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Abstract

Point clouds are challenging to process due to their spar-

sity, therefore autonomous vehicles rely more on appear-

ance attributes than pure geometric features. However, 3D

LIDAR perception can provide crucial information for ur-

ban navigation in challenging light or weather conditions.

In this paper, we investigate the versatility of Shape Com-

pletion for 3D Object Tracking in LIDAR point clouds. We

design a Siamese tracker that encodes model and candi-

date shapes into a compact latent representation. We regu-

larize the encoding by enforcing the latent representation

to decode into an object model shape. We observe that

3D object tracking and 3D shape completion complement

each other. Learning a more meaningful latent represen-

tation shows better discriminatory capabilities, leading to

improved tracking performance. We test our method on

the KITTI Tracking set using car 3D bounding boxes. Our

model reaches a 76.94% Success rate and 81.38% Precision

for 3D Object Tracking, with the shape completion regular-

ization leading to an improvement of 3% in both metrics.

1. Introduction

Autonomous driving is changing the way we envision

human transportation. Introducing fully autonomous vehi-

cles into our cities implies sharing the roads with existing

vehicles. Thus, it is imperative for autonomous vehicles

to outperform humans in the task of driving. Understand-

ing the urban environment and the human driving process

is crucial for an agent to become capable of achieving and

exceeding human driving performance. Accordingly, au-

tonomous vehicles need to outperform human perception so

to cope with an unbounded set of unpredictable situations.

An autonomous vehicle adapts its driving policy by un-

derstanding its environment. Modules for Road Detec-

tion [11, 6] and Road-sign Recognition [19, 54] indicate to

the car where and how to drive. Object Detection meth-

ods [8, 42] constrain the vehicle’s path in order to avoid

collisions while Object Tracking algorithms [59, 47] pre-
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Figure 1. Our tracking model combines a Siamese network with an

Auto-Encoder. The Siamese network encodes sparse 3D shapes

into a latent representation z, in which shapes belonging to the

same object have a high cosine similarity. By regularizing our

tracker to auto-encode model shapes, we enforce that the encoder

maps point clouds into meaningful representations. The effect of

regularization is visualized by decoding a candidate shape.

dict their motion to anticipate danger. Autonomous vehicles

need to sense both appearance and geometric components

of the environment to extrapolate the semantic information

required for driving. RGB cameras provide both appear-

ance and geometric information by either inferring depth

from single RGB cameras [55, 64] or by stereoscopy [61, 9].

Depth and shape completion [36, 23] are commonly used to

improve the limited sensing capability of RGB sensors.

Alternatively, LIDAR systems directly sense geometry

in a more accurate manner. LIDAR sensors are less sensi-

tive to light and weather conditions, so they provide more

reliable information in a much larger range of driving con-

ditions. However, LIDARs generate sparse point clouds,

not readily suitable for conventional CNN processing. Most

current works pre-process 3D point clouds for use in CNNs

by either voxelizing the 3D space [29, 21] or by project-

ing point clouds into a planar space [53, 27, 10, 51]. How-

ever, these methods lose fine-grained geometric details. It

is worthwhile to note that only a few works deal directly

with point clouds [43, 1]. We believe appearance informa-

tion is insufficient to reach better-than-human driving per-

formance, especially in challenging driving environments.
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In this work, we propose an online 3D Object Tracking

method based purely on LIDAR. First, we leverage geo-

metric features computed from sparse point clouds using

the shape-completion network proposed by Achlioptas et

al. [1]. These features are used in a Siamese network to

create a latent representation in which a cosine similarity

matches partial object point clouds to a model shape. Then,

we regularize the encoding via an auto-encoder network to

generate geometrically meaningful latent representations.

We expect improved tracking performance by enriching the

latent representation with semantic geometric information

from the given object.

Currently, the main challenges faced in tracking relate to

(a) similarity metrics, (b) model updates, and (c) occlusion

handling. Our 3D tracker tackles these three aspects by (a)

using Siamese networks, which have been shown to achieve

state-of-the-art performance on 2D visual object tracking,

adapted for processing 3D LIDAR point clouds, (b) lever-

aging the shape invariance in rigid bodies to generate a more

complete model by aggregating its shape in time, and (c)

enforcing our model to understand shape regardless of oc-

clusions through shape completion.

Contributions: Our contributions are three-fold. (i) To the

best of our knowledge, we propose the first 3D Siamese

tracker applied to point clouds rather than images. (ii) We

propose to regularize the Siamese network’s latent space

such that it resembles the latent space of a shape comple-

tion network. (iii) We show that regularizing our network

with semantic information results in better discrimination

and tracking. To ensure reproducibility and to promote fu-

ture research, all source code, trained model weights, and

dataset results are publicly available1.

2. Related Work

Our work takes insights from Object Tracking based on

Siamese networks, Shape Representation and Completion

based on Auto-encoders, and Search Strategy.

