

LEVERAGING SINGLE-USER APPLICATIONS FOR

MULTI-USER COLLABORATION

By

Qian Xia

A DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT OF

THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

THE SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

GRIFFITH UNIVERSITY

BRISBANE, QLD 4111, AUSTRALIA

MARCH 2006

© Copyright by Qian Xia, 2006

 ii

GRIFFITH UNIVERSITY

Date: March 2006

Author: Qian Xia

Title: Leveraging Single-User Applications for Multi-User Collaboration

Department: School of Information and Communication Technology

Degree: Ph.D. Year: 2006

I declare this work has not previously been submitted for a degree or diploma in

any university. To the best of my knowledge and belief, the thesis contains no material

previously published or written by another person except where due reference is made

in the thesis itself.

 Signature of Author

 iii

Table of Content

 TABLE OF CONTENT..III

LIST OF FIGURES ..VI

LIST OF TABLES...VIII

LIST OF TABLES...VIII

ABSTRACT... 1

CHAPTER 1 INTRODUCTION... 3

1.1. COLLABORATION AWARENESS AND COLLABORATION TRANSPARENCY 3
1.2. SCOPE OF THIS THESIS .. 4

1.2.1. Problem Statement .. 4
1.2.2. Research Hypothesis .. 6
1.2.3. Research Approach ... 7

1.3. SUMMARY OF CONTRIBUTION .. 8
1.4. DISSERTATION OVERVIEW ... 10

CHAPTER 2 RESEARCH BACKGROUND... 11

2.1. CSCW AND GROUPWARE OVERVIEW .. 11
2.2. CENTRALIZED AND REPLICATED ARCHITECTURE.. 13
2.3. CONSISTENCY MAINTENANCE ... 15

2.3.1. Floor Control... 16
2.3.2. Locking ... 17
2.3.3. Serialization... 17
2.3.4. Operational Transformation.. 18

2.4. WORKSPACE AWARENESS .. 20
2.4.1. Workspace Awareness Information .. 21
2.4.2. Widely-Used Workspace Awareness Features .. 22

2.5. SESSION MANAGEMENT ... 23
2.5.1. Explicit Session Management... 23
2.5.2. Implicit Session Management ... 24

2.6. COLLABORATION TRANSPARENCY .. 25
2.6.1. Centralized Generic Application Sharing .. 26
2.6.2. Replicated Generic Application Sharing .. 26
2.6.3. Component Replacement ... 28
2.6.4. Collaboration Transparency and Heterogeneity... 29

2.7. SUMMARY .. 30

CHAPTER 3 THE TRANSPARENT ADAPTATION APPROACH .. 33

3.1. INTRODUCTION .. 33
3.2. THE DATA MODEL ADAPTATION .. 35

3.2.1. Word Data Model Adaptation.. 35
3.2.2. PowerPoint Data Model Adaptation.. 40

 iv

3.3. THE OPERATION MODEL ADAPTATION .. 47
3.3.1. The Adapted Operation .. 47
3.3.2. Defining AOs for Word and PowerPoint.. 49
3.3.3. Event Interception and AO Generation.. 52
3.3.4. AO-PO Adaptation... 56
3.3.5. AO-API Adaptation ... 58

3.4. SUMMARY .. 59

CHAPTER 4 EXTENDING OPERATIONAL TRANSFORMATION FOR SUPPORTING TA
 62

4.1. INTRODUCTION .. 62
4.2. EXTENDING THE OT DATA MODEL .. 63

4.2.1. Extending the OT Data Model.. 63
4.2.2. Target-Domain Relationships among Operations .. 67
4.2.3. Checking Target-Domain Relationships ... 69
4.2.4. The VOT function .. 71
4.2.5. Other Tree-Based OT Techniques .. 73

4.3. EXTENDING OT FOR SUPPORTING UPDATE ... 74
4.4. SUMMARY .. 75

CHAPTER 5 APPLYING TA TO COMPLEX APPLICATION DATA STRUCTURES AND

OPERATIONS 77

5.1. THE TA-BASED COLLABORATIVE TABLE EDITING TECHNIQUE 78
5.1.1. Collaborative Table Editing .. 78
5.1.2. The Data Model Adaptation .. 79
5.1.3. Table Operation Model Adaptation ... 84
5.1.4. Supporting Collaborative Table Editing in CoWord 87
5.1.5. Comparison to Other Collaborative Table Editing Techniques 91

5.2. THE COLLABORATIVE GRAPHIC OBJECT GROUPING TECHNIQUE 92
5.2.1. Collaborative Graphic Object Grouping ... 92
5.2.2. Conflict Resolution in the Presence of Grouping Operations...................... 93
5.2.3. The Data Model Adaptation for Graphic Objects.. 98
5.2.4. The Operation Model Adaptation for Group Operations............................. 100
5.2.5. Comparison to Other Collaborative Graphic Object Grouping Technique
 111

5.3. SUMMARY .. 114

CHAPTER 6 SUPPORTING WORKSPACE AWARENESS IN TA-BASED SYSTEMS 116

6.1. INTRODUCTION .. 116
6.2. RELATED WORK .. 119

6.2.1. Existing Object Association Schemes.. 119
6.2.2. Existing Graphics Representation Techniques ... 121

6.3. THE MOAF OBJECT ASSOCIATION TECHNIQUE ... 122
6.3.1. Object Association Effects .. 122
6.3.2. Adapting Workspace Awareness AO.. 127
6.3.3. Achieving Object Association Effects.. 132

6.4. THE MOAF GRAPHICS REPRESENTATION TECHNIQUE .. 136
6.5. SUPPORTING WA FEATURES WITH MOAF .. 137

6.5.1. Radar View .. 137

 v

6.5.2. Telepointer .. 140
6.5.3. Multi-User Scrollbar .. 140
6.5.4. Teleselection .. 141
6.5.5. Discussion .. 145

6.6. SUMMARY .. 146

CHAPTER 7 THE COWORD AND COPOWERPOINT PROTOTYPES 148

7.1. A TA-BASED COLLABORATIVE SYSTEM ARCHITECTURE ... 148
7.2. COMPONENTS AND MODULES.. 150

7.2.1. The Collaboration Adaptor.. 150
7.2.2. The Generic Collaboration Engine.. 153

7.3. THE PROTOTYPE SYSTEM.. 155
7.3.1. CDRM Server and Client.. 155
7.3.2. CoWord ... 159
7.3.3. CoPowerPoint ... 163

7.4. IMPLEMENTATION EXPERIENCES... 167
7.5. USAGE FEEDBACK AND EXPERIENCES .. 168

7.5.1. Usage Feedback... 169
7.5.2. Usage Cases.. 170

7.6. SUMMARY .. 174

CHAPTER 8 DISCUSSION.. 176

8.1. DEALING WITH PROBLEMS RELATED TO THE REPLICATED ARCHITECTURE 176
8.1.1. Maintaining Application Consistency ... 176
8.1.2. Managing Access to External Resources ... 177
8.1.3. Accommodating Late-Comers ... 180

8.2. APPLICABILITY TO BOTH COLLABORATION AWARENESS AND COLLABORATION

TRANSPARENCY... 180
8.3. SUITABILITY FOR DATA-CENTRIC COLLABORATION .. 181
8.4. REQUIREMENTS AND COMPLEXITIES ... 183

8.4.1. Basic Requirements to the API .. 183
8.4.2. Complexities of Adaptation Techniques ... 183

CHAPTER 9 CONCLUSIONS AND FUTURE WORK.. 185

9.1. SUMMARY OF CONTRIBUTIONS .. 185
9.1.1. The TA Approach .. 185
9.1.2. Extensions to the OT Technique .. 186
9.1.3. Advanced Adaptation Techniques for Complex Application Semantics. 187
9.1.4. TA-Based Workspace Awareness Technique .. 188
9.1.5. Experimental Prototype Systems.. 189

9.2. FUTURE WORK .. 189

REFERENCES .. 192

INDEX .. 206

 vi

List of Figures

Figure 2.1 The centralized architectures... 13

Figure 2.2 The replicated architecture.. 14

Figure 3.1 The user’s view and the adapted API’s view of a Word document. 36

Figure 3.2 A tree of linear addressing domains for a Word document. 39

Figure 3.3 The user's views and the API's view of a PowerPoint document.................. 41

Figure 3.4 A tree of linear addressing domains for a PowerPoint document................. 46

Figure 3.5 Three layers in Word operation adaptation... 50

Figure 3.6 Three layers in PowerPoint operation adaptation. .. 52

Figure 3.7 Intercepting keyboard events and generating the Ins_Text AO in CoWord. 53

Figure 4.1 The XOTDM tree: an eXtended OT Data Model. .. 64

Figure 4.2 Concurrent operations in multiple domains of a CoPowerPoint document.. 68

Figure 4.3 Checking the target-domain relationship. ... 70

Figure 4.4 A wrapper OT function for transforming operations with vector addresses. 71

Figure 5.1 Table-related data models in APIs of different single-user applications. 80

Figure 5.2 Integrating the table into the global addressing space of the complex

document.. .. 83

Figure 5.3 Handling irregular tables and its effects on the data model.. 87

Figure 5.4 Effects of vertical cell merge on the user interface and data model. 88

Figure 5.5 Preserving the regularity effects of Ins_Row and Ins_Col AOt.................... 90

Figure 5.6 Combined effects between graphics editing operations................................ 96

Figure 5.7 An example for illustrating the combined MVSD effect of two conflict

Group operations. ... 98

Figure 5.8 The group objects data model.. ... 98

Figure 5.9 A scenario of three conflict ChangeAttAOg. .. 101

Figure 5.10 Effects of GroupAOg and UngroupAOg.. 102

Figure 5.11 The routines for detecting grouping AO conflicts. 105

Figure 5.12 The routine for resolving conflicts among GroupAOg.............................. 107

Figure 5.13 The routine for achieving combined effects for GroupAOg and

DeleteObjAOg... 109

Figure 5.14 The routine for achieving combined effects for UngroupAOg and

ChangeAttAOg (targeting the group-object). ... 110

Figure 5.15. The routines for AO-PO adaptation in the presence of grouping AOs. ... 111

Figure 6.1 The PRA effect.. 123

Figure 6.2 The RPP effect.. .. 124

Figure 6.3 The RPP effect when the telepointer is in a blank area............................... 124

Figure 6.4 The virtual local cursor for tracking the associated object 125

Figure 6.5 IT functions for the Refer operation.. 131

Figure 6.6 A scenario of achieving the RPP effect with the relative ratio position

parameters... 132

 vii

Figure 6.7 A scenario for preserving the object-associated effects in the face of view

change... 135

Figure 6.8 The radar views ... 138

Figure 6.9 The telepointer. ... 140

Figure 6.10 The multi-user scrollbar. ... 141

Figure 6.11 The teleselection. .. 143

Figure 7.1 The TA-based collaborative system architecture.. 149

Figure 7.2 The architecture, components and modules of CoWord............................. 151

Figure 7.3 The user interface of CDRM server. ... 156

Figure 7.4 The user interface of CDRM client... 157

Figure 7.5 The CoWord Control Panel... 161

Figure 7.6 Workspace awareness features of CoWord... 162

Figure 7.7 The CoPowerPoint Control Panel. .. 167

 viii

List of Tables
Table 2.1 The time and space matrix of groupware systems..12

Table 2.2. Composition of workspace awareness information....................................... 21

Table 5.1. AOt classification. ... 86

Table 5.2. The conflict relation triangle of five operation types. 95

Table 5.3. Conflict relation triangle of five operation types in Ignat and Norrie (2004).

.. 112

 ix

Acknowledgement

First of all, I would like to express my deepest gratitude to my supervisor, Prof.

Chengzheng Sun. He has looked after me throughout my PhD study period. He offered

enlightening and insightful ideas in my research project, offered critical but helpful

comments on my results, offered encouragement in times of difficulties, and offered

valuable advice in my living. More importantly, his spirit in hardworking and pursuing

academic excellence has significantly affected my attitude to my study and work. What

I have leaned from him has not only helped me complete my PhD study, but will also

help me in my academic career in the future.

I would also like to thank my supervisor Dr. David Chen. He is an important mentor

and friend, who has helped me in many aspects, including providing inspiring ideas for

my research, helping me revise papers and thesis and arrange my academic activities.

Without his help, I should have encountered many more difficulties. I would also like to

thank my associated supervisor, Prof. Geoff Dromey, who has also offered me generous

help.

Furthermore, I would like to thank colleagues in my groups, including David Sun,

Jingzhi Guo, Haifeng Shen and Kevin Lin. I have gained a lot through cooperative work

and discussion with them.

No words could express how much I am indebted to my family. My parents have

done everything they could to help me accomplish my study. My father, who sadly

passed away in the last stage of my PhD study, did not see me gaining the degree. I

believe my completing this thesis is the best gift for him. I also owe a lot to my wife.

She accompanied me in these years, perfectly arranging my everyday living, which

allowed me to focus on my study and research. Without her strong support and

passionate love, I could not have finished this thesis.

 x

Publications Derived from This

Research

1. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H. and Cai, W. “Transparent adaptation of

single-user applications for multi-user real-time collaboration”. To appear in ACM

Transactions in Human – Computer Interaction.

2. Xia, S., Sun, D., Sun, C. and Chen, D. 2006. “An integrated session and repository

management approach for real-time collaborative editing systems”. In Proc. the Fourth

International Conference on Creating, Connecting and Collaborating through

Computing (C5 2006), January 2006, University of California, Berkeley, USA.

3. Xia, S., Sun, D., Sun, C. and Chen, D. 2005. “Collaborative object grouping in graphics

editing systems,” In Proc. The First International Conference on Collaborative

Computing: Networking, Applications and Worksharing (CollaborateCom 2005),

December 2005, San Jose, CA, USA.

4. Xia, S., Sun, D., Sun, C. and Chen, D. 2005. “Object-associated telepointer for real-

time collaborative document editing systems”. In Proc. The First International

Conference on Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom 2005), December 2005, San Jose, CA, USA.

5. Xia, S., Sun, D., Sun, C. and Chen, D. 2005. “Supporting workspace-mediated

interaction in collaborative presentations with CoPowerPoint”. In Proc. The First

International Conference on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom 2005), December 2005, San Jose, CA, USA.

6. Xia, S., Sun, D., Sun, C. and Chen, D. 2005. “A collaborative table editing technique

based on transparent adaptation”. In Proc. The 13th International Conference on

Cooperative Information Systems (CoopIS 2005), LNCS, Springer Verlag, vol. 3760,

pp. 576–592, November 2005, Agia Napa, Cyprus.

 xi

7. Xia, S., Sun, D., Sun, C., Chen, D. and Shen, H. 2004. “Leveraging single-user

applications for multi-user collaboration: the CoWord approach”. In Proc. ACM 2004

Conference on Computer Supported Cooperative Work, pp. 162–171, November 2004

Chicago, IL USA.

8. Sun, D., Xia, S., Sun, C. and Chen, D. 2004. “Operational transformation for

collaborative word processing”. In Proc. ACM 2004 Conference on Computer

Supported Cooperative Work, November 2004, Chicago, IL USA.

9. Xia, S., Sun, D., Sun, C., Chen, D. and Shi, Y. 2004 “Interactive Presentation with

CoPowerPoint”. The Sixth International Workshop on Collaborative Editing Systems,

pp. 437–446, November 2004, Chicago, IL USA.

 1

Abstract

People rely on off-the-shelf commercial single-user software systems in their

daily lives and work to perform single-user tasks. People also need groupware

systems to perform collaborative or group tasks. The goal of this thesis work is to

develop innovative techniques for building computer applications that combine

conventional single-user functionalities with advanced collaboration capabilities

to effectively support people’s individual and group work.

This thesis work contributes an innovative Transparent Adaptation (TA)

approach and associated supporting techniques that can be used to convert

existing or new single-user applications into real-time multi-user collaborative

versions without changing their source code. The transparently adapted

collaborative systems not only support unconstrained collaboration and other

collaboration features that were previously seen only in advanced groupware

research prototypes, but also maintain the conventional functionalities and

interface features that were previously seen only in commercial off-the-shelf

single-user applications. Major technical contributions of the TA approach

include techniques for adapting the single-user application programming interface

to the data and operation models of the underlying generic collaboration

technique and a generic system architecture for collaborative systems.

The Operation Transformation (OT) technique has been chosen as the

underlying collaboration technique for the TA approach due to its capability of

supporting unconstrained collaboration and application independence. This thesis

work has also made important contributions to OT by extending OT from

supporting only collaborative plain text editing to supporting collaboration on

complex data structures and comprehensive functionalities.

 2

To support the adaptation of complex data and operation models in a range of

applications, this thesis work has contributed a package of advanced adaptation

techniques for collaborative table editing and graphic object grouping. These

techniques have not only increased the capability of TA, but have also advanced

the state-of-the-art of collaborative editing techniques.

To facilitate natural and smooth collaboration, this thesis work has contributed

a multi-functional workspace awareness framework which is able to reduce the

effort for developing workspace awareness features, and to be extended to support

new workspace awareness features. Most importantly, this framework is able to

deliver correct and precise workspace awareness information in the face of

dynamic content and view changes in TA-based systems, which is an innovative

feature unavailable in existing techniques.

The TA approach and supporting techniques were developed and tested in the

process of transparently converting two commercial off-the-shelf single-user

applications – Microsoft Word and PowerPoint – into real-time collaborative

applications, called CoWord and CoPowerPoint, respectively. CoWord and

CoPowerPoint not only retain the functionalities and the “look-and-feel” of their

single-user counterparts, but also provide advanced multi-user collaboration

capabilities for supporting multiple interaction paradigms, ranging from

concurrent and free interaction to sequential and synchronized interaction, and for

supporting detailed workspace awareness, including multi-user tele-pointers and

radar views. The TA-based collaborative system architecture and the generic

collaboration engine software component developed from this work can be reused

in adapting a wide range of single-user applications.

 3

Chapter 1

Introduction

Living in a social environment, people’s everyday activities, including work,

study and play, inevitably involve collaboration with others. As important tools

for assisting people in complex tasks in the modern society, computer-based

software systems also need to provide sufficient support to facilitate and enhance

collaboration. These needs draw interests of social and computer scientists into a

multi-disciplinary research field called Computer-Supported Cooperative Work

(CSCW), which ranges from sociological analyses and anthropological

descriptions on how people work in groups to the technological foundations of

computer systems for supporting group work (Poltrock and Grudin 1994). These

computer-based systems that support groups of people engaged in a common task

(or goal) and that provide interfaces to shared environments are called groupware

systems (Ellis et al. 1991).

This thesis explores technical issues about groupware systems that support

geographically distributed users to work collaboratively in real time. In particular,

it deals with the approach to leveraging single-user applications into real-time

collaborative versions. The rest of this chapter describes the context of this

research, the scope of this thesis and a summary of contributions.

1.1. Collaboration Awareness and

Collaboration Transparency

Real-time groupware systems are built in two approaches: collaboration

awareness and collaboration transparency (Lauwers and Lantz 1990). With the

 4

collaboration-aware approach, groupware systems are developed especially for

the purpose of supporting collaboration and collaboration mechanisms are

internal to and aware by these systems and their designers. With the

collaboration-transparent approach, on the other hand, groupware systems are

based on existing (or new) single-user applications and collaboration mechanisms

are external to and unaware by these applications and their designers.

Although it seems natural to develop special groupware systems to support

collaboration, most existing collaboration-aware systems remain research

prototypes, whose main purpose is to demonstrate novel collaboration techniques.

Compared with off-the-shelf commercial single-user applications, functionalities

of collaboration-aware systems for supporting conventional single-user activities

(e.g. word processing, spreadsheet editing and graphics editing) are quite limited.

Therefore, collaboration-transparent systems also play an important role in

supporting collaboration. A significant advantage of collaboration-transparent

systems is that they allow users to collaborate with their familiar single-user

applications. This relieves users from the burden of learning new collaborative

systems. As pointed out by Grudin (1994b), “who would abandon their favorite

word processors to use a co-authorship application?” Moreover, by adding

collaboration functionalities to existing single-user applications, the effort for

developing groupware systems is significantly reduced.

1.2. Scope of This Thesis

1.2.1. Problem Statement

Existing collaboration-transparent approaches suffer from a series of problems,

which prevent them from having comparative collaboration capabilities as

collaboration-aware approaches.

Early collaboration-transparent systems, including NLS (Engelbart 1975),

MMConf (Forsdick 1985; Crowley et al. 1990), Dialogo (Lantz 1986; Lauwers et

 5

al. 1990), Share (Greenberg 1990), XTV (Abdel-Wahab and Peit 1991), Shared X

(Garfinkel 1994), NetMeeting (Microsoft Corp. 2006a), SunForum (Sun

Microsystems Inc. 2006a) and Timbuktu (Netopia Inc. 2006), provide generic

application-sharing environments in which existing single-user applications can

be transparently shared by multiple users for real-time collaborative work. The

majority of these systems are designed to share existing single-user applications

for supporting computer-based real-time conferences. Strict WYSIWIS (What

You See Is What I See), modeled after the chalkboard in meetings, is a

fundamental abstraction for multi-user interfaces and is supported by all these

generic application-sharing systems. In a strict WYSIWIS mode, all users have to

view exactly the same segment of the shared workspace. Moreover, to meet the

needs of coordinated activities in many meeting processes, generic application-

sharing systems support a sequential interaction paradigm, where only one user

(i.e. the current holder of the floor) can interact with the shared application at any

instant of time. Finally, some important collaboration functionalities that are

supported in collaboration-aware systems, including detailed workspace

awareness and flexible session management functions, are difficult to incorporate

into generic application-sharing systems.

To solve these problems, Flexible JAMM (Begole et al. 1999) adopts a

component replacement approach. The basic idea is to replace selected single-user

components of the shared application with multi-user versions. These multi-user

components are able to make use of application semantic knowledge to maintain

consistency in the face of concurrent work and support relaxed WYSIWIS. With

this approach, Flexible JAMM also supports some workspace awareness features

(e.g. telepointer and radar view). Flexible JAMM requires that the underlying

environment support process migration, run-time component replacement,

dynamic binding, and interception/introduction of low-level user input events.

However, single-user applications and execution platforms meeting Flexible

JAMM requirements are limited. This approach cannot be applied to most

commercial off-the-shelf single-user applications.

 6

ICT (Li and Li 2002) is another framework for transparent sharing of existing

single-user applications. In addition to the goal of achieving unconstrained

collaboration and relaxed WYSIWIS view-sharing, ICT also attempts to address

the heterogeneity and interoperability issues that arise from sharing different

applications in the same session. In a heterogeneous collaboration environment,

the strategy of applying the same sequence of input events at all collaborating

sites for consistency maintenance, as used in homogeneous application-sharing

systems, does not work any more. To address this heterogeneity problem, the ICT

work proposed to devise a mechanism that is capable of “understanding” the

semantic meaning of the user's inputs, so that the same user input semantics can

be interpreted by different input event sequences at different applications. The

Operational Transformation (OT) technique (Ellis and Gibbs 1989; Sun and Ellis

1998) was used in ICT to resolve consistency issues among concurrent editing

operations. For the ICT approach to work, the meta knowledge for understanding

the semantics of a specific application has to be formalized in advance. Due to the

tremendous difficulties in knowledge formalization and other technical challenges,

the ICT prototype preserves limited functionalities of the shared application:

editing operations exchanged among different editors are limited to plain text

insertion and deletion only.

1.2.2. Research Hypothesis

The research hypothesis of this thesis is that transparently converted systems can

not only have advanced collaboration capabilities that were previously seen only

in collaboration-aware systems, but also maintain conventional functionalities

and interface features that were previously seen only in commercial off-the-shelf

single-user applications.

The primary goal of this research is to develop techniques that can be used to

convert existing or new single-user applications into multi-user collaborative

systems which meet the following requirements:

 7

(1) Application compatibility: the user interface features, functionalities, and

document formats of the original single-user application should be retained.

(2) Application transparency: no change to the source code of the original

single-user application is required.

(3) Fast local response: the response to the local user’s interaction should be as

fast as the original single-user application.

(4) Unconstrained collaboration: users should be allowed to perform any

operations on any data objects at any time, which implies relaxed WYSIWIS

and concurrent work.

(5) Workspace awareness: the system should support a variety of workspace

awareness features so that the user knows who is in the workspace, where

they are working, and what they are doing.

(6) Session management: the system should provide lightweight and flexible

session management support with which users can manage collaboration

sessions with little effort.

(7) Flexible interaction control: the system should provide a variety of

interaction control paradigms/policies ranging from concurrent and free

interaction to sequential and synchronized interaction in order to effectively

facilitate different collaborative tasks.

1.2.3. Research Approach

In this research, an experiment-driven approach has been taken to examine the

research hypothesis. Existing collaboration-transparent approaches and state-of-

the-art collaboration techniques adopted in collaboration-aware systems were first

studied. By comparing collaboration-transparent and -aware systems, the reasons

that caused the performance and capability deficiencies in existing collaboration-

transparent systems were then analyzed. Based on this analysis, an approach that

is able to overcome these deficiencies was devised. Then a collaborative system

based on this approach was designed and implemented. The system designed in

this experiment was CoWord – a collaborative word processor converted from

 8

Microsoft Word. CoWord achieved advanced collaboration features that were

seen only in collaboration-aware systems, and at the same time preserved the user

interface, document format and other functionalities of Microsoft Word. Based on

the experiences from the first experiment, techniques invented and used in this

experiment were summarized, refined and formulated into an innovative approach,

named as Transparent Adaptation (TA).

To verify its generality, this TA approach was re-applied to another application,

Microsoft PowerPoint, and CoPowerPoint – a collaborative slides authoring and

presentation system – was developed. CoPowerPoint achieved the same effects

as CoWord in a different set of functionalities, thus providing a testimony of the

generality of the TA approach.

Then, these two experimental systems were used as the vehicles for studying

and experimenting with new collaborative editing techniques. Requirements for

new techniques were identified from the experimental systems. Afterwards, a

collection of new collaboration techniques was designed, including collaborative

table editing and graphics grouping techniques, as well as workspace awareness

techniques. These techniques were implemented in these systems to test their

correctness and feasibility. With the development of these new techniques, the

experimental systems acquired richer collaboration functionalities than existing

collaboration-aware systems.

These two experimental systems were publicly demonstrated on the Internet

and freely distributed around the world. Usage feedback and data collected from

users from all over the world provided valuable usability information and

confirmed the usefulness of the TA approach and experimental systems.

1.3. Summary of Contribution

This dissertation makes the following major contributions:

 9

(1) The Transparent Adaptation (TA) approach. This approach is able to

transparently (i.e. without changing the source code) convert existing or new

single-user applications into real-time collaborative systems which not only

achieve effects previously only seen in collaboration-aware systems, but also

preserve the conventional functionalities and interface features of single-user

applications.

(2) Extension to the Operational Transformation (OT) technique. The OT

technique is the cornerstone of the TA approach. This research has made

several important extensions to the basic OT technique. These extensions

leverage the OT technique from supporting collaborative plain text editing to

supporting unconstrained collaboration on complex data structures and

comprehensive editing operations.

(3) Advanced adaptation techniques for complex application semantics. The

basic TA approach is able to adapt elementary editing functionalities (e.g. rich

format text and simple graphics editing). To convert editing functionalities

with complex semantics (e.g. table editing and graphic object grouping), a

collection of advanced adaptation techniques have been designed in the TA

framework. These techniques extend the capabilities of TA and the underlying

OT, and also have contributions to the research of collaborative editing

techniques.

(4) A multi-functional workspace awareness framework for TA-based

systems. For supporting workspace awareness in TA-based systems, a multi-

functional workspace awareness framework has been contributed in this thesis

work. Compared with existing workspace awareness techniques, this

framework has two unique features: (a) it is able to accommodate the dynamic

content and view changes in TA-based systems to deliver accurate workspace

awareness information; and (b) it can be easily extended to support a variety

of existing and new workspace awareness features.

(5) Two TA-based real-time collaborative systems: CoWord and

CoPowerPoint. As a result of the experiment-driven research, two TA-based

real-time collaborative systems have been developed, which are CoWord

 10

(CoWord Demo 2006) and CoPowerPoint (CoPowerPoint Demo 2006).

CoWord is a collaborative word processor converted from Microsoft Word.

CoPowerPoint is a collaborative slides authoring and presentation system

converted from Microsoft PowerPoint. Furthermore, the generic collaboration

engine shared by these two systems can be reused to provide generic

collaboration support to other TA-based systems.

1.4. Dissertation Overview

This dissertation is organized as follows. First, representative prior researches are

reviewed in Chapter 2 as the research background of this thesis work. The basic

TA approach is discussed in Chapter 3. Next, extensions to the data and operation

models of the basic OT technique for supporting TA are presented in Chapter 4.

Issues and solutions for applying TA to complex application semantics, including

collaborative table editing and collaborative graphic object grouping, are

discussed in Chapter 5. In Chapter 6, a multi-functional workspace awareness

framework for TA-based systems is discussed. The experimental systems

developed in this research – CoWord and CoPowerPoint – are described in

Chapter 7. Chapter 8 compares the TA approach with replicated generic

application-sharing systems in dealing with a series of challenging problems,

discusses the applicability of the TA approach to collaboration-transparent and

collaboration-aware applications, and highlights its requirements and limitations.

Finally, contributions and future work are summarized in Chapter 9.

 11

Chapter 2

Research Background

This chapter reviews prior research relevant to this thesis work. This review

serves as the research background of this thesis work.

2.1. CSCW and Groupware Overview

The idea of supporting collaboration with computer systems can be traced to the

1960s, when Douglas Engelbart illustrated the screen-sharing collaboration

capability of the NLS demonstration (Engelbart and English 1968). The term

Computer-Supported Cooperative Work (CSCW) appeared in the 1980s and soon

became a multi-disciplinary research field. In addition to computer science

researchers, it also attracted researchers from economy, social psychology,

anthropology, organizational theory and education etc. (Grudin 1994a). In the

following years, CSCW became a broad research field that ranges from

sociological analysis on how people work in groups to computer-based

technologies supporting people’s group work. At the same time, the term

groupware appeared to mean multi-user CSCW supporting software systems

(Baecker 1992). Research on groupware is more specific. It focuses on

technologies for designing and developing systems for supporting people’s group

work.

In recent decades, the fast development of computer hardware and software

technologies, especially the explosive expansion of Internet, has boosted research

on CSCW and groupware techniques. Numerous groupware systems have been

developed as commercial products and research prototypes.

 12

Based on the time and space natures of the collaboration they support,

groupware systems can be classified as shown in Table 2.1.

Table 2.1 The time and space matrix of groupware systems (Ellis et al. 1991)

 Same Time Different Times

Same Place Face to Face Interactions Asynchronous Interactions

Different Places Synchronous Distributed

Interaction

Asynchronous Distributed

Interaction

In the time dimension, groupware systems can be classified as synchronous

systems and asynchronous systems. Synchronous groupware systems, also known

as real-time systems, support users collaborating at the same time. Example real-

time systems include collaborative editors and instant messaging systems

Asynchronous groupware systems, also known as non-real-time systems, support

users working on the same task at different times. Example non-real-time systems

include electronic mail and bulletin board systems.

In the space dimension, groupware systems can be classified as co-located and

distributed systems. Co-located systems support users collaborating at the same

place. One co-located system example is the meeting room-supporting system.

Distributed systems allow users to collaborate from different places. One

distributed system example is the tele-conference system that allows users to

attend a computer-supported conference from geographically distributed sites.

This thesis work focuses on real-time distributed groupware systems (the

shaded cell in Table 2.1). These systems are used to support geographically

distributed users to collaboratively work on common tasks in real time. Real-time

distributed groupware systems may be used to support collaboration in many

application domains. Example systems include text editors (Leland et al. 1988;

Sun et al. 1998), drawing systems (Greenberg et al. 1992; Chen and Sun 1999),

multi-user domains (MUD) (Mehlenbacher et al. 1994), video conferencing

 13

(Nguyen and Canny 2005), media spaces (Bly et al. 1993) and shared whiteboards

(Elrod et al. 1992).

To meet the requirement of supporting group work, real-time distributed

groupware systems have to handle complex issues that do not appear in single-

user applications. Major design issues associated with the design and

implementation of groupware systems will be discussed in the rest of this chapter.

2.2. Centralized and Replicated

Architecture

Architectures of groupware systems fall into two categories – the centralized

architecture and replicated architecture (Lauwers et al. 1990). With the

centralized architecture (Figure 2.1), there is only one shared application instance,

which is maintained at a central site. Other collaborating sites have only client

end systems with limited functions. User input events to the shared application

are forwarded to the central instance. Graphical output information is generated

from the central shared application, then distributed to and displayed at the client

end.

Figure 2.1 The centralized architectures.

Shared

Application

and Data

Graphical

Output

User Input

Graphical Output
Site 1Site 1 Site 2Site 2

Graphical

Output

Site 3Site 3

Graphical

Output

Central Host

 14

The centralized architecture is easy to implement. Since there is only one

instance of the shared application, developers need not worry about the system

consistency. However, centralization also brings problems. The most significant

disadvantage is the slow local responsiveness. Every local input event has to be

sent to the central shared application; the local display cannot be updated until the

graphical output from the central shared application is received. The local

response time may be long with high network latency. Furthermore, centralized

systems use network bandwidth inefficiently. This is because display information

has to be broadcast to all collaborating sites, which usually consumes

considerable network bandwidth (Lantz 1986; Begole et al. 1999). Finally,

centralized systems may encounter compatibility problems if client sites have

different hardware devices than the central site. Since the display information is

generated at the central site, all client sites must have the capability to interpret

this information, otherwise the graphical output may be displayed incorrectly.

Figure 2.2 The replicated architecture.

These problems motivated the replicated architecture, in which each

collaborating site has an instance of the shared application running at the local

site, as shown in Figure 2.2. The replicated architecture is able to achieve fast

local response because the user input events can be executed at the local site

before being sent to remote sites. Application replication also provides the

User Input

Shared

Application

and Data
Site 1Site 1

Shared

Application

and Data
Site 3Site 3

Shared

Application

and Data
Site 2Site 2

 15

possibility of supporting relaxed WYSIWIS, because each replica of the shared

application may generate a different display. The use of network bandwidth is

also improved because there is no need to broadcast display information.

However, the replicated architecture is not without its own problems. The

major challenge is consistency maintenance. If users are allowed to interact with

their local application replica freely, user input events may be executed in

different orders among distributed sites. Maintaining consistency in the face of

concurrent user input events is nontrivial. Moreover, when the replicated

architecture is adopted in collaboration-transparent systems, more problems will

occur (to be discussed in Section 2.6). In the following subsection, techniques for

maintaining the system consistency will be reviewed.

2.3. Consistency Maintenance

Sun et al. (1996) have proposed a consistency model as a theoretical framework

for consistency maintenance in replicated groupware systems. In this model,

consistency is maintained by preserving the following properties.

(1) Convergence: When the same set of operations has been executed at all sites,

all copies of the shared document are identical.

(2) Causality preservation: Operations are always executed in their natural

causal order.

(3) Intention preservation: For any operation O, the effects of executing O at all

sites are the same as the intention of O, and the effect of executing O does not

change the effects of independent operations.

In essence, the convergence property ensures the consistency of the final results

at the end of a collaboration session; the causality preservation property ensures

the consistency of the execution orders of dependent operations during a

collaboration session; and the intention preservation property ensures (1) that the

effect of executing an operation at remote sites achieves the same effect as

 16

executing this operation at the local site at the time of its generation, and (2) that

the execution effects of independent operations do not interfere with each other.

The consistency model imposes an execution order constraint on dependent

operations only, but leaves it open for the execution order of independent

operations as long as the convergence and intention preservation properties are

maintained. The consistency model effectively specifies, on the one hand, what

assurance a cooperative editing system promises to its users and, on the other

hand, what properties the underlying consistency maintenance mechanisms must

support (Sun et al. 1998).

There exist varieties of concurrency control techniques, which achieve some or

all of the above consistency properties, as reviewed in the following subsections.

2.3.1. Floor Control

Floor control (Lauwers and Lantz 1990; Greenberg 1991), also called turn-taking

(Greenberg and Marwood 1994), is a simple and coarse-grained concurrency

control technique. With this technique, a user must acquire the token (the floor)

before interacting with the shared workspace. Since there is only one floor in the

system, only one user (the floor holder) can interact with the shared workspace at

a time. Thus inconsistency problems are avoided. In addition to its simplicity,

another advantage is the independency of applications, so it has been applied to a

wide range of generic application-sharing systems, such as Microsoft NetMeeting

and Hewlett-Packard Shared X (Garfinkel et al. 1994).

In systems adopting floor control, users have to interact with the system

sequentially. Its applicability is limited to circumstances where a single active

user is sufficient, such as computer-based conferences, but is not suitable for

circumstances where high concurrency is required, such as collaborative

document editing.

 17

2.3.2. Locking

With the locking mechanism, a user must acquire a lock for an object before

updating it. This technique avoids inconsistency problems by prohibiting

concurrent accesses to the same object. Floor control can be regarded as an

application-level locking in the sense that the active user acquires the lock for the

whole system. Finer-grained locking applies locks on objects within the system

such as text segments (Sun 2002b) or graphic objects (Chen and Sun 2001).

Locking mechanisms can be explicit or implicit. With explicit locking

mechanisms, a user must explicitly acquire the lock before manipulating an object

and explicitly release the lock after finishing manipulating the object. To relieve

the user from the burden of these explicit actions, implicit lock mechanisms

(Newman et al. 1992) allow the user to directly manipulate the object and the

system implicitly acquires and releases the lock on behalf of the user.

Lock mechanisms can also be pessimistic and optimistic. Locking requests

have to be sent to a central coordinator, which determines whether locking

requests should be approved. With pessimistic locking, the user cannot

manipulate the object until the locking permission is received from the

coordinator, which may cause degradation of system responsiveness. Optimistic

locking mechanisms (Greenberg and Marwood 1992; 1993) assume that the

possibility of conflicts is very low and allow the user to manipulate the object

before the locking request is approved. If conflicts occur, user actions are

cancelled and the object state rolls back, which is an unpleasant experience for the

user. Moreover, locking does not satisfy any of the consistency properties,

because it only focuses on preventing conflicts within locked areas.

2.3.3. Serialization

With serialization mechanisms, operations generated by distributed users are

executed in the same global order at all sites. In most serialization-based systems,

the global execution order is derived from timestamps (Lamport 1978) of

 18

operations. Some other systems determine the global execution order by

recording the direct predecessor in every operation (Kanawati 1997).

Serialization can be pessimistic and optimistic. Pessimistic serialization

mechanisms delay the execution of an operation until all its predecessors have

been executed (Kanawati 1997). Since the execution of the local user’s input may

be delayed, this pessimistic strategy may lower the system’s responsiveness. On

the other hand, optimistic serialization mechanisms execute local user input

immediately even if its predecessors remain unexecuted. To enforce the global

order when an operation’s predecessors are received after its execution, optimistic

serialization mechanisms adopt an undo/do/redo strategy, which undoes the

executed operation, executes its predecessors, and redoes the undone operation

(Greenberg and Marwood 1993; Karsenty and Beaudouin-Lafon 1993). However,

with this optimistic strategy, there is a possibility that the effect of an executed

user input completely disappears in the undo/do/redo process.

Serialization can satisfy the convergence property, but cannot satisfy the

causality and intention properties.

2.3.4. Operational Transformation

Operational Transformation (OT) (Ellis and Gibbs 1989; Sun and Ellis 1998) is

an innovative optimistic concurrency control technique. With the OT technique,

local operations are executed immediately after generation to achieve a high local

responsiveness. Remote operations may need to be transformed against

concurrent operations before execution, so that they achieve the same effects as in

the local site. Combined with the causal ordering approach, OT is able to achieve

all three consistency properties. In addition, OT supports undoing any operations

(Sun 2002a).

The OT component in a collaborative editor is a complex system, but the basic

idea of OT can be illustrated with a simple text editing scenario as follows. Given

a text document with a string “abc” replicated at two collaborating sites; and two

 19

concurrent operations: O1 = Insert(0, “x”) (to insert character “x” at position 0),

and O2 = Delete(3, “c”) (to delete the character “c” at position 3) generated by

two users at collaborating sites 1 and 2, respectively. Suppose the two operations

are executed in the order of O1 and O2 (at site 1). After executing O1, the

document becomes “xabc”. To execute O2 after O1, O2 must be transformed

against O1 to become: O2’ = Delete(4, “c”), whose positional parameter is

incremented by one due to the insertion of one character “x” by O1. Executing O2’

on “xabc” will delete the correct character “c” and the document becomes “xab”.

