previous studies have identified four 375 

distinct domains belonging to the catalytic P110 alpha subunit that harbor somatic mutations 376 

leading to an increase in PI3K activity. We observe two distinct hotspot communities (Fig 4a) on 377 

the co-crystal structure (PDB ID: 2V1Y) of the protein complex that compromises ABD domain 378 

of the P110 alpha subunit and the iSH2 domain of the p85 alpha regulatory subunit. The two 379 

hotspot communities are composed of 28(community 5) and 26(community 7) residues, 380 

respectively (Fig 4a).  On the pan-cancer level, we observe 24 and 16 mutations that map to 381 

community 5 and community7 on the co-crystal structure, respectively. These distinct hotspot 382 

communities are adjacent to each other in the same helical structure. However, we observe a 383 

small kink in this helical structure, which presumably lead to distinct protein motions associated 384 

with these two different hotspot communities. 385 

 386 

Missense hotspot communities in BRAF gene 387 

BRAF gene encodes a protein belonging to the serine/threonine protein kinase family that 388 

regulates MAP kinase and ERK signaling pathway69. This pathway is considered to be essential 389 

for a number of biological functions including cell differentiation, cellular growth, senescence, 390 

and apoptosis. Somatic mutations in the BRAF gene are often implicated in various cancer 391 

subtypes including melanoma, colorectal cancer, prostate cancer, non-small-cell lung cancer, and 392 

papillary thyroid tumors. It has been proposed that BRAF induce dysregulation in the binding of 393 

Ras proteins to Raf and MEK proteins in the Ras/RAF/MEK/ERK signaling cascade that leads to 394 

over-activation of the signaling pathway and subsequent oncogenesis. Multiple enzyme 395 

inhibitors have been designed to target BRAF kinase in the tumor. One such inhibitor SB-396 

590885 has been co-crystallized with BRafV600E kinase domain at the X-ray resolution of 2.9 397 

Angstrom (PDBID: 2FB8)70. A previous study indicates the role of pi-stacking interactions, 398 

hydrogen bonds and salt bridges in stabilizing the interaction between these two subunits in the 399 

crystal structure. In our study, we identified one hotspot community in this co-crystal structure 400 

(Fig 4b). This hotspot community is composed of 52 residues that constitute a beta sheet 401 

secondary structure. Interestingly, we also observe that SB-590885 inhibitor occupies the same 402 

hotspot community. 403 

 404 

Missense hotspot community in TPRD gene 405 
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The PTPRD gene encodes a protein that belongs to the protein tyrosine phosphatase(PTP) 406 

family. PTP proteins are considered essential for regulating cellular proliferation, differentiation, 407 

and oncogenic transformation. PTPRD gene encodes a transmembrane protein containing a 408 

cytoplasmic tyrosine phosphatase domain. Previous studies have shown that PTPRD genes are 409 

frequently deleted in various cancer types including glioma, neuroblastoma, and lung cancer71. 410 

However, we note PTPRD is not identified as missense driver in cosmic catalog. Moreover, 411 

previous studies did not identify presence of mutational hotspot communities in the PTPRD 412 

gene. In contrast, our analysis identifies one hotspot community in the crystal structure (PDB ID: 413 

2YD7) of the receptor protein tyrosine phosphatase(RPTP) sigma subunit. RPTPs are cell 414 

surface proteins with intracellular PTP activity and extracellular domains that are sequentially 415 

homologous to cell adhesion molecules. Moreover, RPTP sigma subunit is considered necessary 416 

for nervous system development and function. In our analysis, somatic mutations mapped to two 417 

communities (community 2 & 4) on the crystal structure of the RPTP sigma subunit. Our 418 

workflow predicts one hotspot community that comprise of 47 residues in the crystal structure of 419 