Visual Object Tracking. Tracking is the task of identify-

ing the trajectory of an object through time, either in im-

ages [28, 37] or in 3D space [34, 48]. Visual tracking fo-

cuses on image patches across consecutive frames, that rep-

resent visual attributes [28], objects [39], people [34] or ve-

hicles [17]. The problem is commonly tackled by tracking-

by-detection, where a model representation is built after the

first frame and a search space is constructed to trade off

computational costs and dense space sampling. Early works

on tracking were based on Correlation Filtering [2], but cur-

rent better performing methods rely on deep CNNs [24]

and Siamese networks [5]. Bertinetto et al. [3] introduced

Siamese networks for visual object tracking. They proposed

a fully-convolutional Siamese network and achieved state-

1https://github.com/SilvioGiancola/ShapeCompletion3DTracking

of-the-art performance on the VOT benchmark [28]. Recent

Siamese trackers estimate boundary flows [31], use contex-

tual structure [20], attention [57], distraction [65], seman-

tic information [63], triplet losses [14] and region proposal

networks [32] to improve tracking performance. To the best

of our knowledge, our work is the first 3D adaptation of

Siamese networks for 3D point cloud tracking.

3D Object Tracking. 3D Object Tracking tackles track-

ing from a geometric perspective. Instead of following

appearance attributes using 2D bounding boxes (BBs), it

computes the position of targets in the 3D world using ge-

ometry contained in 3D BBs. 3D object tracking either

focuses on RGB-D information [48], by mimicking the

2D object tracking methods but with an additional depth

channel [4, 33], or it focuses on purely geometric fea-

tures [49, 34]. Recent work tackles 3D tracking using Bird

Eye Views (BEV) of LIDAR point clouds [35, 60]. Luo et

al. [35] input multiple BEV frames to a deep CNN to per-

form detection, tracking, and motion forecasting. Yang et

al. [60] used up to 35-channel BEV frames. However, these

methods lose fine-grained shape information by projecting

the point cloud in the BEV. LIDARs sense the environment

from a single point of view inducing self-occlusion, i.e. in-

complete observations [13]. Note that on images, occlusion

leads to noisy observations. Moreover, tracking assumes a

BB prior for the first frame and, since the object is rigid, its

extent in 3D space in successive frames remains constant.

Shape Representation. 3D shapes are complex entities to

manage as they are usually sparse and lying in a continu-

ous space, unlike images that are stored in dense and dis-

crete matrices. Several works focus on finding efficient ge-

ometric representations [52] such as occupancy grids and

TSDF cubes. They are commonly used for 3D recon-

struction [41, 18] but suffer from large-scale memory in-

efficiency and require a space discretization which loses

fine-grained details. Recent works compress 3D shapes

using auto-encoders to efficiently handle geometric infor-

mation [58, 56, 12]. They typically encode-decode shapes

into different representations. Those auto-encoders provide

a compact latent shape representation of down to 10 dimen-

sions. Alternatively, Kundu et al. [30] used RGB infor-

mation to decode dense 3D meshes of vehicles using Fast

RCNN [44] and a differentiable Render-and-Compare loss.

Achlioptas et al. [1] proposed to solve shape completion

using an efficient auto-encoder based on PointNet [43] for

point cloud to point cloud auto-encoding. They regress par-

tial point clouds into full shapes. Alternatively, Stutz et

al. [50] proposed an occupancy grid shape completion net-

work based on a two-stage training process. Also, Engel-

mann et al. [15] proposed an energy minimization method

that aligns shape and pose concurrently in stereo images.

Search Strategy. Search spaces used in visual object track-

ing are generally dense (exhaustive). Bertinetto et al. [3]
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used correlation filtering methods to obtain a similarity

score for the whole search space. However, exhaustive

search space strategies are not realistically transferable to

the continuous and denser 3D space. This is commonly

solved by relying on Kalman filters, Particle filters, or Gaus-

sian mixture models to reduce the search space by providing

candidate object proposals [45, 62]. At each frame, par-

ticles are sampled according to a probability distribution.

Only the selected particles are observed and the probability

distribution is updated according to the observation. Re-

cently, Karkus et al. [25] proposed a learnable particle filter

network. In our experiments, we choose to disentangle the

search space and the similarity function, a common prac-

tice done in 2D tracking, by using an approximation of the

exhaustive search detailed in the experiments.

3. Methodology

Herein, we propose a 3D Siamese tracker with a regular-

ization on its latent space. The tracker is regularized to learn

an encoding containing semantically meaningful informa-

tion. An overview of our network is shown in Figure 1.

3.1. Siamese Tracker

Our 3D Siamese tracker takes as input a sequence of

point clouds (tracklet), in which a given object exists, along

with an initial 3D BB corresponding to the position of the

object in the first frame. For a frame at time t, a set of can-

didate shapes {xt
c} are encoded into latent vectors {ztc} and

compared with the latent vector ẑt from a model shape x̂
t.