However, if O2 is executed without transformation, then it will incorrectly delete

character “b”, rather than “c”. In summary, the basic idea of OT is to transform

(or adjust) the parameters of an editing operation according to the effects of

previously executed concurrent operations so that the transformed operation can

achieve the correct effect and maintain document consistency.

An OT technique can be divided into two layers: the high-level transformation

control algorithms, and the low-level transformation functions. Transformation

control algorithms are responsible for determining which operation should be

transformed against other operations according to their concurrency relationships;

and transformation functions are responsible for determining how to transform

one operation against another according to their operation types, parameters and

other relationships. Varieties of transformation control algorithms have been

presented in different OT techniques. Typical transformation control algorithms

include dOPT (Ellis and Gibbs 1989), AdOPTed (Ressel et al. 1996), GOT (Sun

et al. 1998), GOTO (Sun and Ellis 1998), SOCT2 (Suleiman et al. 1997),

SOCT3/4 (Vidot et al. 2000), SDT (Li and Li 2004), LBT (Li and Li 2005a),

ABT (Li and Li 2005b) and COT (Sun and Sun 2006). On the other hand, there

are two types of transformation functions (Sun et al. 1998): one is the Inclusive

Transformation function – IT (Oa, Ob), which transforms operation Oa against

operation Ob in such a way that the impact of Ob is effectively included in the

parameters of the output operation; and the other one is the Exclusive

Transformation function – ET (Oa, Ob), which transforms operation Oa against

 20

operation Ob in such a way that the impact of Ob is effectively excluded in the

parameters of the output operation.

There are two underlying models in every OT technique: one is the data model

that defines the way in which data objects in a document are addressed by

operations; the other is the operation model that defines the set of operations that

can be directly transformed by OT functions. Different OT techniques may have

different data and operation models. For example, the OT techniques designed for

supporting collaborative plain text editing (Ellis and Gibbs 1989; Ressel et al.

1996; Suleiman et al. 1998; Sun and Ellis 1998; Vidot et al. 2000; Ignat and

Norrie 2003; Li and Li 2004) have an operation model consisting of two Primitive

Operations (PO): Insert and Delete, and a data model of a single linear addressing

space. Addresses in this linear addressing space ranges from 0 to N−1, where N is

the total number of characters in the document. We use the term basic OT

technique to mean these OT techniques defined for plain text editors. There are

also OT techniques extended from the basic OT techniques used to support

collaborative editing on more complex documents, such as spreadsheet (Fuller et

al. 1993) and XML/HTML documents (Davis et al. 2002). These extended OT

techniques have more complex data models and operation models.

2.4. Workspace Awareness

In a relaxed WYSIWIS view mode, users may work in different part of the shared

workspace. In such circumstances, it is important that the user be aware of the

status of other users so that they can collaborate naturally and fluently. Therefore,

workspace awareness, which is defined as the up-to-the-moment understanding of

another person’s interaction with the shared workspace (Gutwin and Greenberg

1996; Gutwin et al. 1996a), plays an important role in groupware systems.

Researchers have proved that workspace awareness significantly increases

groupware usability (Gutwin and Greenberg 1999). Particularly, workspace

awareness is used in groupware systems for managing coupling, simplifying

communication, coordinating actions, helping users to anticipate future actions

 21

and understanding assistances from others (Gutwin 1997; Gutwin and Greenberg

2002).

2.4.1. Workspace Awareness Information

According to Gutwin and Greenberg (2002), workspace awareness information

consists of several items, as listed in Table 2.2.

Table 2.2. Composition of workspace awareness information (Grudin and Greenberg 2002).

Category Element Specific Questions

Presence Is anyone in the workspace?

Identity Who is participating? Who is that?

Authorship Who is doing that?
Who

Presence History Who was here, and when?

Action What are they doing?

Intention What goal is that action part of?

Artifact What object are they working on?
What

Action History How did that operation happen?

Location Where are they working?

Gaze Where are they looking?

View Where can they see?

Reach Where can they reach?

Where

Location History Where has a person been?

Action History How did that operation happen?
How

Artifact History How did this artifact come to be in this state?

When Event History When did that event happen?

The first column of Table 2.2 lists the basic categories of workspace awareness

information, including who we are working with, what they are doing, where they

are, how those events occur, and when various events happen. In each category,

there are several specific workspace awareness knowledge elements, as shown in

the second column. Each element can be described as the answer to a specific

question about the shared workspace, as shown in the third column (Gutwin and

Greenberg 2002).

 22

2.4.2. Widely-Used Workspace Awareness

Features

To deliver the above workspace awareness information, a wide range of

workspace awareness features have been devised. Reviews of some frequently-

used workspace awareness features follow.

(1) Telepointer. The telepointer is the avatar of a remote user’s mouse cursor

displayed on the local user’s screens in real-time groupware systems. As an

important groupware interface element, the telepointer is able to provide a

range of group awareness information including presence, location and

activity. In addition, telepointers can act as a communication channel by

conveying gestural messages (Gutwin and Penner 2002; Gutwin et al. 2003).

These features make telepointers a powerful means for providing users with a

collaboration context and helping users coordinate the group work.

Furthermore, researchers have made some extensions to improve the accuracy

and expressiveness of the telepointer. Examples include (a) Smart Telepointer

(Rodham and Olsen 1994), which associates the telepointer position with

objects in the shared workspace to accommodate the view differences resulted

from relaxed WYSIWIS, (b) Semantic Telepointer (Greenberg et al. 1996),

which extends the representation form of the telepointer with changeable

images or sound for delivering richer workspace awareness information, and

(c) a series of techniques proposed by Dyck et al. (2004) and Gutwin et al.

(2003) for improving the telepointer performance.

(2) Multi-User Scrollbar. The multi-user scrollbar (Baecker et al. 1993;

Roseman and Greenberg 1996a) is an extension of the single-user scrollbar. It

indicates remote users’ view positions and sizes by displaying their scroll box

positions in the local user’s scroll shaft.

(3) Radar View. The radar view (Baecker et al. 1993; Roseman and Greenberg

1996a; Begole et al. 1999) is devised to deliver more detailed location

information than the multi-user scrollbar in the two dimensional workspace. A

radar view is often implemented as a miniature view of the shared workspace

 23

with view ports of remote users. Each view port covers the view range in the

shared workspace of a remote user. Furthermore, variations of the radar views

(Gutwin et al. 1996b) were proposed to extend the expressiveness of the basic

radar view.

In addition to the above widely-used workspace awareness features, researchers

have proposed other ideas to deliver workspace awareness information. Examples

include (1) user list (Ellis and Gibbs 1989; Isaacs et al. 1996; Roseman and

Greenberg 1996b) which displays a list of all user information in the same

collaboration session, (2) sound (Beaudouin-Lafon and Karsenty 1992), which is

often used to deliver remote users’ activity information, (3) video embodiment

(Tang and Minneman 1990; 1991), which creates remote users’ live images or

shadows in the shared workspace, and (4) Multi-user UI (User Interface) widgets

(Hill and Gutwin 2003), which are the multi-user versions of single-user UI

widgets and deliver activity information of remote users in these widgets.

2.5. Session Management

Session management plays a key role in groupware systems. It determines how

collaboration sessions are initiated and terminated and how individuals join and

leave a session (Patterson et al. 1990). Existing session management approaches

fall into two categories (Edwards 1994) – explicit and implicit session

management approaches.

2.5.1. Explicit Session Management

Explicit session management approaches initially appeared in some early

teleconferencing systems and are still widely used today in varieties of systems.

The major characteristic of these approaches is that they require users to take

explicit actions to initiate a collaboration session. Some of them require an

initiating user to invite others into a session, while others require users to find an

existing collaboration session and join.

 24

MMConf (Crowley et al. 1990) adopts an initiator-based approach. After the

initiating user creates a session, he/she sends invitations to other users, who will

choose to accept or reject the invitations. The session begins after all invited users

have responded or time out. On the other hand, Collage (NCSA 2005) adopts a

joiner-based approach. To join an existing session, a user needs to manually input

the IP address or machine name of the session host and the port number of the

session process.

Explicit session management approaches are suitable for supporting formal

collaboration because they facilitate explicit session-related actions. However,

they are not suitable for the spontaneous and impromptu collaboration

circumstances due to their lack of flexibility. Furthermore, explicit inviting or

joining actions involve too much overhead, which decreases the system usability.

Finally, these approaches provide hardly any session awareness information.

2.5.2. Implicit Session Management

Implicit session management approaches are designed to avoid the overhead of

explicit session management approaches and to support spontaneous and

impromptu collaboration. These approaches manage collaboration sessions based

on users’ actions in the collaborative environment. According to the types of user

actions they utilize to manage sessions, implicit session management approaches

are classified as artifact-based, place-based and activity-based approaches.

With artifact-based approaches, users accessing the same artifact are joined in

the same session. One typical example is Intermezzo (Edwards 1994). In the

Intermezzo system, applications publish activity records including identifiers of

the user, application and object to the session manager. The session manager

searches for records with overlapping object identifiers. If such records are found,

the session manager sends events to the corresponding applications to notify them

about the collaboration potential. Then the applications are responsible for

initiating the collaboration on their own.

 25

Place-based approaches join users who have entered the same place into the

same session. These approaches are frequently adopted in virtual space systems

such as MASSIVE (Greenhalgh and Benford 1995). In MASSIVE, users are

represented as objects equipped with communication media in a virtual 3D world.

When objects are approximate enough and they support common communication

media, a peer connection (i.e. collaboration session) is established between them.

Rusken (Texier and Plouzeau 2003) adopts a hybrid of artifact-based and

place-based approaches. In the artifact-based aspect, Rusken extends the concept

of object in implicit session management to objects set. Users accessing the same

object set are joined into the same session. In the place-based aspect, session

joining and leaving are triggered by events of users entering and leaving locations.

An activity-based approach is adopted in Piazza (Isaacs et al. 1996). The

Encounter tool of the Piazza system detects users who are performing the same

task (e.g. viewing the same web page, editing the same document) and creates

connections for them to communicate.

The major problem of implicit session management approaches is that they

cannot provide users with sufficient session awareness information. Without the

session awareness information, it is the system rather than users who determines

whether to collaborate (Gutwin et al. 2005). The system’s decision may violate

users’ intentions. On the other hand, users do not have enough knowledge to

predict which session-related events will be triggered by their document accessing

actions. They do not know whether they will be thrown into a session by

accessing an object.

2.6. Collaboration Transparency

Collaboration-transparent approaches aim to share existing single-user

applications among distributed users. In the past decades, collaboration-

transparent techniques have been developed in several generations.

 26

2.6.1. Centralized Generic Application Sharing

A wide range of early collaboration systems provide generic application-sharing

environments in which any existing single-user application can be transparently

shared by multiple users in real-time collaborative work. Most of these systems

adopt the centralized architecture (e.g. Microsoft NetMeeting, Sun Forum, Real

VNC (RealVNC Ltd. 2006), HP Shared X (Garfinkel et al. 1994), Rendezvous

(Patterson et al. 1990), Share (Greenberg 1990) and XTV (Abdel-Wahab and Peit.

1991)).

The technique used to transmit and display graphical output from the central

shared application is called display broadcasting (Begole et al. 1999). In X

Window-based generic application-sharing systems, display broadcasting is

implemented by taking advantages of the separation of the X Client – the

application process, and the X Server – the process that handles graphical

requests from X Clients and generates display output. On the other hand, in MS

Windows-based generic application-sharing systems, display broadcasting is

usually implemented based on ITU T.128 or its extended versions, which are

conceptually similar to its counterpart in the X-Window.

In addition to the problems resulted from the centralized architecture (see

Section 2.2), workspace awareness features supported in these systems are limited

to the telepointer (Crowley et al. 1990). In the strict WYSIWIS view-sharing

mode, all users are viewing the same segment of the shared workspace. There is

no need to provide other workspace awareness features to indicate view positions

and ranges of different users.

2.6.2. Replicated Generic Application Sharing

In attempts to deal with problems resulted from the centralized architecture, some

later systems adopt the replicated architecture in which each collaborating site has

an instance of the shared application. Examples include Dialogo (Lauwers et al.

1990), MMConf (Crowley et al. 1990), VConf (Lantz 1986) and Rapport (Ahuja

 27

et al. 1990). In contrast to the display broadcasting technique used in centralized

systems, these systems adopt the event broadcasting technique, where input

events to the local site are broadcast to all remote sites.

In addition to the difficulty in consistency maintenance in the face of user

inputs, replicated generic application-sharing systems also encountered challenges

in maintaining consistency in the face of inputs from non-user external resources,

such as files, clocks, environment variables or network connections. Running in

different execution environments, replicas of the shared application may receive

different inputs from external resources, which breaches the system consistency.

This problem is known as externalities (Begole et al. 2001). Furthermore, when a

newcomer is to join an ongoing collaboration session, it needs the same execution

environment as existing sites. This problem, known as late-comer, is also

nontrivial in collaboration-transparent systems.

These problems were once regarded as intractable in early generic application-

sharing systems (Lauwers et al. 1990). Researchers have presented varieties of

solutions.

To maintain the system consistency in the face of user inputs, replicated

generic application-sharing systems have to ensure that all replicas receive user

inputs in the same order. To achieve this goal, explicit or implicit floor control

mechanisms are adopted. However, with floor control, only the user who has the

floor can interact with the system, which results in the sequential interaction

problem and the inability to support concurrent work (Begole et al. 1999, Sun et

al. 2006; Xia et al. 2004).

To handle the externalities problem, replicated generic application-sharing

systems create identical execution environment for all participants automatically

(Crowley et al. 1990; Lauwers et al. 1990) or manually (Lantz 1986). However,

these solutions are ad-hoc and they only handle the file accessing externalities

problem.

 28

To accommodate late-comers, replicated generic application-sharing systems

usually adopt two late-joiner-accommodating techniques, including (1) event

replay (Chung et al. 1993), which records all input events to an existing site and

replays these events to the joining site, and (2) image copy (Chung and Dewan

1996), which copies the process image in the memory of an existing site and

imports it to the joining site. However, these approaches suffer from different

problems. Event replay approaches are inefficient. The performance could

degrade drastically in the face of long execution time and potentially expensive

operations (Begole et al. 1999). Image copy approaches are not widely applicable.

They require support from special underlying execution environments (Douglis

1990; Milojičić et al. 1993) or from development tools (Bharat and Cardelli 1995;

Zhang and Pande 2005).

2.6.3. Component Replacement

Flexible JAMM (Begole et al. 1999) represents a shift from seeking generic

solutions at the operating/windowing system level to exploring solutions at the

application interface library level. It adopts a replicated architecture for achieving

fast local response and efficient network usage.

The major innovation of Flexible JAMM is the component replacement

approach, which replaces selected user interface components (e.g. buttons or text

panes) of the shared application with collaboration-aware ones at runtime. These

collaboration-aware components understand the application semantics so that they

are able to solve most of the replication-related problems. First, these

collaboration-aware components can selectively broadcast user input events to

other collaborating sites. In addition to reducing the consumption of network

bandwidth, this event-filtering technique is also able to achieve relaxed

WYSIWIS by filtering events that do not affect the system consistency (e.g.

scrolling events). Second, a collaboration-aware text editing pane embedded with

the Operational Transformation technique is able to support unconstrained real-

time collaborative text editing. Third, based on the object migration capability of

 29

Swing and JOS (Java Object Serialization), late comers can be accommodated by

migrating application objects from an existing site. Finally, this approach is able

to support detailed workspace awareness features, including the telepointer and

radar view.

Flexible JAMM also applies the object replacement combined with a proxy

approach to handle the externalities problem (Begole et al. 2001). An external

resource is wrapped in an externality server. External resource accessing objects

in the shared application are replaced with externality proxies, which always

acquire data from the externality server. Both externality proxies and servers are

collaboration-aware, so that the inconsistency possibility related to external

resources can be avoided.

The object replacement approach has its own limitations: (1) objects created

after sharing cannot be replaced; and (2) subclasses of replaceable classes cannot

be replaced. Moreover, this approach requires special supports from the execution

platform. Therefore, this approach is not widely applicable. Currently, it can only

be applied to Swing-based Java applications.

2.6.4. Collaboration Transparency and

Heterogeneity

The above collaboration-transparent systems are homogeneous ones since they

require users to collaborate with the same shared application. While users are

allowed to share different single-user applications in the same session, the

heterogeneous issue arises.

In addition to its goal of achieving unconstrained collaboration and relaxed

WYSIWIS view-sharing, ICT (Li and Li 2002) attempts to address the

heterogeneity and interoperability issues in collaboration-transparent systems.

The main challenge is that the event interception and replay approach used in

generic application-sharing systems no longer works in heterogeneous

environments because different applications process events in different ways. The

 30

solution adopted in ICT is to devise a mechanism that is able to understand the

semantics of the user input events. With this mechanism, the heterogeneity issue

is addressed by translating local system-specific events into higher-level

operations at the local site, and translating operations into remote system-specific

events at the remote site. Furthermore, the consistency maintenance issue is

addressed by processing operations with the Operational Transformation

technique.

However, discovering and formalizing semantic knowledge of commercial off-

the-shelf single-user application’s functionalities and interface features are

tremendously difficult while the shared application is assumed as a black box.

Due to this problem, ICT can only preserve limited conventional functionalities

and user interface features of the shared application. The ICT prototype, which

supports interoperation between MS Word and GVim, is limited to supporting

collaborative plain text insertion and deletion only.

2.7. Summary

This chapter has reviewed relevant prior research on CSCW and groupware

techniques.

CSCW is a broad research field that ranges from sociological analysis to

computer-based technologies, while groupware research focuses on technologies

for designing and implementing systems for supporting people’s group work.

From the time dimension, groupware systems can be classified as real-time and

non-real-time systems. From the space dimension, they can be classified as co-

located and distributed systems.

Groupware systems adopt two architectures. With the centralized architecture,

there is only one instance of the shared application maintained at a central site.

With the distributed architecture, each collaborating site has an instance of the

shared application. The centralized architecture has a series of problems,

 31

including slow local response, inefficient network bandwidth use and

compatibility. On the other hand, the major problem of replication is the difficulty

of consistency maintenance.

System consistency can be described with a consistency model with three

properties: convergence, causality preservation and intension preservation. Major

consistency maintenance mechanisms include (1) floor control, in which a user

must obtain the token (the floor) before interacting with the shared workspace, (2)

locking, in which a user must acquire a lock for an object before manipulating it,

(3) serialization, which forces operations generated by distributed sites to be

executed in the same global order at all sites, and (4) Operational Transformation,

which adjusts parameters of editing operations according to previous executed

concurrent operations.

While WYSIWIS is relaxed, workspace awareness is important to improve

groupware systems’ usability. Different workspace awareness features are able to

deliver presence, location and activity information of others in the same

collaboration session. Widely-used workspace awareness features include

telepointer, multi-user scrollbar and radar view.

Session management determines how collaboration sessions are initiated and

terminated and how individuals join and leave a session. Explicit session

management requires users to take explicit session-related actions, so it cannot

support spontaneous and impromptu collaboration. Implicit session management

solves these problems by implicitly managing collaboration sessions according to

users’ object accessing actions, but it cannot provide sufficient session awareness

information.

Collaboration transparency is an approach to developing groupware systems by

converting existing single-user applications into collaborative versions without

changing their source code. Most of collaboration-transparent systems are generic

application-sharing systems. Centralized generic application-sharing systems

 32

adopt the display broadcasting technique to deliver the graphics output from the

central instance to collaborating sites. Replicated generic application-sharing

systems adopt the event broadcasting technique to deliver user input from the

local site to other collaborating sites.

Generic application-sharing systems with the replicated architecture have

difficulties in handling several problems, including consistency maintenance,

accommodating late-comers and externalities. Flexible JAMM handles these

problems by dynamically replacing selected components of the single-user

application at runtime. However, the major problem of this component-replacing

approach is its special requirements to the execution environment, so it is not

widely applicable. ICT attempts to address the heterogeneous issues arising when

different single-user applications are shared in the same session with a

mechanism that understands the semantics of the shared application. Due to the

tremendous difficulty in knowledge discovering and formalizing, the ICT

prototype only preserves limited functionalities of the shared application.

 33

Chapter 3

The Transparent Adaptation

Approach

The Transparent Adaptation (TA) approach is the central contribution of this

thesis work. It was designed to leverage existing or new single-user applications

for multi-user real-time collaboration. Based on this approach, two collaborative

editing systems, CoWord, which is a collaborative word processor, and

CoPowerPoint, which is a collaborative slides authoring and presentation system,

have been developed. This chapter takes these two systems as examples to discuss

the TA approach.

3.1. Introduction

Unlike existing application-sharing approaches, the TA approach tackles the

transparent conversion of single-user applications from a different angle. Rather

than endeavoring to share any single-user application in an operating/windowing

system (e.g. NetMeeting and SunForum) or with a library (e.g. Flexible JAMM),

the TA approach transparently converts individual single-user applications into

collaborative versions. The major benefit of the relaxation of the generic

application-sharing constraint is the possibility of taking advantage of application

semantic knowledge and introducing application-specific treatment to the target

application, so that some challenging problems associated with the generic

application-sharing environments are significantly simplified or completely

avoided. Moreover, to postpone dealing with complex collaboration issues in

 34

heterogeneous environments (Knister and Prakash 1990; Li and Li 2002), the

current TA work is restricted to homogeneous collaboration environments in

which all users are required to use the same converted application in a

collaboration session.

The TA approach is based on (1) the use of the single-user application’s API

(Application Programming Interface) to intercept and replay the user’s operations,

so it requires no access or change to the application’s source code (thus being

transparent), and (2) the use of Operational Transformation (OT) to manipulate

intercepted user operations for supporting responsive and unconstrained (i.e.

concurrent and free) multi-user interactions with the shared application. For the

TA approach to work, however, the shared application’s API must be adaptable to

the data model and operation model of the OT technique. With the support of OT,

TA-based collaborative applications are able to achieve fast local response,

concurrent work, relaxed WYSIWIS, and detailed workspace awareness.

Microsoft Word was chosen as the first target single-user application for

transparent adaptation. This is because word processors are among the most

commonly used single-user applications, and Word provides a set of

comprehensive, complex, and interesting data types, operations, and a

sophisticated API for investigation. Our goal is to covert Word into a real-time

collaborative word processor, called CoWord, which allows multiple users to

view and edit any objects in the same Word document at any time over the

Internet. As a follow-up of CoWord, the TA approach was re-applied to convert

Microsoft PowerPoint into CoPowerPoint – a multi-user real-time slides

authoring and presentation system. The CoPowerPoint work tested the generality

of the TA approach and provided new insights and solutions for adapting different

classes of applications.

The rest of this chapter is organized as follows. First, data model adaptation

issues and techniques in CoWord and CoPowerPoint are discussed in Section 3.2.

Then, operation model adaptation issues and techniques in CoWord and

 35

CoPowerPoint are discussed in Section 3.3. Finally, this chapter concludes with a

summary in Section 3.4.

3.2. The Data Model Adaptation

As one of the major technical components of the TA approach, the data model

adaptation is responsible for bridging the gap between the API addressing

schemes and the OT data model. In this section, some basic ideas and techniques

learnt from adapting two different applications, Word and PowerPoint, will be

discussed.

3.2.1. Word Data Model Adaptation

A Word Document from the User’s View

Unlike a plain text document, where all characters are presented at the user

interface in a linear sequence, a Word document, when viewed by a user, does not

always look like a linear sequence of objects. For example, graphic objects may

appear at any position in the document’s two-dimensional display space.

Furthermore, a graphic object may be moved freely from one location to another

without affecting the locations of other objects, which is different from moving

(inserting and deleting) a character in a string. As shown in Figure 3.1, the user’s

view of a Word document consists of some sequences of formatted character

objects (e.g. “CoWord, a collaborative word processor”), some graphic objects

that are inline with character sequences (e.g. the “Welcome” ClipArt object that is

inline with the sequence of characters “To CoWord”), and some graphic objects

that are floating in the two-dimensional space and may overlap with each other

(e.g. the Textbox with text “Word” that is on top of another ClipArt object).

 36

Figure 3.1 The user’s view and the adapted API’s view of a Word document.

This irregular and arbitrary presentation/view of data objects in the Word

document appears to be a major obstacle for applying OT to Word documents

since this view does not match the linear addressing space of the basic OT data

model. However, our investigation discovered that the presentation of data objects

at the user interface is actually irrelevant to the applicability of OT. What really

matters is how data objects are addressed from the application’s API.

A Word Document from the API’s View

Word provides a comprehensive API which conforms with Component Object

Model (COM) Automation (Iseminger 2000). With this API, software developers

can change the behavior of the application, enhance the application’s

functionality, or incorporate the application into other applications. In particular,

this API provides high level interfaces for accessing and manipulating data

objects in a Word document.

From the Word API’s view, data objects of various types (e.g. text, ClipArt

objects, Drawing objects, and WordArt objects) are modeled by some basic

User View

Adapted
API View

(a) (b)

0 1 2 3 4 5 7 8 9 10 11 12 13 15 16 …Pos 6

'T ' 'o' ' ' 'C' 'W' 'o' 'r' 'd' '\r' …Data 'o'S1 I S2 S3 S4 S5

14

'\r'

0 1 2 3 4 5 7 8 9 10 11 12 13 15 16 …Pos 6

'T ' 'o' ' ' 'C' 'W' 'o' 'r' 'd' '\r' …Data 'o'S1 I S2 S3 S4 S5

14

'\r'

0 1 2 3 4 5 7 8 9 10 11 12 13 14 16 …Pos 6 17

'T ' 'o' ' ' 'C' 'W' 'o' 'r' 'd' '\r' …Data 'o'S1 I S2 S3 S6 S4 S5

15

'\r'

0 1 2 3 4 5 7 8 9 10 11 12 13 14 16 …Pos 6 17

'T ' 'o' ' ' 'C' 'W' 'o' 'r' 'd' '\r' …Data 'o'S1 I S2 S3 S6 S4 S5

15

'\r'

 37

objects (Microsoft Corp. 2006b), including Text
1
 (e.g. a sequence of formatted

characters), InlineShape (e.g. a ClipArt object embedded in a sequence of

characters), and Shape (e.g. a floating graphic object). For the purpose of address

adaptation, the most relevant feature of this API is the ability to access all data

objects from a global linear addressing space by means of a Range object. All

Text objects and InlineShape objects are displayed sequentially in the document,

and can be accessed by their position references in the Range-based linear

addressing space; floating graphic objects (i.e. Shape objects) are displayed at

arbitrary positions in the drawing layer of the document, but they have

corresponding anchors in the Range-based linear addressing space. From these

anchors, the corresponding floating objects can be accessed.

The relationship between the data objects at the user interface and their position

references in the Range-based linear addressing space from the Word API is

illustrated in Figure 3.1. Every data object at the Word user interface has a

corresponding position reference in the linear addressing space of the Word API.

For example, the floating ClipArt object at the left-top location of the drawing

space has an anchor, denoted by S1, at position “0” of the linear addressing space;

the “Welcome” inline ClipArt object has a position reference “1”; the inline

character “T” has a position reference “2”, and so on.

When the user draws a new floating graphic object (the “+” sign) in the

drawing layer of the document (the user view in Figure 3.1-(b)), this object’s

anchor, denoted by S6, is automatically inserted at a suitable position (“14” in this

example) in the linear addressing space. Meanwhile, other objects’ position

references on or higher than the new anchor’s position are shifted to the right by

one position, as shown in the Word API’s Range-based linear addressing space in

Figure 3.1-(b). If an object is removed from the document, its position in the

linear addressing space will be removed and all other objects’ position references

1
 In fact, text is treated as part of the Range object, rather than as a separate object in the Word

API. Text is treated as an object for the sake of convenience.

 38

on the right of the removed object will be shifted to the left by one position (not

shown in Figure 3.1).

It is worth pointing out that the Word API also provides alternative ways to

access floating objects (e.g. by their unique names). However, creating/removing

a floating object in/from the drawing space always results in inserting/deleting an

anchor to/from the global linear addressing space, which unavoidably has an

impact on the positions of other objects in the document. Therefore, the anchor’s

position must be used as the identifier of editing operations for floating objects in

order to use OT for concurrency control of all editing operations in CoWord. In

other words, the use of the position references in the Range-based linear

addressing space is not only sufficient but also necessary to address all types of

data objects in CoWord.

A Tree of Linear Addressing Domains for a Word

Document

Apart from the main body of a Word document, there are also other auxiliary

document elements, such as Comments, Footnotes, Headers, and Footers, which

are displayed in designated locations of the document. The user can annotate the

document by attaching Comments or Footnotes to selected text segments, or break

the document into multiple Sections and associate different Headers and Footers

with these sections, etc. At the user interface, these elements are interrelated and

form integral parts of the document.

For the purpose of address adaptation, these elements can be viewed as

mutually independent editing areas: operations performed on data objects in one

element have no impact on the data objects in other elements. After similar

address adaptation analysis was applied to these elements, it was found that data

objects in each element form a linear addressing domain as well. Moreover, it was

found that these elements are linked to the main body of the document by special

links, each of which occupies one position in the main body document.

 39

Consequently, the main body of the Word document and all auxiliary document

elements form a tree of linear addressing domains, as shown in Figure 3.2. The

top layer of the tree contains the linear addressing domain corresponding to the

main body of the document. The second layer of the tree consists of multiple

independent linear addressing domains corresponding to Comments, Footnotes,

Headers, and Footers, etc. For each second layer domain, there is a corresponding

link in the top layer domain. For example, a link for a Comment or a Footnote

occupies one position in the top linear addressing domain, and provides a

reference to the Comment or Footnote itself. A Section-Break link also occupies

one position in the top linear addressing domain, and provides a reference to a

collection of Headers and Footers associated with the corresponding section.

Each of the Headers and Footers can be identified by its unique name

(determined by the Word API), and forms one independent linear addressing

domain.

Figure 3.2 A tree of linear addressing domains for a Word document.

Based on the data model in Figure 3.2, to access a data object in the main body

of the document, the position reference of this data object in the top linear

addressing domain is needed. To access a data object in a Comment or Footnote,

G F Oc i … cscEc G F Oc i … cscEc

Main Text

… cic … cic

… icc … icc

c … cc c … cc

c … ic c … ic

c … cc c … cc

Primary Header

Primary Footer

First Page Header

Last Page Header

Even Page Header

… cic … cic

Comment

c … ci c … ci

Foot Note

Section

Shape GroupG

Comment MarkO

Section MarkE

Foot Note MarkF

Shapes

Inline Shapei

Characterc

Shape GroupG

Comment MarkO

Section MarkE

Foot Note MarkF

Shapes

Inline Shapei

Characterc

… sss … sss

Shape Group

...

...

G F Oc i … cscEc G F Oc i … cscEc

Main Text

… cic … cic

… icc … icc

c … cc c … cc

c … ic c … ic

c … cc c … cc

Primary Header

Primary Footer

First Page Header

Last Page Header

Even Page Header

… cic … cic

Comment

c … ci c … ci

Foot Note

Section

Shape GroupG

Comment MarkO

Section MarkE

Foot Note MarkF

Shapes

Inline Shapei

Characterc

Shape GroupG

Comment MarkO

Section MarkE

Foot Note MarkF

Shapes

Inline Shapei

Characterc

… sss … sss

Shape Group

...

...

 40

two position references are needed: one is the position of the Comment or

Footnote link in the top linear addressing domain, and the other is the position of

the data object itself inside the addressing domain corresponding to the Comment

or Footnote. To access a data object in a Header of a section, the following pieces

of information are needed: the position reference of the corresponding Section-

Break link in the top linear addressing domain, the unique Name of the Header,

and the position of the data object itself inside the linear addressing domain

corresponding to the Header.

3.2.2. PowerPoint Data Model Adaptation

PowerPoint is different from Word in its functionalities, user interfaces, and API,

thus providing a vehicle for investigating and illustrating the diversity of the data

address adaptation techniques in different applications.

PowerPoint User Interface and API

PowerPoint provides the user with multiple levels of interfaces, called views, to

edit or show the document. One editing interface is the slide-sorter-view, as

shown in Figure 3.3-(a)-(1). In this view, a PowerPoint document is presented as

a sequence of slides. The granularity of the user’s actions in this view is at the

slide level. For example, the user can insert or delete slides, re-arrange the order

of slides, or customize the design template or background of all slides.

From the slide-sorter-view interface, the user can “zoom” into any individual

slide to edit the graphic objects in that particular slide. Another view, called

normal-view, is provided for users to edit graphic objects inside a slide, as shown

in Figure 3.3-(a)-(2). From this view, the user can create, remove, or change any

graphic objects in a slide, including Textboxes, ClipArts, etc. In addition to the

drawing space, each slide is also associated with a separate Notes area for the user

to write explanatory notes for the corresponding slide.

 41

Figure 3.3 (a) The user's views of a PowerPoint document. (b) The API's view

of a PowerPoint document.

Apart from these editing views, there is another presentation interface, called

slide-show. From this slide-show interface, the user can control the presentation

(e.g. go to the next, previous, or a specific slide, animation, or annotate the

presentation screen with a virtual pen), but cannot change the contents of slides.

Despite the various differences in these user interfaces, the data objects being

viewed from different views belong to the same document and are accessible in

the same way from the PowerPoint API. For example, the same graphic object in

a slide can be viewed by the user from the slide-sorter-view, normal-view, or

slide-show. However, there is only one internal representation of this graphic

object in the document and it can be addressed from the API in the same way,

regardless from which view it is accessed by the user. From the PowerPoint API,

a three-level hierarchical structure of the data objects in the PowerPoint document

can be extracted: slide sequence, individual slides, and individual graphic objects.

The following address adaptation discussions will be organized according to this

210 210

43210 43210

(0)

(1)

(2)

(a) (b)

…

…

43210

TPPoC

…

…

43210

TPPoC

SlideSlide

 42

three-level hierarchical structure of the data objects in PowerPoint, rather than the

different views at the user interface.

Addressing Slides in the Slides Sequence

From both the user interface and the API, the slides in a PowerPoint document are

organized as a sequence, shown in Figure 3.3-(1), which directly matches the

basic OT data model. Apart from the sequence of normal slides, there are some

special master slides at the top level of a PowerPoint document, including Slide

Master, Title Master, Handout Master, and Notes Master. The contents of these

master slides are integrated with normal slides in the user interface presentation,

but, from the API’s view, these top-level masters are independent of the normal

slides and independent of each other. Data objects in these masters can be edited

and addressed in similar ways as in other normal sides, as discussed in the next

subsection.

Addressing Graphic Objects inside Individual Slides

At the individual slide level, there are two independent editing areas: one is the

graphic object drawing area, and the other is the explanatory Notes area. The

Notes area is a text editing area, as shown in Figure 3.3-(2), which directly

matches the basic OT data model. The following discussion focuses on addressing

graphic objects in the drawing area.

Unlike the slides sequence or the text editing area, graphic objects in a slide

drawing area do not appear to be organized in any sequence at the user interface.

Similar to the Range-based addressing scheme for floating objects in the Word

API (see Section 3.2.1), the PowerPoint API also supports an index-addressing

scheme, which can be used to address graphic objects in a slide sequentially. For

example, the slide in Figure 3.3-(a)-(2) contains five graphic objects, which can

be addressed by index-addresses: 0, 1, 2, 3 and 4, as shown in Figure 3.3-(b)-(2).

An important property of this scheme is that index-addresses are interrelated like

the positions of characters in a string. The creation of a new graphic object or the

 43

removal of an existing graphic object may change the index-addresses of those

objects with index-addresses larger than the created/deleted object. The change of

an existing object’s attribute (e.g. color, size, font) will have no effect on the

index-addressing space. Clearly, the index-addressing space matches very well

with the basic OT data model. This is another example where the data objects

may be presented at the user interface in a non-sequential way but can be

addressed sequentially from the API.

It is worth pointing out that the PowerPoint API also provides another name-

addressing scheme: every existing graphic object can be addressed by its unique

name, which is assigned at the time of creating this object. An important property

of the name-addressing scheme is that names are independent, which means that

creation of a new graphic object or deletion of an existing one from a slide does

not affect the names of other objects. If the independent name-addressing scheme

were used to access graphic objects in a slide, then there would be no need for

using OT to ensure consistency at this level (Sun and Chen 2002). A question

arises: why not use this name-addressing scheme to access graphic objects in

CoPowerPoint? The main reason against using the name-addressing scheme is

that this scheme is incapable of addressing multiple replicas of the same object at

different sites. This is because replicas of the same group of data objects may be

created in different orders in an unconstrained collaboration session, and these

replicas may be assigned different local names by their respective local

PowerPoint. To support collaborative editing of replicated objects based on the

name-addressing scheme, an additional global object naming scheme for all

replicated objects and corresponding consistency maintenance techniques has to

be devised, which is nontrivial. The index-addressing scheme is preferred because

it allows the use of the same established OT technique at all levels, thus saving

the trouble of having to devise and test new techniques as required by the name-

addressing scheme.

Another reason for choosing the index-addressing scheme is the need to ensure

consistent z-order-values of replicated graphic objects inside a slide. The z-order

 44

values of objects represent their relative layering in the z-dimension of the

drawing space; the z-order-values range continuously from 0 to N−1, where N is

the total number of objects in a slide. When a new graphic object is created, it is

initially assigned the current largest z-order-value and placed at the top of the z-

dimension of the drawing space. In an unconstrained collaboration environment,

if no special measure is taken, the z-order values of objects (i.e. their overlapping

relationships) may become inconsistent at different sites. For example, consider

two graphic objects G1 and G2 created concurrently by two users. Suppose these

two objects are overlapping. After the two objects are created at both sites in

different orders, G1 will be on top of G2 at the site where G1 was created last; and

G2 will be on top of G1 at the site where G2 was created last. Moreover, z-order

inconsistency may also occur when users concurrently change the z-order-values

of existing objects (e.g. by invoking “Bring to Front” or “Send to Back” interface

commands). The z-order inconsistency problem is the same in nature as the

inconsistency problem encountered in performing concurrent insertion and

deletion operations in any sequence. Therefore, OT is needed here to ensure

consistent z-order values of replicated objects.

In the PowerPoint API, the index-address of a graphic object has the same

value as its z-order-value. Therefore, the index-addressing scheme combined with

the OT technique can not only correctly identify replicated objects, but can also

consistently maintain the z-order values for all graphic objects in PowerPoint.

Addressing Internal Structures of Individual Graphic

Objects

Individual graphic objects may have internal structures that can be manipulated

by PowerPoint built-in operations or by external applications. For example, a

Textbox object contains a sequence of formatted characters, to which various

built-in editing operations can be applied. Clearly, the sequence of characters in a

Textbox forms a linear addressing domain at a lower layer, to which the basic OT

technique can be applied in order to merge concurrent operations at this layer.

 45

However, not all graphic objects can be treated in this way. If the internal

structure of certain graphic objects is inaccessible from the API (e.g. objects

created by external applications), or cannot be modeled as a linear addressing

domain (e.g. bitmap image objects), or is of no interest for the collaborative work

(so the internal structure is ignored), operations performed on internal elements

can be simply treated as Replacement operations on these objects themselves. A

Replacement operation consists of a Delete operation on the old version of the

object, followed by an Insert operation for the new version of the object.
2
 This is

a useful and important data address adaptation technique for determining the data

granularity of collaborative activities that can be merged by using OT.

A Tree of Linear Addressing Domains for a PowerPoint

Document

Based on the address adaptation analysis in previous subsections, all data objects

of a PowerPoint document can be mapped into a tree of linear addressing domains,

as shown in Figure 3.4. The root node corresponds to the top level of the

document and contains multiple independent linear addressing domains for the

sequence of normal slides in the document, the Slide Master, the Title Master, the

Handout Master, and the Notes Master, respectively. A second-level node

corresponds to a slide and contains two independent linear addressing domains:

one is for the sequence of graphic objects inside this slide, and the other is for the

sequence of characters in the Notes editing area. A linear addressing domain in a

particular node can be identified by a unique name within that node (determined

by the PowerPoint API). A third-level node corresponds to a Textbox object and

contains a single linear addressing domain.

