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ABSTRACT
Software vulnerabilities still constitute a high security risk
and there is an ongoing race to patch known bugs. However,
especially in closed-source software, there is no straight-
forward way (in contrast to source code analysis) to find
buggy code parts, even if the bug was publicly disclosed.

To tackle this problem, we propose a method called Tree
Edit Distance based Equational Matching (TEDEM)
to automatically identify binary code regions that are “sim-
ilar” to code regions containing a reference bug. We aim to
find bugs both in the same binary as the reference bug and
in completely unrelated binaries (even compiled for different
operating systems). Our method even works on proprietary
software systems, which lack source code and symbols.

The analysis task is split into two phases. In a pre-
processing phase, we condense the semantics of a given bi-
nary executable by symbolic simplification to make our ap-
proach robust against syntactic changes across different bi-
naries. Second, we use tree edit distances as a basic block-
centric metric for code similarity. This allows us to find
instances of the same bug in different binaries and even
spotting its variants (a concept called vulnerability extrapo-
lation). To demonstrate the practical feasibility of the pro-
posed method, we implemented a prototype of TEDEM
that can find real-world security bugs across binaries and
even across OS boundaries, such as in MS Word and the pop-
ular messengers Pidgin (Linux) and Adium (Mac OS).

1. INTRODUCTION
Security vulnerabilities in software systems have plagued

us since many years. There are numerous classes of security-
relevant bugs such as buffer overflows, use-after-free condi-
tions, and logical flaws. While it is possible to define a bug
class on an abstract level (e. g., “a copy operation writes
data beyond array bounds”), the concrete manifestation of
a vulnerability in a program can be arbitrarily complex. As
such, it is hard to apply the abstract definitions in practice.

Many approaches were proposed that perform an auto-
mated security analysis of a given piece of (binary or source)
code to detect specific security vulnerabilities. Such meth-
ods either leverage characteristic patterns for identifying se-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC December 8-12, 2014, New Orleans, LA, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-3005-3/14/12 ...$15.00
http://dx.doi.org/10.1145/2664243.2664269.

curity vulnerabilities [10] or utilize program analysis tech-
niques such as fuzzing [24], taint analysis [22, 25], and sym-
bolic execution [3,4] to find bugs. In general, the problem of
identifying all bugs in a given program is undecidable and
thus all approaches have certain shortcomings. For exam-
ple, they can only detect predefined kinds of vulnerabilities
or miss some manifestations of a bug (i.e., they have false
negatives) during the analysis phase.

Finding similar bugs. A variant of the general problem
of finding bugs is to identify bug doublets, given a concrete
example of a buggy piece of code. The problem can be stated
as follows: Given an exemplary bug, find locations in a given
program which have this or a similar bug.

While finding completely new bugs is certainly the more
ambitious goal, there is a great benefit in finding similar
bugs. For example, it helps to find dormant bugs, identify
false negatives, or to check if a binary supplied by a third-
party still has a known bug or is patched already. Yamaguchi
et al. [28] studied this problem on the source code level and
they coined the term vulnerability extrapolation. The under-
lying assumption is the following: When code is similar to
code which contains a bug, it is likely to contain the same
bug as well [21]. Based on this assumption, the problem of
vulnerability extrapolation can be addressed with a reason-
able code similarity metric.

In the real world, there are many reasons for bug dou-
blets. The underlying root cause is typically code reuse,
which may happen due to copy’n’paste or project forks [17].
When maintaining a code base with different versions of the
same code, it is almost certain that a bug found in one ver-
sion of a program is not fixed in all versions. This problem
grows when the code is not maintained by the same group
of people or when code is shared among different projects
(e. g., an open-source library). Copied code may be modified
to suit the slightly different needs and bugs tend to happen
in similar, but not equal, circumstances. Thus, looking for
exact matches may severely limit usefulness.

When looking for bugs, there are many reasons to ana-
lyze binary code instead of source code. Most importantly,
source code is not always available (e. g., proprietary code
used in commercial products, third-party libraries, or legacy
code). In addition, the compilation phase itself may in-
troduce bugs that simply were not present in the source
code [27]. Unfortunately, finding bugs gets a lot harder when
the analysis is performed on binary code. Several techniques
can detect code reuse in source code [12,14,18], but they can-
not directly be applied to binary code: Transformations and
optimizations performed by a compiler such as register as-
signments, function inlining, constant folding/propagation,
or instruction reordering alter code structure and code syn-
tax. Hence, identifying similar code regions is challenging.



Our approach. In this paper, we introduce a method
called Tree Edit Distance based Equational Match-
ing (TEDEM). Given a so called signature, TEDEM finds
code locations in a binary that has similar bugs. TEDEM
finds vulnerabilities in binary programs by identifying buggy
code based on semantic signatures for a given security bug.
In contrast to source code-based techniques that heavily rely
on symbols (neglecting semantic information), we take an-
other approach to address the problem. In a preprocessing
phase, we first disassemble a binary and extract semantic
information of the basic blocks in forms of expression trees
(i. e., equations that summarize the results of the computa-
tions performed in the basic block). This symbolic repre-
sentation makes our analysis robust against small syntactic
changes across binaries.

Based on this information, we can search for similar code
regions. To this end, we introduce a metric for fine-grained,
basic block-centric comparison of binary code, which al-
lows us to find bugs through code similarity. The metric
takes most of the semantic information into account. In
contrast, methods focusing solely on mnemonics [20], CFG
structure [15], or API calls [1] are by design ignoring certain
important semantic information. Thus, they often cannot
reveal sufficient details to compare small code segments, as
it is especially required for extrapolating vulnerabilities. If
the granularity is too coarse, one can only look for aggre-
gated, statistical effects over bigger structures, like functions
or libraries — losing the flexibility to search for similar bugs
contained in other substructures.

We evaluated TEDEM on multiple large and real-world
binaries. For example, we found unpatched vulnerabilities in
PuTTY forks across binary boundaries and in Adium’s libpur-
ple even across OS boundaries. Furthermore, we found patch
level discrepancies in MS Office products. Despite its fine-
granular bug search, TEDEM scales reasonably well and
could find bugs even in large programs such as MS Word 2013
(6.3 MB and 416,736 basic blocks) in less than 18 min.