The best candidate is selected to be the object in the current

frame, and the model shape x̂ is updated accordingly.

Encoding. Our encoder Φ(·) is inspired from previous work

on shape completion by Achlioptas et al. [1]. This encoder

consists of 3 layers of 1D-convolutions followed by ReLU

layers [40] and BN layers [22] with filter size [64, 128, K],

as shown in Figure 2. The output of the last BN layer is

followed by a max pooling across the points to obtain a K-

dimensional latent vector. We found K = 128 to be a suit-

able size for the latent vector, as it provides the best trade-

off between computational efficiency, latent space compact-

ness, and tracking performance. The input to our network

is pre-processed to have N = 2048 points by randomly

discarding or duplicating points, so to use mini-batches in

training. Note that more than 96% of the vehicles in the

KITTI dataset have less than 2048 points. As compared to

the network of [1], we leverage a more compact yet efficient

latent space and a shallower network to reduce the size of

the overall model from ∼ 140K to ∼ 25K parameters.

Similarity Metric. The encoder Φ(x) extract a latent rep-

resentation z from a point cloud x. To compare a pair of

shapes x and x̂, we measure the cosine similarity between

their respective latent vectors z and ẑ as per Equation (1).
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x1
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Figure 2. Our encoder takes as input a point cloud with N = 2048

points. Point clouds are encoded into a K-dimensional (K = 128)

latent vector z using 3 layers of 1D CNN with ReLU and BN.

CosSim(z, ẑ) =
z
⊤
ẑ

‖z‖2‖ẑ‖2
(1)

Tracking Loss. For any given frame being used in training,

we designate x to be the tracked object’s point cloud and x̂

to be the ground truth model obtained by concatenating the

object’s point clouds across all frames in the tracklet. We

train our Siamese network to regress a function of the dis-

tance between a candidate shape x and the model shape x̂,

according to Equation (2). The poses of x and x̂ are param-

eterized by the 3 degrees of freedom of an object on a plane

(tx,ty ,α). The distance d(·, ·) is taken to be the L2-norm

‖ · ‖2 of the difference between the parameterized poses.

The angle α, given in degrees, is weighted with a factor of
1
5 to have the same scale as tx and ty which are given in me-

ters. We chose the differentiable function ρ(·) to be a Gaus-

sian with µ = 0, σ = 1. The purpose of ρ(·) is to soften the

distance between positive and negative samples. ρ(·) takes

a value of one when the distance is zero and decays as the

distance increases. We then regress our similarity metric

CosSim(·, ·) using an MSE loss as shown in Equation (2).

Minimizing this loss encourages our encoder to increase the

similarity between partial and complete shape to the same.

Ltr =
1

n

∑

x

(

CosSim
(

φ(x), φ(x̂)
)

−ρ
(

d (x, x̂)
)

)2

(2)

3.2. Shape Completion Regularization

It is important to regularize the Siamese network in order

to embed into the latent representation generative proper-

ties of shape that are useful in discrimination. Such an em-

bedding helps in generalizing to cases which aren’t seen in

training. Our regularization enforces the Siamese network’s

latent space to lie within a shape representation space. Such

representation space embeds valuable semantic character-

istics defining the object to track in a compact, meaning-

ful, and efficient representation. We provide qualitative ev-

idence that the representation space learned by our model

holds the required semantic characteristics by decoding la-

tent representations as shown in Figure 4 Quantitative evi-

dence is given through the improved tracking performances

obtained in Table 1.

Decoding. Our decoder Ψ(z) is inspired by the shape com-

pletion network employed by Achlioptas et al. [1]. Our de-

coder is composed of two fully connected layers that decode
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a K = 128-dimensional latent vector z = Φ(x) into Mx3
values representing M 3D points for a reconstructed shape

x̃ = Ψ(Φ(x)). We use M = 2048 and a hidden layer of

size 1024 for a total of ∼ 6.4M parameters. Alternatively,

Achlioptas et al. [1] decoded into a denser shape of 4096
points, which requires more than twice the number of pa-

rameters in our decoder network.

Completion Loss. Adding a completion loss as a regu-

larizer for our Siamese network boosts the network’s per-

formance by enforcing the latent representation to hold se-

mantic information of the tracked class. While other works

use the Earth Mover’s Distance [46] to compare the model

shape x̂ and the decoded model shape x̃ = Ψ(Φ(x̂)), we

use the Chamfer distance [16] (according to Equation (3)),

since it is simpler to compute [1]. The tracking loss enforces

encoded partial shapes to be similar to their respective en-

coded model, and the completion loss enforces the encoded

model to hold semantic information to enable its decoding.

Thus, this regularization is used to enforce the latent space

learned by the Siamese network to hold meaningful shape

semantic information.