2
 The new version of the object contains the effects of the operations performed on the internal

elements of the object.

 46

Figure 3.4 A tree of linear addressing domains for a PowerPoint document.

According to the data model in Figure 3.4, to access a normal slide in the top-

level slides sequence, one pair of information pieces is needed: the unique name

for the domain corresponding to the normal slides sequence, and the target slide’s

position reference (i.e. its sequence number). To access a graphic object in the

graphic drawing area of a normal slide at the second-level, however, two pairs of

information pieces are needed: the first pair contains the unique name for the

domain corresponding to the slides sequence, and the target slide’s position

reference; and the second pair contains the unique name for the domain

corresponding to the graphic drawing area in the slide and the target graphic

object’s position reference. To access a character object in a Textbox at the third

level, three pairs of information pieces are needed: apart from the first two pairs

for addressing the Textbox object, the third pair is to address the specific character

in the Textbox.

As discussed above, data models of both Word and PowerPoint can be adapted

to a tree of linear addressing domains (see Figure 3.2 and Figure 3.4). In

unconstrained collaboration, concurrent editing operations generated by

distributed users may target any linear addressing domain. The underlying OT

… SSS … SSS

SSSlide Master

Slide Sequence

… TGT … TGT

…c cc …c cc

Drawing Area

Notes Area

Presentation

Slide

Slide
…

Slide
…

Slide
…

TextboxT

Characterc

SlideS

Graphic ObjectG

TextboxT

Characterc

SlideS

Graphic ObjectG

… ccc … ccc

Textbox

SSHandout Master

...

...

Slide
…

……

TextboxTextbox TextboxTextbox TextboxTextbox

 47

technique should be extended to support this data model. Issues related to

extending the OT data model will be discussed in Chapter 4.

3.3. The Operation Model Adaptation

The objective of the operation model adaptation is to bridge the gap between

operation models of the single-user application API and OT. In operation

adaptation, the following issues must be addressed: how user-generated

operations are intercepted, represented, and propagated among collaborating sites;

how user-generated operations are processed by the OT technique for consistency

maintenance; and how OT-processed operations are interpreted by the

application’s API for replaying their effects at remote sites. This section discusses

operation adaptation-related issues and techniques learned from adapting the

operation models of Word and PowerPoint.

3.3.1. The Adapted Operation

AO as the Vehicle for Representing and Propagating the

User’s Interaction

By means of the application’s API, the user’s interactions can be intercepted as a

sequence of input events, such as key-down, key-up, and mouse-move. These input

events, however, cannot be directly propagated to remote sites and replayed as-is.

This is because, in an unconstrained collaboration environment, remote

applications may be in different status and replaying the same sequence of input

events on them may not achieve the desired effect. Moreover, there is no need to

propagate all local input events to remote sites. For example, local input events

that remote sites are not interested in (e.g. some window open/close events) may

not need to be propagated. Most importantly, these low level events must be

converted into high level operations in order to take advantage of OT for

consistency maintenance. Therefore, the sequence of local input events needs to

be filtered and converted into a sequence of semantically meaningful units, called

Adapted Operations (AO). In this role, AOs serve as the vehicle for representing

 48

the user’s interactions with the application and for propagating the user’s

interactions among collaborating sites. Technical issues involved in AO

generation will be discussed in Section 3.3.3.

AO as the Bridge between the API and OT

When an AO arrives at a remote site, it must first be processed by OT for

consistency maintenance, and then be interpreted by means of the API for

replaying its effect on the remote document. In this role, AOs act as the bridge

between the API and underlying OT. With AOs residing between the API and OT,

the task of operation adaptation between the API and OT is decomposed into two

subtasks:

(1) AO-PO adaptation, which translates the AO into suitable Primitive

Operations (PO) to be processed by OT; and

(2) API-AO adaptation, which interprets the AO by means of the API.

One approach to AO-PO adaptation is to extend the basic OT operation model

to cover all AOs (i.e. treat every AO as a PO), so that every pair of AOs can be

directly transformed by a specific OT function. If a single-user application

supports N different data-manipulation AOs, then N * N different transformation

functions are needed for adapting this application. A major problem with this

approach is that application level transformation functions are too complex to

design and to ensure correctness.
3

 Another problem is that transformation

functions defined for AOs are application-specific and not reusable in different

applications.

Another approach, proposed in this work, is to extend the basic OT operation

model with a new Update operation, and to translate application level AOs into

three generic POs: Insert, Delete, and Update. The advantage of this approach is

that the extended OT operation model becomes more powerful and capable of

3
 To get an idea about the complexity of designing two string-wise editing operations Insert and

Delete, the reader is referred to Sun et al. (1998).

 49

supporting word processing applications, and at the same time remains small and

application-independent. The challenge with this approach is how to translate an

AO into suitable POs so that applying OT on these POs can achieve the correct

transformation effect on the AO itself. Technical issues involved in translating

AOs to POs are discussed in Section 3.3.4. Issues and solutions involved in

extending OT for supporting Update will be discussed in Chapter 4.

3.3.2. Defining AOs for Word and PowerPoint

Since AOs play a central role in bridging the gap between the operation models of

the application API and the underlying OT technique, the definition of AOs for an

application is a key aspect of operation adaptation for that application. In the

following subsections, the data-related AOs defined for Word and PowerPoint

will be briefly described.

Adapting Word Operations

The AOs defined for Word (Word-AO) are illustrated in Figure 3.5-(b). To

facilitate the interpretation of Word-AOs by the Word API, it is essential for

Word-AOs to carry the type information of the target data objects. This is because

different types of data object are manipulated by different object methods in the

Word API to achieve data-type-dependent editing effects. The strategy is to group

and name Word-AOs according to the Word API data object types they are

processing. These operation groups include: the text operation group

(corresponding to the Range object in the Word API), the inlineObj operation

group (corresponding to the inlineShape objects in the Word API), and the

floatingObj operation group (corresponding to the Shape object in the Word API),

etc. It should be pointed out that AOs are aware of data object types but need not

be aware of the internal data structures of these types, which is the knowledge of

the Word API implementation.

 50

Figure 3.5 Three layers in Word operation adaptation.

At the OT layer, there are three primitive operations (Sun et al. 2004):

(1) Insert(pos, num, objSeq) denotes an Insert operation to create a sequence of

num objects objSeq starting at position pos in the OT data model.

(2) Delete(pos, num, objSeq) denotes a Delete operation to remove a sequence of

num objects objSeq starting at position pos in the OT data model.

(3) Update(pos, num, key, nval, oval) denotes an Update operation to change the

attribute key, from old-value oval to new-value nval, of a sequence of num

objects starting at position pos in the OT data model.

These three POs are generic in the sense that they are independent of object

types (the objSeq parameter may refer to a sequence of characters, or graphics,

etc.), attribute types (the key parameter may represent any object attribute like

color, size, or position, etc.), and attribute values (the nval or oval parameter may

Insert(pos,len,objSeq) Delete(pos, len,objSeq) Update(pos,len,key,nval, oval)Insert(pos,len,objSeq) Delete(pos, len,objSeq) Update(pos,len,key,nval, oval)

… … …… … …

… … … …

Ins_floatingObj

(pos,len,text)

Del_floatingObj

(pos,len)

Move_floatingObj

(pos,len,val)
…

… … … …

Ins_floatingObj

(pos,len,text)

Del_floatingObj

(pos,len)

Move_floatingObj

(pos,len,val)
…

… … … …… … … …

Ins_floatingObj

(pos,len,text)

Del_floatingObj

(pos,len)

Move_floatingObj

(pos,len,val)
…Ins_floatingObj

(pos,len,text)

Del_floatingObj

(pos,len)

Move_floatingObj

(pos,len,val)
…

… … … …

Ins_inlineObj Del_inlineObj Resize_inlineObj …

… … … …

Ins_inlineObj Del_inlineObj Resize_inlineObj …

… … … …… … … …

Ins_inlineObj Del_inlineObj Resize_inlineObj …Ins_inlineObj Del_inlineObj Resize_inlineObj …

… … … …

Ins_text

(pos,len,text)

Del_text

(pos,len,text)

Change_font

(pos,len,nval,oval)
Search_replace

(listofBAO)

… … … …

Ins_text

(pos,len,text)

Del_text

(pos,len,text)

Change_font

(pos,len,nval,oval)
Search_replace

(listofBAO)

… … … …… … … …

Ins_text

(pos,len,text)

Del_text

(pos,len,text)

Change_font

(pos,len,nval,oval)
Search_replace

(listofBAO)

Ins_text

(pos,len,text)

Del_text

(pos,len,text)

Change_font

(pos,len,nval,oval)
Search_replace

(listofBAO)

Word API-AO Adaptation

Word AO-PO Adaptation

Document

Selection

SubDocuments

…

Document

Selection

SubDocuments

…

InlineShapes

Shapes

Font

Comments

Revisions

Range

InsertAfter()
Delete()

…

Font

Comments

Revisions

Range

InsertAfter()
Delete()

…

InlineShape

Fill

Line
Range

Width …

Delete()

ConvertToShape()
…

InlineShape

Fill

Line
Range

Width …

Delete()

ConvertToShape()
…

...

...

Shape

Anchor
ZOrderPosition
Name

Fill
Line …

Delete()
ConvertToInlineShape()
…

Shape

Anchor
ZOrderPosition
Name

Fill
Line …

Delete()
ConvertToInlineShape()
…

(a)

(b)

(c)

...

...

 51

represent any attribute value). The OT layer does not need to know the object

type, attribute type, or attribute value to do its work (Sun et al. 1998; Sun 2002b).

To facilitate the translation from Word-AOs to POs (shown in Figure 3.5-(c)),

Word-AOs are also named and grouped in another dimension according to the

three PO types: Insert, Delete, and Update. For example, for the text operation

group, there are Insert-text, Delete-text, and Change-font (an Update for text), etc.;

for the inline object operation group, there are Insert-inlineObj, Delete-inlineObj,

and Resize-inlineObj (an Update for inline objects), etc.; and for the floating

object operation group, there are Insert-floatingObj, Delete-floatingObj, and

Move-floatingObj (an Update for floating objects), etc.

Word-AOs must carry information needed by the underlying OT to support

group undo (Sun 2000; 2002b). For example, all delete operations carry one

parameter for saving the deleted object (a text, inline, or floating object); and all

update operations carry one extra parameter (denoted as oval in Figure 3.5-(b))

for saving the old attribute value before performing the update.

Adapting PowerPoint Operations

The PowerPoint API (Figure 3.6-(a)) models a PowerPoint document as a

Presentation object. From the Presentation object, a Slides object can be accessed,

which models the sequence of slides in the document. The Slides object contains

various methods for creating Slide objects and accessing a particular slide (by

slide-sequence). From the Slide object, a Shapes object can be accessed, which

models the collection of graphic objects inside a slide. The Shapes object contains

various methods for creating Shape objects and accessing an existing Shape

object (by index-address or object-name).

The AOs defined for PowerPoint (PPT-AO) are illustrated in Figure 3.6-(b). To

facilitate the interpretation of PPT-AOs by the PowerPoint API, PPT-AOs are

named and grouped according to the PowerPoint API data object types they are

processing. These groups include: the slide group (corresponding to the Slide

 52

object in the PowerPoint API), and the graphicObj group (corresponding to the

Shape object in the PowerPoint API), etc. On the other hand, to facilitate the

translation from PPT-AOs to POs, PPT-AOs are also named and grouped in

another dimension according to the three PO types. For example, for the slide

group, there are Insert-slide, Delete-slide, and Change-effect (an Update for the

Slide object), etc.; for the graphicObj group, there are Insert-graphicObj, Delete-

graphicObj, and Resize-graphicObj (an Update for the graphicObj object), etc.

Like Word-AOs, PPT-AOs also carry additional parameters required by the

underlying OT for supporting group undo.

Figure 3.6 Three layers in PowerPoint operation adaptation.

3.3.3. Event Interception and AO Generation

The complexity of intercepting the user’s interactions depends on the interface

techniques adopted by the application, the operation types supported by the

application, and the level and power of the API of the application and its

execution environment.

Insert(pos,len,objSeq) Delete(pos, len,objSeq) Update(pos,len,key,nval, oval)Insert(pos,len,objSeq) Delete(pos, len,objSeq) Update(pos,len,key,nval, oval)Insert(pos,len,objSeq) Delete(pos, len,objSeq) Update(pos,len,key,nval, oval)

… … …… … …

… … … …

Ins_slide

(pos, len, slide)

Del_slide

(pos, len, slide)

Change_effect

(pos,len,nval,oval)
Move_slide

(opos, len, npos)

… … … …

Ins_slide

(pos, len, slide)

Del_slide

(pos, len, slide)

Change_effect

(pos,len,nval,oval)
Move_slide

(opos, len, npos)

… … … …… … … …

Ins_slide

(pos, len, slide)

Del_slide

(pos, len, slide)

Change_effect

(pos,len,nval,oval)
Move_slide

(opos, len, npos)

Ins_slide

(pos, len, slide)

Del_slide

(pos, len, slide)

Change_effect

(pos,len,nval,oval)
Move_slide

(opos, len, npos)

… … … …

Ins_graphObj

(pos,obj)

Del_graphObj

(pos, obj)

Resize_graphObj

(pos,nval,oval)

Change_ZOrder

(ovp,nvp)

… … … …

Ins_graphObj

(pos,obj)

Del_graphObj

(pos, obj)

Resize_graphObj

(pos,nval,oval)

Change_ZOrder

(ovp,nvp)

… … … …… … … …

Ins_graphObj

(pos,obj)

Del_graphObj

(pos, obj)

Resize_graphObj

(pos,nval,oval)

Change_ZOrder

(ovp,nvp)

Ins_graphObj

(pos,obj)

Del_graphObj

(pos, obj)

Resize_graphObj

(pos,nval,oval)

Change_ZOrder

(ovp,nvp)

PPT API-AO Adaptation

PPT AO-PO Adaptation

Presentation

PageSetup
SlideShowSettings

…

Presentation

PageSetup
SlideShowSettings

…

...

...

Slide

SlideID

SlideIndex

SlideName
NotePage

HeaderFooters
…

Select()

Delete()
Duplicate()

…

Slide

SlideID

SlideIndex

SlideName
NotePage

HeaderFooters
…

Select()

Delete()
Duplicate()

…

Shape

Name

Left
Top

ZOrderPosition

Fill
Type

TextFrame
…

Select()

Delete()
…

Shape

Name

Left
Top

ZOrderPosition

Fill
Type

TextFrame
…

Select()

Delete()
…

...

...

Slides

Add()

Paste()
InsertFromFile()

Item()
…

Slides

Add()

Paste()
InsertFromFile()

Item()
…

Shapes

Add()

Paste()
Item()

…

Shapes

Add()

Paste()
Item()

…

(a)

(b)

(c)

 53

In the current CoWord and CoPowerPoint systems, the user is restricted to

using the keyboard and mouse to interact with the application. All user input

events can be intercepted before they reach the application. The information

available from the intercepted input events, however, is not sufficient to fully

define an AO. To generate an AO, the application’s API must be used to detect

what object (e.g. text, inline, or floating) the user is accessing, to determine what

operation (e.g. insert, delete, or update) the user is performing on the object, and

to derive the parameters of this operation, including the position references of the

object in data model, the inserted/deleted object, or the updated object attribute

(both new and old values).

Figure 3.7 Intercepting keyboard events and generating the Ins_Text AO in CoWord.

Figure 3.7 shows an example of intercepting keyboard events and generating an

Insert-text AO in CoWord. When the user inputs a character into the Word

document from the keyboard, a pair of key-down and key-up input events will be

generated and intercepted. Parameters of these events include some low-level

information, such as the virtual code of the pressed key and the state information

of some auxiliary keys. From the intercepted events, we know the user has

inserted a character into the document, thus deriving that the AO type is Insert-

CoWord

key-down

(raw key)

key-up

(raw key)

Selection.GetStart()
…

Insert-text (pos, len, text)

 54

text. Then the Word API is called to get parameters of this Insert-text AO. For

example, the position reference of this insertion is derived from the current cursor

position, which can be obtained via the Word API Selection.GetStart(). Also, the

real effect (i.e. the formatted character) of this insertion can be obtained by calling

other Word API functions. This formatted character, rather than the raw key code

from the intercepted input events, is used as the text parameter of the Insert-text

AO.

We must stress the importance of querying the application for the real effect of

the user-inserted character and using the formatted character as the AO parameter.

If we used the raw key code from the intercepted input events as the AO

parameter for the inserted character, then it would be very difficult to correctly

determine its full effect at remote sites in the presence of concurrency. This is

because the determination of the full effect (e.g. font, size, color) of a character

inserted from the keyboard is dependent on the context (i.e. the existing

characters surrounding the newly inserted character). Rather than re-inventing

Word’s internal functionalities, we let Word do the real work (in determining the

full effect of the user’s interaction), and then query Word for the final effect and

carry this effect as an AO parameter to remote sites for replay.

Another issue is the timing of querying the application for deriving AO

parameters. Since the user’s input events are intercepted before they reach the

application, we can derive AO parameters by querying the application before

and/or after the local execution of the user’s input events:

(1) For creation operations (e.g. Insert-slide(pos, num, slide)), the created

object (slide) can be obtained after the local execution.

(2) For deletion operations (e.g. Delete-slide(pos, num, slide)), the deleted

object (slide) must be obtained before the local execution.

(3) For update operations (e.g. Resize-GraphicObj(pos, nval, oval)), the

parameter oval (the old size of the graphic object) must be obtained before

 55

the local execution, but the parameter nval (the new size of the graphic

object) can be obtained after the local execution.

Finally, the functional knowledge of the application (from the user’s point of

view) also plays an important role in the process of understanding the user’s

interaction and generating the AO. For example, when the user selects a range of

characters and then clicks the “Bold” button, we (the programmers) know that the

user must have generated an Update operation on the selected characters

according to the application’s function from the user’s point of view. Moreover,

the functional knowledge of the application is also important in determining

whether or not a user-level operation should be converted to an AO. In Word, for

example, the user may perform a local Copy operation on a selected object. From

the functional knowledge of Word, we know that a Copy operation creates a copy

of the selected object in the local clipboard buffer but has no effect on the

document state, so it need not be converted into an AO. When the user later

performs a Paste operation, a previously copied object in the local clipboard

(determined by Word) will be inserted into the document. At this moment, one

Insert AO can be generated and propagated to remote sites. In effect, a pair of

user-level Copy and Paste operations are merged into a single Insert AO

according to their combined effect on the document state. This solution is simple

and clean because it does not require any change to the execution of local Copy

and Paste operations or any additional mechanisms for supporting remote Copy

and Paste operations. If Copy and Paste were represented as separate AOs, then

not only would there be a need to devise additional mechanisms for treating Copy

as a special read AO, but we would also have to maintain consistent clipboard

buffers (in addition to consistent document states) at all sites.

In summary, information from the following three sources are needed in

generating AOs: (1) the user’s interactions (intercepted by the application API),

(2) the effect of the user’s interaction on the application state (queried from the

application’s API), and (3) the functional knowledge of the application (obtained

from usage experience or the application’s user manual).

 56

3.3.4. AO-PO Adaptation

The task of AO-PO adaptation is to translate an AO into suitable POs for OT

processing. The term OT-relevant parameters is used to mean those AO

parameters that may be affected by concurrent operations, such as the position

references of an AO (including the pos and num parameters). The following two

criteria have been used as guidelines to determine what POs should be used to

represent a given AO.

(1) The OT-relevant parameters of the AO must be fully represented by the POs.

(2) The impact of the AO on the OT-relevant parameters of other concurrent AOs

must be fully captured by the POs.

An AO is called a basic AO if it can be represented by a single PO, or a

compound AO if it must be represented by multiple POs. For example, an AO for

creating an object, removing an object, or changing an attribute (e.g. color, font

style, or size) of an object, is a basic AO since its OT-relevant parameters and its

impact on other concurrent AOs can be fully captured by a single PO. The

translation from a basic AO to a single PO is straightforward: the PO-type

information in the AO’s name (see Figure 3.5-(b) and Figure 3.6-(b)) can be used

to determine the type of the PO (i.e. Insert, or Delete, or Update); the OT-relevant

parameters (e.g. position references) of the AO can be directly used in the PO.

For example, an Insert AO (e.g. Insert-text, Insert-inlineObj, or Insert-floatingObj)

can be translated into an Insert PO, whose pos and length parameters are taken

directly from the AO, but whose objSeq parameter is just a reference to a generic

object – the real object type (text, inline, or floating) and internal structure of the

data object are of no interest to OT.

On the other hand, an AO for moving one character from position X to position

Y (in CoWord) is a compound AO since it has to be translated into two POs: a

Delete operation representing the deletion of the character at position X, and an

Insert operation representing the insertion of the deleted character at position Y.

 57

Another example compound AO is the Search-and-Replace operation, which

must be represented by a sequence of Delete and Insert PO pairs. Moreover, the

user may select a collection of disjoint objects (e.g. floating graphic objects in

Word, or slides in PowerPoint), and apply a single operation (e.g. deletion or

update) on them. This single user-level operation can be expressed as a single AO,

but this AO has to be treated as a compound AO since no single PO is able to

identify multiple disjoint objects.

In the above compound AO examples, the relationship between the compound

AO and its representing POs is obvious, but this is not always the case. In Word,

for example, the user can insert a new comment into the document, which is

represented as a single Comment-insert AO in CoWord. The overall effect of this

AO on the document consists of highlighting (with a color) the selected text

segment, and creating a comment element in the Comment Story (an editing area

independent of the main document). This AO carries, among others, three OT-

relevant parameters: (1) the starting position of the selected segment, (2) the

length of the selected segment, and (3) the insertion position of the comment

element in the Comment Story. These parameters are OT-relevant since they may

be changed by and have impact on other concurrent operations. This Comment-

insert AO is a compound operation since no single PO is able to represent all

three parameters and to capture its impact on other concurrent operations. Based

on the two criteria for AO-PO adaptation, this compound AO can be translated

into two POs: one Update operation (Highlighting) for representing parameters (1)

and (2), and one Insert operation for representing parameter (3) and its impact on

other concurrent AOs. It must be pointed out that these POs are involved in OT

processing only, not in the API interpretation of the AO (see Section 3.3.6).

The types of compound AO and the methods of translating compound AOs into

POs are application-specific. Techniques for adapting complex compound AOs

will be discussed with examples of collaborative table editing and collaborative

graphic object grouping in Chapter 5.

 58

After translating an AO into suitable POs, OT will be applied to these POs.

Then, these transformed POs will be used to update the corresponding OT-

relevant parameters of the AO. In this way, the AO is effectively transformed by

OT. Therefore, AO-PO adaptation can be regarded as an application-specific

extension to the OT operation model.

3.3.5. AO-API Adaptation

The task of API-AO adaptation is to interpret the transformed AO by means of

the API. The interpretation of a basic AO is straightforward: the data type

information (e.g. text, inline, or floating object) encoded in the AO name (see

Figure 3.5-(b) and Figure 3.6-(b)) is used to determine suitable API object class

types for the target object; the position references of the AO are used to find out

the target object in the document; other parameters of the AO are used in the API

method calls in order to replay the AO’s effect on the document.

Some compound AOs are composed of a list of basic AOs since the effects of

these compound AOs are achieved by sequentially executing these basic

composing AOs. The interpretation of these AOs can be achieved by sequentially

interpreting the basic composing AOs as well. For example, a Search-and-

Replace AO is composed of a list of basic Delete and Insert AO, which are

determined at the local site. When this compound AO arrives at a remote site, all

composing basic AOs are first translated into corresponding POs and processed

by OT in the AO-PO adaptation phase. Then, in the API-AO adaptation phase, all

transformed basic composing AOs are interpreted one by one to achieve the effect

of the compound AO.

However, not all compound AOs are composed of multiple basic AOs. As

discussed in Section 3.3.4, the Comment-insert AO is a compound AO since it has

to be translated into two POs (one Update plus one Insert) for the purpose of OT.

This compound AO, however, is not composed of a basic Update AO (to

highlight the selected text segment) and a basic Insert AO (to insert the comment

 59

element into the document) since the effect of inserting a comment into the

document cannot be achieved by sequentially executing these two basic AOs. In

fact, the Word API provides a special method to insert a comment into the

document. Therefore, the interpretation of the Comment-insert compound AO is

achieved by invoking a single Word API method. This example highlights the

independency of the API interpretation and the PO translation: the API

interpretation of an AO is based on the semantics of this AO, which is not related

to the POs that represent the AO for the purpose of OT.

The relationship between AO-PO adaptation and API-AO adaptation can be

summarized as follows: the former is responsible for getting the AO’s parameters

(syntax) right in the presence of concurrency; the latter is responsible for getting

the AO’s execution effect (semantics) right under the current application context.

Because of this division of responsibilities, POs (and OT) do not require the

awareness of the semantics of AOs, and the API interpretation does not need to

worry about concurrency.

3.4. Summary

In this chapter, an innovative Transparent Adaptation (TA) approach which can

be used to convert single-user applications into collaborative ones without

changing the source code of the original application, has been discussed.

The TA approach is based on (1) the use of the single-user application’s API to

intercept and replay the user’s operations, and (2) the use of Operational

Transformation (OT) to manipulate intercepted user operations for supporting

responsive and unconstrained (i.e. concurrent and free) multi-user interactions

with the shared application. For this approach to work, the shared application’s

API needs to be adapted to the data and operation models of the OT technique.

Two TA-based systems, CoWord and CoPowerPoint, were used as examples to

discuss data and operation model adaptation techniques.

 60

The user’s view of a Word document does not look like a linear sequence of

objects, but from Word API’s view, all objects, including characters, inline

objects and floating objects, can be accessed by their positional references in a

linear addressing space. Taking other auxiliary document elements (e.g.

Comments, Headers, Footers) into account, the whole Word document can be

modeled as a tree of linear addressing domains. Similarly, with the PowerPoint

API, all data objects in a PowerPoint document can also be accessed with

positional references in a tree of linear addressing domains. To adapt the data

models of Word and PowerPoint, the OT data model should be extended

correspondingly.

In the TA approach, user input events are converted into semantically

meaningful Adapted Operations (AO) for representing and propagating the user’s

interaction. Moreover, AO is also the bridge between OT and the API, so the

operation model adaptation task is decomposed to (1) AO-PO adaptation, which

translates the AO into suitable Primitive Operations (PO) to be processed by OT,

and (2) API-AO adaptation, which interprets the AO by means of the API to

replay the user’s interaction. For the purpose of AO-PO adaptation, the OT

operation model should be extended to support a new Update operation.

To adapt the operation models of Word and PowerPoint, a set of Word-AOs

and PPT-AOs are defined respectively. To facilitate the interpretation of

Word/PPT-AOs by the API, Word/PPT-AOs are named and grouped according to

the data object types they are processing. In another dimension, to facilitate the

translation from Word/PPT-AOs to POs, AOs are also named and grouped

according to the three PO types.

To generate AOs in response to the user’s interaction, three sources are needed:

(1) the user’s interaction intercepted by the application’s API, (2) the effect of the

user’s interaction on the application state queried via the application’s API, and (3)

the functional knowledge of the application. However, to perform AO-PO

adaptation and API-AO adaptation for different AO, different strategies are

 61

needed. For basic AOs, both AO-PO adaptation and API-AO adaptation are

straightforward, but adaptation methods for compound AOs are more complex:

application- and operation-specific methods are needed.

 62

Chapter 4

Extending Operational

Transformation for Supporting TA

As discussed in Chapter 3, leveraging single-user applications into multi-user

collaborative versions based on the TA approach requires extensions to both the

data model and the operation model of the basic OT technique. In the data model

aspect, the OT technique should be extended to support the data model based on a

tree of linear addressing domains; in the operation model aspect, the OT

technique should be extended to support a new operation type, Update. This

chapter discusses these two extensions to the basic OT technique.

4.1. Introduction

The OT technique consists of two layers: high-level transformation control

algorithms and low-level transformation functions (see Chapter 2). When the data

and operation models of the OT technique are extended, the transformation

control algorithm needs no change, because it is independent of the addressing

schemes and operation types. Changes should be done at the transformation

function level, because they are related to the addressing schemes and operation

types. Existing transformation functions in the basic OT technique are capable of

handling Insert and Delete operations based on a single linear addressing domain

only. Therefore, our strategy is to extend the transformation functions so that they

 63

can handle transformation of all three operations on the extended data model. At

the same time, the high-level control algorithms are kept unchanged.

The rest of this chapter is organized as follows. The extension to the OT data

model is discussed in Section 4.2. The extension to the OT operation model for

supporting Update is discussed in Section 4.3. Finally, this chapter concludes

with a summary in Section 4.4.

4.2. Extending the OT Data Model

4.2.1. Extending the OT Data Model

XOTDM: an eXtended OT Data Model

To meet the need for supporting complex data models, such as those of Word

(Figure 3.2) and PowerPoint (Figure 3.4), the basic OT data model should be

extended from a single linear addressing space to a tree of addressing groups,

where each group consists of multiple independent linear addressing domains, as

shown in Figure 4.1. XOTDM is used as the name of this eXtended OT Data

Model. Inside each addressing group, independent linear addressing domains are

identified by their unique names within that group. A data object is mapped to a

position in a linear addressing domain only if it has the position number as its

address in this domain. A data object is a terminal object if it has no internal data

structure or its internal data structure is not addressable. A data object is an

intermediate object if it has an addressable internal data structure. In XOTDM, a

terminal object has no link out of it, but an intermediate object has a link leading

to a lower level addressing group, which represents this object’s internal

addressing space.

Data objects of a wide range of different types of document can be mapped

onto XOTDM. For example, all characters in a plain text document can be

mapped into a tree of a single addressing group, which contains a single linear

 64

addressing domain. All data objects in this domain are terminal objects since

plain text characters have no internal structure.

Figure 4.1 The XOTDM tree: an eXtended OT Data Model.

Data objects in a Word document can be mapped into a two-level XOTDM

(compare Figure 3.2 with Figure 4.1). The top-level addressing group contains a

single linear addressing domain, corresponding to the range of data objects in the

main body of the document. Characters and graphic objects without addressable

internal structures (or where the internal structure is of no interest) are terminal

objects. Graphic objects with addressable internal structures, Comments, Notes,

and Section-Breaks are intermediate objects which have links to addressing

groups at the second level. A second-level addressing group for a Comment or

Notes contains a single linear addressing domain, corresponding to the sequence

of characters in the comments or notes; a second-level addressing group for a

Section-Break contains multiple linear addressing domains, corresponding to the

multiple independent sequences of data objects in the Headers and Footers

associated with the section.

Data objects of a PowerPoint document can be mapped into a three-level

XOTDM as well (compare Figure 3.4 with Figure 4.1). The top-level group

contains multiple independent linear addressing domains, corresponding to the

Na_1

Na_2

Nb_1

Nb_2

……

……

……

…… …

…

Nd_1

Nd_2

……

……

Ne_1

Ne_2

……

……

Nf_1

Nf_2

……

……

Ng_1

Ng_2

……

……

Nh_1

Nh_2

……

……

...

...

...

...
...
...

...

...
...
...

...

...
...
...

…

 65

sequence of normal slides in the document, and various master slides. All data

objects in the top-level group are intermediate objects since they represent slides

which have addressable internal data structures. A second-level addressing group

corresponds to the internal addressing space of an individual slide, with two

independent linear addressing domains: one is for the sequence of graphic objects

in the drawing area, and the other is for the sequence of characters in the notes

area. Data objects in the notes area are all terminal objects. Textboxes in the

drawing area are intermediate objects since they have addressable internal data

structures (represented by third-level nodes). All other data objects in the drawing

area are treated as terminal objects because either they have no addressable

internal structure or their internal structures can be ignored. All data objects in a

third-level node (representing a Textbox node) are treated as terminal objects.

It should be stressed that XOTDM reflects only the relationships of data object

addresses, rather than data objects themselves. Data objects in an application may

have arbitrarily complex relationships, which cannot and need not be mapped into

XOTDM for the purpose of applying OT. Two data objects are mapped into two

adjacent positions of a linear addressing domain in XOTDM just because they

have adjacent positional addresses in this domain. Their dynamic positional

relationship in the addressing domain is independent of their static relationship in

the object class hierarchy and is independent of their visual relationship on the

user interface.

Addressing Data Objects

Under XOTDM, a data object inside a given addressing group can be uniquely

addressed by a pair (n, p), where n is the name of a linear addressing domain in

this group, and p is the object’s position in this domain. To address any data

object in an XOTDM, a vector of (n, p) pairs is needed:

vp = [(n0, p0), (n1, p1), …, (ni, pi), …, (nk, pk)]

where vp[i] = (ni, pi), 0 ≤ i ≤ k, represents one addressing point at level i.

 66

For a Word document, a vector of two (n, p) pairs can be used to identify a data

object at the main document layer (addressed by the first pair), and a data object

inside an intermediate object (addressed by the second pair). For example, to

perform an operation in the main document, the editing operation needs a vector

of only one (n, p) pair: vp = [(“Main Text”, p0)], where p0 refers to the target

object’s linear position in the main document. To create a data object in a Header

associated with a Section-Break in the main document, however, the editing

operation should carry a vector of two (n, p) pairs: vp = [(“Main Text”, p0),

(“Header-1”, p1)], where p0 is the position of the Section-Break link in the main

document, and p1 is the position of the created data object in the linear addressing

domain named as “Header-1”.

For a PowerPoint document, a vector of two (n, p) pairs can be used to identify

a slide at the top slides sequence level or in a master slide (addressed by the first

pair), and a graphic object (in the drawing area) or a character (in the notes

editing area) inside this particular slide (addressed by the second pair). For

example, to insert or delete a slide in the “slide-sequence” at the top level, the

editing operation needs a vector of one (n, p) pair, such as vp = [(“slide-sequence”,

2)] refers to slide “2” in the “slide-sequence” domain. To update a graphic object

in a normal slide, the editing operation should carry a vector of two (n, p) pairs,

such as vp = [(“slide-sequence”, 1), (“drawing area”, 3)] refers to the graphic

object at position “3” in the “Drawing Area” of slide “1” in the “slide-sequence”

domain. To insert a character object in a Textbox in a normal slide, the editing

operation should carry a vector of three (n, p) pairs, such as vp = [(“slide-

sequence”, 1), (“drawing area”, 2), (“Textbox”, 3] refers to the character object at

position “3” in the “Textbox”, which is the number “2” graphic object in the

“drawing area” of slide “1” in the “slide-sequence” domain.

 67

4.2.2. Target-Domain Relationships among

Operations

As discussed earlier, to extend the OT data model to support XOTDM, changes to

the OT technique are to be done at the transformation function level. To achieve

this goal, one strategy is to redefine existing transformation functions so that they

become capable of handling operations with vector addresses, as is done in Davis

et al. (2002). The problem with this strategy is that all existing transformation

functions have to be revised and re-tested, which is nontrivial. The strategy

adopted in this research is to encapsulate the impact of the vector of (n, p) pairs in

a wrapper vector-based OT function (the VOT () function), but to keep all

existing transformation functions unchanged. This strategy allows us to localize

the impact of XOTDM and maximize the reuse of existing algorithms and

functions.

Under XOTDM, the target data object of an operation must fall into one

particular linear addressing domain. This particular domain is called the target-

domain of this operation. The target-domain relationship among operations is

very important in determining whether and how operations should be transformed

against each other. For convenience of discussion, the following terminologies are

introduced. Domain A is an ancestor-domain of domain B if there is a sequence

of arrows from A to B in the XOTDM tree. The sequence of domains from the

root domain to the target-domain (inclusive) of an operation is called the domain-

path of this operation.

In an unconstrained collaborative editing session, multiple users may generate

concurrent operations in the same or different target-domains. Concurrent

operations in the same target-domain (e.g. On and O2 performed on slide-1 in

Figure 4.2) should be transformed against each other. This is because the

execution of one operation in its target-domain may have impact on the position

references and other parameters of concurrent operations in the same target-

 68

domain. Existing OT functions for a single linear addressing domain can be

directly used to transform operations performed on the same target-domain.

Figure 4.2 Concurrent operations in multiple domains of a CoPowerPoint

document.

The question is whether concurrent operations in different target-domains need

to be transformed against each other. The answer is yes and no, depending on the

relationship between the target-domains of these operations. Given two

concurrent operations On and Ox in different target-domains, if Ox’s target-domain

is an ancestor-domain of On’s target-domain, and Ox is executed before On, then

On must be transformed against Ox since Ox’s execution in the ancestor-domain

may have changed On’s corresponding position reference. For example, in Figure

4.2, O1 is performed on the root domain which is an ancestor of On’s target-

domain. If O1 is executed before On, On must be transformed against O1 since the

execution of O1 may change On’s slide-sequence-number, which is a part of On’s

address. It should be pointed out that existing OT functions cannot be directly

used to transform On against O1, and a new function for transforming operations

on different domains is needed (to be discussed later).

However, if the target-domain of Ox is not an ancestor-domain of On, then On

need not be transformed against Ox since the execution of Ox may not have any

210 210

43210 43210

…

…

43210

TPPoC

…

…

43210

TPPoC

O1

O2 On

…0

…

…0

…

…

…

0

G

…

…

0

G

O3

…0

…

…0

…

…

…

0

C

…

…

0

C

O4

 69

impact on On. For example, in Figure 4.2, On in slide-1 does not need to be

transformed against another operation O3 in slide-0, or against operation O4 in the

notes area of slide-1, since the target-domains of both O3 and O4 are not on the

domain path of On.

To summarize, given two concurrent operations On and Ox and supposing Ox is

executed before On, On needs to be transformed against Ox under the following

two circumstances:

(1) Ox and On have the same target-domain; and

(2) Ox’s target-domain is an ancestor-domain of On’s target-domain.

In both cases, Ox’s target-domain is one of the domains on the domain-path of

On. This target-domain relationship between operations is called domain-

dependence. A more precise definition of this relationship is given below.

Definition 4.1. Domain-dependence relation “Oa Ob”. Given two operations

Oa and Ob. Let Da and Db denote the target-domains of Oa and Ob, respectively.

Ob is domain-dependent on Oa, denoted as Oa Ob, if Da is one of the domains

on the domain-path of Db.

If Da is not on the domain-path of Db, then Ob is not domain-dependent on Oa,

denoted as Oa Ob.

4.2.3. Checking Target-Domain Relationships

Like the concurrency relationship among operations, the domain-dependence

relationship among operations is an essential condition in determining whether

two operations need to be transformed. Also like the vector of operation counters

(i.e. the state vector (Ellis and Gibbs 1989; Sun et al. 1998)) used for checking the

d

d

d

 70

concurrency relationship among operations,
4
 the vector of (n, p) pairs is used to

check the domain-dependence relationship among operations.

Figure 4.3 Checking the target-domain relationship.

The Check_target_domain_relation() function in Figure 4.3 has been devised

to check the target-domain relationship of On against Ox based on the vectors of (n,

p) pairs (i.e. their vp address parameters). The Domain_dependent(On, Ox)

function checks whether On is domain-dependent on Ox (i.e. Ox On). If On is

domain-dependent on Ox, it is further differentiated whether the two operations

have the same target-domain (return SAME_DOMAIN), or Ox’s target-domain is

an ancestor-domain of On’s target-domain (return ANCESTOR_DOMAIN). This

differentiation is necessary because different transformation functions will be

used for transforming On against Ox in these two sub-cases (see the VOT()

4
 The concurrency relationship among operations is checked by high level transformation control

algorithms based on operations' state vector time-stamps (Sun et al. 1998; Sun 2002b).

Check_target_domain_relation(On, Ox)

{

if(Domain_dependent(On, Ox))

if(|On.vp| == |Ox.vp|); //|On.vp| is the vector's length

return SAME_DOMAIN;

else

return ANCESTOR_DOMAIN;

else

return INDEPENDENT_DOMAIN;

}

Domain_dependent(On, Ox)

{

if(|On.vp| < |Ox.vp|)

return false;

for(int i = 0; i < |Ox.vp| - 1; i++)

if(On.vp[i] != Ox.vp[i]) //Note: vp[i] is a (n, p)-pair

return false;

if(On.vp[|Ox.vp| - 1].n != Ox.vp[|Ox.vp| - 1].n)

return false;

return true;

}

d

 71

function in Figure 4.4). If On is not domain-dependent on Ox, then

INDEPENDENT_DOMAIN is returned.