Contributions. In this paper, we make the following three
main contributions:
• We designed and implemented a basic block-centric

metric based on tree edit distances to measure the sim-
ilarity of two pieces of binary code that is capable of
tolerating small syntactic changes in the program.
• Using this as a building block, we implemented a scheme

to measure similarity of larger code constructs, like
sub-CFGs and functions.
• Empirical measurements demonstrate the viability of

the approach and we found real-world bugs across bi-
nary and even across OS boundaries.

2. RELATED WORK
Finding bugs in software systems has attracted a lot of

research. In the following, we briefly review prior work in
this area and discuss how it relates to our approach.

2.1 Code Clones in Source Code
ReDeBug [11] is a source code-based system to identify

unpatched code clones in a very fast way, which is due to
the fact that they only search for close-to-exact matches.
While it shares the goal with our work, it requires source
code and is thus of no help for binary software.

Yamaguchi et al. proposed extrapolation of vulnerabilities
on source code level [28]. Given source code written in C,

they extract abstract syntax trees (AST) of all contained
functions. Based on the properties of their ASTs, functions
are projected into a high-dimensional vector space. Sub-
sequently, methods from the realm of machine learning are
applied in order to cluster functions, which reveals functions
similar to ones known to be vulnerable. We achieve compa-
rable results as reported by Yamaguchi et al. (cf. Section 5),
just that our approach does not require source code.

2.2 Binary Code Comparison
BinDiff, as proposed by Dullien and Rolles [5], is the de

facto standard commercial tool for comparing two pieces of
binary code. BinDiff mainly relies on the structural similar-
ity and makes only little use of code semantics. Thus, one of
its weaknesses is that it conceptually struggles with match-
ing functions that are only invoked indirectly and are thus
not connected in a call graph (regularly the case for, e. g.,
C callbacks, C++ virtual methods, Objective-C methods).
Furthermore, BinDiff regularly mismatches basic blocks on
the foundations of similar structure, but different semantics.

Another group of related work explicitly assesses semantic
similarities/differences of binary software. Many works are
based on summarizing a basic block’s effects on the program
state as a set of equations (sometimes referred to as symbolic
execution [25]) and we also utilize such an approach. Bin-
Hunt [7] tries to find semantic differences between a binary
program and its patched version to pinpoint vulnerabilities.
To determine how similar two basic blocks are, they test
all possible pairs of equations from both sets for equality
using a theorem prover. Based on identified semantically
equal basic blocks, a custom backtracking algorithm finds
the largest maximum common induced subgraph between
two functions and derives the similarity between two func-
tions from this. Ming et al. proposed iBinHunt [19], which
adds taint analysis to BinHunt to allow for less basic block
comparisons. As these tools are targeted for whole-binary,
function-level “diffing”, they are somewhat ill-suited for our
use-case of finding small and fine-grained bug signatures:
their idea would fail with function inlining and could not
find out-of-context re-use of vulnerable code snippets. In
addition, these two approaches can only verify if code is
“equal” and have to rely on handcrafted heuristics to use
their non-continuous similarity score as a metric. As we will
show, a proper metric is vital in the context of bug searches.

BinHash is a sampling-based approach to identify seman-
tically similar binary functions [13]. BinHash evaluates the
sets of basic block equations concretely for randomly-chosen
input vectors and all their permutations. Functions are then
compared via locality-sensitive hashing over the output vec-
tors of their basic blocks. Since there are generally n! per-
mutations for a given vector, scalability problems arise for
basic blocks with large input dimensions. While evaluat-
ing TEDEM, we encountered basic blocks with an input
dimension even larger than 50, which demonstrates scalabil-
ity issues with approaches such as BinHash.

Lakhotia et al. presented BinJuice [16]. They normalize
a basic block’s equation set in several steps to extract its
semantic “juice”. Semantically similar basic blocks are then
identified through lexical comparisons of juices. Since the
authors did not give a quantifiable evaluation, it remains
open if their metric is suitable. In addition, the authors did
not expand their similarity computation beyond the scope
of individual basic blocks, which is required for bug search.
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Figure 1: Overview of the workflow of TEDEM; Preprocessing phase at the top, matching phase at the bottom. Functions
are gray circles, basic blocks are solid white rectangles.

Exposé [23] identifies library re-use in binary software.
First, promising function matches between the library and a
binary program are gathered by examining simple features
like number of arguments or cyclomatic complexity. Second,
candidate function matches are verified by symbolically ex-
ecuting both functions and leveraging a theorem prover. As
Exposé aims to identify library matches, it is too coarse-
grained for certain scenarios when extrapolating bugs.

2.3 Finding Unknown Bugs
Tools such as AEG [2] and Mayhem [3] aim at automat-

ically detecting security vulnerabilities. They use binary
analysis techniques such as symbolic/concolic execution to
reason about vulnerable code paths. Our goal is different in
the sense that we search for similar security vulnerabilities
given an exemplary bug signature. In addition, many such
approaches aim to find specific bug classes, such as control
flow hijack vulnerabilities. In contrast, our system can be
used to find any type of bug.

3. SYSTEM OVERVIEW
In the typical use case of our approach, an analyst knows

about a concrete bug (maybe from a CVE advisory or from a
patch) and aims to find similar bugs. In our terminology, the
analyst extracts a bug signature and uses it to find further
similar bugs in a target program.

Figure 1 visualizes the two phases of our Tree Edit Dis-
tance based Equational Matching (TEDEM). First,
in the upper half, we preprocess program binaries for our
bug-search. This phase extracts disassembly and structure
(i. e., a control flow graph) from the programs and then sum-
marizes semantics of the basic blocks in form of expression
trees. Preprocessing only has to happen once per signature
and — independently — once per target program. The pre-
processed output can be reused in future bug searches.

Second, as shown in the lower half of Figure 1, our system
searches for a signature within a target program and identi-
fies binary code parts which are similar to the signature. For

this, we identify single high-quality basic blocks matches in
the signature and the target program. We use these pairs
of basic blocks as starting points to compare the full signa-
ture with parts of the target program, such as functions or
parts thereof. At the end of the workflow, TEDEM reports
the similarity of each function from the target programs to
the signature in a sorted list, revealing the functions with
substructures similar to the signature.