Lcomp =
∑

x̂i∈x̂

min
x̃j∈x̃

‖x̂i−x̃j‖
2
2+

∑

x̃j∈x̃

min
x̂i∈x̂

‖x̂i−x̃j‖
2
2 (3)

3.3. Training

We pre-train our encoder-decoder network Ψ(Φ(·)) us-

ing ShapeNet [7] by taking 5997 samples from the “car”

class. Our model is fine-tuned by minimizing both track-

ing and completion losses. First, we crop and center points

lying inside the object’s ground truth BB {bt}t∈[1,..,T ] for

all frames in a given tracklet. Then, we concatenate the

cropped and centered object point clouds to generate an

aligned model shape x̂. Around the ground truth object

point cloud at time t, we crop a set of C candidate BBs

in order to create the candidate shapes {xt
c}c∈[1,..,C]. The

candidate BBs are sampled from a multivariate Gaussian

distribution for the three planar degrees of freedom (tX , tY ,

α) centered around the current object’s ground truth BB.

Both the model shape x̂ and the set of candidate shapes

{xt
c}c∈[1,..,C] are encoded into their respective latent rep-

resentations ẑ and {ztc}c∈[1,..,C]. The cosine similarity be-

tween the candidates’ latent representations {ztc}c∈[1,..,C]

and the model latent representation ẑ is computed accord-

ing to Equation (1). The similarity scores are regressed to

their relative Gaussian distance according to Equation (2).

Simultaneously, the model shape x̂ is auto-encoded into

x̃ and the Chamfer loss between x̂ and x̃ is minimized as

in Equation (3). Note that we auto-encode the model shape

x̂ into itself, instead of encoding the candidate shapes, as is

done for shape completion. This enforces the latent vector

to decode into the most complete car shape we have avail-

able, i.e. the model shape x̂.

The two losses are minimized jointly as in Equation (4),

with the completion loss being weighted by λcomp. We use

the Adam optimizer [26] to train our model with an initial

learning rate of 1e−4, β1 of 0.9, and a batch size of 64. We

reduce the learning rate at each plateau for the validation

loss using a patience of 3 and a ratio of 0.1.

L = Ltr + λcompLcomp (4)

3.4. Testing

Since we are interested in online tracking, 3D track-

lets are inferred frame-by-frame. The shape contained in

the tracklet’s first BB is used to initialize the model shape

x̂. We track the object by looking over a set of candidate

shapes in the frame at time t and comparing them to x̂ us-

ing our Siamese network. The candidate with maximum

cosine similarity score is chosen to be the target object for

the frame. The model shape x̂ is then updated by appending

to it the chosen candidate shape. This update step makes the

model sensitive to drift, as poorly selected candidates lead

to a worse model which subsequently selects worse can-

didates. The same problem is encountered in 2D Siamese

tracking, commonly solved by not updating the model at all.

However, we show that our model performs better when the

model is updated at each frame.

Exhaustively searching for candidates in the three de-

grees of freedom would incur very high computational cost.

Thus, an approximation of an exhaustive search is lever-

aged to generate the candidate shapes. Approximating the

exhaustive search allows us to assess the discriminative per-

formance of our Siamese network by assuming the ground

truth box will be included as one of the candidates as would

be the case with an exhaustive search. This is a common

practice in 2D trackers. Our exhaustive search is performed

by generating candidates using a grid for the three degrees

of freedom (tX , tY , α) centered around the current ground

truth. In our experiments, we compare different sampling

methods such as Kalman Filters, Particle Filters, and Gaus-

sian Mixture Models, which would be used to provide can-

didates for our tracker in a more realistic setting.

4. Experiments

We use the training set of the KITTI tracking dataset [17]

for our experiments. It was split as follows: scenes 0-16
were used for training, scenes 17-18 for validation, and

scenes 19-20 for testing. We adapt KITTI for 3D single

object tracking by generating a tracklet for each instance of

a car appearing in each of the scenes. Tracklets are created

by concatenating the set of frames in a scene in which a

given car instance appears. For each tracklet, only the first

frame includes the ground truth BB. For our task, we eval-

uate for Single Object Tracking using the One Pass Evalua-

tion (OPE) [28]. It defines the overlap as the IOU of a BB
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with its ground truth, and the error as the distance between

both centers. The Success and the Precision metrics are de-

fined using the overlap and error AUC. For our 3D object

tracking purposes, we predict 3D BBs and so we estimate

the precision as the AUC for 3D errors from 0 to 2m. We

exhaustively generate candidates in a current frame by sam-

pling over a grid of [−3, 3]m for tx and ty , and [−10, 10]o

for α with a resolution of 1m and 10o, respectively. The

grid is centered around the current ground truth BB to ap-

proximate an exhaustive search. Experiments are run using

PyTorch 0.4.1 on a 11GB NVidia GTX1080Ti GPU.