4.2.4. The VOT function

Figure 4.4 A wrapper OT function for transforming operations with vector

addresses.

As described in Chapter 2, the transformation control algorithm of an OT

technique determines which operation should be transformed against other

operations, and then calls the transformation functions to do the transformation.

In particular, when a new operation from a remote site arrives, the control

algorithm (e.g. GOTO (Sun and Ellis 1998)) scans (and may also reorder) the

VOT(On, Ox)

{

switch(Check_target_domain(On, Ox)) {

case SAME_DOMAIN:

Transform_same_domain(On, Ox);

break;

case ANCESTOR_DOMAIN:

Transform_ancestor_domain(On, Ox);

break;

case INDENPENDENT_DOMAIN:

break; // do nothing

}

}

Transform_ancestor_domain(On, Ox)

{

last = |Ox.vp| - 1;

switch(Ox.type) {

case Insert:

if(Ox.vp[last].p <= On.vp[last].p)

On.vp[last].p++;

break;

case Delete:

if(Ox.vp[last] < On.vp[last])

On.vp[last].p--;

else if(Ox.vp[last] == On.vp[last])

SetNULL(On);

break;

case Update:

break; //do nothing

}

}

 72

history buffer of executed operations, and selects operations to transform against

the new one.
5
 To transform the new operation against those in the history buffer,

the control algorithm calls the transformation functions (i.e. IT and ET).

However, to transform an operation On against a concurrent operation Ox

defined in XOTDM, we do not directly call the IT or ET functions. Instead, the

VOT() function in Figure 4.4 is called. In the VOT() function, the

Check_target_domain_relation() function is first called to differentiate the three

kinds of target-domain relationship: SAME_DOMAIN, ANCESTOR_DOMAIN

or INDEPENDENT_DOMAIN, between On and Ox, based on their vp parameters.

Then three different transformation cases are handled separately.

First, if both On and Ox have the same target-domain, then the execution of Ox

may have impact on On’s last position and other parameters (e.g. attribute values).

In this case, On can be transformed against Ox by using transformation functions

based on singular positions. This is achieved by calling the

Transform_same_domain() function, which encapsulates the conversion between

vector positions and singular positions, and the invocation of existing

transformation functions.
6

Second, if Ox’s target-domain is an ancestor of On’s target-domain, then the

execution of Ox may have impact only on On’s corresponding position, not on

On’s attribute value parameters. In this case, On must be transformed against Ox

by a new function Transform_ancestor_domain(). The transformation result is

dependent on Ox’s type and the relationship between Ox’s last position and On’s

corresponding position (which is the position with the same index as Ox’s last

position). If Ox is an Insert and its last position is smaller than or equal to On’s

5 For details of the GOTO algorithm, the reader is referred to Sun and Ellis (1998).
6

 Details of vector versus singular positions conversion are omitted for conciseness. For

definitions of transformation functions based on singular positions, the reader is referred to Sun et

al. (1998); Sun and Ellis (1998); Sun et al. (2004).

 73

corresponding position, then On’s position is incremented by one.
7
 If Ox is a

Delete operation and its last position is smaller than On’s corresponding position,

then On’s position is decremented by one; but if these two positions are equal,

which means On’s target-domain has been removed by Ox, then function

SetNULL(On) is invoked to set On to NULL.
8
 If Ox is an Update operation, no

change is made to On’s position. It should be highlighted that On’s type has no

influence on the transformation result, which is a major difference between

Transform_ancestor_domain() and existing transformation functions defined for

singular positions (Sun et al. 1998).

Third, if On is not domain-dependent on Ox, then the execution of Ox cannot

have any impact on On. In this case, On is returned without any change.

Finally, it should be pointed out that although CoWord and CoPowerPoint use

a vector of maximum two or three (n, p) pairs, the VOT() function supports

vectors of any number of (n, p) pairs.

4.2.5. Other Tree-Based OT Techniques

The extension of the basic OT technique to support a tree of multiple linear

addressing domains represents an important advancement from previous work

(Davis et al. 2002). The tree-based document modeling and vector-based

addressing scheme have already been discussed in the context of XML-based

documents in Davis et al. (2002), but the discovery of the tree-based document

modeling and vector-based addressing in the Word and PowerPoint APIs is a

valuable research finding. This finding is significant because it reveals the

excellent match between the OT technique and a wide range of existing

commercial off-the-shelf single-user applications, and thus greatly increases the

applicability of the OT technique.

7
 For simplicity, it is assumed that each operation targets only one object. In other words, the

value of its num parameter is always one.
8 NULL is an empty operation without any effect on the document or in transformation.

 74

Technically, the extension of the basic OT technique to the tree-based OT

technique was achieved by embedding the vector positional references in all

existing transformation functions in Davis et al. (2002). In contrast, the extension

in this work encapsulates the impact of the vector-based addressing and

transformation inside a wrapper transformation function (VOT()), and keeps

existing OT control algorithms and transformation functions unchanged. Above

all, the tree-based OT technique presented in this chapter is the only one fully

implemented and tested (in the CoWord and CoPowerPoint systems).

There is another tree-based OT technique, TreeOPT (Ignat and Norrie 2003),

which is very similar to Davis et al. (2002). Some specific points of the TreeOPT

algorithm include: the use of a tree of history buffers to reduce the number of

transformations (at the cost of maintaining an explicit tree of buffers), and the use

of an artificial zero-length Delete operation to represent an operation when it is

transformed against other operations at high layers in the tree (which is a trick to

get around the problem of the lack of knowledge of vector-based addressing in

the basic OT technique).

The data models used in Davis et al. (2002) and Ignat and Norrie (2003) can be

regarded as special cases of XOTDM, in the sense that there is only a single linear

addressing domain in each addressing group.

4.3. Extending OT for Supporting

Update

After the Update operation is introduced into the OT operation model, the OT

technique supports three primitive operations: Insert, Delete and Update (see

Chapter 3).

For supporting Update, OT needs to be extended with a set of Update-related

transformation functions. However, the central issue in supporting Update is

conflict resolution. This is because, in an unconstrained collaborative

 75

environment, users may concurrently update the same attribute of a common

object, resulting in conflicts. Corresponding techniques embedded in

transformation functions are needed for conflict resolution and preservation of

user’s effort.

In GRACE (Chen 2001; Sun and Chen 2002), a Multi-Versioning (MV)

technique was devised to preserve all operations’ effects in the face of conflicts.

With this technique, multiple versions of the same object are created to

accommodate the effects of multiple conflicting Updates. This MV technique

provides users with a complete picture about what other users intended to do in

the situation of conflict, so that they could better assess the situation and react

accordingly.

Due to the differences between the frameworks of GRACE and OT, directly

applying the GRACE MV technique in OT for conflict resolution could

significantly complicate the OT framework. In this research, a new MV technique,

called Multi-Version Single-Display (MVSD) has been devised. The basic idea of

MVSD is the following: when an object is updated by conflicting operations,

multiple versions of the target object will be created and maintained internally

(similar to GRACE), but only one version is displayed at the user interface

(different from GRACE). Moreover, all versions of an object can be displayed

(one by one) by invoking an AnyDisplay algorithm (Sun 2004).

The major merit of MVSD is that it fits very well in the OT framework.

Furthermore, it naturally matches the interface features of existing single-user

applications (e.g. MS Word). For details about supporting Update in OT and the

MVSD technique, the reader is referred to Sun (2004).

4.4. Summary

This chapter has discussed techniques for extending the basic OT technique in

two aspects. On the one hand, the data model of the basic OT technique has been

 76

extended to support the XOTDM (eXtended Operational Transformation Data

Model). On the other hand, the OT operation model has been extended to support

a new operation, Update. With these two extensions, the TA approach is

applicable to a wider range of single-user applications.

After the data model of OT is extended to a tree of linear domains, operations

involved in the transformation may have different target-domain relations. Based

on the target-domain relation definition, the solution to transforming operations in

XOTDM was designed in two steps. First, an algorithm is designed to check the

target-domain relation of two operations according to their position parameters.

Then, a transformation function is designed to transform two operations

according to their target-domain relation. To keep existing transformation

functions unchanged, the impact of the vector-based addressing and

transformation is encapsulated inside a wrapper transformation function. This

extension to the OT technique has increased the capability of the OT technique to

support collaboration on complex data structures (e.g. the Word and PowerPoint

documents).

To extend the OT data model to support the Update operation, the first task is

to design transformation functions that transform Update against other operations.

Unlike Insert and Delete, Update operations may conflict with each other.

Therefore, a conflict resolution technique must be designed. The multi-versioning

strategy is ideal for conflict resolution due to its ability to preserve all users’

intensions in the face of conflict, but exiting the multi-versioning technique

cannot be directly applied in the OT framework. To achieve the multi-versioning

effect with OT, a Multi-Version Single-Display (MVSD) strategy is adopted in

this research. In the face of conflict, multiple versions of the target object of

conflict Update operations are maintained internally, but only one version is

displayed in the user interface. Moreover, an AnyDisplay algorithm is able to

display any version of an object.

 77

Chapter 5

Applying TA to Complex

Application Data Structures and

Operations

In Chapter 3, a basic TA approach which can be used to adapt common rich

format text and graphics editing in single-user applications, has been presented.

However, many off-the-shelf commercial single-user applications have complex

data structures and editing functionalities that cannot be directly adapted by the

techniques presented in Chapter 3. To support these complex data structures and

editing functionalities in collaborative versions, special adaptation techniques

need to be designed in the TA framework.

In this thesis work, two special adaptation techniques – CoTable and CoGroup

– have been devised to support collaborative table editing and collaborative

graphic object grouping, respectively. The reasons for targeting collaborative

table editing and graphic object grouping are as follows. First, table editing and

graphic object grouping are practically useful single-user editing functions and

are widely supported in off-the-shelf commercial single-user applications.

Supporting collaborative versions of these functions significantly increases the

usefulness of collaborative editing systems. Second, among a variety of editing

functions, adaptation techniques of table editing and graphic object grouping are

 78

technically representative. The CoTable technique focuses on adapting complex

data structures and operations defined on these data structures, and the integration

of different object models. CoGroup focuses on resolving application-semantics-

level conflicts, achieving desirable effects and adapting complex compound AOs

with AO-level mechanisms.

The rest of this chapter is organized as follows. First, the CoTable technique is

discussed Section 5.1. Then the CoGroup technique is discussed in Section 5.2.

Finally, this chapter concludes with a summary in Section 5.3.

5.1. The TA-Based Collaborative Table

Editing Technique

5.1.1. Collaborative Table Editing

Complex information that includes multiple interrelated items is difficult for

human beings to comprehend without proper organization. Tables are an efficient

way to organize such information. A table is usually defined from two perspec-

tives (Silberhorn 2001). From the presentation-oriented perspective, a table is a

two-dimensional structure consisting of rows, columns and cells. From the struc-

ture- or content-oriented perspective, a table is a collection of interrelated

information items. Each item is semantically associated with multiple categories.

Due to these characteristics, tables provide a powerful means for facilitating

information organization, comprehension, and comparison (Wang 1996). Because

of their usefulness and convenience, tables are supported in a wide range of

computer document processing applications such as word processors (e.g. MS

Word, OpenOffice Write), web design systems (e.g. MS FrontPage, Macromedia

Dreamweaver), and spreadsheet systems (e.g. MS Excel, OpenOffice Calc).

In their ethnographic interviews with users of spreadsheets, which are a special

form of tables, Nardi and Miller (1990) noted that most spreadsheets are

developed from collaborative work of users with different expertise. Generally,

 79

collaboration is an essential part of table editing. Collaboration may be involved

in both table designing and filling processes (Xia et al. 2005a).

5.1.2. The Data Model Adaptation

According to the TA approach, supporting collaborative table editing involves the

adaptation of data and operation models of the single-user application’s table

editing API. In this subsection, the table editing data model adaptation technique

will be discussed first.

To adapt table-related object data models exposed by the API to those of the

underlying OT technique (i.e. the XOTDM), it is important to have a clear

understanding of these table-related data models.

Table Data Models of Single-User Application APIs

When viewed from the user interface, a table is a two-dimensional rectangular

data structure, consisting of a collection of rows and columns. Each row or

column consists of a sequence of cells. A cell may be associated with a row and a

column at the same time. A cell may contain some text or graphic objects, which

are in a linear sequence. In this conceptual model of tables, objects in a table may

have various relationships. First, hierarchical relationships exist in the following

object pairs: table–column/row, column/row-cell, and cell–cell content. Second,

objects in the same collection form a separate linear sequence. For example, each

cell has an ordinal index in a row, with which the cell can be accessed from the

cell sequence in the row. The ordinal indices range from 0 to N−1 where N is the

number of cells in the row. Removing or inserting cells affects indices of other

cells that have higher indices in the same row, but does not affect indices of cells

in other rows.

When viewed from the API of an application, the table data model may or may

not correspond to the conceptual model. Typically, there are three categories of

API table data models, as shown in Figure 5.1.

 80

Figure 5.1 Table-related data models in APIs of different single-user

applications. (a) The single linear tree data model; (b) the row-based tree data

model; (c) the two dimensional data model. The numbers at the lower right

corners of each cell stand for object positions in corresponding linear

sequences.

(1) Single linear data model. In this data model, table data objects can be

accessed from a linear addressing space. Inserting or removing objects

contained in cells of a table may affect positions of other data objects.

Moreover, row/column and cell objects also have marks and occupy positions

in the linear addressing space. Therefore, this data model can be represented

as a single linear sequence, as shown in Figure 5.1-(a). This data model can be

found in APIs of some word-processing applications including MS Word.

(2) Row-based tree data model. The most significant feature of this data model is

the absence of columns, and table data objects can be accessed from the row-

c ‘C’ ‘A’ c r ‘P’ ‘O’ c ‘A’ ‘O’ c r‘E’‘C’‘G’ c ‘C’ ‘A’ c r ‘P’ ‘O’ c ‘A’ ‘O’ c r‘E’‘C’‘G’

(a)

(c)

AOPO

CAGCE

AOPO

CAGCE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b)

r rr r
0 1

c cc c
0 1

c cc c
0 1

‘C’‘G’ ‘E’‘C’‘G’ ‘E’
0 1 2

‘C’ ‘A’‘C’ ‘A’
0 1

‘P’ ‘O’‘P’ ‘O’
0 1

‘A’ ‘O’‘A’ ‘O’
0 1

tt
0

r rr r
0 1

c cc c
0 1

c cc c
0 1

‘C’‘G’ ‘E’‘C’‘G’ ‘E’
0 1 2

‘C’ ‘A’‘C’ ‘A’
0 1

‘P’ ‘O’‘P’ ‘O’
0 1

‘A’ ‘O’‘A’ ‘O’
0 1

tt
0

o oo o
0 1

0 0

1 1

Rowr

Tablet

Columno

Cellc

Rowr

Tablet

Columno

Cellc

 81

dimension only. Hierarchical relationships between table-row, row-cell and

cell-cell content still exist, and the linear relationships between objects in the

same collection also remain. This data model can be represented as a row-

based tree, as shown in Figure 5.1-(b). This data model can be found in APIs

of some HTML editors, such as MS FrontPage.

(3) Two-dimensional data model. In this data model, table data objects can be

accessed from both the row-dimension and the column-dimension. This data

model directly matches the conceptual model of tables and can be represented

as a hierarchical graph, as shown in Figure 5.1-(c). This data model can be

found in APIs of a variety of single-user applications, including MS Excel,

MS PowerPoint, OpenOffice Writer, and OpenOffice Calc.

Table Data Model Adaptation Schemes

With the variations of API table data models, different adaptation schemes are

needed to adapt these data models to the XOTDM. Here the adaptation schemes

for the three API data models in Figure 5.1 are discussed respectively.

First of all, the single linear data model is a special form of the XOTDM in

which only the root level addressing group exists and there is only one linear

addressing domain in this group. In the single linear data model, an object is

uniquely addressed with an integer as the position in the linear sequence. This

address is also a special form of the (n, p) pair vector address of the OT where

there is only one pair in the vector, and the n parameter in this pair can be set to a

constant since there is only one linear addressing domain.

Moreover, the row-based tree data model is also a special form of XOTDM, in

which (1) the total number of levels is 4, (2) terminal objects exist only at level 3,

and (3) there is only one linear addressing domain in each addressing group. In

the row-based tree data model, an object is uniquely addressed with a vector of

integer. This address is also a special form of the OT vector address where k ≤ 3

 82

(k is the number of (n, p) pairs in the address; see Chapter 3), and the n

parameters in each pair can be set to a constant for the same reason.

Finally, the two-dimensional data model is not directly compatible with

XOTDM due to the dual hierarchical relationships between cells and

rows/columns. However, a comparison of the two-dimensional data model and

the row-based tree data model reveals that removal of column objects from the

two-dimensional data model reduces the dual hierarchical relationships to a single

one and hence converts the two-dimensional data model to the row-based tree

data model.

In summary, the three API data models are all adaptable to XOTDM. The

single linear data model and the row-based tree data model are adapted directly;

and the two-dimensional data model is adapted after a conversion to the row-

based tree data model.

Integrating the Table Data Model in Complex Documents

The data model adaptation schemes not only provide a solution to mapping the

API table data model into that of OT, but also are the key to integrating tables

into the global addressing space of the complex document, as shown in Figure 5.2.

The complex document in Figure 5.2-(a) consists of three linear object

sequences: a header, a footnote and a main text. The main text includes three parts.

The first line contains an inline graphic object “Hello”, followed by a return

character. Afterwards there is a table containing two columns and two rows. The

footnote mark is in the first cell of the table. The last line contains some text.

Suppose the API exposes the same data model for non-table objects as Word. The

document is adapted into a tree of linear addressing domains, in which the header

objects are in the section addressing domain, and the footnote objects are in the

footnote addressing domain (see Chapter 3).

 83

Figure 5.2 Integrating the table into the global addressing space of the

complex document. (a) The user’s view of the complex document, (b) the data

model in which the table is adapted to a single linear sequence, (c) the data

model in which the table is adapted to a row-based tree.

In the main text, the graphic object and the text segment can be mapped into

two linear sequences separated by the table. Based on different table data models

exposed by the API, the table can be adapted to a single linear sequence or a row-

based tree. Both adapted data models can be merged with the linear sequence of

objects outside the table. The merged data models of both cases are shown in

Figure 5.2-(b) and (c), respectively. It is clear that both merged models are

Operation Translation

AOPO

CAGCE1

AOPO

CAGCE1

1. Generic Collaboration Engine.

CoTable : a collaborat ive t able edit ing technique based on TA

FE ‘O’ ‘p’ ‘e’ …‘G’\ n ‘C’ ‘A’ c r ‘P’ ‘O’ c ‘A’ ‘O’ c rc‘E’‘C’ FE ‘O’ ‘p’ ‘e’ …‘G’\ n ‘C’ ‘A’ c r ‘P’ ‘O’ c ‘A’ ‘O’ c rc‘E’‘C’S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(b)

‘C’ ‘a’‘o’ ‘T’ …‘b’‘C’ ‘a’‘o’ ‘T’ …‘b’

Section

Primary

Header
‘C’ ‘ l’‘o’ ‘ l’ …‘a’‘C’ ‘ l’‘o’ ‘ l’ …‘a’

Footnote

20 21

(a)

Main Text

E t ‘O’ ‘p’ ‘e’ …\ nE t ‘O’ ‘p’ ‘e’ …\ nS
0 1 2 3 4 5

r rr r
0 1

c cc c
0 1

c cc c
0 1

‘E’‘C’‘G’ F‘E’‘C’‘G’ F
0 1 2

‘A’‘C’ ‘A’‘C’
0 1

‘O’‘P’ ‘O’‘P’
0 1

‘O’‘A’ ‘O’‘A’
0 1

(c)

3

‘C’ ‘a’‘o’ ‘T’ …‘b’‘C’ ‘a’‘o’ ‘T’ …‘b’

Section

Primary

Header

‘C’ ‘ l’‘o’ ‘ l’ …‘a’‘C’ ‘ l’‘o’ ‘ l’ …‘a’

Footnote

Main Text

Table

Table Table

TableTableTableTable

Rowr

FootnoteF

SectionE

Tablet

Columno

Cellc

Rowr

FootnoteF

SectionE

Tablet

Columno

Cellc

 84

compatible with the XOTDM. All objects in the document can be accessed with a

vector of (n, p) pairs. For example, the first character in the footnote can be

accessed with the vector address [(“Main Text”, 6), (“Footnote”, 0)] in the single

linear data model (Figure 5.2-(b)), and can be accessed with the vector address

[(“Main Text”, 3), (“Table”, 0), (“Table”, 0), (“Table”, 3), (“Footnote”, 0)] in the

row-based tree data model (Figure 5.2-(c)).

Discussion

There are some issues worth discussing in the above data adaptation schemes.

First, while adapting the two-dimensional data model, it is theoretically

equivalent to remove either columns or rows, because both a row-based and a

column-based tree can be adapted to XOTDM. Without losing generality, the

following discussions will be based on the assumption of a row-based tree.

Second, the row-based tree converted from the two-dimensional data model

does not need to be semantically equivalent to its original two-dimensional form.

The conversion process selectively preserves some information about the table

structure but discards the rest, including the hierarchical relationships between

cells and columns. This is acceptable because the XOTDM needs to maintain

only information relevant to OT. For example, OT needs to know only the vector

address of a cell object in the XOTDM, regardless which column the cell is

subordinate to, so information about columns can be ignored. However, it is

important for OT to know that one cell is located before another in the same

collection, so such information is retained.

5.1.3. Table Operation Model Adaptation

Table-related AOs could target objects contained in table cells (e.g. text or

graphics) or table structure objects (e.g. cell or row). The data model adaptation

schemes have integrated objects in the table into the global data model of the

 85

whole document, so AOs used to manipulate objects (e.g. text or graphics)

outside a table can also be used for table content objects, and the operation

adaptation techniques for existing AOs can be directly inherited. However, table

structure operations are table-specific and cannot be supported by existing AOs

designed for graphics or text (see Chapter 3). They require special adaptation

techniques. Therefore, the following discussion on CoTable operation model

adaptation focuses on the table editing operations only.

The solution to bridging the gap between operation models of the table editing

API and OT is to define a set of table structure AOs, denoted as AOt. As a vehicle

for the translation between the API and POs, the AOt should (1) correctly reflect

the table editing API’s effects by covering all affecting factors, and (2) facilitate

the translation between the table editing API and PO.

Following the operation model adaptation strategy in Chapter 3, AOt are

organized in two dimensions. One dimension the types of table structure object

that the AOt targets. In this dimension, there are three table structure object types:

row, column and cell. Therefore, there should be three AOt categories in this

dimension, which are Row-AOt, Column-AOt and Cell-AOt. The other dimension

is the PO types. The three AOt categories in this dimension include Insert-AOt,

Delete-AOt, and Update-AOt.

Based on this two-dimensional classification, any AOt can be placed in a

suitable cell in Table 5.1. In fact, there are many more AOt in real applications

than those listed in Table 5.1. For example, additional Cell-Update-AOt may

include Change_CellFillColor, Change_CellBorderStyle,

Change_CellBorderColor. Nevertheless, for the purpose of investigating issues of

operation translation, the AOt listed in Table 5.1 are representative and adequate.

Parameters of the AOt show that they are defined directly on the XOTDM. The

parameter vp is a vector of (n, p) pairs. It indicates the starting position of an AOt

effect range in the XOTDM. The parameter len indicates the length of an AOt

 86

effect range. Apart from positional references, other OT-relevant parameters are

also kept. For Insert- and Delete-AOt, objects affected by the AOt are kept as the

last parameter: row, col or cell. For Update-AOt, the old value o_val and new

value n_val of the target attributes are recorded. These parameters are needed in

OT for consistency maintenance and group undo (Sun 2002a).

Table 5.1. AOt classification.

 Row Column Cell

Insert Ins_Row(vp, len, row) Ins_Col(listOf<vp, len>, col) Ins_Cell(vp, len, cell)

Delete Del_Row(vp, len, row) Del_Col(listOf<vp, len>, col) Del_Cell(vp, len, cell)

Update
Change_rowHeight

 (vp, len, o_val, n_val)

Change_ColWidth

 (listof<vp, len>, o_val, n_val)

Change_cellColor

 (vp, len, o_val, n_val)

The effect range parameters (vp and len) are able to locate any continuous

range in XOTDM. Therefore, for an AOt that has a single continuous effect range

(Row- or Cell-AOt), the effect range parameters are sufficient in any API data

models. However, a Column-AOt has dispersed effect ranges in both single linear

and row-based tree data models, so a list of effect range parameters is needed.

With the AOt definition in Table 5.1, the translation from the AOt to both PO

and the API are straightforward. In AOt-PO translation, the PO type is just the PO

category of the AOt; parameters of the PO can be directly taken from the OT-

relevant parameters of the AOt. A Row- and Cell-AOt are basic AOs, so they are

translated into individual POs. However, Column-AOt are compound AOs, so

they should be translated into sequences of POs due to their dispersed effect

ranges. Each PO represents the effect on a single cell. On the other hand, while

interpreting AOt with the API, the effect range parameters are used to locate the

target object in the API data model; the target object type encoded in the AOt type

provides information about the target object’s API interface (e.g. method

definitions); the PO type encoded in the AOt type is used to choose the method to

invoke; other AOt parameters are used as method invocation parameters.

Obj
PO

 87

5.1.4. Supporting Collaborative Table Editing in

CoWord

The CoTable technique has been implemented in the CoWord and CoPowerPoint

systems. Application-specific issues that emerged in adapting data and operation

models of Word table-editing API will be discussed in this subsection.

Special Issues in Word Table Data Adaptation

As discussed in Chapter 3, the Word API exposes a data model compatible with

XOTDM. In a Word document, the table structure is organized as the single

linear data model. Objects inside table cells and outside ones (but in the same

document element, such as main text, comment or footnote) are mapped into the

same linear addressing domain and can be accessed with their positional

references, as shown in Figure 5.1-(b). Moreover, there are end-of-cell and end-

of-row marks for each cell and row in the linear addressing domain with unique

positions.

However, some objects in a Word document are hidden in both the user

interface and the API. To ensure the correctness of the data address adaptation, it

is important that these objects also be located and mapped to the XOTDM. One

example of such hidden objects is the invisible cells generated while handling

irregular tables.

Figure 5.3 Handling irregular tables and its effects on the data model. (a) A

row-irregular table; (b) the padding effect on the data model; (c) a column-

irregular table. To better match the user interface views of tables, single linear

data models are shown in rectangular forms.

Padding

(b)

User Interface

Views

Single Linear

Addressing Models
c

c

rc

rc

c

c

rc

rc
0 1 2

3 4 5

c

r

r

c

c c

r

r

c

c
0 1 2

3 4

(c)(a)

 88

Some Word tables are irregular, in the sense that some cells cannot be

definitely subordinated to certain rows or columns. Figure 5.3
9
-(a) and (c) show

tables that are irregular in two different dimensions.

In the row-irregular table in Figure 5.3-(a), an ambiguity exists in determining

which row the right cell belongs to, because it spans two rows. In the Word API

data model, this cell is associated with the upper row. At the same time, an

invisible cell is padded beneath the spanning cell in the lower row to eliminate the

ambiguity (shown in Figure 5.3-(b)). In contrast, in the column-irregular table in

Figure 5.3-(c), no padding is needed.

Such invisible cells must not be ignored in the data model adaptation. Although

these cells are invisible in the user interface and inaccessible from the Word API,

they are also assigned with positions in the global linear addressing space.

Ignoring these cells would have the consequence of ruining the correctness of the

data model adaptation.

Special Issues in Word Table Operation Adaptation

In the Word table operation adaptation, there are also some special issues worth

discussing. The first one is the approach to supporting irregular tables.

Figure 5.4 Effects of vertical cell merge on the user interface and data model.

As a TA-based system, CoWord generates AOt by intercepting the user’s table-

editing interactions with the Word user interface; the user’s interactions may

trigger Word table-editing functionalities to change the document state. Therefore,

9 Addresses of table structure objects are vectors of (n, p) pairs. In this figure, only their linear

indices in the leaf-level linear addressing domain are shown to simplify the discussion.

Vertical Merge
Padding

c

c

rc

rc

c

c

rc

rc 0 1 2

3 4 5 c

c

rc

rc

c

c

rc

rc 0 1 2

3 4 5

 89

an important basis for the AOt generation is a precise understanding of these

functionalities’ effects.

Word table-editing functionalities have visible effects on the user interface and

invisible effects on the API data model. In most cases, these effects are consistent,

but sometimes they may be inconsistent. Under any circumstances, the generation

of AOt should always be based on the API data model effects.

One example where this inconsistency occurs is the vertical cell merge, whose

effects on the user interface and the data model are shown in Figure 5.4. When

two cells are merged vertically, the effects on the user interface is that the lower

cell is removed and the upper cell spans two rows. This vertical merge causes

irregularity, so the padding scheme is applied (by Word) in the data model. As

shown in Figure 5.4, there is no positional difference between the data model

states before the merge and after the padding. The only difference is that the

lower cell becomes invisible. According to this data model effect, a Cell-Update-

AOt needs to be generated to set the visibility attribute of the lower cell to false.

Another issue is to preserve regularity effects of AOt. In the single-user

environment, only Ins_Cell and Del_Cell AOt could irregularize a regular table;

the application of a Row/Column-AOt to a regular table preserves the regularity of

the table. This regularity effect of the AOt should be preserved in the

collaborative environment. However, in the single linear data model of the Word

API and in the face of concurrency, the regularity effect may be lost without

special treatment.

As shown in Figure 5.5, from the initial table state (shown in Figure 5.5-(a)),

site 1 generates an AOt O1 that inserts a new column. Concurrently site 2

generates an AOt O2 that inserts a new row. Both Insert-AOt contain two cells.

After executed locally (shown in Figure 5.5-(b)), they are propagated to remote

sites. When O1 arrives at site 2, it is translated to POs, processed by OT and

executed, which results in the insertion of two cells and leads to the table state

 90

shown in Figure 5.5-(c). Site 1 goes through a similar process after the arrival of

O2 and reaches the same table state.

Figure 5.5 Preserving the regularity effects of Ins_Row and Ins_Col AOt. (a)

The initial state; (b) after local execution; (c) after remote execution; (d) after

the execution of the addition AOt. In this figure, O1=Ins_Col (<1, 1>, <5, 1>,

col); O2=Ins_Row (3, 3, row); O3=Ins_Cell (6, 1, cell); O1’ and O2’ are OT-

processed forms of O1 and O2.

The table in Figure 5.5-(c) is an irregular one, whose irregularity comes from

the combined effect of two concurrent Row- and Column-AOt. In other words, the

regularity effect of these two AOt is lost in the face of concurrency.

The correct combined result of these two AOt should be that shown in Figure

5.5-(d), where the regularity is still preserved after the insertion of a row and a

column. The difference between the tables in Figure 5.5-(c) and (d) is that the one

in Figure 5.5-(d) has an additional cell, which helps preserve the table’s regularity.

To convert the table state from that shown in Figure 5.5-(c) to (d), an additional

Ins_Cell operation O3 is needed to insert that additional cell.

A thorough investigation shows that this problem occurs only when a column

AOt (i.e. Ins_Col, Del_Col and Upd_Col) and a concurrent Ins_Row AOt target

the same table. An additional AOt needs to be generated in these cases to preserve

the table’s regularity.

O1

O
2

O
2’

O1’

(a) (b)

Site 1

Site 2

O3

c

c

rc

rc

c

c

rc

rc
0 1 2

3 4 5

c

c

c

c

rc

rc

c

c

c

c

rc

rc 0 1 2

4 5 6

3

7

rcc

c

c

rc

rc

rcc

c

c

rc

rc 0 1 2

3 4 5

6 7 8

rccc

c

c

r

c

c

rc

rccc

c

c

r

c

c

rc 0 1 2

4 5 6

3

7 8 9 10
rccc

c

c

c

c

rc

rc

rccc

c

c

c

c

rc

rc 0 1 2

4 5 6

3

7

8 9 10 11

The additional
cell

(c)
(d)

 91

5.1.5. Comparison to Other Collaborative Table

Editing Techniques

Prior work on collaborative table editing has been restricted to collaboration-

aware table-centric (spreadsheet) applications. The CoTable technique is unique

in providing a collaborative table editing solution to both table-centric and word-

centric applications.

Super Spreadsheet (Fuller et al. 1993) is a collaborative spreadsheet system for

face-to-face users. Management of concurrency, spreadsheet version and history

is performed in an object-oriented way. For concurrency control, a transaction-

based approach has been adopted. The user’s interactions with the system are

organized as transactions. During the execution of a transaction, implicit locks are

used to lock the data objects before updating (i.e. pessimistic locking), and locks

are released at the transaction commitment time, which is chosen by the user

explicitly. Locks of multiple objects can be acquired in arbitrary orders (i.e. non-

strict 2-phase locking), so deadlock is possible. There exist automatic deadlock

detection mechanisms in the system but users must be involved in deadlock

resolution by negotiation. This solution works well in the local-area network

environment (for face-to-face users). However, if this approach were applied in

the Internet environment, the system responsiveness may suffer due to the use of

pessimistic locks.

Similarly, the Shared Spreadsheet (WARP 2006) also takes a transaction-

based approach as its concurrency control mechanism. Users need to explicitly

start a transaction before editing and end the transaction afterwards. Transactions

failing in conflicts have to be rolled back, which may result in the loss of

collaborative work. Besides, a series of auxiliary features has been implemented

to increase performance and reduce the possibility of rolling back.

Transaction/lock-based concurrency control solutions are able to protect data

integrity by prohibiting conflicting updates on shared data objects, which is

 92

important in achieving semantic consistency (Dourish 1996; Sun and Ellis 1998)

in collaborative applications. On the other hand, OT-based solutions can ensure

syntactic consistency (characterized by convergence, intention-preservation, and

causality-preservation (see Chapter 2)), and provide high responsiveness, fine-

grain concurrency, and a high degree of freedom to the users in their interactions

with the shared application in the Internet environment. OT and

transaction/locking are complementary techniques and could be integrated for

achieving both syntactic and semantic consistency.

An OT-based distributed collaborative spreadsheet system was proposed by

Palmer and Cormack (1998). Their OT technique is specially designed for

supporting the two-dimensional data model, and spreadsheet-specific operations:

insert and delete rows or columns in a table, and set, format, and copy the cell

value of a table. These spreadsheet-specific operations are at the same level as the

AOt in CoTable. In contrast, CoTable is based on an OT technique which directly

supports only three generic primitive operations (Insert, Delete, and Update), and

an adaptation technique to map application-level table editing operations (i.e. the

AOt) into these primitive operations. The benefits of the CoTable approach is the

reduced complexity in designing transformation functions and the reusability of

transformation functions for supporting a wide range of data types in complex

documents.

5.2. The Collaborative Graphic Object

Grouping Technique

5.2.1. Collaborative Graphic Object Grouping

Documents of graphics editing applications (e.g. slides authoring systems and

CAD systems) often contain a large number of objects with complex logical

structures. Managing complex structures on the basis of individual objects would

cost significant efforts or sometimes may be infeasible. Object grouping, which

packs multiple logically related objects into a single group-object and vice versa,

 93

is an effective means to help manage the complexity of graphics editing. When

objects are grouped, they behave like a single object in response to modifications

to any attribute. At the same time, the user can also choose to modify some

attributes (e.g. fill color) of group members individually. Furthermore, a group-

object can be a member in another group-object, which provides a multi-level

hierarchical structure for managing complex documents. In summary, object

grouping not only protects the logical relationship among group members against

mistaken actions, but also provides the convenience of modifying group members

individually (Xia et al. 2005c).

Supporting collaborative object grouping is nontrivial due to the increased

complexity in both the data and operation models. First, existing collaborative

graphics editing techniques often treat graphic objects as independent entities, but

object grouping introduces group relationships among graphic objects. Second,

existing collaborative graphics editing techniques focus on supporting three types

of basic operations: a CreateObj operation creates a new object (e.g. a line, circle,

square or textbox); a DeleteObj operation removes an existing object; and a

ChangeAtt operation changes an attribute (e.g. size, color or position) of an

existing object. Object grouping requires support for two additional operations: a

Group operation packs a collection of objects into a single group-object; and an

Ungroup operation unpacks a group-object into a collection of individual objects.

In this chapter, the term grouping operation is used to mean either a Group or an

Ungroup operation.

5.2.2. Conflict Resolution in the Presence of

Grouping Operations

Conflict Relations among Operations

The main technical challenge in supporting collaborative graphic object grouping

is conflict resolution and consistency maintenance in the presence of group-

objects and grouping operations in a TA-based real-time collaborative

 94

environment. As discussed in Chapter 4, conflicts may occur when multiple users

concurrently update the same attribute of a common object. Moreover, two

concurrent Group operations may also conflict with each other if they target

common objects since these common objects cannot belong to two different result

group-objects at the same time.

Before designing conflict resolutions, the conflict relation between graphics

editing operations is defined as follows. To define the conflict relation, the

following notions are used: (1) Type(O) denotes the type of operation O; (2)

Target(O) denotes the set of identifiers of target objects of operation O; and (3)

Att.Key(O) denotes the attribute type of operation O if O is a ChangeAtt operation.

Definition 5.1. Conflict relation “ ”. Two operations O1 and O2 conflict with

each other, expressed as O1
 O2, if and only if (1) O1 and O2 are concurrent; (2)

Target(O1) ∩ Target(O2) ≠ Φ; and (3)

a. Type(O1) = Type(O2) = Group; or

b. Type(O1) = Type(O2) = ChangeAtt and Att.Key(O1) = Att.Key(O2).

Definition 5.2. Compatible relation “ ”. Two operations O1 and O2 are

compatible, expressed as O1
 O2, if and only if they do not conflict with each

other; that is, ⌐(O1
 O2).

According to the above definitions, sequential operations are compatible;

operations without common target objects are compatible; and operations of

different types are compatible. Conflict relations occur only between a pair of

Group operations or a pair of ChangeAtt operations under the conditions specified

in Definition 5.1. The conflict/compatible relations among the three basic

operations and the two grouping operations are summarized in Table 5.2 (called a

conflict relation triangle in Sun and Chen (2002)). The meaning of shaded cells

will be explained later in this chapter.

 95

Table 5.2. The conflict relation triangle of five operation types.

 CreateObj DeleteObj ChangeAtt Group Ungroup

CreateObj

DeleteObj

ChangeAtt /

Group /

Ungroup

In Chapter 4, the Multi-Version Single-Display (MVSD) conflict resolution

strategy and its suitability for TA-based collaborative systems have been

discussed. This strategy is also adopted in the TA-based CoGroup technique to

resolve conflict among Group and ChangeAtt operations.

Combined Effects for Conflict and Compatible Operations

Based on the conflict/compatible relations given in Table 5.2 and the MVSD

strategy, the combined effects among the five operations CreateObj, DeleteObj,

ChangeAtt, Group, and Ungroup, are specified in this subsection.

According to Table 5.2, a CreateObj operation is always compatible with all

operations, including another CreateObj operation, because the object to be

created cannot be targeted by another concurrent operation.

A DeleteObj operation is always compatible with all other operations as well

because the effect of a DeleteObj operation can be combined with the effect of

any other concurrent operation targeting the same object.

(1) The combined effect with another DeleteObj operation is the deletion of the

target object (Figure 5.6-(b)). Their effects have been combined in the sense

that the deleted object can be recovered only after undoing both operations.

(2) The combined effect with a ChangeAtt operation is the change of the attribute

and the deletion of the target object (Figure 5.6-(c)).

 96

Figure 5.6 Combined effects between graphics editing operations: (a) the

initial document state and operations: O1 = Group(G1, G5); O2 = O3 =

DeleteObj (G2); O4 = ChangeAtt (G2, FillColor, red); and O5 = O6 = Ungroup

(G5); and the combined effects between (b) O2 and O3, (c) O2 and O4, (d) O2

and O1, (e) O2 and O5, (f) O4 and O1, (g) O4 and O5, (h) O1 and O5, (i) O5

and O6, respectively.

(3) The combined effect with a Group operation is the creation of a group-object

containing all member objects targeted by the Group operation, except the

member object targeted by the DeleteObj operation (Figure 5.6-(d)).