3.1 Program Preprocessing
In practice, compilers complicate the process of binary

comparison, even if the binaries have the same source code
base. Two different compilers or compiler configurations
typically create different versions of binary code from equal
source code. Most compilers apply memory or performance
optimizations so that the representations between compiled
binaries of two configurations differ significantly. For ex-
ample, the usage of registers can change, different calling
conventions may be used, the control flow graph may be al-
tered, or arithmetic operations could be tweaked to optimize
performance. This can occur if another compiler (or ver-
sion) is used, the optimization levels are changed, or even if
slightly modified source code allows the compiler to perform
better optimizations. All these modifications complicate the
process of comparing two binaries at the disassembly level.

In this section, we describe the preprocessing steps that
we take to compensate for these issues.

3.1.1 Disassembly and Structuring
First, we obtain a disassembly of the programs, i. e., the

original (buggy) program and the target program. We then
split each program into strict basic blocks. That is, we ex-
tract the basic blocks and further split these at function
calls. Each strict basic block is thus only left at its final
instruction, the terminator, and only its first instruction is
a jump target. While this definition is used for basic blocks
as well, the instruction after a call is an implicit target of a
return instruction and is naturally not the first instruction



of a basic block. For the rest of this paper, whenever we
mention a basic block, we refer to a strict basic block.

3.1.2 Semantic Extraction
Next, we transform the sequence of a basic block’s in-

structions into equations. Each equation is an assignment
where left-hand side and right-hand side both contain ar-
bitrary computations. The left side of the equation is (or
results in) a register or memory location. The equations are
built such that each register, write-address, or jump con-
dition only appears once on the left side of an assignment
(like a single static assignment). We compute the equa-
tions by accumulating the computational steps performed
on one such variable on the right side of the assignment.
All inputs on the right side of the equations are not modi-
fied by preceding equations. For example, we consider the
input variable eax as constant, even if a value is assigned
to the output variable eax before the variable is used in a
subsequent equation. Therefore, for a given input state, the
equations can be evaluated independently from one another.

This preprocessing abstracts from instruction ordering and
allows a natural sorting of the assignments. We chose an ar-
bitrary but deterministic order to sort the equations, such
that two equal basic blocks have the same order of equations.

Further, we add equations for the number of successors/pre-
decessors. We also add a condensed terminator-equation,
where we encode possible jump destinations and, if present,
a branching condition. In addition, we distinguish various
kinds of constants by their type of usage, e. g., code loca-
tions, data offsets, or arithmetic/logic constants.

We then simplify and normalize the assignments on a basic
block level. For details, we refer to Section 4.1.2.

3.2 Bug Signature Matching
Once the binaries have been preprocessed, we continue

with the original goal to find bugs in these programs. In this
section, we define the notion of a signature (Section 3.2.1),
which is searched for in the target program. We start by de-
scribing how we compare a basic block of the signature with
a basic block of the target program (Section 3.2.2). We then
outline our approach to prefilter basic blocks to gain search
speedups, without decreasing effectiveness (Section 3.2.3).
Lastly, we leverage the CFG to apply the signature (Sec-
tion 3.2.4) on the target program.

3.2.1 Bug Signature
A bug signature describes a program part that is char-

acteristic for a certain bug. We define a bug signature as
a subset of the CFG of a vulnerable function. This means
that an analyst only needs to identify the bug-relevant parts
of a function. Essentially, the bug signature is binary code,
i.e., contains basic blocks and their transitions and thus un-
dergoes the same handling as the target programs. In the
simple case of function-level code duplicates, the signature
can be equal to the CFG of the vulnerable function. In more
advanced bugs, more fine-grained signatures can be as small
as parts of the equations of certain basic blocks. We will
demonstrate in the evaluation section that – once a bug is
known and has been understood – deriving a signature is
straightforward with minimal manual effort.

However, too generic signatures risk to cause false posi-
tives. Therefore, instead of searching for entire bug classes,
the signature focuses on finding specific bugs. For example,
instead of only searching for writes to memory with lacking

bound checks (to capture buffer overflows), we also search
for contextual information that is specific to the buggy refer-
ence program (e.g., basic blocks surrounding the bug, con-
crete buffer lengths, and the specific way the memory is
modified). Our search is thus contextual, as the signature is
derived from a concrete bug context in a reference program.
Despite the need for context, our approach can also find
similar bugs in programs other than the reference program.

3.2.2 Basic Block Comparison
Given the signature, we want to find similar bugs in the

target program. A cornerstone in this process is comparing
basic blocks of the signature with basic blocks of the tar-
get program. We leverage the tree structure of the basic
block equations for this comparison. After the preprocess-
ing phase (Section 3.1), each basic block is represented as
a list of equations. An equation is a tree, where the root
node is an assignment or a basic block terminator, the leaf
nodes are registers or constants (e. g., numbers, addresses),
and intermediate nodes are operations. We thus leverage
a tree comparison algorithm to measure similarity between
two given basic blocks.

We chose to use a tree edit distance [26] (TED) to compare
equations. The TED measures the minimum costs for trans-
forming one tree (e. g., basic blocks from the signature) to
another (e. g., basic blocks from the target program). That
is, it measures the costs for modifying trees via node re-
placements and insertions/deletions of subtrees. We get low
distances for similar, and higher distances for less similar
inputs. The TED thus measures the syntactic difference in
the condensed semantic representation of the basic block.
The costs correlate with the number of nodes that need to
be replaced, inserted or deleted, and are at most as large as
the number of modified nodes. Tekli et al. provide a detailed
description of the distance computation [26].

3.2.3 Prefiltering & Candidate Search
Näıvely, we could compare all basic blocks from the sig-

nature with all those from the target program and expand
our search from there. However, especially if fine-grained
similarity measures (as the TED) are used, this results in
scalability problems. We thus leverage the fact that some
basic blocks in the signature are more characteristic than
others. For example, basic blocks that are too generic have
likely similar counterparts spread among multiple parts of
the program, and thus are not really useful to characterize
a bug. Similarly, compared to a reference basic block in the
signature, most of the basic blocks in the target program dif-
fer so much that fine-grained comparisons (e. g., using the
TED) are not needed to tell that basic blocks are not simi-
lar. Guided by these observations, we (i) focus on the parts
in the signature that are distinctive enough to serve as a
marker for a bug, and (ii) reduce the number of basic block
comparisons in the target program.