4.1. Ablation Studies

We present an ablation study of our methodology in Ta-

ble 1, highlighting the importance of the shape completion

regularization for the 3D Siamese Tracker. Results are pro-

vided for five different cases: (i) an initialization of our net-

work with random weights, (ii) our network pre-trained on

ShapeNet, (iii) our network trained to minimize the comple-

tion loss only, (iv) our network trained as a regular Siamese

tracker by using only our tracking loss, and (v) our network

trained with both the tracking and completion losses. We

observe that training to minimize alone the completion loss

or the tracking loss provides better results than pre-training

on ShapeNet and a random initialization. Also, combining

both losses enhances the tracker’s performance beyond ei-

ther method isolated.

Table 1. Ablation study for different losses we are training with.

We report the OPE Success/Precision metrics for different losses

averaged over 5 runs. Best results shown in bold.

Ablation Success Precision

(i) Before Training (Random) 39.06 41.79

(ii) Pre-trained on ShapeNet 44.54 49.38

(iii) Ours – Completion only 65.36 70.62

(iv) Ours – Tracking only 73.96 78.68

(v) Ours – λcomp@1e−6 76.94 81.38

Completion Loss. Figure 3 (top) shows detailed results ob-

tained as the regularization parameter λcomp is varied. As

less weight is given to the completion loss, the performance

moves from the results obtained with only the completion

loss to those obtained with only the tracking loss. The best

trade-off is obtained at a point where both losses are in the

same order of magnitude. This occurs with λcomp between

1e−5 and 1e−6, where we obtain peak performance.

Latent representation dimension. Figure 3 (bottom)

shows how varying the size of our latent representation z

affects the performances. It can be observed that a larger

latent representation generally performs better. This is due

to the fact that larger latent representations encode more ex-

pressive capabilities. However, this reaches a maximum at

a size of around K = 128 dimensions. Larger latent rep-

Figure 3. Ablation study for different regularization λcomp

of the shape completion (top) and for the latent representation

size K (bottom). We report the OPE Success/Precision metrics

for different values of λcomp and K averaged over 5 runs.

resentations require more expensive computations, but the

difference is not significant when comparing a latent repre-

sentation of 32 dimensions against a 128-dimensional rep-

resentation. Thus, it is best to use the representation which

provides the best tracking performance, i.e. K = 128.

Reconstruction Performances. Table 2 shows shape com-

pletion results on the KITTI dataset, using the metrics de-

fined in [50]. Our method (v) outperforms the pure comple-

tion one (iii) showing that completion also benefits from the

different point of view provided during tracking. However,

our decoder is not yet on par with current state-of-the-art.

Table 2. Completion performances on KITTI Tracking.

Method (iii) (iv) (v) [15] [50]

Comp. [m] 0.188 0.690 0.179 0.130 0.078

Qualitative results. Figure 4 shows qualitative results re-

garding decoded shapes Φ(x). We can observe that training

for tracking only results in a decoded point cloud contain-

ing a large amount of noise. Already, the model pre-trained

on ShapeNet provides a reconstruction which resembles a

general car but not the specific candidate car. Training

for shape completion only provides a shape reconstruction

which is a more complete version of the original candidate

shape. Regularizing tracking with shape completion by us-
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Figure 4. Example of model completion (from left to right): (i) Candidate point cloud, (ii) Decoded candidate point cloud when it is

pre-trained with ShapeNet, (iii) Decoded candidate point cloud when it is trained with completion loss only (λcomp = ∞), (iv) De-

coded candidate point cloud when it is trained with tracking loss only (λcomp = 0) (the decoder trained for completion is used for fair

comparison), (v) Decoded candidate point cloud when it is trained with both tracking and completion losses (λcomp = 1e
−6).

ing λcomp = 1e−6 provides a reconstruction similar to that

using shape completion only. However, the model trained

for shape completion only follows the candidate shape more

closely. A regularized loss is able to improve tracking re-

sults while conserving enough class information as to re-

construct the encoded shape from its latent vector.

Figure 5 illustrates the activations obtained from the co-

sine similarity for a set of samples obtained around an ex-

haustive search. We observe that a randomly initialized

model generates high scores everywhere, hence providing

a bad discrimination. A model pre-trained on ShapeNet

is able to better discriminate the shape to track than ran-

dom initialization, but is still distracted by the environment,

confusing other shapes for the car. Our model is able to

discriminate fairly well between the ground truth car and

the surrounding areas; there are high activations only in the

vicinity of the ground truth box. Note that the ideal shape

we expect to obtain for the activations is a Gaussian cen-

tered at the ground truth BB, as regressing to in training.

4.2. Model Fusion and Shape Aggregation

We construct and update a model x̂ for the target object’s

shape as we track it. By default, the model is maintained as

a point cloud. Our update step for the model after iteration

t consists of concatenating the points of the tracked shape

in frame x
t with the current model. An alternative is to

maintain a model by averaging the latent representations.