(4) The combined effect with an Ungroup operation is the unpacking of the

member objects in the group-object targeted by the Ungroup operation and

the deletion of the member object targeted by the DeleteObj (Figure 5.6-(e)).

A ChangeAtt operation may conflict with another ChangeAtt operation under

the condition specified in Definition 5.1; but it is always compatible with other

operations because the effect of a ChangeAtt operation can be combined with the

effect of any other concurrent operation targeting the same object.

G5G5

G1

G3

G4

(b)

G5G5

G1

G3

G4

(c)

G5G5

G1

G3

G4

G6G6

(d)

G1
G3

G4

(e)

G5G5

G1

G2
G3

G4

(f)

G6G6

G1

G2

G3

G4

(g)

G5G5

G1

G2
G3

G4

(h)

G5G5

G1

G2

G3

G4

(i)

O6

G5G5

G1

G2

O2 O3

(a)

O1

G3

O5

G4

O4

RedRed

 97

(1) The combined effect with a DeleteObj operation is illustrated in Figure 5.6-(c).

(2) The combined effect with a Group operation is the creation of a group-object

containing all target member objects, and the change of the attribute of one

member object targeted by the ChangeAtt operation (Figure 5.6-(f))

(3) The combined effect with an Ungroup operation is the unpacking of all

member objects inside the target group-object, and the change of attribute of

the member object targeted by the ChangeAtt operation (Figure 5.6-(g)).

A Group operation may conflict with another concurrent Group operation if

they target common objects; but it is always compatible with other operations

because the effect of a Group operation can be combined with the effect of any

other concurrent operation targeting the same object.

(1) The combined effect with a DeleteObj or a ChangeAtt operation has been

illustrated in Figure 5.6-(d) and Figure 5.6-(f), respectively.

(2) The combined effect with an Ungroup operation is the creation of a group-

object containing all member objects targeted by the Group operation and

the unpacking of the group-object (a member object targeted by the Group

operation as well) targeted by the Ungroup operation (Figure 5.6-(h)).

An example for illustrating the combined MVSD effects of two conflict Group

operations is given in Figure 5.7. Initially, the document contains five objects: G1,

G2, …, G5, and suppose two operations O1 = Group(G1, G2, G3) and O2 =

Group(G3, G4, G5) are generated concurrently, as shown in Figure 5.7-(a). Since

O1 and O2 target a common object G3, they conflict with each other. To achieve

the MVSD effect, two versions G3-O1 and G3-O2 should be created to accommodate

the effects of both O1 and O2, but only G3-O1 is displayed in the group-object

created by O1 (Figure 5.7-(b)), provided that O1 has a higher priority than O2. The

version G3-O2 is maintained internally in the group-object created by O2 but is

invisible at the user interface due to the single-display strategy. However, after O1

is undone, G3-O2 will become visible as shown in Figure 5.7-(c).

 98

Figure 5.7 An example for illustrating the combined MVSD effect of two

conflict Group operations.

An Ungroup operation is always compatible with other operations for the

reasons explained above and illustrated in Figure 5.6-(e), Figure 5.6-(g) and

Figure 5.6-(h) respectively. The combined effect of two concurrent Ungroup

operations targeting the same group-object is the unpacking of the target group-

object (Figure 5.6-(i)). Both Ungroup operations have been combined in the sense

that the group-object can be recovered only after undoing both operations.

5.2.3. The Data Model Adaptation for Graphic

Objects

As the first step of supporting collaborative graphic object grouping in the TA

framework, the data model adaptation technique of graphic objects, particularly

group-objects into a data model that is compatible with that of OT (namely the

XOTDM in Chapter 3), will be discussed in this subsection.

Figure 5.8 The group objects data model. (a) The user interface representation;

(b) The data model in the API.

O1 O2

G2

G1

G3

G4

G5

O3

(a)

G2

G1

G3O1

G4

G5

(b)

G6G6 G7G7

RedRed

G2

G1

G3O2

G4

G5

(c)

G7G7

G7

G5

G8

G9

0 1

(a) (b)

0 1
G4

0 1
G3

G6

2
G2

0 1
G1

G2G2 G3G3

G4G4

 99

A wide range of graphics editing applications (including Word and PowerPoint)

have provided varieties of mechanisms (in their APIs) for mapping any graphic

objects, including group-objects, into a tree of linear addressing domains. To

illustrate this address mapping, consider the following example: Figure 5.8-(a)

shows a graphic document when viewed from the user interface; and Figure 5.8-

(b) shows the mapping of the graphic objects in this document to a tree of linear

addressing domains when viewed from the API. In this example, the top three

objects (G1, G2, and G3) are mapped into the top-level linear addressing domain in

the tree; the member objects in the two group-objects G2 and G3 are mapped into

two second-level addressing domains, respectively; and the member objects in

group-object G4 are further mapped into a third-level addressing domain. As

shown in this example, member objects of a group-object form a separate linear

addressing domain; a group-object (e.g. G4) can be a member object of a higher

level group-object (e.g. G2), allowing multiple levels of object grouping.

Under the data model in Figure 5.8-(b), any graphic object can be accessed

with the vector address. For example, the address of the pentagon can be

expressed as a vector address [2, 0, 1], where “2” refers to the group-object G3,

“0” refers to the group-object G4; and “1” refers to the pentagon object.

Comparing with the XOTDM (see Chapter 3), the data model in Figure 5.8-(b) is

a special case of XOTDM in which there is only one linear addressing domain in

every addressing group, like the row-based tree data model in the CoTable

technique (see Section 5.1.2). The vector of integer address for accessing graphic

objects can be easily converted into the vector of (n, p) pairs address in the

XOTDM. While the CoGroup technique is applied in applications in which there

are multiple linear addressing domains in each node (i.e. addressing group) like

Word and PowerPoint, the domain identifier can be attached to the top level

integer and constants can be attached to integers at lower levels, so that a vector

of integers is converted into a vector of (n, p) pairs. For example, the above

integer vector [2, 0, 1] is converted into [(“Main Text”, 2), (“Graphic Group”, 0),

(“Graphic Group”, 1)] in CoWord if these graphic objects exist in the main

 100

document. To simplify the discussion, the integer vector is used in the rest of this

chapter to address graphic objects.

5.2.4. The Operation Model Adaptation for Group

Operations

The second step of supporting collaborative graphic object grouping in the TA

framework is to adapting graphics editing functions to the operation model of OT,

which contains three POs: Insert, Delete and Update (see Chapter 4).

Basic AOs targeting Group-Objects

Our strategy for adapting graphics editing functions is to define a set of graphics

editing AOs, called AOg. For the three basic graphics editing operations, there are

three corresponding basic AOg: CreateObjAOg, DeleteObjAOg, and

ChangeAttAOg. Effects of these basic AOg in the group-object data model can be

fully captured by POs, so the built-in mechanisms of OT are capable of resolving

conflicts among basic AOg without any additional mechanisms at the AO level.

An example of resolving conflicts among ChangeAttAOg targeting group-

objects is shown in Figure 5.9. From the initial document state (Figure 5.9-(a)),

three operations are generated concurrently: O1 = ChangeAttAOg([0, 0, 0],

FillColor, Red) to change the filling color of non-group object G1 into Red, O2 =

ChangeAttAOg([0, 0], FillColor, Green) to change the filling color of group-

object G5 to Green, and O3 = ChangeAttAOg([0], FillColor, Blue) to change

group-object G6 to Blue. According to the conflict definition (Definition 5.1),

these three AOg conflict. Assume their priority relation is O1 > O2 > O3.

The conflicts among these AOg can be detected in OT from their common PO

types (all are type Update), the same target attribute type (all are FillColor), and

overlapping target ranges, (O3.addr is the prefix of O2/O1.addr, and O2.addr is

the prefix of O1.addr). These conflicts can be solved with the conflict resolution

algorithm for the Update PO (Sun et al. 2004) and the combined MVSD effects

 101

shown in Figure 5.9-(b) are achieved. In this result, multiple versions for objects

targeted by conflict AOs are created, but only the versions created by AOg with

the highest priorities (e.g. G1-O1, G2-O2 and G3-O2) are displayed.

Figure 5.9 A scenario of three conflict ChangeAttAOg.

Grouping AOg Representation

For object grouping, there are two grouping AOg, named as GroupAOg and

UngroupAOg, respectively. To determine the representation of these grouping

AOg, it is necessary to analyse their effects on both the real objects (visible from

the user interface) and the object data model (visible from the API).

As illustrated in Figure 5.10, the effect of a GroupAOg on the real objects is to

pack multiple target objects into a single group-object; and its effects on the

internal addressing model include: (1) inserting a group-object in the current

addressing domain (at the position before the first target object); and (2) moving

all target objects into a lower level addressing domain (linked to the group-object).

In moving these target objects, their original relative sequence relationships are

preserved (see Figure 5.10-(b)).

The effect of an UngroupAOg on the real objects is to unpack the target group-

object into multiple member objects; and its effects on the data model include: (1)

G6G6
G5G5

G1

G2
G3 G4

O2 O3O1

Red

Green

Blue

Red

Green

Blue

0

2

G6

0
G5

0 1

(a)

0

2

G6

0 1
G5

0 1

(b)

1

G6G6
G5G5

G1O1

G2O2
G3O2 G4

 102

moving all member objects to the position of the target group-object in the higher

level addressing domain; and (2) deleting the target group-object (see Figure

5.10-(c)).

Figure 5.10 Effects of GroupAOg and UngroupAOg. (a) The initial state; (b) the

state after grouping; (c) the state after ungrouping.

It should be pointed out that after executing the UngroupAOg operation, the

document state returns to the previous state before the execution of the GroupAOg

operation at the user interface; but the internal addresses of these objects are not

restored, as can be seen by comparing Figure 5.10-(a) and (c). These object

grouping effects are supported by the APIs of a wide range of single-users

applications, including MS Word, MS PowerPoint and OpenOffice Presentation.

To facilitate grouping AOg adaptation, their representations must capture their

effects on both the data objects (needed for replaying their effects in AO-API

Adaptation (see Chapter 3)), and on the object addressing space (needed for OT-

processing in AO-PO Adaptation). Since both GroupAOg and UngroupAOg have

the effect of moving existing objects between different addressing domains, a new

operation, named MoveAOg, needs to be introduced, to represent this effect. The

MoveAOg can be represented as follows:

• MoveAOg (from, to, obj) denotes the effects of deleting the object obj at the

address from and inserting the same obj at the address to.

0 1 2 0 1G

0 1

0 1 2

(b) (c)(a)

Group Ungroup

 103

Based on the basic AOg and MoveAOg, the two grouping AOg can be

represented as follows:

(1) GroupAOg(CreateObjAOg(addr, go), MoveAOg(from-1, to-1, obj-1), …,

MoveAOg(from-n, to-n, obj-n)) denotes the effects of creating a group-object

go at address addr and moving the target member objects obj-1, …, obj-n

from addresses from-1, …, from-n, to new addresses to-1, …, to-n at a lower

level addressing domain.

(2) UngroupAOg(DeleteObjAOg(addr, go), MoveAOg(from-1, to-1, obj-1), …,

MoveAOg(from-n, to-n, obj-n)) denotes the effects of deleting the target

group-object go at address addr and moving the member objects obj-1, …,

obj-n from addresses from-1, …, from-n, to new addresses to-1, …, to-n at a

higher level addressing domain.

It should be stressed that the object addresses used in all AOs are positional

references in the data model (see Figure 5.8), rather than the visual locations of

the data objects at the user interface.

Grouping AOg Translation

For processing AOg with OT, AOg should be translated into POs. Translation of

the basic AOg is straightforward: a CreateObjAOg has the effect of inserting an

object in the data model, so it can be translated into an Insert PO; a DeleteObjAOg

has the effect of deleting an object from the data model, so it can be translated

into a Delete PO; a ChangeAttAOg has the effect of changing an attribute of an

object in the data model, so it can be translated into an Update PO.

On the other hand, GroupAOg and UngroupAOg are compound AOg in the

sense that they cannot be translated into single POs. The translation of a

compound AOg consists of translating each composing AOg into a list of POs.

Definition 5.3. Translation Rules for Grouping AOg. For each composing AOg

in a grouping AOg, it is translated as follows:

 104

(1) if the composing AOg is a basic AOg: CreateObjAOg/

DeleteObjAOg/ChangeAttAOg, then it is translated into a single PO:

Insert/Delete/Update;

(2) if the composing AOg is MoveAOg, then it is translated into a pair of POs:

Delete and Insert, where the two POs must refer to the same object (which

is different from a pair of independent Delete and Insert).

Let GroupAOg-POList denote the translated PO list for GroupAOg,

UnGroupAOg-POList denote the translated PO list for UngroupAOg. Based on the

translation rules in Definition 5.3, grouping AOg are translated as follows:

(1) GroupAOg-POList = [Insert(go-addr, go-ref), Delete(from-1, moref-1),

Insert(to-1, moref-1), …, Delete(from-n, moref-n), Insert(to-n, moref-n)).

(2) UngroupAOg-POList=[Delete(go-addr, go-ref), Delete(from-1, moref-1),

Insert(to-1, moref-1), …, Delete(from-n, moref-n), Insert(to-n, moref-n)).

It should be stressed that the translated PO list captures only part of the

grouping AOg effects (including the timestamps for detecting concurrency (Sun et

al. 1998) and priorities) that are needed for generic OT processing. Additional

application-specific mechanisms are needed to detect and resolve operation

conflict at the AO level, as discussed in the following subsections.

Grouping AOg Conflict Detection

Based on the grouping AOg representation and translation schemes, conflicts

among basic AOg can be fully detected and resolved by the mechanisms built in

the OT technique. However, detection of conflicts among GroupAOg requires the

knowledge of operation type Group (see Definition 5.1), which is unknown to OT.

Therefore, conflict detection in the presence of grouping AOg requires additional

mechanisms at the AO level.

According to Definition 5.1, a pair of GroupAOg may conflict under three

conditions: (1) they are concurrent; (2) they have overlapping target objects; and

 105

(3) they have the same operation type GroupAOg. OT is able to detect the first

two conditions by examining the POs translated from GroupAOg, but the third

condition must be checked at the AO level. To facilitate the check of the third

condition and to propagate the concurrency and overlapping conditions resulting

from the PO level to the AO level, bi-directional references are established

between each AO and its translated POs. A routine GetAO(PO) is provided to get

the AO associated with the PO. Moreover, the underlying OT functions have been

extended as follows: when a PO1 is transformed against a concurrent PO2 and

found to have overlapping target objects with PO2, this finding and PO2’s

reference to its associated AO must be recorded in the transformed PO1. At the

AO level, a routine POConcurrentAndOverlapping(PO1) is provided to check

whether PO1 has been found concurrent and overlapping with another operation,

and another routine GetCOAO(PO1) is provided to get the AO associated with

PO2. Based on the above extensions, conflict relationship between two GroupAOg

can be determined by invoking the AOgConflictDetection() routine defined in

Figure 5.11.

Figure 5.11 The routines for detecting grouping AO conflicts.

Resolving Conflicts among Grouping Operations

OT is able to resolve conflicts among basic AOg, but additional mechanisms at

the AO level are needed to resolve conflicts among GroupAOg. This is because

resolving GroupAOg conflicts requires semantic knowledge of the GroupAOg and

its representation, which are not captured by individual POs and hence are

unknown to OT. For the same reason, to achieve combined effects among

AOgConflictDetection(TPO)

{
if(POConcurrentAndOverlapping (TPO) == true)
{

if(GetAO(TPO).type == GetCOAO(TPO).type == Group)

return true;

}
return false;

}

 106

compatible AOs in the presence of grouping AOs, additional mechanisms at the

AO level are also needed. In other words, resolving conflicts among conflict

operations and achieving the combined effects among compatible operations

require interaction and collaboration between the underlying OT technique and

the AO-PO adaptation in the TA framework.

An overall picture of the responsibility distribution between these two

components is shown in Table 5.2: the non-shaded cells indicate the sole

responsibility areas of the generic OT technique for resolving conflicts and

achieving the defined combined effects among basic AOg; the shaded cells

correspond to joint responsibility areas of OT plus additional AO-level

mechanisms (in the AO-PO adaptation) for resolving conflict and achieving

combined effects in the presence of grouping AOg.

In the following discussion, the following auxiliary functions will be used: (1)

GetMove(POx) returns the composing MoveAOg from which the PO POx is

translated; and (2) GetCOMove(POx) returns the composing MoveAOg of the

grouping AOg whose reference is recorded in the PO POx. Implementation of

these functions is straightforward, based on the AO-PO association and AO

reference recorded in a transformed PO. Furthermore, the term Common Target

MoveAOg (CT-MoveAO) is used to mean a composing MoveAOg of a grouping

AOg that moves a common target object targeted by another concurrent AOg.

According to the MVSD combined effect, the conflict between two GroupAOg

is resolved based on their priorities. Given two conflict GroupAOg: O1 with a

higher priority and O2 with a lower priority, their common target objects should

be packed in the group-object created by O1 and excluded from the group-object

created by O2.

In the GroupAOg representation, the effects of moving target objects are

represented by composing MoveAOg. Therefore, for a pair of conflicting

GroupAOg O1 and O2, there must be a CT-MoveAO in each of them, which targets

 107

a common target object. Based on this observation, the strategy of resolving the

conflict between O1 and O2 is as follows:

(1) if the O1 is executed after O2, the from parameter of the CT-MoveAO of O1

should be set to the to parameter of the CT-MoveAO of O2, so that the

common target object will be moved to the group-object created by O1.

(2) if O2 is executed after O1, the CT-MoveAO of O2 should be cancelled so that

the common target object is excluded from the group-object created by O2.

Based on the above strategy, the routine AOgConflictResolution(TPO) is

defined (Figure 5.12) for resolving the conflict between the GroupAOg (obtained

by calling GetAO) from which the TPO was translated and the GroupAOg

(obtained by calling GetCOAO) with which TPO was associated due to their

concurrent and overlapping relationship.

Figure 5.12 The routine for resolving conflicts among GroupAOg.

Based on the MVSD effect, this conflict resolution approach also supports

selectively displaying versions that are hidden by default. Assume that between

the two conflict GroupAOg O1 and O2, O1 has a higher priority than O2.

According to the MVSD effect, two versions of the common target object are

created, but only the version created by O1 is displayed. To display the version

created by O2, a simple strategy is to undo O1. The disadvantage of this strategy is

that all O1’s object-packing effects are unnecessarily discarded, including those

non-common target objects. To preserve O1’s effects to the maximum extent, a

better strategy is to partially undo the composing CT-MoveAO of O1. From the

adjustment to this MoveAOg to resolve the conflict between O1 and O2, it is clear

AOgConflictResolution(TPO)

{

if(GetAO(TPO).priority > GetCOAO(TPO).priority)
GetMove(TPO).from = GetCOMove(TPO).to;

else

GetMove(TPO).cancelled = true;

}

 108

that the effect of this undo is only to move the common target object from O1’s

group-object into O2’s, while all other member objects in O1’s group-object are

intact.

Achieving Combined Effects for Compatible Operations in

the Presence of GroupAOg

According to the combined effects of concurrent and compatible operations (see

Figure 5.6), their effects should be accommodated on the common target object at

the same time.

Here scenarios in which two concurrent and overlapping compatible AOg are

involved and at least one of them is a grouping AOg will be discussed. Given a

pair of AOg, O1 and O2 involved in such a scenario, suppose O1 is executed after

O2. When O1 is executed, its parameters need to be adjusted according to the

changes caused by O2 to achieve the combined effect. Next, adjustment strategies

for different AOg type combinations will be discussed.

In the routines discussed in this subsection, the input parameter TPO is the

transformed PO of the currently processed AOg (i.e. O1). With TPO, O1 can be

obtained by calling GetAO; O2 can be obtained by calling GetCOAO; the CT-

MoveAOg of O1 can be obtained by calling GetMove if O1 is a grouping AOg; and

the CT-MoveAO of O2 can be obtained by calling GetCOMove if O2 is a grouping

AOg.

Consider the scenario in which O1 is a GroupAOg and O2 is a DeleteObjAOg

(see Figure 5.6-(d)). When O1 is executed, the common target object has been

deleted by O2. Therefore, this object should be excluded from the group-object

created by O1. The GroupAOg representation shows that the effect of moving the

common target object is represented by the CT-MoveAO of O1, so our strategy for

this scenario is to cancel the CT-MoveAO of O1. This strategy also applies to the

 109

AOg combinations of UngroupAOg versus DeleteObjAOg
10

 (the DeleteObjAOg

targets a member object of the UngroupAOg’s target group-object) and

UngroupAOg versus UngroupAOg.

On the other hand, if O1 is a DeleteObjAOg and O2 is a GroupAOg, when O1 is

executed, its target object has been moved into the group-object created by O1.

The GroupAOg representation also shows that the current address of the common

target object is indicated by the to parameter of O2’s CT-MoveAO, so our strategy

for this scenario is to set O1’s address to the to parameter of O2’s CT-MoveAO.

This strategy also applies to AOg combinations ChangeAttAOg/DeleteObjAOg

versus UngroupAOg (the ChangeAttAOg/DeleteObjAOg targets a member object

of the UngroupAOg’s target group-object), DeleteObjAOg versus GroupAOg, and

UngroupAOg versus GroupAOg.

Based on the above strategies, the routine for achieving combined effects for

concurrent and overlapping GroupAOg and DeleteObjAOg is shown in Figure 5.13.

Figure 5.13 The routine for achieving combined effects for GroupAOg and

DeleteObjAOg.

Consider the scenario in which O1 is a ChangeAttAOg, O2 is an UngroupAOg

and they both target the same group-object. When O1 is executed, the common

target group-object has been unpacked into a continuous range of multiple objects

by O2 (see Figure 5.6-(c)). The UngroupAOg representation shows that the

address and length of the unpacked object range are indicated by O2’s composing

MoveAOs. Therefore, our strategy for this scenario is to set O1’s effect range (i.e.

10 In this pair, the former AOg is the AOg currently being processed (i.e. O1), and the latter AOg is

the one concurrent and overlapping with the former (i.e. O2).

CE_GroupDeleteObj(TPO)
{

if(GetAO(TPO).type == GroupAO)
GetMove(TPO).cancelled = true;

else

GetAO(TPO).addr = GetCOMove(TPO).to;

}

 110

address and length) to cover all unpacked objects. This strategy also applies to

AOg combinations DeleteObjAOg versus UngroupAOg (the DeleteObjAOg targets

the same group-object as the UngroupAOg) and GroupAOg versus UngroupAOg.

In the scenario in which O1 is an UngroupAOg and O2 is a ChangeAttAOg,

when O1 is executed, O2 has applied its effect on all member objects of the target

group-object. To make sure that after ungrouping, all the unpacked objects will

still have O2’s effect, our strategy is to apply O2’s effect to data objects of all O1’s

composing MoveAOg.

Based on the above strategies, the routine for achieving combined effects for

concurrent UngroupAOg and ChangeAttAOg targeting the same group-object is

shown in Figure 5.14.

Figure 5.14 The routine for achieving combined effects for UngroupAOg and

ChangeAttAOg (targeting the group-object).

Grouping AO-PO Adaptation Algorithm

With the routines discussed above, the AO-PO adaptation in the TA framework

can be extended to support grouping AOg, as shown in Figure 5.15.

First, the input AOg is translated into a series of POs saved in a PO list. Then,

each PO in the list is processed as follows. The PO is first transformed in OT.

Then, if this AOg involves in a GroupAOg conflict, the conflict resolution routine

is invoked. Otherwise, if this AOg is overlapping with another concurrent

compatible AOg and at least one of them is a grouping AOg, the

CE_UngroupChangeAtt(TPO)

{

if(GetAO(TPO).type == ChangeAttAO)
SetEffectRange(GetAO(TPO), GetCOAO(TPO));

else

{

for(i = 0; i < GetAO(TPO).MoveAOList.count; i ++)

ApplyChangeAtt(GetAO(TPO).MoveAOList[i].obj, GetCOAO(TPO));
}

}

 111

CompatibleAOgCombinedEffects routine is invoked to apply AOg level

mechanisms for achieving combined effects for compatible AOg. In the

CompatibleAOgCombinedEffects routine, suitable routines discussed above are

invoked according to AOg type combinations.

Figure 5.15. The routines for AO-PO adaptation in the presence of grouping

AOs.

5.2.5. Comparison to Other Collaborative Graphic

Object Grouping Technique

To the best of our knowledge, the operation serialization technique reported in

Ignat and Norrie (2004) is the only prior work on collaborative object grouping in

graphic editing systems. Both the CoGroup work in this chapter and the work in

Ignat and Norrie (2004) address similar issues involved in conflict resolution for a

similar collection of graphics editing operations, but these two works are very

different in their approaches to conflict definitions, combined effects among

conflicting/compatible operations, and techniques for conflict resolution.

The notion of conflict in CoGroup is based on the conditions that operations

are concurrent, target common objects, and cannot be accommodated in the

common target objects. Under this conflict definition, conflict may occur only

between ChangeAtt operations or between Group operations and the relations

among all other operations are compatible (as shown in Table 5.2). Operation

AOg-POAdaptation(AO)

{

POList = TranslateAO(AO);
for(i = 0; i <POList.count; i++)

{

TransformPO(POList[i]);

if(AOgConflictDetection(POList[i]) == true)

AOgConflictResolution(POList[i]);
else if (POConcurrentAndOverlapping(POList[i]) == true &&

IncludingGroupingAO(GetAO(POList[i]), GetCOAO(POList[i])) == true)

CompatibleAOgCombinedEffects(POList[i]);

}

}

 112

conflicts are resolved by an all-operations-effect technique: multiple versions of

the common target objects are created to preserve the effects of all operations, but

one version at a time is displayed at the user interface (the MVSD technique).

CoGroup is based on and extends OT for conflict resolution and consistency

maintenance.

The notion of conflict in Ignat and Norrie (2004) is based on the conditions that

operations are concurrent and do not commute. Under this conflict definition,

conflict may occur not only between ChangeAtt operations and between Group

operations, as in the CoGroup technique (see Table 5.2), but also among other

operations, as shown Table 5.3 (in which the ChangeAtt operation represents the

setColor, SetBckColour, setZ, SetText, translate, scale operations in Ignat and

Norrie (2004)).

Table 5.3. Conflict relation triangle of five operation types in Ignat and Norrie (2004).

 CreateObj DeleteObj ChangeAtt Group Ungroup

CreateObj
DeleteObj / / / /

ChangeAtt / / /

Group / /

Ungroup /

For the purpose of resolving operation conflict, two types of conflict are further

distinguished in Ignat and Norrie (2004): real conflicts are those which can be

resolved by preserving the effect of one of the conflict operations (or none of

them); and resolvable conflicts are those which can be resolved by combining

partial effects of conflict operations. Regardless whether the conflict is real or

resolvable, conflict resolution is based on operation serialization, which achieves

the defined effects either by using operation-specific ordering rules for resolvable

conflicts, or by using any priority scheme for real conflicts. Serialization is

essentially a single-operation-effect or null-effect conflict resolution technique

(Sun and Chen 2002).

 113

It is well known that the combined effects achievable by an all-operations-

effect technique cover all combined effects achievable by a single-operation-effect

technique, but the inverse is not true (Sun and Chen 2002). Furthermore, some

combined effects among conflict Group operations achievable by CoGroup are

not achievable by the serialization work in Ignat and Norrie (2004). For example,

when two concurrent Group operations target some common and non-common

objects, they are regarded as conflict operations in both CoGroup and the

approach in Ignat and Norrie (2004) (a real conflict). The combined effects in

CoGroup are the following: both Group operations will succeed in creating their

result group-objects; both group-objects contain their non-common target objects,

but only one of them has the common target objects displayed (see Figure 5.7).

However, the combined effects in Ignat and Norrie (2004) are the following: one

of the two Group operations will win and create the group-object containing all

target objects, but the other one will lose completely and have no any effect (not

even the effect of grouping the non-common target objects).

In Ignat and Norrie (2004), achieving the partially combined effects for some

resolvable conflicts is the main motivation for disqualifying OT from being

applied for this purpose and for devising the new operation serialization technique.

As shown in the example in Figure 5.9, however, the partially combined effect in

Ignat and Norrie (2004) can be achieved by using the generic OT technique

without additional application-level support, and more comprehensive MVSD

combined effects can be achieved by extending OT with the application-level

adaptation. A major problem with operation serialization is its undoing and

redoing conflict operations when they are executed out of the correct conflict

resolution order, which may cause potential interface disruption (when the

undo/redo effects are visible at the user interface) and major performance

overheads. It should be pointed out that the undo/redo involved in operation

serialization is different from the collaborative undo capability in OT: the former

is initiated by the internal system out of the necessity for resolving conflict among

 114

grouping operations, but the latter is initiated by the external user for the purpose

of eliminating the effect of error grouping operations (Sun 2002a).

It is worth pointing out that there exist other alternative approaches to conflict

resolution based on locking (e.g. Ensemble (Newman-Wolfe et al. 1992) and

GroupDraw (Greenberg and Marwood. 1992)) or different kinds of serialization

(e.g. GroupDesign (Karsenty et al. 1993) and LICRA (Kanawati 1997)), but none

of them addressed the issues related to collaborative object grouping. The reader

is referred to Sun and Chen (2002) for detailed comparisons between the multi-

versioning approach, on which CoGroup is based, and these alternative

approaches.

5.3. Summary

In this chapter, two TA-based advanced adaptation techniques have been

discussed. The first one is a collaborative table editing technique, called CoTable,

and the second one is a collaborative graphic object grouping technique, called

CoGroup.

The CoTable technique includes techniques for adapting data and operation

models of table editing APIs. Single-user application APIs provide a variety of

data models for accessing table objects. Typical ones are single linear data model,

row-based tree data model and two-dimensional data model. The single linear

data model and the row-based tree data model can be directly adapted to that of

OT; and the two-dimensional data model can be adapted after being converted to

the row-based tree data model. These three data model adaptation schemes not

only map the API table data models to that of OT, but also help integrate tables

into a global addressing space of the complex document.

The CoTable operation adaptation technique is to define a set of table structure

editing AOs, called AOt. AOt are named and grouped in two dimensions: the PO

types and the target object types. Translation of AOt is straightforward. Row- and

 115

Cell-AOt are translated into individual POs, and Column-AOt are translated into

multiple POs of the same type, because they are compound AOs.

The CoGroup technique involves adapting the data and operation models of

graphic editing APIs in the face of object grouping, and resolves conflicts

between Group operations to achieve the MVSD effect. To resolve the conflict

between Group operations, the conflict relation and combined effect for conflict

and compatible graphics editing operations are defined.

Single-user graphics editing application APIs have provided mechanisms for

mapping graphic objects into a tree of linear addressing domains, which meets the

data model adaptation requirement. To map graphics editing operations to the OT

data model, a set of graphics editing AO, called AOg are defined, which include

basic AOg and grouping AOg. Conflicts among basic AOg can be resolved with

built-in mechanisms of OT.

Both detecting and resolving conflicts among Group AOg require AO-level

knowledge. To propagate conflict information detected by OT to the AO level,

corresponding extensions have been made to both OT and TA. With these

extensions, OT and TA can collaborate to detect and resolve conflicts among

Group AOg. Moreover, desirable combined effects for compatible graphics

editing operations can also be achieved with a series of AO-level adjustment

strategies.

 116

Chapter 6

Supporting Workspace Awareness

in TA-Based Systems

Workspace awareness is particularly important for improving the usefulness of

TA-based systems, because it provides the user with the current situation of other

collaborators in the unconstrained collaboration environment. This chapter

discusses technical issues in supporting workspace awareness in TA-based

systems.

6.1. Introduction

Workspace Awareness (WA) is essential for groupware systems. TA-based

collaborative systems (e.g. CoWord and CoPowerPoint) have particularly high

demands on WA because of the following reasons. First, the workspace of a TA-

based system, namely the shared document, may contain numerous data objects in

complex structures. Second, TA-based systems allow geographically distributed

users to concurrently edit any objects and view any parts of shared documents at

any time, which results in constant changes to the workspace. Without effective

WA support, it is very difficult for users to perceive others’ interactions with this

spacious, complex and dynamic workspace.

Collaborative editing activities are centred on the workspace, the shared

document, so TA-based collaborative systems have similar WA requirements to

other groupware systems. Widely used WA features, including the telepointer

 117

(Crowley et al. 1990), radar view (Gutwin et al. 1996b) and multi-user scroll bar

(Roseman and Greenberg 1996), are able to deliver such WA information and

thus are suitable for TA-based collaborative systems.

Software reuse has proved to improve software quality and productivity (Basili

et al. 1996). It is necessary to design a reusable WA framework for multiple TA-

based systems. In addition to reducing the development effort of existing WA

features, this WA framework should also facilitate the development of new WA

features. This is because TA may be applied to a wide range of single-user

applications with drastically different functionalities and interface features, and

requires varieties of WA support, some of which may be beyond the capabilities

of existing WA techniques and can only be supported by new WA features. To

achieve this goal, the WA framework needs to address two technical issues:

object association and graphics representation.

For users to obtain meaningful WA information, WA widgets are usually

associated with workspace objects. Existing WA techniques adopt static object

association schemes in the sense that the object identifier does not change. For

example, while the telepointer refers to a window component, it is associated with

the target component identifier, which never changes. While referring to a

character in a text viewing component, the telepointer is associated with a

constant identifier of this component plus a constant index of the character in the

text buffer. The invariable object identifiers ensure the correctness of the static

reference scheme in a range of groupware systems.

Unfortunately, the static association scheme does not work in TA-based real-

time collaborative systems. This is because in such systems, users can edit any

objects in the shared document at any time. As a result, positional references of

content objects are subject to dynamic changes. These changes may cause

problems under two circumstances. First, when a WA widget (e.g. a telepointer)

is about to relocate to a new associated object in response to a remote user’s

action (e.g. mouse cursor movement), the object may have been moved by

 118

concurrent editing operations, which causes the widget to be located at an

incorrect position. Second, after a WA widget is relocated, the associated object

may be moved by subsequent editing or view changing actions, which may also

cause the widget to refer to an incorrect position. The reason of these problems is

that existing techniques associate WA widgets with objects’ positional references,

rather than the objects themselves, so they cannot accommodate the dynamic

changes. To solve this problem, a dynamic object association scheme is needed to

accommodate the dynamic workspace changes.

Another challenge related to object association is that different object

association schemes are adopted by different WA features. For example, a

telepointer is used to refer to a specific point in the workspace, so associating it

with a single object is sufficient. In a text-based editor, a view port of the radar

view should cover the whole view range of a remote user, which is determined by

the two objects existing at the view boundaries, so it should be associated with

those two objects. Moreover, the telepointer is usually displayed in the main

document view, so it should be associated with objects displayed in the main view,

while the view port is usually displayed in a miniature document view, so it

should be associated with objects displayed in the miniature view. To address this

challenge, the object association scheme in the WA framework must be generic

enough to accommodate these differences.

Graphics representation is another important technical issue that the WA

framework should address. This is because WA features represent WA

information by means of graphic widgets. Due to the differences among the WA

information types (e.g. presence, location and activity, see Chapter 2), different

WA features are represented in different ways. For example, a telepointer is

usually represented as an arrow attached with a user name, while a radar view is

usually represented as a miniature document view with rectangular view ports. In

existing systems, there is no generic graphics representation technique that is able

to accommodate these differences.

 119

In this chapter, an innovative technique called Multi-functional wOrkspace

Awareness Framework (MOAF) is presented. This framework includes an object

association technique and a graphics representation technique, which are able to

meet the object association and graphics representation requirements of different

WA features. Moreover, the MOAF object association technique solves the static

object association problem by really associating WA widgets with workspace

objects, rather than their positional references. This framework is application-

independent, so it can be reused in multiple TA-based collaborative systems.

Finally, MOAF not only supports existing WA features, but also can be extended

to support new ones.

The rest of this chapter is organized as follows. First, existing object

association schemes and graphics representation techniques of WA features are

reviewed in Section 6.2. Next, the MOAF object association technique for

achieving the object association effects is discussed in Section 6.3. In Section 6.4,

the MOAF graphics representation technique is discussed. Afterwards, examples

of supporting WA features with MOAF are presented in Section 6.5. Finally, this

chapter concludes with a summary of contributions in Section 6.6.

6.2. Related Work

This section reviews existing object association schemes and graphics

representation techniques used for WA features.

6.2.1. Existing Object Association Schemes

In existing groupware systems, different object association approaches have been

invented to support WA features. For example, multiple object association

schemes have been adopted during the evolution process of the telepointer

technique. In early generic application-sharing systems, such as CoLab (Stefik et

al. 1987) and MMConf (Crowley et al. 1990), the telepointer is displayed at the

same position in the shared window. In other words, the telepointer is associated

 120

with the shared window. With the strict WYSIWIS view mode adopted in these

systems, all users have the same view of the shared window. This ensures that

each object is placed at exactly the same position in the shared window, and the

same coordinates point to the same object at all sites, so the window coordinates

are sufficient for a telepointer to locate any objects in the shared window.

In a relaxed WYSIWIS view mode, a shared window can have different layouts

among participating sites. To accommodate the view difference, techniques

associating telepointers with components inside windows have been proposed,

including Smart Telepointer (Rodham and Olsen 1994) and GroupKit (Roseman

and Greenberg 1996). With these techniques, a telepointer is associated with

identifiers of a user interface (UI) component in the shared window, and is

provided with the relative position inside the component space. For example, in

Smart Telepointer, the telepointer’s reference parameters include (1) a path in the

component tree from the root to the leaf-level component that contains the

telepointer, and (2) the relative position information within the leaf-level

component.

Some UI components have internal structures or contents (e.g. a text editor or

an HTML viewer). In a relaxed WYSIWIS view mode, the internal content may

be formatted and displayed differently due to different view customizations

among collaborating sites. For such components, the component-level association

is not enough. Smart Telepointer associates the telepointer with the content object

position by attaching the index of the associated object (e.g. the character index in

a text buffer) in the telepointer reference parameters, so that the telepointer can

point to the same content object as the local cursor does. This technique is also

adopted in GroupWeb (Greenberg and Roseman 1996).

Similarly, other WA features in existing collaborative systems have their

specific object association schemes. For example, the multi-user scrollbar in

Groupkit displays multiple scroll boxes to indicate remote users’ scroll box

locations in a shared scrollbar. The scrolling WA information is collected from

 121

the remote user’s scroll shaft and is interpreted based on the current position and

size of the local scroll shaft, so the multi-user scroll boxes are associated with the

scroll shaft. On the other hand, the Groupkit radar view collects the view

awareness information from remote users’ scrollbars and interprets this

information in the local miniature view. So, the view ports in the radar view are

associated with both the (remote) scroll bar and the (local) miniature view

window.

Although these object association schemes work well in their own

environments and could achieve the effects they were designed for, they are not

suitable for TA-based real-time collaborative systems due to dynamic content and

view changes. Moreover, these object association schemes are designed for

specific WA features. No existing work has been found in the literature that

provides generic object association mechanisms for different WA features.

6.2.2. Existing Graphics Representation

Techniques

Graphics representation techniques used in existing WA techniques can be

generally classified into two categories. The first one is called direct window-

drawing, which directly draws WA widgets in the underlying workspace window

in an XOR mode. When a WA widget (e.g. a telepointer) moves, it is erased from

its current position and redrawn to the new position. This approach has been

adopted in GroupSketch, GroupDraw (Greenberg et al. 1992) and Dialogo

(Lauwers and Lantz 1990). This technique is error-prone because WA widgets

have to compete for the drawing area with other functional modules responsible

for the graphics representation of the workspace. Since WA widgets are drawn in

the same window with the document view, it is difficult to prevent them from

interfering with each other and to guarantee the proper display of both sides.

To avoid problems of the direct window-drawing approach, later systems adopt

another technique called glass pane, which creates a transparent window on top

 122

of the workspace and draws WA widgets on it. This approach has been adopted in

GroupKit (Roseman and Greenberg 1992) and MAUI (Hill and Gutwin 2003).

Since WA widgets are drawn in a window separated from the workspace, they do

not interfere with each other and problems of the direct window-drawing are

hence avoided. However, the glass pane window inevitably intercepts all mouse

input events to the workspace because it covers the whole workspace area. For the

user to manipulate the workspace as usual, mouse input events must be replayed

to original target windows in the underlying workspace. In addition to the

performance degradation, replaying events properly involves many nontrivial

tasks including finding the correct target window and modifying event parameters,

which should have been done by the operating system if the glass pane were

absent. Therefore, this approach has to end up with a reinvention of the operating

system’s event dispatching mechanisms. Furthermore, a common problem of the

above two approaches is that the movement scope of WA widgets is restricted.