We found that a few coarse-grained basic block attributes
are sufficient to indicate very low similarity of two basic
blocks. That is, the coarse-grained similarity measure corre-
lates with the fine-grained similarity computed via the TED.
Coarse-grained basic block attributes are, for example, the
number of equations, the depth of the equation trees, or the
number of nodes in the tree. We thus evaluated if we can use
these attribute-level comparisons in a potential prefiltering
step. In particular, we measured how well these attributes
reflect our notion of basic block similarity. We evaluated this



in three binary programs (Adium on Mac OS, ImageMagick
on Linux, MS Word 2013 on Windows) by computing the
correlation between the similarity of single coarse-grained
attributes (e. g., number of equations in basic block A and
B) and the fine-grained TED similarity score between the
basic blocks. We found strong correlation coefficients (aver-
aged over the binaries 0.63, 0.92, 0.52, respectively) for all
three basic block attributes and thus use them as prefilters.

Our basic block prefiltering works as follows. First, we
identify characteristic basic blocks from the signature to use
them as starting points for our bug search. That is, we focus
on those basic blocks in the signature whose attributes are
equal to at most t percent of the basic blocks in the target
program. We denote the resulting set of starting points in
the signature as SP . The lower the threshold t, the more
basic blocks are filtered and, thus, the more efficient is the
bug search, while the risk to miss relevant basic blocks in-
creases. We use t = 5 % in our experiments to reasonably
trade off accuracy against scalability.

Then, for all basic blocks in SP , we search for matching
candidates in the target program. That is, given a signa-
ture starting point spi ∈ SP , we calculate the fine-grained
similarity (using the TED) to all basic blocks in the target
program and choose the n basic blocks with the lowest dis-
tances. We denote this set of matching candidates as Ci,
where i corresponds to the index of starting point spi. The
lower n, the less often we need to invoke later stages of the
bug signature matching, i. e., the lower the runtime. How-
ever, with lower n the risk to miss a good match rises. We
chose n = 20 in our evaluation since we found in an empirical
test that this value provides a good trade-off in practice.

We use the resulting set of starting points (and their
matching candidates) in the following section to measure
the signature’s similarity to the target program (instead of
only comparing single basic blocks).

3.2.4 Neighborhood Exploration
So far we have discussed how we compare binary code at

the level of basic blocks. However, in order to find bugs,
comparing individual basic blocks is not sufficient, as multi-
ple basic blocks are typically characteristic for a bug. Fur-
thermore, the structure of code is often also characteristic
for a bug. Consider for example a typical buffer overflow
bug where a certain basic block performing boundary check
may be missing inside a memory-writing loop. Therefore, we
further explore the CFG of a function in the neighborhood
of individual basic block matches with the bug signature.

We do so in a CFG-driven, greedy, but locally optimal
manner: In step i), we choose a pair of starting point (spi ∈
SP ) and one of its matching candidates (cj ∈ Ci) in the tar-
get program to initiate our search. We use the pair (spi, cj)
as the initial match, i. e., our algorithm considers it as a fixed
pair and will not change their mapping. Once the algorithm
terminates for this concrete pair, it is repeated for all other
matching candidates of this starting point. In addition, we
will repeat the algorithm with multiple starting points, i. e.,
using different initial pairs.

Then, in step ii), we compare the adjacent neighbors of the
pair that has been fixed in step i). Adjacency in this context
means that the basic blocks are either CFG-wise successors
or predecessors of the fixed. When matching, we take the
direction of the CFG into account, i. e., we do not compare
preceding basic blocks with succeeding basic blocks, and vice

versa. To this end, we compute the distances of all adjacent
basic blocks. We then use a matching algorithm (the Hun-
garian algorithm [6]) to find ideal mappings between basic
blocks adjacent to the previously fixed pair.

At this point, each optimally mapped pair of basic blocks
(one in the signature, one in the target program), becomes
a new candidate for broadening the overall match. We keep
track of these candidates with a priority queue, sorted along
the distance between the mapped pair. In step iii), we pick
the best candidate pair (i. e., lowest distance) from the prior-
ity queue and greedily expand the already fixed pairs with
this new pair. Usually, the newly fixed match will intro-
duce further unexplored neighbors, such that the algorithm
continues from step ii), while keeping track of already fixed
basic blocks.

The algorithm terminates if the priority queue is empty,
i. e., if no further neighbors can be explored. After terminat-
ing the search, the algorithm computes the distance between
signature and target program by adding the TEDs for each
fixed block pair. If basic blocks from the signature could not
be matched (e. g., if the signature is larger than the target
program) it adds the TED between unmatched blocks and
an empty tree to the overall distance.

Our neighborhood exploration algorithm is greedy and
avoids expensive backtracking steps. Given that we apply
the algorithm for all pairs of starting point/matching can-
didate, there is a high chance to find reasonable matches
between signatures and target programs. Our neighborhood
exploration results in a sorted list of distances, revealing the
code parts most similar to the signature, i. e., the bug.

4. IMPLEMENTATION
We now describe the implementation details that we have

left out in the previous section for brevity reasons.

4.1 Program Preprocessing
TEDEM’s preprocessing phase has two distinct phases,

namely the Disassembly and Structuring (Section 4.1.1) and
the Semantic extraction (Section 4.1.2).

4.1.1 Disassembly and Structuring
We use the Interactive Disassembler (IDA) to extract the

disassembly and basic block structure from the programs.
IDA supports many operating systems (e. g., Windows, Linux,
Mac OS X). We chose to focus on disassembling x86 binaries
given their high popularity. We make assumptions about
data structures (e. g., register names and their widths), but
with some engineering effort, our system could also be ap-
plied to x86-64 binaries.

Using IDA, for each (strict) basic block, we export the
start address, the instructions, and record which function it
belongs to. In addition, for each basic block, we use IDA
to export the Control Flow Graph (CFG) to keep track of a
list of succeeding and preceding basic blocks.

Note that we assume that binary programs are not obfus-
cated. Our use case is finding bugs in commodity software,
which usually is not obfuscated. For software developers,
there is also no real benefit to evade our system, so we think
this is a reasonable assumption. Clearly, our approach fails
for any obfuscated software, as obfuscation destroys most of
the CFG and the syntactical information. However, we con-
sider (typically obfuscated) malware out of scope, because



we primarily aim to secure legitimate software by finding
locations that should be patched.