We investigate the effects of fusing either point clouds or

latent representations as well as the effects of different types

of aggregation in time for both representations. We test the

different shape fusions and aggregations in our method. We

report the main results in Table 3.

Early/Late Fusion. We update the model by either con-

catenating the shape point clouds x
t (Early Fusion) or ag-

gregating the latent shape representations zt (Late Fusion).

Early Fusion requires a larger amount of memory to store

the model shape. Late Fusion allows for a more memory-

efficient representation for point clouds, since we only need

to keep a latent vector to represent a whole shape. It is also

more computationally efficient since the model is not en-

coded several times during testing.

Figure 5. Heatmap of model cosine similarity scores on an ex-

haustive search space grid: From bottom to top: (i) activation us-

ing random weights model, (ii) activation on pre-trained model

(ShapeNet), (iii) our model.

Table 3. OPE Success/Precision for different Data Fusion and

Model Aggregation. All results are averaged over 5 runs. Best

representation aggregation shown in bold.

Fusion Early Fusion Late Fusion

Data Representation PC Latent

First shape only 54.6 / 64.2 54.6 / 64.1

Previous shape only 64.5 / 69.7 64.4 / 69.6

First and prev. shapes 75.4 / 82.7 69.1 / 78.1

All previous shapes 76.9 / 81.4 63.9 / 73.2

Median Pooling – / – 59.7 / 67.6

Max Pooling – / – 71.5 / 75.6
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Shape Aggregation. We investigate different types of

shape aggregations. In particular, we try using the shape

in the first frame only, the previous shape only, an aggrega-

tion of the the first and previous shapes, and an aggregation

of all the previous shapes. We also investigate aggregating

the latent representations by either computing the average,

the median, or the max of the vectors across time.

Analysis. As shown in Table 3, concatenating point clouds

(Early Fusion) performs generally better than fusing the la-

tent vectors (Late Fusion). This is mainly due to our com-

pletion loss designed to handle arbitrary shapes sampled at

2048 points. We do not include any loss that would train our

network to aggregate latent vectors. As a result, late fusion

does not perform as well as concatenating point clouds.

Using an aggregation of only the first or the previous

frame does not perform well. In particular, the number of

points belonging to the object in question in a single frame

can be significantly small, which impedes a proper shape

representation. Should this happen in the first frame, it will

imply a bad initial representation. A low point count when

tracking using the previous frame will induce drifting.

Fusing the first and previous frames performs surpris-

ingly well and provides the best precision. We believe that

the two distant representations complement each other, par-

ticularly by limiting the amount of translational drift in the

first frames given an initial bad representation. The shapes

in the first frames typically contain a limited number of

points, since they are sensed from a large distance. They

provide a very incomplete shape information, but are still

helpful to localize roughly its position although not its ori-

entation. The full model will inevitably drift while the fu-

sion of first and previous frame avoids initial drifts to a cer-

tain extent, thus having an improved precision.

For the latent representation, median pooling is less ef-

fective than average pooling, but max pooling provides the

best performance. We argue that it interacts well with the

max pooling layer at the end of our encoder network. By

consecutively max pooling over the shape’s point features

(last layer of our encoder) and over all the previous latent

vectors, we actually pool over all the shape’s point feature

in a tracklet, which provide a more global model latent rep-

resentation. Still, this is not as effective as Early Fusion.

4.3. Search Space

Defining an efficient search space is extremely difficult

in 3D due to the continuity and cubic nature of 3D space.

Thus, an exhaustive search becomes infeasible when a very

fine search space is required. To overcome this limitation,

we use a Kalman Filter, Particle Filter, and Gaussian Mix-

ture Model to generate candidates. We apply our network

using more realistic search spaces, which do not use the

ground truth BB, as opposed to the exhaustive search ap-

proximation. We argue that our model has good discrimi-

nating capabilities, but is limited by the quality of proposed

candidates. To support our claim, we report the results ob-

tained by scoring the candidates using their distance to the

ground truth object BB – the best possible similarity met-

ric – along with the results obtained using our best model

with both early fusion and late fusion. Results are shown in

Table 4. It can be observed that our model reaches perfor-

mances similar to those obtained by selecting the candidate

closest to the ground truth, which emphasize the effective-

ness of our similarity metric for discrimination.

Table 4. OPE Success and Precision for different Search Space.

All results are averaged over 5 runs.