The direct window-drawing approach restricts WA widgets within the workspace

window; and the glass pane approach restricts WA widgets within the glass pane

window (Hill and Gutwin 2003).

6.3. The MOAF Object Association

Technique

This section discusses the MOAF object association technique. This technique not

only accommodates the dynamic changes in TA-based real-time collaborative

systems, but also meets the object association requirements of different WA

features.

6.3.1. Object Association Effects

First of all, the desirable object association effects that this technique should

achieve are defined. In the following discussion, the telepointer will be used as an

example to define the object association effects.

 123

Positional Reference Adjusting (PRA) Effect

In a TA-based system, associated objects are identified with their positional

references in the document. A WA widget should be able to adjust the positional

references in order to track the associated objects in the face of dynamic content

changes caused by editing operations.

Figure 6.1 The PRA effect (the telepointer tracks the reference character “p”).

(a) The initial state; (b) The state after executing an insert; and (c) The state

after executing a delete.

Examples of the PRA effect are shown in Figure 6.1. At the initial state (Figure

6.1-(a)), the telepointer is pointing to the character “p” at position 4. After the

execution of an insert or delete operation, the positional reference of the character

may be changed. To achieve the PRA effect, the telepointer positional reference

must be adjusted so that it still points to the character “p”, as shown in Figure 6.1-

(b) and (c). It should be pointed out that editing operations could be generated

concurrently with or sequentially after a telepointer moving operation. The PRA

effect must be achieved under both circumstances.

Relative Position-Preserving (RPP) Effect

The WA widget position relative to the associated object should be preserved in

the face of dynamic changes to the document. An example of the RPP effect is

shown in Figure 6.2. At the initial state (Figure 6.2-(a)), the telepointer is pointing

at the centre of the picture. After the execution of a size-updating operation, the

picture is resized to a quarter of the original size. To achieve the RPP effect, the

3

e

10987654210

ep o i n t rleT

3

e

10987654210

ep o i n t rleT

30

T

1

h

2

e

1413121110987654

ep o i n t releT

30

T

1

h

2

e

1413121110987654

ep o i n t releT

StevenSteven

StevenSteven

(a)

(b)
StevenSteven

7654321

ep o i n t r

7654321

ep o i n t r

StevenSteven

(c)

StevenSteven

 124

telepointer position must be adjusted to accommodate the effect of the updating

operation on the object so that it still points to the centre of the picture (Figure

6.2-(b)).

Figure 6.2 The RPP effect. (a) The initial state; (b) The state after executing a

resize operation: the telepointer remains inside the picture.

When the user is performing gestures with the mouse cursor, the cursor is more

often outside rather than inside the associated object. The RPP effect should also

be achieved when the telepointer is outside the associated object or in a blank area.

In this case, the telepointer is associated with the nearest object.

An example is shown in Figure 6.3. In the initial state (Figure 6.3-(a)), the

telepointer is in the blank area near the picture. After the picture is resized, the

telepointer is relocated accordingly so that it still points at the same position

relative to the associated object (Figure 6.3-(b)).

Figure 6.3 The RPP effect when the telepointer is in a blank area. (a) The

initial state; (b) the state after executing a resize operation on the picture: the

telepointer remains outside the picture.

StevenSteven

StevenSteven

StevenSteven

Resizing

(a) (b)

StevenSteven

StevenSteven

(a) (b)

Resizing

StevenSteven

 125

The Local WA Widget

Telepointers are used to represent the positions of their corresponding local

cursors, and therefore they should be kept consistent with the local cursors. To

achieve the PRA and RPP effects, telepointers may be relocated dynamically to

track the associated objects. After the relocation of the telepointers, the positions

of these telepointers at remote sites may no longer be consistent with their

corresponding local cursor.

One way to keep them consistent is to relocate the local cursor as well, but this

can be disruptive to the user. To solve this problem, the notion of a local WA

widget, which is the same as a WA widget but displayed at the local site, is

introduced. For the telepointer, the local WA widget is a virtual local cursor.

When relocation of the telepointer occurs at a remote site, the virtual local cursor

will be relocated to track the associated object, but the local mouse cursor is not

moved. This virtual local cursor provides feedback to the local user about the

locations of his/her telepointers at remote sites.

Figure 6.4 The virtual local cursor for tracking the associated object. (a) The

initial state; (b) the state after the associated object is pushed to the right. The

virtual local cursor follows the associated object, but the real local cursor is

not affected.

Consider the example shown in Figure 6.1. When the string “The ” is inserted,

the telepointer is relocated to track the character “p” (Figure 6.1-(b)). What

happens at user Steven’s local site at the same time is shown in Figure 6.4. In the

initial state (Figure 6.4-(a)), the local cursor is pointing at the character “p” at

3

e

10987654210

ep o i n t rleT

3

e

10987654210

ep o i n t rleT

30

T

1

h

2

e

1413121110987654

ep o i n t releT

30

T

1

h

2

e

1413121110987654

ep o i n t releT
(b)

Inserting

(a)

The virtual local cursor

 126

position 4. After the string is inserted, the virtual local cursor appears and tracks

the associated object (Figure 6.4-(b)), but the real local cursor is not affected.

When the user moves the local cursor, the virtual cursor should disappear.

While moving the local cursor, the user may intend to point to another object. In

this case the new associated object should be identified and associated with the

telepointers, and remote telepointers should be relocated accordingly. The user

may also want to move the local cursor to point to the original associated object.

With the virtual local cursor pointing to the original associated object, it is much

easier for the user to find the moved object from the documents.

Discussion

There are some issues related to the above object association effects that are

worth discussing.

To guarantee the correctness of gesturing WA features (e.g. the telepointer),

one alternative to the dynamic object association is to prohibit all users from

editing during the (non-deterministic) gesturing period. It may seem natural that

the gesture-generating and accepting users would not edit during the gesturing

period. However, in the same collaborative editing session, not all users are

interested in the gestures. Prohibiting everyone from editing while someone is

gesturing is undesirable. Another alternative is to require the gesture-generating

user to wait until others have stopped editing. This solution is also undesirable

because the occurrence of such a quiescent moment is unpredictable. Even if there

are only two users (i.e. the gesture generator and accepter), it will be beneficial if

they have the convenience to gesture and edit at the same time without any extra

effort.

The degrees to which different WA features achieve the object association

effects are also different, because different WA features have different behavior

and characteristics in response to these changes. For example, the telepointer is

often used as a gesturing tool. It requires high precision and smooth movement,

 127

so it needs to achieve the RPP effect. On the other hand, the radar view is used to

indicate which objects a remote user can see. One seldom needs to know precisely

which part of a character at the view boundary a remote user can see. In this sense,

achieving the RPP effect is not necessary for the radar view.

The local widget of different WA features also behaves differently. The virtual

local cursor for the telepointer appears only when the local mouse cursor is

inconsistent with its telepointers. However, the local view port of the radar view

is always displayed in the miniature view, because it provides the local user with

location information about where his/her view range is in the global workspace.

6.3.2. Adapting Workspace Awareness AO

Like other TA-based collaboration techniques (e.g. CoTable and CoGroup in

Chapter 5), the MOAF object association technique is also supported by a set of

AO and corresponding adaptation techniques.

The Workspace Awareness AO Definition

To carry object-associated WA information among distributed collaborating sites

running the TA-based collaborating editing system, a set of Workspace

Awareness AO, called AOw are defined. When any event that changes the

workspace state occurs at the local site, an AOw is generated and propagated to all

remote sites. When a collaborating site receives an AOw, it interprets the WA

information contained in this AOw and updates the position or shape of the

corresponding WA widget to reflect the WA information encapsulated in the AOw.

The MOAF object association technique is applied to guide the AOw processing.

As a polygon, the position and shape of a WA widget are determined by its

vertices, so AOw need to carry information about positions of all vertices of the

WA widget. The following two AOw are defined to carry such WA information.

(1) MoveAOw(wa_type, vertex1)

 128

(2) ReshapeAOw(wa_type, vertex1, vertex2 … vertexn)

The wa_type parameter is the identifier of the WA feature type. A vertex

parameter contains information for calculating the X and Y coordinates of a

vertex, so it is defined as follows.

vertex ((obj_id_x, offset_x), (obj_id_y, offset_y))

The parameter obj_id_x is the identifier of the object associated with the X

coordinate of the vertex. When a vertex refers to a data object in the document,

this parameter is the object’s positional reference in the document data model (i.e.

a vector of (n, p) pairs, see Chapter 4). When the vertex refers to a UI object (e.g.

a button), this parameter is the UI object’s globally unique identifier. The

parameter offset_x is the horizontal distance between the vertex and the associated

object’s left edge. This distance is measured as a relative ratio to the width of the

associated object, rather than an absolute pixel number. For example, an offset_x

value 0 indicates the X coordinate value of the associated object’s left edge; and

an offset_x value 1 indicates the X coordinate value of the associated object’s

right edge.

Parameters obj_id_y and offset_y are defined similarly but are used to calculate

the vertex’s Y coordinate. With these parameters and the current status of the

associated object, coordinates of a vertex can be calculated with the following

formulae:

yoffsetheightyobjtopyobjyvertex

xoffsetwidthxobjleftxobjxvertex

.._.

.._.

×+=
×+=

MoveAOw is used to change the position of a WA widget without affecting its

shape, so it contains information for calculating the position of the first vertex

only. MoveAOw is suitable for WA features whose shapes never change, such as

the telepointer. ReshapeAOw is used to change both the position and shape of a

WA widget, so it contains information for calculating positions of every vertex.

 129

Moreover, the vertex number encapsulated in the AOw may be different from the

current vertex number of the WA widget. That means the vertex number of a WA

widget may also be changed upon receiving a ReshapeAOw. ReshapeAOw is

suitable for WA features whose shapes may change as well as positions, such as

the view port.

To generate an AOw when the workspace state is changed, WA information

needs to be represented in the context of workspace objects (may be data objects

in the document or UI objects). For WA information originally represented in

absolute screen positions (e.g. the mouse cursor position), a translation process is

required. Typically, the translation process involves the following two steps.

(1) First, workspace objects that are suitable for the association are identified. For

every coordinate value contained in the WA information, one object is

identified.

(2) Next, the relative horizontal and vertical positions are calculated according to

the current status (e.g. positions and sizes) of associated objects.

In the TA framework, techniques to process AOw can be designed in the same

way as processing techniques for other AOs. The desirable object association

effects can be achieved by processing AOw, as discussed in the following.

Adapting Data Object-Referring AOw in the TA Framework

Objects referred by AOw could be UI objects or data objects. In the former case,

static global identifiers of target UI objects can satisfy the identification needs

because such identifiers are never affected by content and view changes. In the

latter case, however, AOw need to refer to target data objects with their XOTDM

addresses like editing AOs. Therefore, concurrency-related inconsistency

problems that may happen to editing operations may also happen to these data

object-referring AOw. To handle these problems, data object-referring AOw

should also be adapted in the TA framework so that they can be transformed by

OT. On the other hand, unlike editing AOs, AOw never change the state of target

 130

objects. Instead, they only refer to objects. This characteristic cannot be captured

by the three POs supported by OT, so it is not suitable to translate data object-

referring AOw into any existing PO types.

To address this issue, a new PO type, called Refer is defined as follows:

Refer(vp) denotes referring to the object at the position vp.

The vp parameter is the same one as in the Insert, Delete or Update POs, which

is a vector of (n, p) pairs to indicate the address of the associated object in the

document data model.

Data object-referring AOw are compound AOs because one AOw should be

translated into multiple Refer POs. When translating an AOw into Refer POs, the

obj_id_x and obj_id_y of every vertex parameter are individually passed to a

Refer PO as the vp parameter. In this way, every vertex parameter is translated

into two Refer POs.

Extending OT to Transform Refer

OT is able to transform three PO types, which do not include Refer. To support

transforming Refer, OT needs to be extended correspondingly.

As discussed in Chapter 4, for supporting a new PO type, a set of

transformation functions for the new PO type should be designed, and the high-

level transformation control layer should be kept unchanged. Since Refer does not

have effects on other operations, ET functions for Refer are not needed. For the

same reason, IT functions that transform other POs against Refer are not needed

either. Therefore, only IT functions for transforming Refer against other POs need

to be designed. Finally, mechanisms for processing operations targeting different

linear addressing domains are encapsulated in the VOT function (see Chapter 4),

so only IT functions for transforming operations targeting the same linear

addressing domain are needed.

 131

The OT technique supports three primitive operations, which are Insert, Delete

and Update. IT functions transforming Refer against these operations are shown

in Figure 6.5.

Figure 6.5 IT functions for the Refer operation.

When a Refer is transformed against an Insert (IT_RI), the Refer’s position is

shifted to the right by the Insert’s length if the Insert’s position is to the left of the

Refer’s position, because the associated object is pushed to the right. If the

Insert’s position is to the right of the Refer’s position, then the Refer’s position

parameter is not changed.

Transforming a Refer against a Delete (IT_RD) is more complex. If the range

of the Delete is completely to the left of the Refer’s position, then the Refer’s

position is shifted to the left by the Delete’s length, because the associated object

is pulled to the left. If the Delete’s range covers the Refer’s position, then the

position of the Refer is set to the position of the Delete, because the original

associated object is deleted by the Delete and the object at the Delete’s position

(Od.vp) becomes the new associated object. Finally, if the Delete’s position is to

IT_RI(Or, Oi)

{

if (Oi.vp[last] <= Or.vp[last])

Or. vp[last] = Or. vp[last] + Oi.len;

return Or;

}

IT_RD(Or, Od)

{

if (Od. vp[last] + Od.len < Or. vp[last])

Or. vp[last] = Or. vp[last] - Od.len;

else if ((Od. vp[last] < Or. vp[last]) && (Od.pos + Od.len >= Or. vp[last]))

Or. vp[last] = Od. vp[last];

return Or;

}

IT_RU(Or, Ou)

{

return Or;

}

 132

the right of the Refer’s position, then the Refer’s position parameter is not

changed.

When a Refer is transformed against an Update (IT_RU), the Refer’s position

parameter is not changed, because an Update does not affect the position of the

associated object in the data model.

6.3.3. Achieving Object Association Effects

With the AOw definition and the adaptation technique in TA and OT, the

desirable object association effects can be achieved, as discussed in the following.

Handling Concurrent Editing Operations

The major technical challenge of achieving the PRA effect is to locate the

associated object whose positional reference has been changed due to concurrent

editing operations. With the AOw processing technique discussed above, the

object identifier parameters in an AOw can be adjusted with OT and TA, so that

an AOw can always locate the associated objects correctly in the face of

concurrent editing operations. Therefore, the PRA effect is achieved with the

support of OT and TA.

Figure 6.6 A scenario of achieving the RPP effect with the relative ratio

position parameters. (a) The initial state; (b) The state after resizing.

The RPP effect can be achieved by making use of the relative ratio position

parameters of the AOw. When the associated object has been found from the

StevenSteven

100

100

50

50

100

100

25

25

StevenSteven

0 0

(a) (b)

50

50

x (pixel)x (pixel)

y (pixel)
y (pixel) DavidDavid

120

80

60

DavidDavid

40

Resizing

 133

document, coordinates of the new vertex position can be calculated with its

current status and the relative ratio position parameters. In this way concurrent

attribute changes (e.g. resizing) to the associated object can be accommodated.

An example of achieving the RPP effect for the telepointer is shown in Figure 6.6.

In the initial state (Figure 6.6-(a)), the associated object, whose positional

reference is obj_pos, occupies an area of 100 * 100 pixels. The first vertex of user

Steven’s telepointer is at the centre of the associated object, so this vertex is

specified as ((obj_pos, 0.5), (obj_pos, 0.5)), corresponding to the relative pixel

position <50, 50>. User David’s telepointer is outside the associated object and

the relative ratio position is ((obj_pos, 0.8), (obj_pos, 1.2)), corresponding to the

relative pixel position <80, 120>. After the associated object is resized to 50 * 50

pixels (Figure 6.6-(b)), positions of the two telepointers are recalculated. Based

on the new size of the associated object and the relative ratio positions, the

relative pixel position of user Steven’s telepointer’s first vertex is changed to <25,

25>, so that it is still at the centre of the associated object; the relative pixel

position of user David’s telepointer’s first is changed to <40, 60>, so that it is still

at the same position relative to the associated object.

To keep the local WA widget consistent with remote widgets, the PRA and

RPP effects should also be achieved while relocating the virtual local cursor.

Since the local WA widgets act as mirrors of the remote counterparts, they can be

controlled by the same technique for handling remotes widgets.

Handling Subsequent Editing Operations

Apart from concurrent editing operations, subsequent editing operations executed

after an AOw may also change the on-screen position or size of the associated

object and hence invalidate the association between the WA widget and its

associated objects.

Editing operations executed at any address could affect the position or size of

the associated object. First, operations targeting the associated object could

 134

directly change its position or size. Second, operations executed before an

associated object (in the data model) could change its address in the data model

and thus affect its on-screen position (see Figure 6.1-(b) and (c)). Finally,

operations executed after the associated object could change the layout of the

document view, and hence indirectly affect the associated object’s on-screen

position.

To solve these problems, the following WA widget relocation scheme for

accommodating changes caused by subsequent editing operations is devised.

(1) Addresses of all associated objects are adjusted to accommodate the effect of

the subsequent editing operation. This adjustment can be done by

transforming the latest AOw of each WA widget against the editing operation

(Xia et al. 2005c).

(2) New positions of all WA widgets vertices are recalculated based on the

current status of associated objects.

(3) WA widgets are moved or reshaped to new positions if necessary.

It should be pointed out that this relocation scheme is also applied to the local

WA widgets so that it can also achieve the object association effects in the face of

dynamic changes caused by subsequent editing operations.

Handling View Changes

WA widgets are displayed in a layer different from the document view windows

(to be discussed in the graphics representation technique in the next section).

Therefore, view changes (e.g. scrolling up and down, zooming in and out) could

also affect the association between WA widgets and associated objects. An

example is shown in Figure 6.7.

In the initial state (Figure 6.7-(a)), the telepointer is pointing at the centre of the

character “A”. After the document view is scrolled up, the position of the

associated object, character “A” is moved. To preserve the PRA and RPP effects,

 135

the telepointer needs to be moved up as well so that it still points at the centre of

the character “A” (Figure 6.7-(b)).

Figure 6.7 A scenario for preserving the object-associated effects in the face of

view change. (a) The initial state; (b) The state after scrolling.

Like editing operations, view changes could also be concurrent with or

sequential to the AOw. The effect of the concurrent view change is accommodated

in the vertex position calculation process. When an AOw operation is executed at

a remote site, the current status (after the view change) of the associated object is

used to calculate the vertex positions. In this way, the WA widgets position has

taken the effect of view changes into account.

View changes affect the position and size of the associated objects without

changing their internal state in the document. Therefore, when a subsequent view

change occurs, addresses of associated objects in the data model do not need

adjustment. Only the vertex position recalculation and WA widgets relocation are

needed. For the example shown in Figure 6.7, after the view has been scrolled up,

the new status of the associated object the character “A” is obtained first. Then

the new on-screen position of the telepointer is calculated based on the current

status of the associated object and the relative position parameters of the

telepointer. Finally, the telepointer is moved to the new position.

StevenSteven

StevenSteven

StevenSteven

(a) (b)

Resizing

 136

6.4. The MOAF Graphics

Representation Technique

This section discusses the MOAF graphics representation technique. To

accommodate varieties of graphics demands of different WA features, the MOAF

graphics representation technique should meet the following requirements.

(1) It should support creating and maintaining graphic objects with all attributes

needed by different WA features, including shape, position, filling color and

semi-transparency.

(2) It should support easy manipulation of graphic objects. WA widgets are

frequently moved or reshaped. It is important that the mechanism to

manipulate related attributes is simple and efficient.

(3) Graphics representation of WA widgets should be independent of the shared

workspace. Attribute changes of WA widgets should not interfere with the

workspace display.

In the MOAF graphics representation technique, windows, the basic Graphic

User Interface (GUI) element in windowing platforms, are used as the graphics

representation means of WA widgets. This approach takes advantage of the GUI

functionalities of windowing platforms (e.g. Microsoft Window, X Windows, and

Mac OS), which support windows in any non-rectangular shapes. With the

support of the graphics functionalities of the windowing platform, window-based

WA widgets can be created with customized shapes and other graphic attributes

to meet the graphic demands of different WA features. Moreover, graphs can be

drawn in these windows to provide more detailed WA information. For example,

a telepointer can be represented as an arrow-shaped window attached with a text

string; and a view port can be represented as a semitransparent rectangular

window with a text string in it.

With this approach, control of WA widget windows is simple. Graphic

attributes of WA widget windows can be easily manipulated with the windowing

 137

platform APIs. For example, moving a WA widget requires only one API call in

MS Windows. On the contrary, with the direct window drawing or the glass pane

approach (see Chapter 6.2), moving a WA widget involves complex tasks

including erasing the widget from its current position and redrawing it at the new

position. Moreover, window-based WA widgets are able to move around the

whole screen without any limitation.

6.5. Supporting WA Features with

MOAF

With the MOAF technique, the main tasks for supporting a WA feature include

analysing the relationship between WA widget vertices and workspace objects,

and defining the corresponding AOw to express this relationship. In this section,

how these tasks are performed will be illustrated with examples.

6.5.1. Radar View

As shown in Figure 6.8, a view port of the radar view is a semitransparent

rectangle covering all objects a remote user can see, so the AOw for the radar

view should contain position information of the four vertices of the view port

rectangle, including their associated object identifiers and offset values, as shown

in the AOw definition below:

ReshapeAOw (RADAR_VIEW, V1, V2, V3, V4), in which RADAR_VIEW is the

WA type identifier of the radar view, and the remaining parameters encapsulate

object-associated vertex positions.

Two different object association schemes can be adopted for the radar view. In

the user interface of a typical graphics-based editor (see Figure 6.8-(a)), graphic

objects are placed in a drawing canvas, which is the global coordinates space for

all distributed collaborating sites. A user’s view of the workspace is a segment of

the global canvas. Positions of graphic objects are defined in this canvas, so the

 138

canvas is an ideal associated object for the view ports. Therefore, coordinates of

all vertices are associated with the canvas object (in the miniature document

view). The vertex parameters of the graphics-based radar view AOw are

represented as:

Figure 6.8 The radar views. (a) The radar view of a graphics-based editor; (b)

the radar view of a text-based editor.

V1 = ((MINIATURE_CANVAS_ID, offset_1_X), (MINIATURE_CANVAS_ID, offset_1_Y)),

V2 = ((MINIATURE_CANVAS_ID, offset_2_X), (MINIATURE_CANVAS_ID, offset_2_Y)),

V3 = ((MINIATURE_CANVAS_ID, offset_3_X), (MINIATURE_CANVAS_ID, offset_3_Y)),

V4 = ((MINIATURE_CANVAS_ID, offset_4_X), (MINIATURE_CANVAS_ID, offset_4_Y)),

in which MINIATURE_CANVAS_ID is the identifier of the canvas object in the

miniature document view, and offset_i_x and offset_i_y indicate the horizontal

and vertical position of the ith vertex relative to the left top corner of the canvas

object.

In the user interface of a typical text-based editor, such a global canvas object

does not usually exist. However, user interfaces of these applications have

another characteristic – data objects (namely characters) are represented to users

in a linear sequence. So, a user’s view can be specified by the two objects existing

on the upper and lower view boundaries.

Steven

Workspace awareness
is important for real-time

group editors by

providing remote users’
information about their

presence, action and
position. GOAF can be

applied to support a wide
range of workspace

awareness features for

real-time group editing
system, including

telepointer, radar view,
multi-user scrollbar, and

tele-selection.

Workspace awareness
is important for real-time

group editors by

providing remote users’
information about their

presence, action and
position. GOAF can be

applied to support a wide
range of workspace

awareness features for

real-time group editing
system, including

telepointer, radar view,
multi-user scrollbar, and

tele-selection.

Steven

V1 V2

V3V4

V1

V4

V2

V3

(a) (b)

 139

Figure 6.8-(b) shows the object association scheme for the view port in a text-

based editor. The left and right edges of the view port overlap with the left and

right edges of the miniature document view window. The top and bottom edges of

the view port overlap with the top and bottom edges of the data objects existing at

the view boundaries. Therefore, vertex parameters of the text-based radar view

AOw are represented as:

V1 = ((MINIATURE_VIEW_ID, 0), (obj_1, 0)),

V2 = ((MINIATURE_VIEW_ID, 1), (obj_1, 0)),

V3 = ((MINIATURE_VIEW_ID, 1), (obj_2, 1)),

V4 = ((MINIATURE_VIEW_ID, 0), (obj_2, 1)),

in which MINIATURE_VIEW_ID is the identifier of the miniature document view

window; obj_1 and obj_2 are the positional references (in the data model) of data

objects existing at the upper and lower boundaries of the main document view.

The data object-based association scheme for text-based editors can also be

applied in graphics-based editors, because graphic objects can also be accessed

with their positional references in the data model (see Chapter 3 and Chapter 5).

This example illustrates that multiple object association schemes are applicable

while supporting WA with MOAF. Developers of TA-based systems may make

their decisions based on the characteristics of concrete applications. For example,

the data object-based association scheme is adopted in CoWord due to the

absence of the global canvas, although Word documents also contain graphic

objects.

 140

6.5.2. Telepointer

The shape of a telepointer never changes, so MoveAOw is chosen as the AOw for

the telepointer, which is defined as follows:

MoveAOw (TELEPOINTER, V1), in which TELEPOINTER is the WA type

identifier of the telepointer, and V1 encapsulates the object-associated position of

the first vertex. V1 is defined as:

V1 = ((obj, offset_x), (obj, offset_y)),

in which obj is the identifier of the workspace object nearest to the remote user’s

mouse cursor. This object can be either a data object in the document or a UI

object because the mouse cursor is free to move around the workspace. In the

former case, the obj parameter is the positional reference (in the data model) of

the data object. In the latter case, the obj parameter is a global identifier of the UI

object. The offset_x and offset_y parameters are horizontal and vertical positions

of the mouse cursor relative to the left top corner of the associated object (as

shown in Figure 6.9).

Figure 6.9 The telepointer.

6.5.3. Multi-User Scrollbar

As shown in Figure 6.10, a scroll box of the multi-user scrollbar is a rectangle

whose position and size are determined by its four vertices, so the multi-user

scrollbar AOw should carry information to calculate positions of the four vertices,

as defined in the following.

Tele…Tele…StevenSteven

y_offset

x_offset

 141

ReshapeAOw (MULTIUSER_SCROLLBAR, V1, V2, V3, V4), in which

MULTIUSER_SCROLLBAR is the WA type identifier of the multi-user scrollbar,

and the remaining parameter encapsulate object-associated vertex positions.

The multi-user scrollbar collects the scroll box position information from the

remote scroll shaft and interprets this information in the local scroll shaft, so

positions of its vertices should be associated with the scroll shaft object. To

realize this association, the vertex parameter of the multi-user scrollbar AOw

should be defined as the following:

V1 = ((SCROLL_SHAFT_ID, 0), (SCROLL_SHAFT_ID, offset_top)),

V2 = ((SCROLL_SHAFT_ID, 1), (SCROLL_ SHAFT _ID, offset_top)),

V1 = ((SCROLL_SHAFT_ID, 1), (SCROLL_ SHAFT _ID, offset_bottom)),

V1 = ((SCROLL_SHAFT_ID, 0), (SCROLL_ SHAFT _ID, offset_bottom)),

in which SCROLL_SHAFT_ID is the identifier of the scrollbar shaft; the

offset_top is the top position of the scroll box relative to the shaft; and the

offset_bottom is the bottom position of the scroll box relative to the shaft.

Figure 6.10 The multi-user scrollbar.

6.5.4. Teleselection

The last example is a new WA feature called teleselection, which indicates a

remote user’s selection range in the shared document. When the remote user does

Workspace awareness

is important for real-time
group editors by
providing remote users’

information about their
presence, action and

position. GOAF can be
applied to support a
wide range of

workspace awareness
features for real-time

group editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-

selection.

StevenSteven

V1 V2

V3V4

Shaft

Remote Scroll Box

Local Scroll Box

 142

not select anything, it is hidden in graphics-based editors and degrades to a tele-

caret in text-based editors. This WA feature is able to deliver rich WA

information including: (1) location, since it indicates where the remote user is

working; (2) activity, since the user’s actions can only happen in his/her selected

range; and (3) intention, since the user has to select the target objects before

manipulating them. Moreover, it can also be used as a collaborative highlighting

tool (Shen and Sun 2004) to facilitate gesturing and communication. The

teleselection feature has not been seen in existing groupware systems. This

example demonstrates the flexibility and extensibility of MOAF.

The teleselection widget is designed as semitransparent polygons covering all

data objects selected by the user. As shown in Figure 6.11, teleselection widgets

may have different shapes in different applications. In a graphics-based editor

(shown in Figure 6.11-(a)), the user can select multiple discrete objects, so the

teleselection widget for a remote user should be represented as multiple

rectangles, each covering one selected object.

To support the multiple rectangular teleselection widgets in graphics editors,

the AOw is defined as follows:

ReshapeAOw (TELESELECTION, V1_1, V1_2, V1_3, V1_4, V1_5, V2_1 …), in

which TELESELECTION is the WA type identifier of the teleselection, and Vi_j

contains the object-associated position information of the jth vertex of the ith

rectangle.

Vertex parameters of the ith rectangle are defined as follows:

Vi_1 = ((obj_i, 0), (obj_i, 0)),

Vi_2 = ((obj_i, 1), (obj_i, 0)),

Vi_3 = ((obj_i, 1), (obj_i, 1)),

Vi_4 = ((obj_i, 0), (obj_i, 1)),

Vi_5 = ((obj_i, 0), (obj_i, 0)),

 143

in which obj_i is the identifier of the ith selected object.

Figure 6.11 The teleselection. (a) The teleselection of a graphics-based editor;

(b) the teleselection of a text-based editor (multiple lines); (c) the teleselection

of a text-based editor (single line).

It should be noted that 5 vertices are defined to specify the region of a rectangle.

The fifth vertex overlaps with the first one so that these vertices define a close

region of the rectangle. With this special treatment, rectangles are separated from

each other.

Unlike the radar view for graphics-based editors, the teleselection is associated

with selected graphic objects, rather than the canvas object. This is because

editing operations concurrent with the user’s selecting actions may change the

size or position of the selected object. When a teleselection AOw is executed, the

Workspace awareness
is important for real-
time group editors by
providing remote users’
information about their
presence, action and
position. The GOAF
approach can be
applied to support a
wide range of
workspace awareness
features for real-time
group editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-
selection.

Workspace awareness
is important for real-
time group editors by
providing remote users’
information about their
presence, action and
position. The GOAF
approach can be
applied to support a
wide range of
workspace awareness
features for real-time
group editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-
selection.

Steven

Workspace awareness
is important for real-
time group editors by
providing remote users’
information about their
presence, action and
position. The GOAF
approach can be
applied to support a
wide range of
workspace awareness
features for real-time
group editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-
selection.

Workspace awareness
is important for real-
time group editors by
providing remote users’
information about their
presence, action and
position. The GOAF
approach can be
applied to support a
wide range of
workspace awareness
features for real-time
group editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-
selection.

Steven

Workspace awareness
is important for real-
time group editors by
providing remote
users’ information
about their presence,
action and position.
The COAST approach
can be applied to
support a wide range
of workspace
awareness features
for real-time group
editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-
selection.

Workspace awareness
is important for real-
time group editors by
providing remote
users’ information
about their presence,
action and position.
The COAST approach
can be applied to
support a wide range
of workspace
awareness features
for real-time group
editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-
selection.

Steven

V1 V2

V3V4

V5V6

V7 V8

Workspace awareness
is important for real-
time group editors by
providing remote
users’ information
about their presence,
action and position.
The COAST approach
can be applied to
support a wide range
of workspace
awareness features
for real-time group
editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-
selection.

Workspace awareness
is important for real-
time group editors by
providing remote
users’ information
about their presence,
action and position.
The COAST approach
can be applied to
support a wide range
of workspace
awareness features
for real-time group
editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele-
selection.

Steven

V1 V2

V3V4

V5V6

V7 V8

Steven
V1_1/5 V1_2

V1_4 V1_3

V2_1/5

V2_4

V2_2

V2_3

StevenSteven
V1_1/5 V1_2

V1_4 V1_3

V2_1/5

V2_4

V2_2

V2_3

(a)

(b) (c)

 144

selected objects may have already been moved or resized by concurrent

operations, and the teleselection widget may fail to cover them if it is associated

with a static UI component (i.e. the canvas). By associating the teleselection with

data objects with positional references in the data model, the teleselection widget

can always be placed at the right position, thanks to the underlying TA and OT

techniques.

In a text-based editor (shown in Figure 6.11-(b) and (c)), the user can only

select continuous objects, so the teleselection widget is an octagon (shown in

Figure 6.11-(b)). Therefore, the AOw is defined as follows:

ReshapeAOw (TELESELECTION, V1, V2, V3, V4, V5, V6, V7, V8). Vertex

parameters of this AOw are defined as follows:

V1 = ((obj_1, 0), (obj_1, 0))

V2 = ((MAIN_VIEW_ID, 1), (obj_1, 0)),

V3 = ((MAIN _VIEW_ID, 1), (obj2, 0)),

V4 = ((obj_2, 1), (obj_2, 0)),

V5 = ((obj_2, 1), (obj_2, 1)),

V6 = ((MAIN _VIEW_ID, 0), (obj_2, 1)),

V7 = ((MAIN _VIEW_ID, 0), (obj1, 1)),

V8 = ((obj_1, 0), (obj_1, 1)),

in which obj_1 and obj_2 are the identifiers of the first and last selected objects

and the MAIN _VIEW_ID is the identifier of the main document view window.

A special case is that when the selection is within one line (shown in Figure

6.11-(c)), the teleselection widget is a rectangle, rather than an octagon. However,

this case is also covered by the above AOw definition. When obj_1 and obj_2 are

in the same line, their top and bottom boundaries are equal. So, vertices V2 and

V3 merge to one vertex and so do vertices V6 and V7. In this way, the octagon

degrades to a rectangle. An alternative solution is to define the AOw in this case

 145

as a rectangle with four vertices. The disadvantage of this solution is that it

complicates the AOw generation process since it has to distinguish two cases.

More importantly, even if the boundary objects are in the same line at the local

site, they may be in different lines at remote sites because of the view differences.

This solution cannot accommodate this case. Therefore, the unifying solution was

chosen to accommodate both cases.

6.5.5. Discussion

Similar to the glass pane technique, our WA widgets are placed on top of the

workspace. The problem of intercepting the user’s input event could also occur in

MOAF. In this subsection, we discuss issues and methods to alleviate or avoid

this problem without reinventing the windowing platform’s event dispatching

mechanisms.

WA widgets displayed in the miniature view do not interfere with the user’s

interaction, because the miniature view is not supposed to accept editing

operations. In the main document view, small WA widgets are unlikely to

interfere with the user’s interaction. For example, users seldom mistakenly click

the mouse bottom on a telepointer. Therefore, this problem mainly occurs on WA

widgets that are displayed in the main view and whose areas are considerably

large, such as teleselection widgets. One solution to this problem is to implement

them as frames which consist of only a few lines. In this way, the chance of

intercepting the user’s input events is significantly reduced to a negligible degree.

With the graphics capability of windowing platforms and the flexibility of MOAF,

supporting frame-shaped widgets is not difficult.

One possible problem from this solution is that the user may have difficulties in

seeing the frame-shaped widgets or differentiating them from workspace objects

in a crowded workspace. This problem can be solved by adding some attractive

features on the widget frames, such as flashing or animation.

 146

6.6. Summary

In this chapter, an innovative MOAF technique to support WA features in TA-

based collaborative systems has been discussed.

MOAF contains an object association technique and a graphics representation

technique. The MOAF object association technique is able to preserve a series of

object association effects in the face of dynamic content and view changes. To

achieve this goal, a set of AOw is defined to carry WA information. Each AOw

contains information about object association parameters of all vertices of the

polygonal WA widget. To adjust object reference parameters of AOw in the face

of concurrent and consequent editing operations and view changes, AOw

adaptation techniques are designed so that AOw can be processed with the

underlying OT technique. Meanwhile, the OT technique is extended to support a

new PO type Refer, which denotes referring to an object in the data model

without modifying it. With these techniques, the desirable object association

effects can be preserved.

The MOAF graphics representation approach utilizes the GUI functionalities of

windowing platforms to represent WA information. The MOAF graphics

representation technique is able to meet the graphics representation requirements

of different WA features. With this technique, WA widgets do not interfere with

the workspace display. Furthermore, creation and manipulation of WA widgets

are easier and less error-prone than existing techniques.

Finally, examples of supporting existing and new WA features, including the

radar view, telepointer, multi-user scrollbar and teleselection, were presented to

demonstrate the feasibility and flexibility of MOAF.

The MOAF technique is able to reduce the effort for developing existing WA

features and can be easily extended to support new WA features in TA-based

real-time collaborative editors. It has been applied in the CoWord and

 147

CoPowerPoint systems to support multiple WA features, thereby showing its

applicability in different applications.

 148

Chapter 7

The CoWord and CoPowerPoint

Prototypes

CoWord and CoPowerPoint are two experimental prototype systems produced

from this research. These two systems verified the feasibility, effectiveness and

generality of approaches and techniques generated from this research. Moreover,

they are also useful collaborative editing systems on their own. This chapter

discusses the design and implementation issues and initial usage experiences of

these two systems.

The rest of this chapter is organized as follows. First, the system architecture of

CoWord and CoPowerPoint is described in Section 7.1. Then details of

components and modules of CoWord and CoPowerPoint are discussed in Section

7.2. Next, functionalities and user interface features of these two systems are

presented in Section 7.3. In Section 7.4, experiences accumulated from the

implementation of CoWord and CoPowerPoint are described. Afterwards, initial

usage experiences and feedback are discussed in Section 7.5. Finally, this chapter

concludes with a summary in Section 7.6.

7.1. A TA-Based Collaborative System

Architecture

Based on the TA approach, a system architecture is proposed, as shown in Figure

7.1-(a). This architecture consists of three components:

 149

(1) Single-user Application (SA), which provides conventional single-user

interface features and functionalities. This component is unaware of multi-

user collaboration.

(2) Collaboration Adaptor (CA), which provides application-specific

collaboration capabilities and plays a central role in adapting SA to the

underlying GCE (see below). This component is aware of both single-user

application and multi-user collaboration.

(3) Generic Collaboration Engine (GCE), which provides application-

independent collaboration capabilities. This component encapsulates a

package of collaboration-supporting techniques, with OT at the core for

supporting consistency maintenance and group undo. This component is

aware of multi-user collaboration, but unaware of the single-user application.

The use of CA between SA and GCE hides application-specific issues from

GCE, facilitates independent debugging and testing of GCE, and promotes the

reusability of GCE. The ability to reuse GCE is important and valuable because

the design and implementation of a correct and efficient GCE is challenging due

to the complexity involved. To apply GCE to a new SA, one only needs to design

and implement a new CA for the target SA.

Figure 7.1 (a) A generic collaborative system architecture. (b) CoWord system

architecture. (c) CoPowerPoint system architecture.

GCE

Word Collaboration Adapter

Word API

GCE API

Word Collaboration Adapter

Word API

GCE API

GCE

PowerPoint Collaboration Adapter

PowerPoint API

GCE API

Generic Collaborative Engine
(GCE)

SA Collaboration Adapter

SA API

GCE API

SA Collaboration Adapter

SA API

GCE API

(a) (b) (C)

 150

Based on the generic collaborative system architecture, two working prototype

systems, CoWord and CoPowerPoint, have been built to demonstrate the

feasibility of the TA approach, the system architecture, and supporting techniques.

The architectures of CoWord and CoPowerPoint are shown in Figure 7.1-(b) and

(c).

7.2. Components and Modules

Figure 7.2 shows the architecture of CoWord in more details. The architecture of

CoPowerPoint is similar, except that the SA component is PowerPoint, rather

than Word.