4.1.2 Semantic Extraction
We then transform the output of IDA into the interme-

diate representation (IR) that is part of METASM [9]. We
chose METASM because it can symbolically accumulate as-
sembly instructions in a compact and reasonably accurate
form. In order to capture the effect of a basic block on the
state of a program, namely registers, memory, branch con-
ditions an successors, we use METASM’s capability to accu-
mulate the computational steps of a given sequence of assem-
bler instructions in the form of compact equations. An equa-
tion may look like this: eax := Ind(4, esi+edx∗4)+ebx∗2,
where Ind(x, y) refers to the x-byte value at memory ad-
dress y. These equations map the basic block’s input state
to its output state, condensing its semantic effect.

METASM uses typed equations which allow symbolic sim-
plifications. We use easy simplifications such as constant
folding, but also perform more complicated steps, like accu-
mulating arithmetic/bitwise operations, to simplify, shorten,
and normalize the expression. We further support machine-
specific idioms such as xor eax, eax in order to reduce bo-
gus dependencies on previous computations. In this concrete
example, we model that eax becomes zero and we are not
interested in the previous values of the register (although
they, in principle, are used by xor).

We then convert these equations into S-Expressions. An
S-Expression is a notation for a tree-like data structure,
where a tree is noted as a bracketed, whitespace-separated
list of its children. A child may be bracketed itself, denoting
that it is a sub tree. For example, the equation above as an
S-Expression is represented as
(:= eax (+ (Ind 4 (+ esi (∗ edx 4))) (∗ ebx 2))).

4.2 Signature Matching
The actual signature matching consists of two separate

steps. First, we find candidate basic blocks in the target pro-
gram, which are very similar to a distinctive block from the
signature (Section 4.2.1). Second, we explore the matches’
neighborhoods for other good matches (Section 4.2.2).

4.2.1 Basic Block Comparison
One of our core ideas is using a TED to compare two

basic block based on their lists of equations. We explored
several notions of tree edit distances. The basic edit distance
algorithm for trees performs node-wise operations only.

Tekli et al. [26] not only pre-compute costs for operations
on subtrees with the dynamic programming approach used
for classic string edit distances, but also add a notion of
subtree commonality, which allows insertion/deletion of for-
merly adjusted subtrees. We chose this algorithm, as it rec-
ognizes and utilizes similarity in subtrees at a runtime of
O(n2), where n is the number of tree nodes. In the context
of our work, tree nodes are subexpressions, i. e., operands
and operations of an equation.

We ported the TED as proposed by Tekli et al. to C++.
Figure 2 shows an example of the TED: In order to transform
the left tree to the right tree, the TED first has to replace the
left-most operand (eax by edx) and delete an operand (“2”).
The power of the algorithm is demonstrated by the last edit
operation, in which the common subtree (dashed square)
replaces an operator (“+”). An algorithm with only node-

:=

eax +

:=

edx ++

2+*

ebx 4

+*

ebx 4

Figure 2: Exemplary tree edit distance with subtree-edits

wise manipulations would need to perform multiple single
steps to move the subtree.

As mentioned before, the equations that define a basic
block’s behavior are independent from one another. Be-
cause of the explicit computation order defined by the tree
structure, the same is true for subexpressions. This allows
reordering for equations and also for subexpressions (at least
if the operation is commutative). We define an arbitrary but
deterministic order of the elements and sort the trees accord-
ingly, such that we avoid edit operations for basic blocks that
only differ in the sequence of equations or elements.

4.2.2 Neighborhood Exploration
Based on these basic block-wise distances, we implemented

the algorithm to match the bug signature (as described in
Section 3.2.4). This section describes important performance
impacts of the concrete implementation.

First, the matching algorithm finds a mapping between
basic blocks to minimize the sum of all mapped distances.
The implemented Hungarian Method [6] has a runtime of
O(n3) to match n nodes. Because we are only matching
neighbors of one basic block from the signature with the
neighbors of its candidate match in the target program, n
is quite small — usually not larger than two. Apart from
CFG considerations, this shows once more how important it
is to operate the matching algorithm locally.

Instead, the computation of the basic block-wise edit dis-
tance dominates the runtime, especially when searching for
promising starting points for the neighborhood exploration.
Thus, we implemented a parallel search for starting points
and matching candidates. In principle, also the other parts
of our approach can run in parallel. For example, the signa-
ture matching algorithm can trivially be parallelized, as the
metric splits up independently at the level of basic blocks
— which we leave open to future work.

5. EVALUATION
We implemented a prototype of TEDEM that we eval-

uated on a variety of real-world bug examples. We group
our test cases into three scenarios: (i) The identification
of shared code bugs between related programs sharing one
codebase; (ii) The identification of fork bugs between differ-
ent programs sharing a (partly) similar codebase; (iii) The
identification of copy’n’paste bugs in a single program.

To build our test cases, we first identified known vulnera-
bilities in binary software using IDA and BinDiff. We relied
on these tools at this point because the initial identification
of patched locations is out of scope for our work. We then
manually created a signature for each test case. In most
cases, using the entire vulnerable function as “easy” signa-
ture produced insightful and precise results. Such a signa-



App. Bug/Patch Sign. Target Rank #
Pidgin CVE-2013-6484 51/ 51 Adium 110/ 6,019

11/ 51 1/ 6,019
Adium 42/ 42 Pidgin 18/ 3,965

11/ 42 1/ 3,965
Pidgin CVE-2013-6485 131/131 Adium 1/ 6,019
Word 2010 MS13-072 59/ 59 Word 2003 1/28,564

Word 2007 1/44,626
Word 2013 1/21,624
Comp. Tool 1/13,035
Word Viewer 1/16,613

PuTTY CVE-2011-4607 980/980 PuTTYcyg 1/ 1,382
TuTTY 1/ 1,651

PuTTY CVE-2013-4208 37/ 37 PuTTYcyg 12/ 1,382
TuTTY 1/ 1,651

33/ 33 PuTTYcyg 4/ 1,382
TuTTY 1/ 1,651

ImageM. CVE-2009-1882 613/613 GraphicsM. 118/ 2,815 ‡
ImageM. 1/613 GraphicsM. 1/ 2,815 ‡
GraphicsM. 210/210 ImageM. 1/ 3,299
Pidgin CVE-2011-4601 5/ 19 Pidgin 1/ 1,242 †
ProFTPD Backdoor 4/336 ProFTPD 4/ 1,711

3/336 1/ 1,711

Table 1: Overview of evaluation results. The size of signa-
tures is given in the form <number used BBs/total BBs in
vuln. function>. The rankings marked with † and ‡ are
further explained in Sections 5.2.2 and 5.3.1 respectively.