Fusion Early Late Closest

Data Repres. PC Latent Space

Kalman Filter 41.3 / 57.9 37.4 / 52.1 43.7 / 58.3

Particle Filter 34.2 / 46.4 33.3 / 44.9 38.4 / 49.5

GMM(k= 25) 35.6 / 49.1 34.0 / 46.1 37.9 / 49.3

4.4. Comparison with Baselines

To compare our method for 3D tracking, we create two

baselines due to the absence of 3D tracking methods for

this specific task. We take as baselines a state-of-the-art 3D

detection method as well as a 2D tracker. The results from

these baselines are reported along with our best model using

exhaustive search and our best model using a Kalman filter

in Table 5. Evaluation metrics are reported using both the

3D IOU on 3D BBs and the 2D BEV IOU on BEV BBs.

Table 5. Baseline comparison using the 3D OPE (3D BB) and the

2D OPE on BEV frames.
Test OPE3D OPE2D

STAPLECA – / – 31.60 / 29.30

AVOD Tracking 63.16 / 69.74 67.46 / 69.74

Ours - Kalman Filter 40.09 / 56.17 48.89 / 60.13

Ours - Exhaustive 76.94 / 81.38 76.86 / 81.37

3D Detection. For the 3D detection baseline, we pair the

AVOD-FPN [29] detector with an online matching algo-

rithm. AVOD-FPN utilizes both LIDAR point clouds and

RGB images to obtain 3D detections. We use the detection

for every frame in our tracklets and preform tracking-by-

detection by matching objects frame-by-frame. The object

in frame t is selected as the BB with the highest overlap

with the BB tracked in frame t− 1.

2D Tracker. We compare against the popularized 2D

STAPLECA tracker [2, 38], when applied to BEV data.

BEV images are extracted from point clouds in our track-

lets by projecting points into the ground plane. The result-

ing 2D tracklets are then fed to the STAPLECA tracker. This

method provides a LIDAR-only tracker as a fair baseline for

our method, which also only relies on LIDAR input.

71365



Analysis. Table 5 shows the comparative results with track-

ing baselines. Our exhaustive model performs better than

both baselines, while the model using a Kalman filter is able

to outperform the 2D Tracker.

5. Discussions

Training on complete models. In our experiments, we

auto-encode a complete model shape obtained by concate-

nating all the point clouds in a tracklet. We then enforce

candidate shapes belonging to the same object as our model

to encode into a vector with a high cosine similarity be-

tween itself and the latent representation of our model. An

alternative would be to enforce partial shapes belonging to

an object at different times to be similar to each other and

partial shapes not belonging to the object to be dissimilar

from those belonging to the object. In particular, we at-

tempted to provide the object at time t as a target for our

Siamese network in place of the full model. However, bet-

ter results were obtained by using a full model as the target.

A natural extension to training using objects from the

same time t is to concatenate different combinations of

shapes from the same tracklet at different times. This aug-

mentation is possible since we train our network to com-

plete shape i.e. to be invariant to occlusions from different

views. This is an intermediate step between training using a

single frame as a model and using the whole tracklet to cre-

ate a model shape for the Siamese network. However, this

augmentation increased training time exponentially and did

not provide further improvements to our tracking results.

There are not enough points in every frame to learn the

proper shape of the car without auto-encoding a full model.

Ground included in the car model. The model is pre-

trained on Shape net, which has complete shapes without

noisy points such as a road. In our test, we scaled the

BBs by a factor of 1.25 since the original BBs are too tight

around the cars and part of the border of cars lie outside

their BBs. Such consideration account for 10% of the per-

formances. For this reason, it is possible to see the road in

Figure 4, but we believe that including the road does not

negatively affect the shape representation. We also consid-

ered a fixed offset of 0.5m which proved to be less effective.

Robustness on Occlusion. With the tracking loss only, our

method (iv) performs a Success/Precision of 76.9/80.1 and

72.8/77.4 for fully visible and occluded samples in KITTI,

respectively. Adding shape completion, our method (v)

reaches 79.9/83.2 and 74.6/80.5, showing improvement in

both cases.

Robustness on Dynamic Scenes. We computed the dy-

namics of each vehicle to track in KITTI, and report an av-

erage distance d = 0.742m between consecutive frames, in

agreement with Figures 10&11 of [17]. We split our sam-

ples into a static (d < 0.7m) and a dynamic (d > 0.7m)

set from which we report fairly similar Success/Precision

metrics of 76.4/80.5 and 76.7/83.2 respectively.

Symmetry. Most cars are visible only from one side. We

attempted leveraging a prior knowledge of car symmetry in

order to complete furthermore the shape of the cars. How-

ever, this method did not prove to be effective, in particular

because the BBs are not well centered and introduce more

noise into our model.

Gaussian Sampling. We generate candidate offsets during

training by sampling from a multivariate Gaussian distribu-

tion, in contrast with sampling offsets using a fixed grid.

Sampling offsets randomly improves performances, since

the network is able to learn from a variety of target scores.

Fixing an offset grid provides only a discrete number of tar-

get scores used for the tracking loss. Lacking variety in

training induces worse performances during testing.