7.2.1. The Collaboration Adaptor

Major modules in the Collaboration Adaptor (CA) component (Figure 7.2) are

described as follows.

The API-AO Adaptation module is responsible for the interpretation of AOs

by means of the application’s API, as discussed in Chapter 3. In addition, this

module also provides an adapted API for other CA modules to access the

application’s API, thus hiding the application-specific details from the rest of the

system.

The AO-PO Adaptation module is responsible for translation between AOs

and POs, as discussed in Chapter 3. It also provides a common interface between

other CA modules and GCE.

The Local Operation Handler (LOH) module is responsible for intercepting

the local user interactions and generating corresponding AOs, as discussed in

Chapter 3. LOH also controls the granularity of AOs. For example, a sequence of

character insertions may be packed into a single string-wise insertion. LOH

makes use of the AO-PO Adaptation module to translate the generated AO into

suitable POs, which are timestamped and saved in the local history buffer of OT

 151

(inside GCE) for consistency maintenance. Apart from data-manipulation

operations, LOH also intercepts non-data-manipulation events generated by the

user from the single-user application interface (e.g. moving the scroll bar, resize

the window, move the cursor), or from the CoWord/CoPowerPoint Control Panel

for interaction control and workspace awareness support.

Figure 7.2 The architecture, components and modules of CoWord.

The Remote Operation Handler (ROH) is responsible for receiving and

processing remote AOs. If the received AO is related to data-manipulation, ROH

first uses the AO-PO Adaptation module to translate the AO into suitable POs,

which are processed by OT for consistency maintenance, and then ROH calls the

API-AO Adaptation module to interpret the transformed AO. For non-data-

manipulation AOs, ROH may invoke GCE (via the AO-PO Adaptation module)

for some generic service and then, if necessary, calls the API-AO Adaptation

API-AO Adaptation

AO-PO Adaptation

L

O
H

R

O
H

CA

GCE
Interaction ControlIC

Collaborative Document Repository ManagerCDRM

AO ProcessingAOP

Single-User ApplicationSA

Workspace Awareness ControlWAC

Primitive OperationPO

Operational TransformationOT

Local Operation HandlerLOH

Generic Collaboration EngineGCE

Group AwarenessGA

Consistency MaintenanceCM

Collaboration AdaptorCA

Application Programming InterfaceAPI

Adapted OperationAO

Group UndoGU

Interaction ControlIC

Collaborative Document Repository ManagerCDRM

AO ProcessingAOP

Single-User ApplicationSA

Workspace Awareness ControlWAC

Primitive OperationPO

Operational TransformationOT

Local Operation HandlerLOH

Generic Collaboration EngineGCE

Group AwarenessGA

Consistency MaintenanceCM

Collaboration AdaptorCA

Application Programming InterfaceAPI

Adapted OperationAO

Group UndoGU

SA

CDRM

AO

Data Management

WACWAC

CM GU

OT

IC

CM GU

OT

IC

 152

module to interpret the AO. ROH also provides service to propagate local

operations to remote sites.

It should be noted that ROH and LOH are implemented as two concurrent

threads in CA. Only one of them could be active at any instant of time to ensure

the atomicity of local and remote operations. LOH is given a higher priority when

both are competing for the control of CA. When ROH is in control of CA in

processing a remote AO, the local user interaction with the application is

temporarily blocked.

CA also contains several utility modules. One of them is the AO Data

Management module, which provides services for storing, accessing, and

manipulating application-specific data objects contained in AOs. It makes use of

the API-AO Adaptation module to manipulate various types of data object

transparently.

To illustrate how various modules work together in processing an editing

operation, consider the following simple scenario in CoWord. Suppose a user

uses the keyboard and/or mouse to create a graphic object in the local Word

document, the following will occur at the local site:

(1) The sequence of local input events are intercepted, performed on the local

document copy, and translated into an AO Insert-floatingObj(vp, num,

floatingObj) by LOH.

(2) LOH calls the AO-PO Adaptation module to translate this AO into a PO

Insert(vp, num, objSeq), which is then processed (e.g. timestamped) by the OT

module in GCE. Moreover, the AO is attached with the same timestamp as its

corresponding PO.

(3) LOH uses the service provided by ROH to propagate the timestamped AO to

remote sites.

When the AO Insert-foatingObj(vp, num, floatingObj) arrives at a remote site,

the following will happen:

 153

(1) The AO is received by ROH, which will wait until it gets control over CA.

(2) ROH calls the AO-PO Adaptation module to translate the AO into a PO

Insert(vp, num, objSeq), which is then processed by the OT module in GCE.

Moreover, the transformed PO is used to update the OT-relevant parameters

of the AO.

(3) ROH calls the API-AO Adaptation module to interpret the OT-processed AO.

Although CA is application-specific, the CA components of CoWord and

CoPowerPoint are both designed in the above architecture. Moreover, they also

share many functional modules. This is one of the major reasons that the

development effort of the CoPowerPoint system is far less than that for CoWord.

This reusability is expected to significantly reduce the effort of developing the

CA components of other TA-based systems as well.

7.2.2. The Generic Collaboration Engine

The GCE component provides application-independent collaboration support to

the CA component in CoWord and CoPowerPoint. Moreover, GCE can also be

reused in other TA-based systems to provide collaboration support.

Operational Transformation, Consistency Maintenance and

Group Undo

Operational Transformation (OT) is at the core of GCE for supporting other

modules, especially Consistency Maintenance (CM) and Group Undo (GU). For

details of the techniques encapsulated in OT-based CM and GU modules, the

reader is referred to Sun et al. (1998), Sun and Ellis (1998), Sun (2000), Sun and

Chen (2002), Sun (2002b), Sun et al. (2004) and Sun et al. (2006).

Interaction Control

Based on the OT technique and the replicated system architecture, the Interaction

Control (IC) module provides support for multiple interaction paradigms/modes,

which are characterized by two control parameters: one is Action Control, which

 154

determines who can edit (or act on) the document, and the other is View Control,

which determines who can view which part of the document.

The Action Control parameter may take one of the following two values:

(1) Multi-Actor: multiple users are allowed to edit any objects in the document at

the same time. This mode is supported by the OT technique.

(2) Single-Actor: a single user is allowed to edit the document at any instant of

time. This mode is implemented by a distributed protocol which blocks all but

one user’s editing operations.

The View Control parameter may take one of the following two values:

(1) Multi-View: multiple users may view different portions of the document, or

view any portion of the document in different formats or from different user

interface modes (if supported by the original application) at the same time.

This mode is naturally supported by the replicated architecture.

(2) Single-View: all users can view the same portion of the document in the same

format and from the same user interface mode. This mode is supported by a

distributed protocol which blocks all but one user’s view changing operations.

A single user, who holds the view-floor, is allowed to change the shared-view.

Based on the above interaction control capability, a TA-based system can

support a variety of interaction control modes to facilitate different collaboration

tasks.

Workspace Awareness Control

The Workspace Awareness Control (WAC) module encapsulates an

implementation of the MOAF techniques (see Chapter 6) and provides workspace

awareness supports to TA-based systems. With the support of this module,

developers of TA-based systems can easily implement a variety of existing and

new workspace awareness features. Moreover, implementation of a range of

 155

widely-used workspace awareness features (e.g. telepointer, radar view) is also

encapsulated. Developers can directly use them in TA-based systems.

7.3. The Prototype System

The CoWord/CoPowerPoint prototype system consists of the following

applications:

(1) CDRM Server: a collaboration session and shared document repository

manager.

(2) CDRM Client: a client application that provides the user interface to access

the session and repository management services provided by CDRM server.

(3) CoWord: a collaborative word processor converted from MS Word.

(4) CoPowerPoint: a collaborative slides authoring and presentation system

converted from MS PowerPoint.

7.3.1. CDRM Server and Client

To manage the shared documents and to provide an interface for starting or

joining collaborative editing sessions, a Collaborative Document Repository

Manager (CDRM) has been designed and implemented based on an Integrated

Repository and Session Management (IRSM) technique (Xia et al. 2006).

The CDRM system contains a CDRM server and a client. The CDRM server

can be installed on any user’s local machine to convert the private document

repository (the file system) into a shared document repository to support

collaborative editing. In the Internet-based CoWord/CoPowerPoint Demo,

however, only one CDRM server is used to provide world-wide users with remote

access to the Word and PowerPoint documents stored on a single machine hosted

by Griffith University, Brisbane, Australia.

 156

Figure 7.3 The user interface of CDRM server. (a) The Session Management

Panel; (b) the User Management Panel.

The user interface of the CDRM server contains a Session Management Panel

(Figure 7.3-(a)), from which the user can view detailed information of every

ongoing collaborative editing session, and a User Management Panel (Figure 7.3-

(b)), from which the user can configure user accounts for accessing sub-

repositories.

(a)

(b)

 157

The CDRM client provides interfaces for users to access services provided by

the CDRM server. It is installed in the user’s local system, from whose interface

(Figure 7.4) the user can perform basic file and folder tasks, such as creating,

deleting, copying, and moving files and folders in the shared document repository

managed by the CDRM server. Moreover, the remote user can upload and

download documents between the local private file system and the shared

document repository.

Figure 7.4 The user interface of CDRM client. (a) The Repository View; (b)

the Session View.

Based on the IRSM technique, the user can start or join a collaborative editing

session of a Word/PowerPoint document in the shared document repository by

simply double-clicking the selected document icon from the CDRM client user

interface (Figure 7.4-(a)). From the user’s point of view, this is no different from

starting a normal Word/PowerPoint editing session from the Windows Explorer.

However, what happens behind the scenes is quite different.

 158

First, based on the type of the requested document, a suitable collaboration

engine, CoWord-Engine or CoPPT-Engine (which is a combination of CA and

GCE as discussed in Section 7.1) will be started, with the document path name as

the startup parameter. Next the CoWord/CoPowerPoint-Engine sends the

document request to the CDRM server. The CDRM server checks whether there

is an existing session editing the requested document. If so, it performs a late-

joining protocol to join the requesting site into this session. Otherwise, it creates a

new session for this requesting site. Next, the CDRM server sends the latest

version of the requested document to the requesting site. After receiving the

document, the CoWord/CoPPT-Engine starts Word/PowerPoint to edit this

document. The session awareness information is also updated in the CDRM

client’s user interface. After this, the collaborative editing process is under the

control of the CoWord/CoPPT-Engine. During a collaboration session, the

CoWord/CoPPT-Engine may communicate with the CDRM server to propagate

operations or save the edited document back to the shared repository. At the end

of a session, the CDRM client will get involved again to clean up the trails of

CoWord/CoPPT-Engine on the local machine.

This session management approach has the following advantages. First, it

relieves users from the burden of explicit session management actions. The effort

required to initiate or join a collaborative editing session is no more than opening

a document from the Windows Explorer. Second, it supports the impromptu and

flexible collaboration style. Users may join and quit an ongoing session at any

time. Third, it solves the common problem of implicit session management

approaches, which is the lack of session awareness information. The CDRM

client provides users with detailed session awareness information in its user

interface. As shown in Figure 7.4-(a), information about users who are currently

collaboratively editing documents is listed in the Repository View. With such

information, users know clearly whether opening a document will put them into a

collaboration session. Moreover, information about each ongoing collaborative

editing session is also listed in the Session View (Figure 7.4-(b)). This view

 159

facilitates some pre-planned or formal collaborative activities. The user can easily

find the session he/she is interested in and directly join.

7.3.2. CoWord

Collaborative Word Processing

The major objective of CoWord is to convert single-user word-processing

functionalities provided by MS Word into collaborative versions. Based on the

unconstrained collaboration capabilities provided by GCE and the TA approach

presented in this thesis, the current CoWord supports a wide range of

collaborative word-processing functionalities, including the following.

(1) Collaborative rich format text editing, with which users can collaboratively

insert, delete text and change attributes (e.g. color, size, font type) of text in

the shared Word document. Moreover, users can also collaboratively edit

attributes of paragraphs (e.g. paragraph alignment, indent, numbering and

bulleting).

(2) Collaborative table editing, with which users can collaboratively create,

restructure, and fill tables in the shared Word document.

(3) Collaborative graphics editing, with which users can collaboratively create,

remove, update (e.g. color, size, position), group and ungroup graphic objects

in the shared Word document.

(4) Collaborative document commenting and change tracking, with which users

can collaboratively comment on the shared document and edit the document

in the change tracking mode. CoWord automatically merges changes from

different users.

CoWord allows users to use the above collaboration functionalities without any

constraints. For example, while some users are editing the text of the shared

document, some others may group graphics objects or edit a table. While some

users are editing in the tracking mode, others may be in the normal (non-tracking)

 160

mode. CoWord accommodates all types of concurrent operations and maintains

the system consistency.

At the same time, the Word user interface features are preserved. The user can

interact with CoWord in the same way he/she interacts with the single-user Word.

However, the functionalities triggered by the user’s interaction are automatically

converted into collaborative versions. For example, when the user clicks the Undo

button in the single-user Word, his/her last action is undone, but in CoWord, a

collaborative undo function supported by the ANYUNDO algorithm (Sun 2002a)

is triggered. Preservation of the user interface features saves users the burden of

learning a new system for the purpose of collaboration and thus increases the

chance for user acceptance.

Interaction Control

Users may adopt different collaboration styles in collaborative document editing,

ranging from single to joint writing styles (Posner and Baecker, 1992). Different

interaction control modes are needed to facilitate these collaborative writing

styles. For example, to support the impromptu collaborative document writing, an

unconstrained collaboration mode is needed, in which any user can edit and view

any part of the document. To support the scribed writing mode in which multiple

users discuss an issue and one user writes down the discussion result, it is

necessary to adopt a Multi-View Single-Actor mode, in which only the scribe can

edit the document but discussers are allowed to view any part of the document.

To meet this requirement, CoWord supports the following interaction control

modes.

(1) Multi-View and Multi-Actor: multiple users can view and edit any portions of

the document at the same time. This mode corresponds to the unconstrained

collaboration mode, which is available in collaboration-aware systems, such

as REDUCE (Sun et al. 1998) and GRACE (Chen 2001; Sun and Chen 2002).

 161

(2) Multi-View and Single-Actor: multiple users can view any portions of the

document, but only a single user can edit the objects in his/her view. This

mode is available in some application-sharing systems that support relaxed

WYSIWIS, such as the commercial Groove Virtual Office system (Groove

Networks Inc. 2006).

(3) Single-View and Multi-Actor: the same portion of the document is viewed by

all users, but multiple users can concurrently edit objects in the same view.

This mode is, to the best of our knowledge, not available in other existing

systems.

(4) Single-View and Single-Actor: the same portion of the document is viewed by

all users, and only one user is allowed to edit objects in the shared view. This

mode is similar to the strict WYSIWIS and the sequential interaction

paradigm supported by generic application-sharing systems.

Figure 7.5 The CoWord Control Panel.

 162

The user may initiate an interaction control mode from the CoWord Control

Panel (Figure 7.5).

Workspace Awareness Features

Based on the MOAF technique (see Chapter 6), CoWord supports two workspace

awareness features, the telepointer and the radar view, as shown in Figure 7.6.

From the radar view (on the right side of the workspace), it can be seen that three

users (Steven Xia, David Sun and Chengzheng Sun) are viewing an overlapping

portion of the document, but one user (David Chen) is viewing a different part of

the document. In the workspace, two tele-pointers for David Sun and Chengzheng

Sun are displayed since their view ports overlap with Steven’s.

Figure 7.6 Workspace awareness features of CoWord

The user has control over the awareness information display and propagation.

The user can enable/disable the display of the telepointers or view ports of other

users, and the propagation of his/her own mouse pointer and view port change

 163

messages. These functions are directly supported by the WAC module in GCE.

The user can set these options from the CoWord Control Panel (Figure 7.5).

Since a user can be involved in multiple collaborative editing sessions at the

same time, the CoWord Control Panel also provides dynamic session information

for all ongoing sessions,
11

 including the name of the document for each session,

the identifiers of current users in each session and their joining times, and the

interaction mode associated with each session. As shown in Figure 7.5, the local

user is involved in two collaborative sessions. The second session is in a Single-

View Single-Actor mode. The action floor and view floor are held by two

different users.

7.3.3. CoPowerPoint

MS PowerPoint has functionalities in two categories, which are slides authoring

and presentation. CoPowerPoint focuses on converting these two functionality

categories into collaborative versions.

Collaborative Slides authoring

A PowerPoint document is organized in multiple levels, including slides, graphic

objects and structures inside graphic objects (e.g. the text in a text box).

CoPowerPoint supports users to collaboratively edit any objects in the

PowerPoint document in any level at any time.

Meanwhile, the user interface features of PowerPoint are preserved while its

single-user functionalities are converted into the collaborative version. An

interesting outcome of the transparent adaptation of PowerPoint is that

CoPowerPoint not only preserves existing single-user PowerPoint interface

11

 The session awareness information displayed by CDRM (Figure 7.3) is similar to that provided

by the CoWord Control Panel; the difference is that the former is for all sessions, but the latter is

for sessions associated with one particular user.

 164

features, but also creates new multi-user interface features from the combination

of multiple single-user interfaces.

Supported by the unconstrained collaboration capability of CoPowerPoint,

multiple users are free to choose which interfaces to interact with PowerPoint,

which naturally creates new multi-user interface features resulted from the

combination of multiple single-user interfaces at the same time.

For example, one user may be in slide-sorter-view, focusing on structuring the

overall presentation, while some other users are in the normal view, focusing on

creating and updating graphic objects inside individual slides. An interesting

interface feature of this combination is that the user in slide-sorter-view can not

only freely edit the slide sequence, but also observe the updates made on

individual slides by other users in real time. This new feature creates a new usage

of an existing interface: the slide-sorter-view interface can be used as a global

viewing panel for observing the dynamic contents of all slides. The capability of

observing real-time updates on all slides provides a natural group-awareness

support to collaborating users. The user in the slide-sorter-view can do a better

job in sorting slides thanks to the knowledge of up-to-mini-second updated

contents of individual slides. The users in other interfaces (e.g. normal-view) can

also take advantage of this group-awareness support by simply running one more

PowerPoint instance in slide-sorter-view (on the same machine). In this way, all

users in a session can view the global dynamics of the document while working

on any parts of the document.

Another interesting combination of multiple single-user PowerPoint interfaces

is a collaboration session consisting of one user in the slide-show presentation

interface showing the slides to the audience (e.g., using a LCD projector

connected to this user’s computer), and another one or more users in the slide-

view editing interface. In the single-user environment, the contents (including

animations) of the document being presented are pre-determined and cannot be

revised dynamically. With the combination of slide-show and normal-view

 165

editing interfaces in the same session, it becomes possible to dynamically revise

the contents of the document being presented. This new multi-user interface

feature can be useful when multiple users are jointly discussing and revising a

PowerPoint document at the same time. For example, if an error was found in the

document being presented or a revision was suggested by one collaborator, the

document can be directly updated from a separate slide-view editing interface and

immediately reflected on the slide-show interface, without the need to switch

back and forth between the two interfaces. This combination has been an

important foundation in supporting collaborative presentation in CoPowerPoint

(to be discussed in the next subsection).

There are many other possible combinations of single-user PowerPoint

interface features available in unconstrained collaboration sessions. The

innovative use and management of these new interface features are interesting

topics for future research.

Collaborative Presentation

Computer-supported collaborative presentation applications are an important

branch of groupware systems (Isaacs et al. 1994; Gemmel and Bell 1997; Jancke

et al. 2000). CoPowerPoint supports collaborative presentation by converting the

single-user presentation functionality of PowerPoint into the collaborative version.

Collaborative presentation is a synchronized process in which all participants

view the same slide presented by the speaker. Based on the unconstrained

collaboration capability, CoPowerPoint supports collaborative presentation with

the following synchronization mechanism.

To start a collaborative presentation, all users in the same session enter the

slide-show-view. Then all non-speaker users’ inputs are blocked. Only the

speaker has the privilege to manipulate the slides (including selecting, annotating

and editing the current presented slide). The current presented slide chosen by the

 166

speaker is presented on audiences’ screens. Annotations made by the speaker are

also displayed on audiences’ screens.

Moreover, CoPowerPoint also facilitates interaction in collaborative

presentation. In many interaction forms (e.g. questioning and discussion) in the

presentation, the audience also needs the privilege to manipulate the slides, which

is not supported in existing collaborative presentation system. This functional

insufficiency often makes interaction in collaborative presentations clumsy (Xia

et al. 2005b; 2006b). CoPowerPoint is able to solve this problem based on its

unconstrained collaboration capability and other presentation-supporting

techniques. Particularly, CoPowerPoint supports the following interaction forms:

(1) Lecturing, in which the speaker delivers the lecture and the audience passively

receives it. In this interaction form, the speaker has exclusive control to

manipulate the slides. The audience can only view the currently presented

slides.

(2) Questioning, in which a questioning audience raises a question and the

speaker answers it. While asking a question, the questioning audience is

allowed to manipulate the slides. After finishing asking, the speaker takes

back the control so that he/she can manipulate the slides while answering the

question.

(3) Discussion, in which all participants speak in turn. The speaking user holds

exclusive control to manipulate the slides. After a user finishes speaking,

control is passed to the next speaking user.

(4) Group discussion, in which users in the same session are divided into groups.

In each group, there is a floor circulating among group members, so that they

can perform discussion as in (3).

For details about techniques for supporting these interaction forms in

CoPowerPoint, the reader is referred to Xia et al. (2005b).

 167

Figure 7.7 The CoPowerPoint Control Panel.

In CoPowerPoint, the user may initiate the above interaction forms, join an

existing interaction group and view the current situation of interaction forms from

the CoPowerPoint Control Panel, as shown in Figure 7.7.

7.4. Implementation Experiences

CoWord is the first prototype based on the TA approach (in fact, it was the

vehicle to drive the development of the TA approach). A group of researchers,

collectively with intimate knowledge of the OT technique and its implementation,

plus good programming experience with the API of Word and Windows, spent

approximately 3 man-years to investigate, design, and implement a publicly

demonstrable CoWord prototype. However, the follow-up CoPowerPoint

demonstrator was built in less than six man-months. The significant reduction in

the CoPowerPoint development time was largely due to the established TA

framework and the reuse of software components from CoWord.

In both CoWord and CoPowerPoint, the major development effort was in the

collaboration adaptor part. It requires significant effort to accomplish the

LecturingLecturing DiscussionDiscussion QuestioningQuestioning Join a GroupJoin a GroupQuit CoPowerPointQuit CoPowerPoint Quit a GroupQuit a Group

 168

adaptation task. On the other hand, the generic collaboration engine was initially

converted from the REDUCE engine (Sun 2002a) and evolved into a more

generic, independent, and sophisticated component.

The separation of the collaboration adaptor and the generic collaboration

engine had allowed us to design, implement and test these two components

independently and in parallel, thus accelerating the whole system development.

With the availability of the generic collaboration engine component, the

adaptation of a new application is reduced into the design and implementation of

a new collaboration adaptor for this application.

The CDRM system is an important component of the demonstration system,

but this component is independent of the TA approach. It provides session and

document repository management services to both CoWord and CoPowerPoint.

Moreover, it is able to provide services to other TA-based systems and non-TA

based systems. Additional work is needed to transparently integrate this

component with existing single-user file managers (e.g. Window Explorer), so

that users can use the same file manager to manage both private and shared

documents and to launch single-user and multi-user applications.

7.5. Usage Feedback and Experiences

Although no formal usability study has been conducted up to now, considerable

usage experiences and feedback have been collected from our research group and

thousands of enthusiastic voluntary users around the world. The usage

information was collected from two sources. On the one hand, CoWord and

CoPowerPoint have been used as the collaboration-supporting tools in our

research group. During the over-three-year evolution process of these two

systems, we have been using them for collaborative writing of papers, thesis and

presentation slides. On the other hand, CoWord and CoPowerPoint were put on

the Internet for public demonstration in early 2003, and a free distribution version

of these systems was made available in late 2004. Since then, users from different

 169

backgrounds are using these two systems in their different collaborative

application environments, and have provided much useful and interesting

feedback (and bug reports). The feedback not only helped the improvement of

CoWord and CoPowerPoint, but also provided many innovative application cases,

which have extended our understanding of the capability of our systems and

techniques.

7.5.1. Usage Feedback

Usage feedback so-far has been very encouraging. Users are most happy with the

fact that CoWord/CoPowerPoint allows them to use their familiar

Word/PowerPoint for collaboration – there is no need to buy or to learn a new

tool. Another commonly acknowledged positive point is that

CoWord/CoPowerPoint does not impose any specific working style or

collaboration process on users, giving users complete freedom in defining their

own collaboration processes to meet their divergent and dynamic needs.

Furthermore, users are particularly interested in two collaboration features. The

first one is collaborative change-tracking, which is able to mark the authors of

changes to the shared document. An example that benefits from this feature is as

follows. With an essay collaboratively authored by multiple students, the teacher

can clearly identify which student contributed which part. Moreover, it helps the

teacher to discover a student’s strength and weakness from what he/she

contributed to the essay. By reading others’ work, students can also learn from

each other. Users also appreciate the workspace awareness features, including the

telepointer and radar view. Users are excited to see other co-workers’ presence

and activities in the same collaboration task. These workspace awareness features

gave them a strong feeling of involvement in the collaboration.

Users also raised their wishes on new features in our systems for better support

of their specific application domains. For example, screenplay writers wish

CoWord to support macros that facilitate screenplay formatting; business

 170

document writers wish CoWord to ensure the communication security; and many

users wish that other popular single-user applications (e.g. StarOffice (Sun

Microsystems 2006b)) should be leveraged to collaborative versions with the TA

approach and have similar collaboration capabilities; and the biggest wish of most

users has been the availability of a product-quality version of

CoWord/CoPowerPoint that could catch up with the newest version of MS

Word/PowerPoint. These wishes are important hints for the further development

of CoWord/CoPowerPoint and other TA-based systems.

7.5.2. Usage Cases

The majority of users use CoWord/CoPowerPoint for collaborative document

creating and editing. However, they collaboratively edit documents in different

circumstances. For example, in education circumstances, CoWord/CoPowerPoint

has been used for students to collaboratively create slides to study vocabulary

words and compose essays as a training of collaboration and communication

abilities. In magazine or newspaper publishing circumstances, CoWord has been

used to support editors and authors from all over the world to collaboratively edit

articles. In screenplay writing circumstances, CoWord has been used to support

screenplay writers for different characters to “talk” on the paper in real time.

Collaborative Document Writing

From our usage experience and external users’ feedback, the capability of

supporting spontaneous collaboration has been identified as an important usability

feature. To benefit from using CoWord/CoPowerPoint, users do not have to work

at the same time. In fact, even if users do not often work at the same time, they

can still benefit from having the same tool to edit the same document at any time.

For example, the editing process of this PhD thesis has been done with

CoWord. Three users were involved, including this PhD candidate as the author,

and two of his supervisors as the reviewers. One of the supervisors was overseas

during the thesis writing process; the other one is on the same campus as the

 171

author is. In this collaborative writing process, the thesis was kept in the

collaborative document repository and all users collaboratively worked on it.

The collaboration task was conducted in a spontaneous style. In particular, the

author wrote the thesis full time. Reviewers reviewed the thesis and left

comments and revisions whenever they had time. With this collaboration style,

users often worked at different times, but they also worked at the same time either

because they had scheduled a real-time group editing session for online

discussion, or because their individual time schedules happened to overlap.
12

Regardless of whether they were working at the same time or at different times,

they used the same CoWord tool and had access to the most recent version of the

paper at all times; they did not need to distribute versions to each other and to

merge multiple versions into one; and they had no worry about inconsistency or

incompatible versions.

We consider this anytime collaboration capability as an important usability

benefit. An analogy to the telephone technology can be made here: full-duplex

telephone technology allows users to talk at anytime, whereas half-duplex

technology forces users to take turns in talking. Telephone users often talk in

turns – a half-duplex communication protocol, but this half-duplex protocol is

best supported by the full-duplex technology. The major usability advantage of

full-duplex phones is not only that they allow users to talk at the same time, but

also that they allow users to talk at different times without extra effort.

Users have discovered the applicability of CoWord/CoPowerPoint in many

interesting application domains other than collaborative document editing. Here

are some representative examples.

12

 In the case of unintentional or accidental real-time sessions, co-authors were made aware of

each other through the session and workspace awareness support.

 172

Collaborative Court Transcript Creating

One example is the use of CoWord in supporting real-time collaborative creation

and use of court room transcripts. The basic setting of the court room application

is as follows: one stenographer listens live and types the transcript of the court

proceedings; one editor listens to the digital recording and edits the transcript

produced by the stenographer;
13

 and the judge reads the transcript produced by

the editor. The stenographer and the editor are both using MS Word. In the

existing court room process, the editor has to wait for the stenographer to finish

up the draft transcript before he/she can start editing it (normally one day late);

and the judge has to wait for the stenographer and the editor to finish before

reading (so the judge needs to take his/her own notes during the court room

process).

In several real court room sessions (the longest trial lasted for 5 consecutive

days), CoWord was used to allow the stenographer to type and the editor to edit

the same transcript at the same time (in a pipeline fashion) so that the final

transcript could be produced immediately after each hearing. Moreover, the

transcript was presented to the judge via CoWord in real time as well, so the

judge could concentrate on analysis and judgement without the burden of taking

notes; the judge could directly mark the transcript to highlight or comment on the

testimonies which, by his/her judgement, were lies or contradictions, etc.
14

 The

main benefits here are not only faster creation of better quality court room

transcripts but also better support for the judge in the court room process. This is

particularly useful and important when a complicated court trail consists of

multiple hearings in consecutive days, in which the availability of the previous

day’s court room transcript is essential for the next day’s hearing.

13

 The stenographer uses shorthands/abbreviations in typing the transcript in order to keep up with

the speed of the court proceedings, so another editor is needed to convert the draft transcript into a

formal document.
14

 In CoWord, it is possible to control the propagation of any user's inputs. The judge's

highlights/comments on the transcripts could have local effects immediately, but they are not

propagated to remote sites until the end of the session, so the stenographer and the editor could not

see the judge's comments during the session.

 173

Collaborative Captioning

In contrast to the above example, in which CoWord has significantly improved

the performance, CoWord is an essential and foundational tool in another

example – collaborative lecture captioning. The purpose of this application is to

provide real-time captions about dialogues in lectures for hearing-impaired

students, so that they know what the lecturer and students are talking about.

The basic system configuration includes a captioning machine and an editor

machine. Moreover, the result caption is projected in a large screen in the

classroom. A captioner (i.e. the user of the captioning machine) revoices what

was said in the classroom to the speech recognition system running in the

captioning machine, which translates the speech into text. The need for revoicing

is a result of the technical limitation of the current speech recognition techniques.

To achieve a higher accuracy, speech recognition systems can only be trained to

recognize the voice of a specific user (i.e. the captioner). Furthermore, the speech

recognition system is configured to achieve a high speed at the price of accuracy

degradation. The speech recognition system outputs text into a shared document

of CoWord
15

 with considerable errors. To correct errors, an editor collaboratively

edits this document on the editing machine.

Therefore, the captioning application is in fact a collaborative document editing

session participated in by multiple users. Moreover, both the captioning and

editing are stressful tasks. The captioner and the editor are busy with listening,

differentiating speakers and revoicing/editing at the same time. To alleviate the

stress and improve the accuracy, multiple captioners and editors are needed to

share the workload.

The real-time collaborative editing capability and high responsiveness of

CoWord are essential features in this application case. Furthermore, the

15 The speech recognition system inputs text into CoWord in a simulation of keyboard input, so

these inputs can be intercepted by CoWord.

 174

captioning system can be easily extended by allowing each student to have a

computer running CoWord to collaboratively view and annotate the local copy of

the shared caption document (not propagated to other users). This extension not

only allows students to freely browse the caption, but also provides them

individual lecture notes with their own annotations.

Due to resource limitation, we have not yet conducted more systematic

usability studies on CoWord/CoPowerPoint. With the evolvement of CoWord and

CoPowerPoint in functionality and quality, we expect more novel usages will be

discovered or invented by users, and more questions about their usability will be

answered.

7.6. Summary

This chapter has discussed details of the TA-based prototype systems of this

research, which are CoWord, a collaborative word processor converted from MS

Word, and CoPowerPoint, a collaborative slides authoring and presentation

system converted from MS PowerPoint.

CoWord and CoPowerPoint adopted the same TA-based system architecture. This

architecture consists of three components, which are the Single-user Application

(SA), the Generic Collaboration Engine (GCE) and the Collaboration Adaptor

(CA). The SA component provides conventional single-user functionalities. The

GCE component encapsulates application-independent collaboration techniques

in the following functional modules: Operational Transformation (OT),

Consistency Maintenance (CM), Group Undo (GU), Interaction Control (IC) and

Workspace Awareness Control (WAC). The CA module is responsible for

adapting SA to GCE. It contains the following components: API-AO Adaptation,

AO-PO Adaptation, Local Operation Handler (LOH), Remote Operation Handler

(ROH) and AO Data Management.

 175

CoWord and CoPowerPoint serve as research platforms in this research. They

are used to develop and verify the correctness, feasibility and effectiveness of the

TA approach and other collaboration techniques. Moreover, they are also useful

groupware systems on their own. They support real-time unconstrained

collaborative editing on Word and PowerPoint documents, detailed workspace

awareness and flexible session management and flexible interaction control.

These two systems also provide reusable components for the development of new

TA-based systems. The GCE is application-independent and can be directly

reused in other TA-based systems. The TA-based architecture and many

functional modules in the CA component can also be reused. The CDRM server

and client are able to provide session and document repository management

service to any TA-based editing systems.

CoWord and CoPowerPoint have been publicly demonstrated on the web site.

Users from different backgrounds have used these two systems in different

application circumstances and provided useful feedbacks, including their opinions

on the existing collaboration features, their wishes for new features and some

interesting usage cases.

 176

Chapter 8

Discussion

As discussed in Chapter 2, replicated generic application-sharing systems have

been facing challenging problems in maintaining application consistency,

managing access to external resources, and accommodating late-comers. This

chapter provides explanations of how and why some of these problems have been

simplified or circumvented by CoWord/CoPowerPoint. The applicability of the

TA approach to collaboration-transparent and collaboration-aware applications,

and its requirements and limitations, are also discussed in this chapter.

8.1. Dealing with Problems Related to

the Replicated Architecture

8.1.1. Maintaining Application Consistency

In replicated generic application-sharing systems, the main reason of the

difficulty in maintaining system consistency is the absence of application

semantic knowledge. Equipped with the application semantic knowledge and the

OT technique, CoWord/CoPowerPoint does not require replicas to receive the

same inputs from users and other external resources, let alone receiving them in

order. Consistency maintenance in the face of concurrency is achieved by means

of OT. Consequently, it is not necessary to impose sequential interaction among

users for the purpose of ensuring consistency, though sequential interaction (i.e.

the Single-Actor mode) can be enforced by the system for the purpose of

supporting closely synchronized collaborative work. In the following subsection,

 177

the issues related to the management of non-user external inputs in

CoWord/CoPowerPoint are discussed.

8.1.2. Managing Access to External Resources

In CoWord and CoPowerPoint, the problem of managing access to external

resources has been significantly simplified by the following factors: (1) the

execution of the shared application (i.e. Word or PowerPoint) is mainly driven by

the user’s interaction; (2) the application-specific collaboration adaptor

understands the meaning of the user’s interaction; and (3) the primary objective

of CoWord/CoPowerPoint is to achieve consistent data-sharing, rather than view-

sharing characterized by strict WYSIWIS.

For example, the user may insert the content of an external document (file) into

the current in-memory document by interacting with the Word/PowerPoint user

interface. Rather than propagating the user’s interface activities to remote sites

and replaying these interface events in different contexts (which may cause

various problems, as identified in Lauwers et al. (1990) and Begole et al. (2001)),

CoWord/CoPowerPoint converts the user’s interface activities into abstract

operations (i.e. an insertion AO in the case of inserting a file). This insertion AO

is propagated to remote sites, processed by OT for concurrency control, and

finally performed on the remote replica via the application’s API, which

effectively inserts the file content (represented by the AO’s object parameter) into

the remote document. The net effect is that the same data content of the file is

inserted in all replicas, but not the same view of the interface activities is

observed by all users. This is acceptable from data-consistency point of view.

Moreover, processing the insertion AOs generated by reading external files is no

different from processing insertion AOs generated by the user from the keyboard

and mouse.

As another example, in a CoWord session, one or more users can work in the

change-tracking mode, and CoWord can automatically track and merge changes

 178

made by all users in real time. In testing this feature, it was noticed that the

merged changes (data) are consistent among all replicas, but the hover texts

showing the authorship of the changes are different in different replicas. This is

because when remote operations from other users are interpreted by the local API,

all changes are recorded (by Word) using the local environment variable: user-

name. This problem was easily fixed in CoWord since the application-specific

adaptor has the knowledge about the authorship of operations, and has the control

over the user-name environment variable from the application’s API. This

problem, however, cannot be resolved by enforcing the consistency of all

environment variables (e.g. the same user-name in this case) at all replicas. This is

because the semantics of the shared Word/PowerPoint requires the values of the

user-name environment variable to be different at different replicas, and

operations generated by different users must be recorded under different names.

Moreover, the recorded times for tracked changes may be inconsistent when

collaborating users are working in different time zones: the same user’s change is

recorded at the local site with the local time but with different remote times at

remote sites. This is an example where replicated applications get different

external inputs from their external clocks. This inconsistency is fixable by the

adaptor (since it has all knowledge needed for fixing this problem), but nothing

was done about it in the current CoWord version and it was left to the users’

interpretation of the time (similar approaches were also used in many Internet

applications, such as emails). This example shows the flexibility in

CoWord/CoPowerPoint’s solution to some externalities, thanks to the knowledge

about the nature of the externalities concerned.

Apart from non-user inputs, replicated applications may also generate non-

display outputs to external resources, such as files, processes, and network

connections, which were found difficult to manage in generic application-sharing

environments (Lauwers et al. 1990; Begole et al. 2001). Nevertheless, non-display

outputs did not cause special problems in CoWord/CoPowerPoint because all

these outputs are initiated by users and can be intercepted and properly processed

 179

by the adaptor. For example, when the user wants to save the document to an

external file, he/she must interact with the application, and this interaction will be

intercepted by the local adaptor. The adaptor will save the document content back

to a shared document repository or to a new location as specified by the user in

the interface. Since the adaptor never propagates the user’s interaction about file

saving to remote replicas, it is guaranteed that the user-initiated file outputs are

executed only once.

Word and PowerPoint allow the user to start external applications, such as a

web browser, a FTP client from the pull down menu. In CoWord/CoPowerPoint,

the user’s interactions for launching external applications are not propagated to

remote sites, so external applications are only executed at the local site. Some

external applications, however, may be launched to update the objects embedded

in the current in-memory document, and thus have impact on the consistency of

the replicas. For example, the user may start an external photo editor to edit an

image object in the document. Since the external photo editor is not under the

control of the CoWord/CoPowerPoint adaptor, it is impossible to monitor the

user’s interactions with the external application. By means of the Windows API,

however, it is possible to intercept notification events when the external

application has updated the image object or has completed its execution. Upon

intercepting such events, suitable Replacement AOs (interpreted as a Delete and

an Insert, see Chapter 3) can be generated to represent the net effects of the

external application’s execution. Processing these Replacement AOs is no

different from processing other AOs which are generated by the user from the

keyboard and mouse in the Word/PowerPoint environment.

The above solutions to external resource management are not generic, but they

fit the existing application-specific adaptation framework and do not require

additional mechanisms for support. Further investigation is needed to better

understand the nature of external resources in various TA-based systems and to

devise more general solutions to them.

 180

8.1.3. Accommodating Late-Comers

In CoWord and CoPowerPoint, the problem of accommodating late-comers has

been greatly simplified by the fact that the application-specific adaptor has the

full knowledge of and access to the application state information needed for

initializing a late-comer. A late-comer can be initialized with the current

document content and the internal states of the collaboration adaptor and engine

of any existing collaborating site. All these states can be packaged, transported,

and installed into the late-comer’s local CoWord/CoPowerPoint process without

the need of migrating a running CoWord/CoPowerPoint process.

To further simplify the initialization of a late-comer, a distributed

synchronization protocol has been designed. For details of this protocol and

related issues, the reader is referred to Xia et al. (2006).