Figure 3: CFG (left to right, strict basic blocks) of re-
ply_cb() in Pidgin/libpurple v2.10.7. The signature used
to search for CVE-2013-6484 is highlighted. The patched
block is highlighted on the far left.

ture can in certain cases be too broad, though, as it contains
noise unrelated to the vulnerability, such as generic function
prologues and epilogues that vary between different compil-
ers and settings. Especially for smaller functions, signatures
spanning entire functions can thus be too noisy/generic.

If not explicitly stated differently in the following, we
used entire functions as signatures in our experiments. We
chose to use entire functions as then the manual effort to
create such signature is minimal — the analyst only needs
to know the name/address of the vulnerable function. In
principle, more fine-grained signatures obtain more accurate
results. However, defining “good” signatures is a subjective
process. Our choice to match entire functions allows for bet-
ter comparability and repeatability of our work and guaran-
tees sound experiments. We also perform experiments with
fine-grained signature to show their strengths.

The evaluation results are summarized in Table 1 and we
give detailed descriptions of the experiments in the following.

5.1 Shared Code Bugs
A typical use case for finding bug doublets arises when

source code is shared among multiple software projects.
Thus, we evaluate two such use cases in this section.

5.1.1 Libpurple
Pidgin v2.10.8 (2014-01-28) closes several vulnerabilities

in libpurple. Among these are CVE-2013-6484 and CVE-
2013-6485, two unrelated vulnerabilities that allow a remote
attacker to crash a running Pidgin instance due to insuf-
ficient input verification. We used TEDEM to search for

these two vulnerabilities in the most recent version of Adium
(v1.5.9), a popular messenger for Mac OS X that also ships
libpurple in compiled form. We manually confirmed that
Adium still suffered from the two vulnerabilities that had
already been patched in Pidgin.

For CVE-2013-6484, we first used the whole vulnerable
function (51 basic blocks) in Pidgin as signature to search
for the corresponding function in Adium (42 basic blocks).
The size difference of the two functions resulted from Pidgin
inlining a function. Given this coarse signature, TEDEM
ranked the corresponding function in Adium (42 basic blocks)
#18. On a relative scale this means that the analyst needs to
manually inspect less than 0.5% of the functions in order to
find the vulnerable code part. Next, we manually selected
a signature of 11 basic blocks from the 51 basic blocks of
the vulnerable function in Pidgin as depicted in Figure 3:
Starting with the basic block whose branch condition was
patched, a handful of succeeding basic blocks are selected,
which validate network-received data. For this more fine-
grained signature TEDEM ranked the corresponding func-
tion in Adium even #1.

For CVE-2013-6485, we used the entire unpatched func-
tion (131 basic blocks) from Pidgin as signature and un-
ambiguously identified the corresponding function in Adium
(136 basic blocks) at rank #1.

We also examined the other functions that TEDEM ranked
high. We found that many of the functions were comparably
exposed parsing network data. E. g., for CVE-2013-6485, a
function that was previously reported to suffer from a simi-
lar memory corruption vulnerability1 ranked #6.

This example across OS-boundaries also highlights the ro-
bustness of our approach in comparison to tools that largely
rely on a coherent static call graph like BinDiff : When com-
paring the Windows and Mac versions of libpurple, BinDiff
(v4.0.1) fails to correctly match the vulnerable functions to
their counterparts. This is probably due to both functions
being callbacks with no parents in the static call graph.
However, even though our approach itself is not specific for
a single OS, a particular bug signature may be very well.

5.1.2 Microsoft Word
Microsoft patched 13 vulnerabilities in various versions

of Word for Windows2. We manually identified one of the
patched locations in Word 2010, the most recent affected ap-
plication. In WRD12CNV.DLL (5.21 MB) an additional bound-
ary check on an array-index was introduced inside a loop
in a certain function (virtual address 319421E7h, 59 basic
blocks). Apparently, this check tackles a memory corrup-
tion vulnerability. Given the patched function in Word 2010
as signature, TEDEM unambiguously identified the equiv-
alent function in all other patched applications (rank #1):
Word 2003 (WINWORD.EXE, 11.7 MB), Word 2007 (WWLIB.DLL,
17.2 MB), Office Compatibility Pack (WRD12CNV.DLL, 4.46
MB), and Word Viewer (WORDVIEW.EXE, 8.4 MB). Also, TE-
DEM correctly highlighted an interesting circumstance: All
other applications’ patched versions were more similar to
Word 2010 unpatched than to Word 2010 patched. Indeed,
we could manually confirm that the other applications had
been patched differently than Word 2010. Checks were added
that were already present in Word 2010 unpatched. The

1http://www.pidgin.im/news/security/?id=34
2MS13-072: https://technet.microsoft.com/library/
security/ms13-072

http://www.pidgin.im/news/security/?id=34
https://technet.microsoft.com/library/security/ms13-072
https://technet.microsoft.com/library/security/ms13-072


array-index boundary check introduced in Word 2010 patched
was still missing in the patched other applications, though.
The identification of this possibly critical difference in patch
levels is an exemplary use case for TEDEM. Lastly, us-
ing the same signature, we could also pinpoint the corre-
sponding function in a more recent version of Word 2013
(WRD12CNV.DLL, 6.01 MB). We found the same checks to be
present as in Word 2010 patched.

We found that BinDiff repeatedly matched wrong func-
tions between the different applications and between the dif-
ferent versions of the same application. For example, Bin-
Diff could not identify the discussed patched function in
Word 2003, neither through incremental version diffing nor
through cross-application diffing with Word 2010.

5.2 Fork Bugs
When software projects are forked, it can be difficult to tell

if a bug also affects forked projects. We evaluate TEDEM’s
ability to pinpoint bugs in two forked applications based on
signatures extracted from their parent applications.