Timing. Our model takes on average 1.8ms to evaluate 147

candidates. We do not account for the time spent generat-

ing and preparing the candidates and model point clouds for

evaluation. This allows us during deployment to increase

the number of candidates as much as allowed by the GPU,

while still being able to process point clouds in real-time.

6. Conclusion

In this paper, we propose, to the best of our knowledge,

the first 3D Siamese tracker applied to point clouds rather

than images. We leverage an efficient encoding able to em-

bed meaningful semantic priors thanks to a shape comple-

tion regularization. We show that regularizing our network

with semantic information results in better discrimination

and tracking performances. Also, we provide insights on

model building such as early/late fusion and shape aggre-

gation in frames. We compare against baselines in 3D and

2D BEV, showing that our discriminator is able to outper-

form baselines by using exhaustive search settings. As a

result, we propose a purely 3D alternative for tracking cars

in urban environments, and show that geometric-oriented

approaches are capable of attaining good performances.

Future works will also include improving both the simi-

larity metric and the model update, by including a proposal

loss similar to that used in region proposal networks and

a smarter model point cloud selection based on the qual-

ity of point clouds. Further works will include an exten-

sion to Multiple Object Tracking and 3D Object Detec-

tion, by leveraging the similarity metric based on our 3D

Siamese network. Alternatively, 3D Siamese tracking could

be adapted to different classes of objects, articulated shape

representation and 2D object tracking.
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Signature verification using a” siamese” time delay neural

network. In Advances in neural information processing sys-

tems, pages 737–744, 1994. 2

[6] L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde.

Lidar-camera fusion for road detection using fully convolu-

tional neural networks. arXiv preprint arXiv:1809.07941,

2018. 1

[7] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d

model repository. CoRR, abs/1512.03012, 2015. 4

[8] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d

object detection network for autonomous driving. In IEEE

CVPR, volume 1, page 3, 2017. 1

[9] X. Cheng, P. Wang, and R. Yang. Learning depth with

convolutional spatial propagation network. arXiv preprint

arXiv:1810.02695, 2018. 1

[10] H. Chu, W.-C. M. K. Kundu, R. Urtasun, and S. Fidler. Sur-

fconv: Bridging 3d and 2d convolution for rgbd images. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3002–3011, 2018. 1

[11] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. R.

Bradski. Self-supervised monocular road detection in desert

terrain. In Robotics: science and systems, volume 38.

Philadelphia, 2006. 1

[12] A. Dai, C. R. Qi, and M. Nießner. Shape completion us-

ing 3d-encoder-predictor cnns and shape synthesis. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), volume 3, 2017. 2

[13] Z. Deng and L. Jan Latecki. Amodal detection of 3d objects:

Inferring 3d bounding boxes from 2d ones in RGB-Depth

images. In CVPR, 2017. 2

[14] X. Dong and J. Shen. Triplet loss in siamese network for

object tracking. In ECCV, September 2018. 2

[15] F. Engelmann, J. Stückler, and B. Leibe. Joint object pose

estimation and shape reconstruction in urban street scenes

using 3d shape priors. In German Conference on Pattern

Recognition, pages 219–230. Springer, 2016. 2, 5

[16] H. Fan, H. Su, and L. J. Guibas. A point set generation net-

work for 3d object reconstruction from a single image. In

CVPR, volume 2, page 6, 2017. 4

[17] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. IJRR, 32(11), 2013. 2, 4, 8

[18] S. Giancola, J. Schneider, P. Wonka, and B. S. Ghanem. In-

tegration of absolute orientation measurements in the kinect-

fusion reconstruction pipeline. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) Work-

shops, June 2018. 2

[19] J. Greenhalgh and M. Mirmehdi. Real-time detection and

recognition of road traffic signs. IEEE Transactions on In-

telligent Transportation Systems, 13(4):1498–1506, 2012. 1

[20] A. He, C. Luo, X. Tian, and W. Zeng. A twofold siamese

network for real-time object tracking. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018. 2

[21] B.-S. Hua, M.-K. Tran, and S.-K. Yeung. Pointwise convo-

lutional neural networks. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 984–993, 2018. 1

[22] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 3

[23] M. Jaritz, R. De Charette, E. Wirbel, X. Perrotton, and

F. Nashashibi. Sparse and dense data with cnns: Depth com-

pletion and semantic segmentation. In 2018 International

Conference on 3D Vision (3DV). IEEE, 2018. 1

[24] I. Jung, J. Son, M. Baek, and B. Han. Real-time mdnet. In

ECCV, September 2018. 2

[25] P. Karkus, D. Hsu, and W. S. Lee. Particle filter net-

works with application to visual localization. arXiv preprint

arXiv:1805.08975, 2018. 3

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 4

[27] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and J. Bruna.

Surface networks. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018. 1

[28] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder,

G. Fernandez, G. Nebehay, F. Porikli, and L. Čehovin. A
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