PTPRD (Fig 4c) and adopts a beta strand conformation. 420 

 421 

 422 

Discussion 423 

The underlying heterogeneous characteristic72 of cancer makes interpretability of genomic 424 

alterations in a cancer genome very challenging. In particular, genomic heterogeneity poses a 425 

major challenge in identifying key driver mutations in cancer. Large-scale cancer genome 426 

sequencing efforts have helped us to generate comprehensive catalogs of driver mutations5 in 427 

various cancer types. However, the canonical recurrence-based driver detection algorithms have 428 

failed to identify low-frequency or rare drivers. The limited cohort size11 and heterogeneity14 in 429 

cancer genome provides limited power to identify low-frequency drivers using the canonical 430 

position level recurrence algorithms. A simplistic approach to address the issue of missing rare 431 

driver will be to sequence more patients for a given cancer type. However, this approach will be 432 

particularly challenging for highly heterogeneous cancer cohorts with multiple subtypes73 within 433 

a cancer type. Moreover, this approach will not be practical for certain rare cancers including 434 

neuroblastoma, angiosarcoma, Hodgkin’s lymphoma, and others.  A suitable alternative is to 435 

quantify recurrence over functional elements or sub-gene levels74 such as post-translational 436 
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modification sites (PTMS)25,26, protein interaction interfaces28 and mutational clusters33–36,38. In 437 

particular, many driver detection algorithms search for the presence of mutational hotspot on the 438 

3D-protein structures to identify putative driver genes. Compared to sequence-based driver 439 

detection methods, using protein structural data can help to decipher the underlying molecular 440 

mechanisms that influence cancer progression. However, current approaches to identify cancer 441 

mutation hotspots on protein structure and corresponding driver genes completely ignore the role 442 

of protein dynamics, which is considered essential for protein function. Thus, here we propose a 443 

new framework that utilizes protein dynamics along with the 3D-structure of proteins to identify 444 

missense hotspot communities on protein structure and corresponding putative driver genes. 445 

 446 

Overall, our workflow identified 802 hotspot communities on crystal structures of proteins 447 

corresponding to 434 unique genes on the pan-cancer level. We also compared our putative 448 

driver gene list with previous experimental and prediction studies derived driver gene list. 449 

Among our putative driver gene list, we find 36% of genes are either known or predicted to be 450 

driver genes based on previous studies. We term the remaining 64% of genes as novel drivers in 451 

our study.  We performed many downstream analyses on our putative driver genes to highlight 452 

their role in cancer progression. Our framework assumes that a residue community on a protein 453 

structure represents a putative functional subunit of a protein. Thus, high mutation densities in 454 

such communities (compared to a random expectation) is very likely to alter protein function. 455 

One would expect that mutations influencing residues in these communities will have a high 456 

functional impact as they can drive cancer progression. Our observation is consistent with this 457 

hypothesis, as we find that missense mutations occupying hotspot communities in proteins 458 

structures are highly conserved across species and have a higher molecular functional impact 459 

compared to those outside such hotspot communities.  460 

 461 

Furthermore, we also observe significantly high enrichment of out putative driver genes with 462 

predicted hotspot communities in vital biological processes and pathways that are relevant for 463 

oncogenesis. For instance, ontology analysis indicates enrichment of our putative driver genes in 464 

biological processes associated with regulation and activation of innate immune response. This 465 

observation is consistent with the current notion that dysfunction in immune response 466 

contributed through genomic alterations will allow tumor cells to evade immune detection due to 467 
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lack of effective immune response. Additionally, we also observe a significant enrichment of 468 

putative driver genes in cell differentiation and cell growth processes, such as the regulation of 469 

hematopoiesis and myeloid cell differentiation, which were previously implicated in tumor 470 

growth. Moreover, we observed a high enrichment of our putative driver genes in the regulation 471 

of kinase activities including protein serine/threonine and MAP kinase activities. Additionally, 472 

these genes are also enriched among ERK1/ERK2 signaling cascade, protein kinase B signaling, 473 

PI3K/AKT signaling, FGFR1 signaling, NTRK1 signaling, apoptosis signaling, and various 474 

other signaling pathways. Presence of aberrant signaling pathways is an essential hallmark of 475 

cancer. Thus, enrichment of our putative genes in critical signaling pathways provides clear 476 

biological evidence for their role in cancer. Moreover, these genes are enriched for DNA repair 477 

function via non-homologous end joining(NHEJ) and other non-recombination based repair 478 

mechanisms. Finally, we note that we observed the same enrichment for the subset of novel 479 

genes in our putative driver gene list, that have not been identified as drivers in previous studies. 480 