5.2.1 PuTTY
PuTTY is an open source SSH client for Windows. Prior to

v0.62, passwords were not wiped from memory (CVE-2011-
4607) and until v0.63 the same was the case for certain cryp-
tographic data (CVE-2013-4208). We examined the PuTTY
forks TuTTY v0.60.2.0 and PuTTYcyg r20101029 for the pres-
ence of these bugs using TEDEM.

Given the vulnerable function of CVE-2011-4607 (980 ba-
sic blocks) in PuTTY v0.61 as signature, TEDEM ranked the
corresponding functions in TuTTY and PuTTYcyg #1. The
bug described in CVE-2013-4208 is contained in two func-
tions in PuTTY v0.61. Given these two functions as signa-
tures, TEDEM ranked the corresponding functions #1 in
TuTTY. For PuTTYcyg, we could only achieve ranks #12 and
#4, because the CFG was heavily altered, e. g., due to mem-
cmp() being inlined. However, these ranks are still in the
top 1% and could thus be helpful to an analyst.

5.2.2 ImageMagick
ImageMagick is an open source image processing tool. Prior

to v6.5.2-9, it suffered from an integer overflow bug in TIFF
image processing code (CVE-2009-1882). The tool Graph-
icsMagick was forked from ImageMagick as early as 2002
and is still actively developed. We used TEDEM to check
for the presence of the bug in GraphicsMagick v1.3.7.

Given the vulnerable function from ImageMagick v6.5.1-2
(613 basic blocks) as signature, TEDEM ranked the cor-
responding function in GraphicsMagick (210 basic blocks)
only #118. This is due to a large and dominating function
being inlined into ImageMagick’s vulnerable function. In
turn, this inlined function’s counterpart in GraphicsMagick
comes #1 in the similarity ranking produced by TEDEM
in the reverse direction. This function is (statically) called
by only the vulnerable function in GraphicsMagick. Ac-
cordingly, it was easily possible to pinpoint the vulnerable
function in GraphicsMagick given TEDEM’s output. In
general, this one-directional behavior of finding the bigger
function with the inlined component, but not vice versa, is
what one would expect in the face of inlining and shows that
our approach tolerates inlining to some extent.

However, when we compile a signature of only a single
basic block from ImageMagick, namely the one with the in-

Dist. Function name
0.0 receiveauthgrant
0.0 parseicon

13.8 receiveauthrequest
21.8 receiveadded
23.7 receiveauthreply
36.9 memrequest
98.8 parseadd

120.8 msgack
150.3 clientautoresp
176.8 oscar buddy menu
190.1 oscar get ex... status
202.7 purple bosrights
215.3 purple odc send im
252.2 incomingim

Dist. Function name
260.9 infochange
284.0 oscar send im
292.5 find acct
304.8 oscar status types
382.2 oscar actions
395.2 parsemod
399.6 aim info extract
451.9 aim request login
566.0 infochange
571.1 oscar ... display icq
592.5 oscar auth sendrequest
596.3 aim putsnac
599.4 purple ssi authreply
635.0 oscar ...and status

Table 2: Functions in Pidgin/libpurple with the lowest
distance to our signature extracted from CVE-2011-4601.
Marked functions lack the necessary check.

teger overflow, we can also rank the corresponding function
in GraphicsMagick on #1.

5.3 Copy’n’Paste Bugs
Another source for bug doublets is caused by developers

that adopt faulty source code and miss to patch it in case of
upstream bugs. We evaluate TEDEM for two such cases.

5.3.1 Libpurple
We evaluated the same vulnerability (CVE-2011-4601) in

Pidgin’s libpurple on binary level as Yamaguchi et al. did
on source code level [28]: Prior to v2.10.0, a missing check
in the function receiveauthgrant() enabled remote attack-
ers to crash Pidgin. Yamaguchi et al. identified nine other
functions suffering from the same vulnerability.

We compiled Pidgin v2.10.0 on Linux with default set-
tings, but without optimization, because otherwise several
vulnerable functions were inlined into one particular func-
tion. This would have made results incomparable. To ex-
clude obvious boilerplate code, we chose only the immediate
neighbor-blocks to the actual vulnerability, ending up with a
signature of 5 of the 19 basic blocks in the original vulnerable
function receiveauthgrant(). Table 2 lists those functions
from the roughly 2360 functions in the binary libpurple that
TEDEM identified as most similar to the signature. Indeed
Table 2 resembles very much the listing reported by Yam-
aguchi et al. for their tool. For example, they also found
9 among the thirty best ranked functions to lack the nec-
essary check. Interestingly, we found three functions that
Yamaguchi et al. did not report on and vice versa. Overall,
this demonstrates the ability of TEDEM to compete with
source code based tools in terms of quality of results.

5.3.2 ProFTPD (Backdoor)
In a variant of ProFTPD v1.3.3c, a backdoor was found

in a handler function for the HELP FTP command. The
backdoor gave privileged system access to anyone issuing
the command with a certain argument. We constructed an
artificial use case from this incident by installing a similar
backdoor in the handler of the MKD FTP command. Us-
ing the original backdoor (4 basic blocks) as signature, we
used TEDEM look for the other backdoor in a ProFTPD
binary compiled on Linux with default settings. TEDEM
ranked the manipulated handler for MKD (78 basic blocks)
#4. The manipulated handler ranked #1 for a more fine-
grained signature composed of 3 basic blocks. This example
again highlights that matching based on fine-grained signa-
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Figure 4: Rankings of function-level matching.

tures can in our use case often be more powerful than simple
function-level matching.

5.4 Systematic Function-Level Matching
Lastly, we measure the overall applicability of our ap-

proach to match functions. Although function matching is
not our considered use case, such a systematic experiment
allows to illustrate the generality of our method. We chose
to compare two similar binaries for which we have a ground
truth of functions that should be mapped. In particular,
we compare the binaries of two subsequent PuTTY versions
(v0.62 and v0.63) that differ only slightly. We use their
symbolic information to create the ground truth of functions
that should be mapped. We do not use symbolic information
as part of our algorithm, i.e., we use stripped binaries.

Figure 4 shows a CDF of the ranks when mapping the
functions in PuTTY v0.62 in v0.63. Our experiments show
that 77.8% of the functions were correctly mapped (rank
#1). Only 6% of the functions ranked badly (rank > 20).
We manually inspected the reasons for these non-optimal
rankings and found that some of them were caused by slight
modifications in the two PuTTY versions. Others were
caused by functions that substantially changed their CFG,
e. g., functions that had significantly more basic blocks than
their counterpart. However, overall, the experiment shows
that our method generally produces reliable matches and
works beyond the concrete examples discussed above.

6. DISCUSSION AND FUTURE WORK
TEDEM can leverage semantic signatures on a binary

level to find similar bugs in other programs or other func-
tions within the same program. In this section we discuss
limitations and future work directions of our work.

False Positives. Our distance metric can compare arbi-
trary divergent code. If the target program does not contain
a vulnerable function, our approach still produces a ranking
of functions with the distance to the signature. However, the
distances are significantly larger than the distances of similar
code. We will investigate if there are reasonable mechanisms
to determine meaningful thresholds that can filter out false
positives in future work.

Robustness. Although the evaluation has shown that
our approach works well in most practical examples, we have
to acknowledge our method’s sensitivity to changes in binary
code. This section discusses many other typical binary code
modifications that our system design tolerates up to some
degree. However, we exclude obfuscated binaries from the
scope of our method explicitly.

Using a TED-based similarity metric allows to compare
code even if it slightly changed. For example, although reg-
ister renaming or register spilling would slightly increase the
TED, the overall similarity remains high. This is also true
if the source code was slightly modified (e.g., inserted in-

Figure 5: CFG (strict basic blocks, left to right) of Aurora
bug constructor. Good matches from the copy constructor
are highlighted. They are obviously not connected densely.

structions, change of constants, global variables, etc.). We
can also deal with instruction reordering, as we use a deter-
ministic ordering of the equations and their sub-expressions.
Lastly, also function inlining is not problematic, because we
dynamically broaden a match and thus can also match sub-
graphs (and not only entire functions). This increased ro-
bustness against syntactical changes is thanks to our accu-
mulation and normalization into semantic representations.

However, our bug search requires that some neighborhood
properties are preserved in the CFG. For example, we found
that CVE-2010-0249, the bug used in Operation Aurora, vio-
lates this requirement. The vulnerability was a use-after-free
bug in Internet Explorer versions 6–8 that allowed remote
code execution. A constructor and copy constructor of a C++
class were patched in a similar way to correctly update refer-
ence counters in other objects. The regular constructor is far
larger than the copy constructor (26 vs. 8 basic blocks). Fig-
ure 5 shows that matching basic blocks are hardly connected
to each other, which causes the neighborhood exploration al-
gorithm to miss the constructor given the unpatched copy
constructor as bug signature.

Many of the aforementioned syntactical changes can be in-
duced by typical optimization strategies of compilers. How-
ever, note that this is also only relevant if the optimization
strategy differs between signature and target program.

Fine-Tuning Bug Signatures. Our experiments are
based on function-level signatures. As we have shown, fine-
granular bug signatures can be much more accurate for iden-
tifying buggy code locations. As such, defining more specific
bug signatures is a powerful way to boost the accuracy.

Another possible way to increase the accuracy is assigning
weights to individual parts of the signature. Weights allow
us to respect gradual importance of specific structures, e. g.,
giving the change in a code location constant or the use of
a different register less importance than, say, changing the
operand of a computation.

Lastly, creating bug signatures could be automated. For
example, an analyst could flag vulnerable source code parts,
compile the code, and use debug information (i.e., source
code location information) to map the vulnerable source
code to its binary code representation.

Finding Patched Code. Typically, patched code is
quite similar to unpatched code. In general, it is not trivial
to determine if the functionality that we find to be simi-
lar to our signature is actually vulnerable. As of now, we
cannot determine if the conditions allowing an exploitation
are satisfiable. However, first experiments have shown that
we can define an additional signature spanning the patched
code, which we can use for false positive testing. Intuitively,
the patched signature matches more closely to patched bina-
ries than to unpatched ones. By comparing both similarity
scores it is thus possible to distinguish patched from un-
patched binary code, as shown for MS Word (Section 5.1.2).



Signature Target Signature Candidate Neighborh.
Size Search Exploration

ProFTPD ProFTPD 3 BBs 1.5 s 0.02 s
PuTTY TuTTY 14 BBs 11.6 s 1.12 s
PuTTY PuTTYcyg 13 BBs 11.4 s 1.32 s
Libpurple Adium 51 BBs 349.7 s 7.95 s
Word 2010 Word 2013 58 BBs 1043.1 s 34.32 s
GraphicsM. ImageM. 210 BBs 1332.9 s 116.61 s
PuTTY TuTTY 978 BBs 2482.5 s 1958.13 s

Table 3: Runtimes of signature searches

Scalability. The size of the signature influences runtime
linearly. For our targeted use case of fine-grained search with
small signatures, we achieve reasonable runtimes of less than
a minute (see Table 3) on a workstation with Intel Core
i7-2640M @ 2.8GHz with 8GB DDR3-RAM. Clearly, the
search for initial candidate matches dominates the runtime.
For larger signatures, like in the extreme case of PuTTY (978
basic blocks), the runtime rises to about 42 min. However,
33 min have to be accounted to the candidate search, as
many pairwise basic block distance computations have to
be performed. In contrast, the neighborhood exploration
algorithm has a relatively low overall runtime, although it is
invoked very often due to a high number of starting points
and their matching candidates. For example, in PuTTY, the
algorithm had to be invoked 19,560 times (978 basic blocks
times n = 20 matching candidates), but the runtime added
up to 6.5 min with an average of 20 ms per invocation.

The size of the target program influences the runtime of
the candidate search linearly. However, as we have seen, e.g.,
for MS Word, TEDEM is still scalable even on commodity
user hardware. In future work we will look into methods
how to further improve the performance. For example, an
M-Tree, a data structure for fast k-nearest neighbor search
in metric spaces [8], could speed up the candidate search.

7. CONCLUSIONS
We have shown that re-finding similar bugs on the level of

binary code is possible. By this we enhance existing research
that aims to find similar code bugs on the source code level.
Once a bug is known to an analyst, our concept of semantic
signatures can be applied to search for similar bugs in the
same binary or even in different programs. We searched for
various real-world bugs (caused by forks, shared code, or
copy’n’paste errors) with promising accuracy.
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