 481 

Genomic alterations that are consequential for tumor growth are often manifested on the 482 

transcriptome level such that mutated driver genes are often differentially expressed compared to 483 

a healthy population or patients without any mutation in driver genes. We leveraged the 484 

transcriptome data from TCGA to further validate out predicted driver genes based on hotspot 485 

community identification. We identified 60 genes among our predicted driver genes that were 486 

significantly differentially expressed in tumor samples with missense mutations in those genes 487 

compared to those without among multiple cancer cohorts. These differentially expressed driver 488 

genes include novel as well previously established driver genes. Similar to genetic data, 489 

transcriptomic data in TCGA is limited for specific cancer cohort that provides insufficient 490 

power to identify all differentially expressed genes. However, we note that 76% of our putative 491 

driver genes were differentially expressed in at least one TCGA cancer cohort. These analyses 492 

further validate our hotspot community-based driver detection approach. 493 

 494 

In the context of investigating the molecular mechanism underlying tumor growth, protein 495 

structure-based driver detection methods offer significant advantages over approaches that are 496 

only sequence-based. However, structure-based methods suffer from limited coverage of the 497 

human proteome. Thus, the applicability of structure-based methods is inherently limited only to 498 
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mutations that can be mapped onto protein structure. A prior study36 has applied homology 499 

model derived structures to circumvent the issue of limited structural coverage. However, the 500 

accuracy of homology-based models has shown to be limited for various protein complexes and 501 

transmembrane proteins. Moreover, modeling protein motions for homology-model derived 502 

proteins structures will be most likely less accurate thus affecting the sensitivity of our approach. 503 

Nevertheless, significant technical improvement in crystallographic and cryoEM techniques75 are 504 

expected to expand the current structurally-resolved proteome. In particular, cryoEM 505 

technologies75 now allows us to obtain a high-resolution structure of large-size proteins and other 506 

biomolecular complexes that were previously elusive. Thus, we anticipate an essential role of our 507 

approach in future studies aimed at discovering low-frequency drivers in various cancer cohorts. 508 

Additionally, knowledge of protein motions (along with structure) can potentially help in 509 

uncovering drug interaction with hotspot communities. Such studies are likely to open new 510 

therapeutic avenues for various cancers and will help us realize the goal of precision medicine in 511 

cancer. 512 

 513 
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 546 

 547 

Fig 1. Workflow of HotCommics to identify putative driver genes: This integrative approach 548 

utilizes protein community information along with mapped mutations onto protein structure to 549 

identify significantly mutated communities in protein structure. Fisher method is employed to 550 

quantify significance value for each community with mapped mutations. 551 
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 552 

 553 

 554 

 555 

Fig2. Pan-cancer analysis of putative driver genes with hotspot communities: a) pan-cancer 556 

q-q plot for genes with hotspot communities, b) PhyloP conservation score comparison between 557 

mutations occupying hotspot communities against non-hotspot communities on protein 558 

structures, c) CADD score correlation between mutations occupying hotspot communities 559 

against non-hotspot communities on protein structures, d) Biological process enrichment analysis 560 

for putative driver genes with at least one hotspot. X-axis corresponds to gene ratio that 561 

corresponds to the fraction of putative driver genes belonging to a particular biological process. 562 

The color code and size correspond to corrected p-value and number of genes involved in the 563 

biological process, respectively, e) Reactome based pathway enrichment analysis. The color code 564 

and size correspond to corrected p-value and number of genes involved in the biological process, 565 

respectively. 566 
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 570 

 571 

Fig3. Pan-cancer analysis of putative driver genes with hotspot communities: a)	Comparison 572 

of multiple driver detection algorithms including HotCommics. We used the most recent version 573 

of the Cancer Gene Census database for this analysis. Remaining algorithms were also run on the 574 

MC3 variant call set, b)	Q-q plot highlighting differentially expressed putative driver genes 575 

across multiple cancer types, c) Pathway level enrichment analysis of singleton genes identified 576 

by the HotCommics algorithm that was novel for putative driver genes identified by other 577 

algorithms and CGC database. 578 
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 599 

Fig4. Examples of TSG, oncogene, and putative driver genes with hotspot communities:  600 

a) Example hotspot communities (shown in red) on the PIK3R1 gene as identified by our 601 

workflow. We note that previous studies have identified the PIK3R1 gene as a tumor suppressor 602 

gene, b) Example hotspot communities (shown in red) on the BRAF gene as identified by our 603 

workflow. We note that previous studies have identified BRAF1 gene as an oncogene, c) 604 

Example hotspot communities (shown in red) on the PTPRD gene as identified by our workflow. 605 

We note PTPRD is an example of novel putative driver genes with hotspot community with 606 

significant differential gene expression. 607 

a 
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