8.2. Applicability to both Collaboration

Awareness and Collaboration

Transparency

Collaborative systems have been traditionally classified into two collaboration-

transparent systems and collaboration-aware systems (see Chapter 2). The TA

approach is applicable to the design of both collaboration-transparent and

collaboration-aware systems: the single-user application component in the TA-

based system architecture can be a commercial off-the-shelf single-user

application (like Word and PowerPoint)), or a newly designed single-user

functional component in a collaboration-aware system (like REDUCE (Sun et al.

1998; Sun 2002b)). This new single-user functional component can be designed

and implemented in the same way as a stand-alone single-user application without

any concerns about collaboration, except that it provides an API suitable for

collaboration adaptation.

 181

From early experience of building collaboration-aware systems, we have learnt

that not all components in a collaboration-aware system need to be aware of

collaboration. For example, in the REDUCE collaborative plain text editor, only

the REDUCE engine is aware of collaboration (for consistency maintenance and

group undo), but the user editing interface is just a single-user functional

component without any knowledge of collaboration. This single-user component

has a simple programming interface consisting of two primitive operations Insert

and Delete, which directly match the basic OT technique implemented in the

REDUCE engine. Our early experiences with REDUCE had given us the critical

insights and inspiration for the development of the TA approach and the design of

CoWord and CoPowerPoint systems. As a matter of fact, the first version of

CoWord was designed and implemented by replacing the REDUCE single-user

interface component with Word, converting the REDUCE engine to a generic and

more powerful collaboration engine, and adding a Word-specific adaptor in

between.

CoWord/CoPowerPoint can not only support all advanced collaboration

features (e.g. high responsiveness, relaxed WYSIWIS, concurrent work, and

group undo) which are available in REDUCE, but also support detailed

workspace awareness, which is not available in REDUCE. Under the TA

approach, the traditional distinction between collaboration-transparent and

collaboration-aware applications has blurred: they can be built in the same way

and there is no inherent difference between their capabilities in supporting both

individual work and group work.

8.3. Suitability for Data-Centric

Collaboration

The TA approach is most suitable to building data-centric collaborative

applications like CoWord/CoPowerPoint, whose primary objective is to achieve

concurrent and consistent data-sharing, rather than strict WYSIWIS view-sharing.

 182

In CoWord/CoPowerPoint, the local user manipulates the shared document via

the user interface (the “front-door” of the application), but remote users’

operations are integrated into the shared document via the programmer interface

(the “back-door” of the application). Consequently, the user can see interface

activities generated by him/herself, and see the effects of remote operations

initiated by other users, but cannot see all interface activities generated by other

users.

Based on consistent data-sharing, flexible view/action control and detailed

workspace awareness can be supported in the TA framework. With the support of

these techniques, sharing of some aspects of the user interface activities can be

achieved. For example, with the support of telepointers and radar views, the user

can see the cursor positions of other users if they are viewing an overlapping

portion of the document and see the view ports of other users from the radar view.

Under the Single-View (Multi/Single-Actor) mode, all users have the same view

of the document content, and can see all cursor positions and movements in the

same view port. Under no circumstance, however, can the user see the pop-up

windows (e.g. dialogue boxes, menus) or hover texts viewable by remote users.

The sharing of this kind of remote interface information may be useful for

supporting workspace awareness and can be easily implemented in the Single-

Actor and Single-View mode. However, the usefulness and implementation

complication of supporting this feature in other interaction modes need further

investigation.

In our opinion, for data-centric collaborative work like document editing,

concurrent and consistent data-sharing is a requirement; flexible sharing of

various aspects of the user interface activities (supported by multiple interaction

control modes and workspace awareness techniques) is highly desirable and

important; strict WYSIWIS view-sharing may be rarely needed. Some other

researchers had even strived to achieve consistent data-sharing under

heterogeneous user interfaces or even different applications (e.g. DistEdit

(Knister and Prakash 1993), and ICT (Li and Li 2002)). Further study is needed to

 183

better understand the requirements for sharing data and views in different

collaborative applications and to devise suitable techniques to support them.

8.4. Requirements and Complexities

8.4.1. Basic Requirements to the API

The TA approach requires the single-user application and its execution

environment to provide a suitable API (1) which can be used to intercept and

replay the user’s interactions with the application, and (2) whose data and

operation models are adaptable to that of the underlying OT technique.

The first requirement is generally satisfiable by modern single-user interactive

applications and their window managers or operating systems. We have found

that the second requirement can be met by many members of commercial office

software suites (e.g. Microsoft Office (Microsoft Corp. 2006c) and Sun

Microsystems StarOffice (Sun Microsystems Inc. 2006b)). Based on the

experience from the CoWord and CoPowerPoint work and our initial

investigation of other representative single-user applications, we conjectured that

these requirements are satisfiable by a wide range of editor-like applications,

including various word processors, graphic drawing and design tools, and

CAD/CASE systems. Work is on the way to test this conjecture by applying the

TA approach, architecture, and the GCE component to new single-user

applications from different vendors, in different application domains, and in

different platforms.

8.4.2. Complexities of Adaptation Techniques

The data and operation adaptation techniques discussed in this thesis were based

on our experience in the CoWord and CoPowerPoint work. They can be used as

guidelines and hints in adapting new applications, but they are by no means

recipes for solving all problems in adapting new applications. Different

applications provide different APIs and hence different ways of addressing

 184

objects; mapping these different object addressing schemes to the generic OT data

model requires different strategies and techniques.

For example, data objects in the main body of a Word document are mapped

into the OT data model by means of the special Range object from the Word API;

data objects in one slide of a PowerPoint document are mapped into the OT data

model by means of their z-order indices from the PowerPoint API. In these two

cases, the mapping is achieved by analyzing, discovering, and using existing

features of the API, without additional design and implementation.

However, there are cases in which there is no direct match between the existing

API data addressing schemes and the OT data model, and additional work is

needed to bridge the gap. One example is the extension of the basic OT data

model in order to match the hierarchical addressing schemes in both PowerPoint

and Word APIs. There are other cases in which additional work is needed to

convert an existing API addressing scheme into the OT data model.

For example, each Comment segment in a Word document is mapped into an

independent addressing domain in CoWord; but all Comment segments in a Word

document are actually packed in a single comment store (called Comment Story),

which is accessed as a single linear addressing space from the Word API.

Consequently, the position of one data object in a Comment segment cannot be

directly used to address this object in the Comment Story; the offset of this

Comment in the Comment Story must be used to calculate the correct address.

Many off-the-shelf single-user applications support complex data structures

and editing operations. Applying the TA approach on these data and operation

models is nontrivial. Advanced adaptation techniques (e.g. the CoTable and

CoGroup techniques in Chapter 5) for supporting these data structures and

operations need to be designed.

 185

Chapter 9

Conclusions and Future Work

This thesis has contributed an innovative Transparent Adaptation (TA) approach

and a package of related collaboration techniques for converting single-user

applications into multi-user collaborative versions without touching their source

code. The research hypothesis is that transparently converted systems can not

only have advanced collaboration capabilities that were previously seen only in

collaboration-aware systems, but also maintain conventional functionalities and

interface features that were previously seen only in commercial off-the-shelf

single-user applications. This research has validated this hypothesis by working

prototype systems based on the TA approach and related collaboration techniques.

This chapter summarizes the main contributions of this research and discusses

directions of future work.

9.1. Summary of Contributions

9.1.1. The TA Approach

The most significant contribution of this thesis is the TA approach. TA is an

innovative approach to converting existing or new single-user applications into

multi-user collaborative versions without changing their source code. It is based

on the use of single-user application’s API to intercept and replay the user

interaction and the use of the OT technique as the underlying collaboration

technique. The TA approach contains two aspects: data adaptation and operation

adaptation. Data adaptation explores data addressing schemes of the API from the

OT point of view, and bridges the data addressing gap between the API and OT.

 186

Operation adaptation bridges the operational gap between the API and OT, and

involves the interception, understanding, representation, transformation, and

interpretation of user-generated operations.

TA has advanced the state-of-the-art techniques for the development of

collaborative systems. TA can be applied to a wide range of off-the-shelf

commercial single-user applications. Collaborative systems transparently

converted with the TA approach can not only support unconstrained collaboration

(e.g. concurrent work and relaxed WYSIWIS), but can also preserve the

conventional functionalities and interface features. Collaboration-specific

techniques (e.g. workspace awareness and session management techniques) can

also be integrated in TA-based systems. These benefits have not been seen in

existing collaboration-transparent systems. Moreover, TA is applicable in the

development of both collaboration-transparent and collaboration-aware systems.

Another contribution of this work is the TA-based collaborative system

architecture consisting of three components: (1) the single-user application, which

provides conventional single-user functionalities and interface features; (2) the

collaboration adaptor, which provides application-specific collaboration

capabilities; and (3) the generic collaboration engine, which provides application-

independent collaboration capabilities. The separation of single-user

functionalities from multi-user collaboration capabilities, and the separation of

application-specific collaboration capabilities from generic collaboration

capabilities in this three-layer system architecture help to reduce the complexity

of collaborative system design, and increase the modularity and reusability of

collaborative system components.

9.1.2. Extensions to the OT Technique

This thesis work discovered that the applicability of OT is dependent on the

addressing relationship among data objects in the shared document (accessed

from the API), but independent of the visual relationship among data objects

 187

(presented at the user interface), or the internal relationship among data objects

(defined by their class definitions). This discovery is significant because it not

only paved the way to apply OT to Word and PowerPoint, but also advanced our

understanding of the nature of OT, which may inspire new explorations and

applications of OT.

Moreover, this thesis has made important technical contributions to OT with

two extensions. The first contribution is the extension of the OT data model from

a single linear addressing space to XOTDM (eXtended OT Data Model): a tree of

multiple linear addressing domains, together with the (n, p) vector-based

addressing scheme and transformation functions. Another contribution is the

extension of OT, from supporting two primitive operations Insert and Delete, to

supporting arbitrary complex application operations. This extension consists of

two parts: one is a generic extension of the OT operation model to include a new

primitive operation Update; and the other is an application-specific OT extension,

which translates application-specific operations into generic primitive operations

for OT processing.

The basic OT technique was only able to support collaborative insertion and

deletion of plain text character. These extensions have leveraged it to a generic

collaboration technique which can be used to support unconstrained collaboration

on data structures and editing functionalities with complex semantics.

9.1.3. Advanced Adaptation Techniques for

Complex Application Semantics

This thesis work has contributed a package of advanced adaptation techniques for

complex data and operation models, including CoTable and CoGroup.

CoTable and CoGroup have extended the capability and applicability of the

basic TA approach, which is able to adapt common data and operation models

(e.g. rich format text editing and graphics editing). With the support of CoTable

and CoGroup, TA-based systems can support unconstrained collaboration on

 188

tables and graphic object grouping. Meanwhile, the applicability of the underlying

OT technique is also extended. With these techniques, OT can provide support for

collaborative table editing and graphic object grouping. Moreover, CoTable and

CoGroup have also enriched the knowledge of both TA and OT. CoTable

provides guidelines and demonstrations for adapting complex data models and

editing operations defined on these data models. CoGroup demonstrates

techniques for resolving AO-level conflicts and achieving desirable effects with

an extension to OT and the interaction between OT and adaptation layers.

Methodologies and ideas in these techniques can be reused to design adaptation

techniques for other complex data and operation models.

9.1.4. TA-Based Workspace Awareness

Technique

This thesis has also contributed a TA-based framework for supporting workspace

awareness called MOAF. Workspace awareness techniques have been well

developed and applied in collaboration-aware systems, but are difficult to be

applied in collaboration-transparent systems. Applying workspace awareness in

TA-based systems not only improves the usability, but also confirms the research

hypothesis. Furthermore, this technique has shown its innovative capabilities, not

seen in existing techniques.

The MOAF technique is able to accommodate different object association and

graphics representation requirements of workspace awareness features, so can be

used to support a wide range of workspace awareness features (e.g. telepointer,

radar view, etc). Moreover, it can be easily extended to support new workspace

awareness features. Most importantly, based on the capabilities of the underlying

TA and OT, MOAF-supported workspace awareness features are able to deliver

correct and precise workspace awareness information in the face of dynamic and

concurrent content and view changes.

 189

9.1.5. Experimental Prototype Systems

Another contribution of this research is the construction of two experimental

prototype systems – CoWord and CoPowerPoint. These two systems are

transparently adapted from off-the-shelf commercial single-user applications –

MS Word and PowerPoint. CoWord and CoPowerPoint not only support

unconstrained collaborative editing on Word and PowerPoint documents, they

also preserve the conventional functionalities and interface features of Word and

PowerPoint. Moreover, CoWord and CoPowerPoint have integrated a package of

collaboration-specific techniques, including detailed workspace awareness,

flexible session management, interaction control and interactive presentation.

CoWord and CoPowerPoint have achieved their major goals, which are to

verify the correctness and generality of the TA approach and to act as benches for

the development of other collaboration techniques. Meanwhile, they are also

useful collaborative editing systems on their own. These two systems have been

publicly demonstrated in major conferences and our web site. Voluntary users

from all over the world have used them in different application circumstances.

Moreover, the generic collaborative engine component can be directly reused in

building other TA-based systems. Many functional modules of CoWord and

CoPowerPoint collaboration adaptor can also be reused.

9.2. Future Work

This research has pioneered a new approach to building groupware systems. At

the same time, it raises a number of research issues worth exploring in the future.

The major future work is to extend the TA approach to more mainstream

commercial single-user applications, including web design systems, CAD and

CASE systems. We anticipate many challenges and opportunities ahead of us as

TA is applied to more and more new applications. Some interesting topics are

recommended below for future exploration:

 190

(1) Extensions to TA. The current TA framework and advanced adaptation

techniques are able to convert a range of frequently used functionalities by

adapting their data and operation models. While other single-user applications

may have different data and operation models, new adaptation techniques

need to be designed. With these new techniques, the generality and

applicability of TA and the underlying OT will be significantly extended.

(2) Exploring new collaboration features. New target single-user applications

have different functionalities and interface features from Word and

PowerPoint. When these functionalities and interface features are converted

into collaborative versions, innovative collaboration features may be

generated. The usefulness and management techniques of these features are

interesting research topics.

(3) Incorporation and improvement of collaboration-specific techniques. In

this research, a package of collaboration-specific techniques (e.g. workspace

awareness and session management techniques) have been extended and

incorporated into CoWord and CoPowerPoint. New TA-based systems may

have requirements on other collaboration-specific techniques, such as flexible

notification (Shen and Sun 2002; Patterson et al. 1996) and fine-grain optional

locking (Sun 2002b). Incorporating these techniques into TA-based systems

and applying them in novel collaboration tasks may raise requirements for

improving these techniques. Moreover, new TA-based systems can also be

used as benches to verify the usefulness and effectiveness of these techniques.

The usability study on TA-based systems is also an important future work. In

the near future, formal usability studies will be conducted on CoWord and

CoPowerPoint. These studies may cover a range of issues, including how easily

users could learn and use TA-based systems, which collaboration tasks users use

TA-based system to perform, which collaboration features are more helpful and

which are less, and which new features users hope to have. TA-based systems

integrate many collaboration techniques, so some usability issues are also

generally applicable to other groupware systems. Information collected in these

 191

studies can help improve both TA-related techniques and other collaboration

techniques.

 192

References

Abdel-Wahab, H. and Peit, M. 1991. “XTV: A framework for sharing x window

clients in remote synchronous collaboration”. In Proc. IEEE Tricomm. pp.

159–167, April 1991.

Ahuja, S. R., Ensor, J. R., and Lucco, S. E. 1990. “A comparison of application

sharing mechanisms in real-time desktop conferencing systems”. In Proc. the

Conference on office information Systems, pp. 238–248, April 1990.

Basili, V. R., Briand, L. C., and Melo, W. L. 1996. “How reuse influences

productivity in object-oriented systems”. Communication of ACM, 39(10), pp.

104–116, October 1996.

Baecker, R. 1992. “Groupware and computer-supported cooperative work”.

Morgan Kaufmann, 1992.

Baecker, R., Nastos, D., Posner, I., and Mawry, K. 1993. “The user-centered

iterative design of collaborative writing software”. In Proc. ACM

InterCHI”93 Conference on Human Factors in Computing Systems, pp.

399–405, April 1993.

Beaudouin-Lafon, M. and Karsenty, A. 1992. “Transparency and awareness in a

real-time groupware system”. In Proc. the 5th Annual ACM Symposium on

User interface Software and Technology, pp. 171–180, November 1992.

Begole, J., Smith, R. B., Struble, C. A., and Shaffer, C. A. 2001. “Resource

sharing for replicated synchronous groupware”. IEEE/ACM Trans. on

Network, 9(6), pp. 833–843, December 2001.

Begole, J., Rosson, M., and Shaffer, C. 1999. “Flexible collaboration

transparency: supporting worker independence in replicated application-

sharing systems”. ACM Transactions on Computer-Human Interaction, 6, 2,

pp. 95–132. June 1999.

 193

Bharat, K. A. and Cardelli, L. 1995. “Migratory applications”. In Proc. the Eight

Annual ACM Symposium on User Interface Software Technology, pp, 133–

142, December 1995.

Bly, S. A., Harrison, S. R., and Irwin, S. 1993. “Media spaces: bringing people

together in a video, audio, and computing environment”. Communication of

ACM, 36(1), pp. 28–46, January 1993.

Chen, D. and Sun, C. 1999. “A distributed algorithm for graphic objects

replication in real-time group editors”. In Proc. the International ACM

SIGGROUP Conference on Supporting Group Work, pp. 121 – 130,

November 1999.

Chen, D. and Sun, C. 2001. “Optional instance locking in distributed

collaborative graphics editing systems.” In Proc. the Eighth International

Conference on Parallel and Distributed Systems, pp. 109–116, June 2001.

Chen, D. 2001. “Consistency maintenance in collaborative graphics editing

systems”, PhD thesis, Griffith University, Australia, 2001.

Chung, G. and Dewan, P. 1996. “A mechanism for supporting client migration in

a shared window system”. In Proc. of ACM Symposium on User Interface

Software and Technology, pp. 11–20, November 1996.

Chung, G., Jeffery, K., and Abdel-Wahab, H. 1993. “Accommodating late comers

in shared window systems”. IEEE Computer, 26(1), pp. 72–74, January 1993.

CoWord Demo 2006. CoWord Demonstration Centre,

http://reduce.qpsf.edu.au/coword/, last accessed: February 2006.

CoPowerPoint Demo 2006. CoPowerPoint Demonstration Centre,

http://reduce.qpsf.edu.au/copowerpoint/, last accessed: February 2006.

Crowley, T., Milazzo, P., Baker, E., Forsdick, H., and Tomlinson, R. 1990.

“MMConf: an infrastructure for building shared multimedia applications”. In

 194

Proc. the ACM Conference on Computer-Supported Cooperative Work, New

York, pp. 329–342, November 1990.

Davis, A., Sun, C., and J. Lu. 2002. “Generalizing operational transformation to

the standard general markup language”, In Proc. the ACM Conference on

Computer-Supported Cooperative Work, pp. 58–67, November 2002.

Douglis, F. 1990. “Transparent Process Migration in the Sprite Operating

System”. PhD. Thesis, Technical Report UCB/CSD 90/598, CSD (EECS),

University of California, Berkeley, 1990.

Dourish, P. 1996. “Consistency guarantees: exploiting application semantics for

consistency management in a collaboration toolkit”. In Proc. the ACM Conf.

on Computer-Supported Cooperative Work, pp. 268–277, November 1996.

Dyck, J., Gutwin, C., Subramanian, S., and Fedak, C. 2004. “High-performance

telepointers”. In Proc. the ACM Conference on Computer-Supported

Cooperative Work, pp. 172–181, November 2004.

Edwards, W., K. 1994. “Session management for collaborative applications”. In

Proc. ACM Conference on Computer-Supported Cooperative Work, pp.

323–330, October 1994.

Ellis, C. A., and Gibbs, S. J. 1989. “Concurrency control in groupware systems”,

In Proc. ACM Conference on Management of Data, pp. 399–407, 1989.

Ellis, C. A., S. J. Gibbs and G. L. Rein. 1991. “Groupware: some issues and

experiences”. Communications of the ACM, 34(1): pp. 38–59, January 1991.

Elrod, S., Bruce, R., Gold, R., Goldberg, D., Halasz, F., Janssen, W., Lee, D.,

McCall, K., Pedersen, E., Pier, K., Tang, J., and Welch, B. 1992. “Liveboard:

a large interactive display supporting group meetings, presentations, and

remote collaboration”. In Proc. the SIGCHI Conference on Human Factors in

Computing Systems, pp. 599–607, June 1992.

 195

Engelbart, D. and English, W. 1968. “A research center for augmenting human

intellect”. In Proc. the Fall Joint Computing Conference, vol. 33, pp. 395–

410, December 1968.

Engelbart, D. 1975. “NLS teleconferencing features: The journal, and shared-

screen telephoning”. In Proc. the IEEE Fall COMPCON. IEEE, 173–176,

July 1975.

Forsdick, H. 1985. “Explorations in real-time multimedia conferencing”. In Proc.

the 2nd International Symposium on Computer Message Systems, pp. 299–

315, September 1985.

Fuller, D. A., Mujica, S. T., and Pino, J. A. 1993. “The design of an object-

oriented collaborative spreadsheet with version control and history

management”. In Proc. the ACM/SIGAPP Symposium on Applied Computing:

States of the Art and Practice, pp. 416–423, February 1993.

Garfinkel, D., Welti, B., and Yip, T. 1994. “HP SharedX: A tool for real-time

collaboration”. HP Journal 45(2), pp. 23–36, April 1994.

Gemmel, D.J. and Bell, C.G. 1997. “Noncollaborative telepresentation comes to

the age”. Communication of the ACM, 40(4), pp. 79–89, 1997.

Greenberg, S. 1990. “Sharing views and interactions with single-user

applications”. In Proc. the Conference on office information Systems, pp.

227–237, April 1990.

Greenberg, S. 1991. “Personalizable groupware: accommodating individual roles

and group differences”. In Proc. the European Conference on Computer-

Supported Cooperative Work (ECSCW), September 1991.

Greenberg, S., Gutwin, C., and Roseman, M. 1996. “Semantic telepointers for

groupwares”. In Proc. Australian Conference on Computer-Human

Interaction, pp. 54–61, November 1996.

 196

Greenberg, S., Roseman, M., Webster, D., and Bohnet, R. 1992. “Issues and

experiences designing and implementing two group drawing tools”. In Proc.

Hawaii International Conference on Systems Sciences, pp. 138–150, January

1992.

Greenberg, S., and Roseman, M. 1996. “Groupweb, a www browser as real time

groupware”. In Proc. Conference companion on Human factors in computing

systems: common ground, pp. 271–272, April 1996.

Greenhalgh, C. and Benford, S. 1995. “MASSIVE: a collaborative virtual

environment for teleconferencing”. ACM Transaction on Computer-Human

Interaction, (2)3, pp. 239–261, September 1995.

Groove Networks Inc. 20006. Groove Virtual Office.

http://www.groove.net/index.cfm/pagename/VirtualOffice/, last accessed

February 2006.

Grudin, J. 1994a. “Computer-supported cooperative work: Its history and

participation”. IEEE Computer, 27(5): 19–26.

Grudin, C. 1994b. “Eight challenges for groupware developers”. Communications

of the ACM, 37(1), pp. 92–105, January 1994.

Gutwin, C., Greenberg, S., and Roseman, M. 1996. “Workspace awareness

support with radar views”. In Proc. Conference on Human Factors in

Computing Systems, pp. 13–18, April 1996.

Gutwin, C. 1997. “Workspace awareness in real-time distributed groupware”.

PhD thesis, University of Calgary, Calgary, Canada, 1997.

Gutwin, C., Dyck, J., and Burkitt, J. 2003. “Using cursor prediction to smooth

telepointer jitter”. In Proc. ACM SIGGROUP Conference on Supporting

Group work, pp. 294–301, November 2003.

 197

Gutwin, C. and Greenberg, S. 1996. “Workspace Awareness for Groupware”. In

Proc. the Conference on Human Factors in Computing Systems, pp. 208–

209, April 1996.

Gutwin, C., Greenberg, S., Blum, R., and Dyck, J. 2005. “Supporting informal

collaboration in shared-workspace groupware”. HCI Technical Report 2005–

01, the Interaction Lab, University of Saskatchewan, Canada, 2005.

Gutwin, C. and Greenberg, S. 1999. “The effects of workspace awareness support

on the usability of real-time distributed groupware”. ACM Transaction on

Computer-Human Interaction, 6(3), pp. 243–281, 1999.

Gutwin, C. and Greenberg, S. 2002. “A descriptive framework of workspace

awareness for real-time groupware”. In Proc. ACM Conference on Computer

Supported Cooperative Work, 11, 3, pp. 411–446, July 2002.

Gutwin, C., Greenberg, S. and Roseman, M. 1996a. “Workspace awareness in

real-time distributed groupware: framework, widgets, and evaluation”. In

Proc. ACM Conference on Computer-Human Interaction, Springer-Verlag, pp.

281–298, 1996.

Gutwin, C., Greenberg, S., and Roseman, M. 1996b. “Workspace awareness

support with radar views”. In Proc. Conference on Human Factors in

Computing Systems, pp. 13–18, April 1996.

Gutwin, C., and Penner, R. 2002. “Improving interpretation of remote gestures

with telepointer traces”. In Proc. ACM Conference on Computer-Supported

Cooperative Work, pp. 49–57, November 2002.

Hill, J. and Gutwin, C. 2003. “Awareness support in a groupware widget toolkit”.

In Proc. the 2003 International ACM SIGGROUP Conference on Supporting

Group Work, pp. 258–267, November 2003.

 198

Ignat, C. and Norrie, M. 2003. “Customizable collaborative editor relying on

treeOPT algorithm”. In Proc. the European Conference of Computer-

Supported Cooperative Work, pp. 315–324, September 2003.

Ignat, C. and Norrie, M. C. 2004. “Grouping in collaborative graphical editors”.

In Proc. of Computer Supported Cooperative Work. pp. 447–456, November

2004.

Isaacs, E., A., Tang, J., C., and Morris, T. 1996. “Piazza: a desktop environment

supporting impromptu and planned interactions”. In Proc. ACM Conference

on Computer-Supported Cooperative Work, pp. 315–324, November 1996.

Isaacs, E.A., Morris, T. and Rodriguez, T.K. 1994. “A forum for supporting

interactive presentations to distributed audiences”, In Proc. ACM Conference

on Computer-Supported Cooperative Work, pp. 405–416, October 1994.

Iseminger, D. 2000. “Automation. COM+ Developer’s Reference Library”, vol. 4.

Redmond: Microsoft Press.

Jancke, G., Grudin, J., and Gupta. A. 2000. “Presenting to local and remote

audiences: design and use of the TELEP system”, In Proc. the SIGCHI

Conference on Human Factors in Computing Systems, pp. 384–391, April

2000.

Kanawati, R. 1997. “LICRA: A replicated-data management algorithm for

distributed synchronous groupware application”. Parallel Computing, 22, pp.

1733–1746, 1997.

Karsenty, A. and Beaudouin-Lafon, M. 1993. “An algorithm for distributed

groupware applications”. In Prof. 13th Conference on Distributed Groupware

Computing Systems, pp. 195–202, May 1993.

Karsenty, A., Tronche, C., and Beaudouin-Lafon, M. 1993. “Groupdesign: shared

editing in a heterogeneous environment”, Usenix Journal of Computing

Systems, 6(2), pp. 167–195, 1993.

 199

Knister, M. J. and Prakash, A. 1990. “DistEdit: a distributed toolkit for supporting

multiple group editors”. In Proc. ACM Conference on Computer Supported

Cooperative Work, pp. 343–355, October 1990.

Lamport, L. 1978. “Time, clocks, and the ordering of events in a distributed

system”. Communication of ACM, 21(7), pp. 558–565, July 1978.

Lantz, K. 1986. “An experiment in integrating multimedia conferencing”. In Proc.

the ACM Conference on Computer-Supported Cooperative Work. pp. 267–

275, December 1986.

Lauwers, J., Joseph, T. A., Lantz, K., and Romanow, A. L. 1990. “Replicated

architectures for shared window systems: A critique”. In Proc. the ACM

Conference on Organization Information Systems. pp. 249–260, March 1990.

Lauwers J. C. and Lantz. K. A. 1990. “Collaboration awareness in support of

collaboration transparency: Requirements for the next generation of shared

window systems”. In Proc. ACM CHI”90 Conference on Human Factors in

Computing Systems, pp. 303–311, April 1990.

Leland, M. D. P., Fish, R. S., and Kraut, R. E. 1988. “Collaborative document

production using Quilt”. In Proc. the Conference on Computer-Supported

Cooperative Work, pp. 206–215, September 1988.

Li, D. and Li, R. 2002. “Transparent sharing and interoperation of heterogeneous

single-user applications”. In Proc. the ACM Conference on Computer-

Supported Cooperative Work, pp. 246–255, November 2002.

Li, D. and Li, R. 2004. “Preserving operation effects relation in group editors”. In

Proc. the ACM Conference on Computer-Supported Cooperative Work, pp.

457–466, November 2004.

Li, R. and Li, D. 2005a. “A landmark-based transformation approach to

concurrency control in group editors”. In Proc. the ACM SIGGROUP

Conference on Supporting Group Work, pp. 284–293, November 2005.

 200

Li, R. and Li, D. 2005b. “Commutativity-Based Concurrency Control in

Groupware”. In Proc. The First International Conference on Collaborative

Computing: Networking, Applications and Worksharing (CollaborateCom

2005), December 2005.

Mehlenbacher, B., Hardin, B., Barrett, C., and Clagett, J. 1994. “Multi-user

domains and virtual campuses: implications for computer-mediated

collaboration and technical communication”. In Proc. the 12th Annual

international Conference on Systems Documentation: Technical

Communications At the Great Divide, pp. 213–219, October 1994.

Microsoft Corp. 2006a. Microsoft NetMeeting.

http://www.microsoft.com/netmeeting/, last accessed: February 2006.

Microsoft Corp. 2006b. Microsoft Word Objects.

http://msdn.microsoft.com/library/en-us/off2000/html

/wotocobjectmodelapplication.asp, last accessed: February 2006.

Microsoft Corp. 2006c. Microsoft Office. http://office.microsoft.com/, last

accessed February 2006.

Milojičić, D., Zint, W., Dangel, A., and Giese, P.1993. “Task Migration on the

top of the Mach Microkernel”. In Proc the third USENIX Mach Symposium,

pp. 273–290, April 1993.

Nardi, B. A. and Miller, J. R. 1990. “An ethnographic study of distributed

problem solving in spreadsheet development”, In Proc. the ACM Conference

on Computer-Supported Cooperative Work, pp. 197–208, October 1990.

NCSA 2005. NCSA Collage. http://archive.ncsa.uiuc.edu/SDG

/Software/XCollage/collage.html, last accessed October 2005.

Netopia Inc. 2006. Timbuktu. http://www.netopia.com/software/products/tb2/,

last accessed February 2006.

Newman-Wolfe, R. E., Webb, M. L., and Montes, M. 1992. “Implicit locking in

the Ensemble concurrent object-oriented graphics editor”. In Proc. ACM

 201

Conference on Computer-Supported Cooperative Work, pp. 265– 272,

November 1992.

Nguyen, D. and Canny, J. 2005. “MultiView: spatially faithful group video

conferencing”. In Proc. the SIGCHI Conference on Human Factors in

Computing Systems. pp. 799–808, April 2005.

Palmer, C., and Cormak, G. 1998. “Operation transforms for a distributed shared

spreadsheet”. In Proc. the ACM Conference on Computer-Supported

Cooperative Work, pp. 69–78, November 1998.

Poltrock, S. and Grudin, J. 1994. “Computer supported cooperative work and

groupware”. In Proc. Conference Companion on Human Factors in

Computing Systems, pp.355–356, April 1994.

Patterson, J., Day, M., and Kucan, J. 1996. “Notification servers for synchronous

groupware”. In Proc. the ACM Conference on Computer-Supported

Cooperative Work, pp. 122–129, November 1996.

Patterson, J. F., Hill, R. D., Rohall, S. L., and Meeks, S. W. 1990. “Rendezvous:

an architecture for synchronous multi-user applications”. In Proc. ACM

Conference on Computer-Supported Cooperative Work, pp. 317– 328,

September 1990.

Posner, I.R. and Baecker, R.M. 1992. “How people write together”. In Proc. 25th

Hawaii International Conference on System Sciences, pp. 127–138, 1992.

RealVNC 2006. RealVNC VNC, http://www.realvnc.com/, last accessed:

February 2006.

Ressel, M., Nitsche-Ruhland, D., and Gunzenhauser, R. 1996. “An integrating,

transformation-oriented approach to concurrency control and undo in group

editors”. In Proc. the ACM Conference on Computer-Supported Cooperative

Work, pp. 288–297, November 1996.

 202

Rodham, K. J., and Olsen D. R. 1994. “Smart telepointers: maintaining

telepointer consistency in the presence of user interface customization”. ACM

Transactions on Graphics, 13(3), pp. 300 – 307, July 1994.

Roseman, M. and Greenberg, S. 1992. “GROUPKIT: a groupware toolkit for

building real-time conferencing applications”. In Proc. the 1992 ACM

Conference on Computer-Supported Cooperative Work, pp. 43 – 50,

December 1992.

Roseman, M., and Greenberg, S. 1996a. “Building real-time groupware with

groupkit, a groupware toolkit”. ACM Transactions on Computer-Human

Interaction, 3(1), pp. 66–106, 1996.

Roseman, M. and Greenberg, S. 1996b. “TeamRooms: network places for

collaboration”. In Proc. of the 1996 ACM Conference on Computer Supported

Cooperative Work, pp. 325–333, March 1996.

Shen, H. and Sun, C. 2002. “A flexible notification framework for collaborative

systems”. In Proc. the ACM Conference on Computer-Supported Cooperative

Work, pp. 77–86, November 2002.

Shen, H. and Sun, C. 2004. “Improving real-time collaboration with highlighting”.

Future Generation Computer Systems, 20(4), May, 2004.

Silberhorn, H. 2001. “TabulaMagica – an integrated approach to manage complex

tables”, In Proc. the ACM Symposium on Document Engineering, pp. 68–75,

November 2001.

Stefik, M., Bobrow, D., Foster, G., Lanning, S., and Tatar, D. 1987. “WYSIWIS

revised: early experiences with multiuser interfaces”. ACM Transactions on

Office Information System, 5(2), pp.147–167, April 1987.

Stefik, M., Foster, G., Bobrow, D. G., Kahn, K., Lanning, S., and Suchman, L.

1987. “Beyond the chalkboard: computer support for collaboration and

problem solving in meetings”. Communication of the ACM, 30(1), pp. 32–47,

January 1987.

 203

Suleiman M., Cart M., and Ferrié J. 1997. “Serialization of concurrent operations

in distributed collaborative environment”. In Proc. the ACM International

Conference on Supporting Group Work, pp. 435–445, November 1997.

Suleiman, M., Cart, M., and Ferrie, J. 1998. “Concurrent operations in a

distributed and mobile collaborative environment”. In Proc. the IEEE

Fourteenth International Conf. on Data Engineering, pp 36–45, February

1998.

Sun, C. 2002a. “Undo as concurrent inverse in group editors”, ACM Transactions

on Computer-Human Interaction, 9(4), pp. 309–361, December 2002.

Sun, C. 2002b. “Optional and responsive fine-grain locking in Internet-based

collaborative systems”. IEEE Transactions on Parallel and Distributed

Systems, 13(9), pp. 994–1008, September 2002.

Sun, C. and Chen, D. 2002. “Consistency maintenance in real-time collaborative

graphics editing systems”. ACM Transactions on Computer-Human

Interaction, 9(1), pp. 1–41, May 2002.

Sun, C. and Ellis, C. A. 1998. “Operational transformation in real-time group

editors: issues, algorithms, and achievements”. In Proc. the ACM Conference

on Computer-Supported Cooperative Work, pp. 59–68, November 1998.

Sun, C., Jia, X., Zhang, Y. and Chen, D. 1998. “Achieving convergence,

causality-preservation, and intention-preservation in real-time cooperative

editing systems”. ACM Transaction on Computer-Human Interaction, 5(1):

pp. 63–108, March 1998.

Sun, C., Yang, Y., Zhang, Y., and Chen, D. 1996. “A consistency model and

supporting schemes for real-time cooperative editing systems”. In Proc. the

19th Australian Computer Science Conference, pp. 582–591, January 1996.

Sun, C., Xia, S., Sun, D., Chen, D., Shen, H. and Cai, W. 2006. “Transparent

adaptation of single-user applications for multi-user real-time collaboration”.

To appear in ACM Transactions in Human-Computer Interaction.

 204

Sun, D., and Sun, C. 2006. “Operation context and context-based operational

transformation”. To appear in the ACM Conference on Computer-Supported

Cooperative Work, November 2006.

Sun, D., Xia, S., Sun, C., and Chen, D. 2004. “Operational transformation for

collaborative word processing”, In Proc. ACM Conference on Computer

Supported Cooperative Work, pp. 437–446, November 2004.

Sun Microsystems Inc. 2006a. SunForum.

http://www.sun.com/desktop/products/software/sunforum, last accessed:

February 2006.

Sun Microsystems Inc. 2006b. StarOffice.

http://wwws.sun.com/software/star/staroffice, last accessed: February 2006.

Tang, J. C., and Minneman, S. L. 1990. “Videodraw: A video interface for

collaborative drawing”. In Proc. of ACM SIGCHI Conference on Human

Factors in Computing Systems, pp. 313–320, April 1990.

Tang, J. C., and Minneman, S. L. 1991. “VideoWhiteboard: video shadows to

support remote collaboration”. In Proc. ACM SIGCHI Conference on Human

Factors in Computing Systems, pp. 315–322, April 1991.

Vidot, N., Cart, M., Ferrie, J., and Suleiman, M. 2000. “Copies convergence in a

distributed realtime collaborative environment”. In Proc. ACM Conference on

Computer-Supported Cooperative Work, pp. 171–180, December 2000.

Wang, X. 1996. “Tabular abstraction, editing, and formatting”, PhD thesis,

University of Waterloo, Ontario, Canada, 1996.

WARP 2006. Wide Area Resource Programme (WARP), St Andrews University,

United Kingdoms. http://distsyst.dcs.st-and.ac.uk/warp/warp.html, last

accessed: February 2006.

Xia, S., Sun, D., Sun, C. and Chen, D. 2005a. “A collaborative table editing

technique based on transparent adaptation”. In Proc. the 13th International

 205

Conference on Cooperative Information Systems (CoopIS 2005), LNCS,

Springer Verlag, vol. 3760, pp. 576–592, November 2005.

Xia, S., Sun, D., Sun, C. and Chen, D. 2005b. “Supporting workspace-mediated

interaction in collaborative presentations with CoPowerPoint”. In Proc. The

First International Conference on Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom 2005), December 2005.

Xia, S., Sun, D., Sun, C. and Chen, D. 2005c. “Object-associated telepointer for

real-time collaborative document editing systems”. In Proc. The First

International Conference on Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom 2005), December 2005.

Xia, S., Sun, D., Sun, C. and Chen, D. 2005d. “Collaborative object grouping in

graphics editing systems”. In Proc. The First International Conference on

Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom 2005), December 2005.

Xia, S., Sun, D., Sun, C. and Chen, D. 2006. “An integrated session and

repository management approach for real-time collaborative editing systems”.

In Proc. the Fourth International Conference on Creating, Connecting and

Collaborating through Computing (C
5
 2006), January 2006.

Xia, S., Sun, D., Sun, C., Chen, D. and Shen, H. 2004a. “Leveraging single-user

applications for multi-user collaboration: the CoWord approach”. In Proc.

ACM 2004 Conference on Computer Supported Cooperative Work, pp. 162–

171, December 2004.

Xia, S., Sun, D., Sun, C., Chen, D. and Shi, Y. 2004b. “Interactive Presentation

with CoPowerPoint”. The Sixth International Workshop on Collaborative

Editing Systems, pp. 437–446, 6-10 November 2004.

Zhang, K., Pande, S. 2005. “Efficient Application Migration under Compiler

Guidance”. In Proc. 2005 ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems, pp. 11–20, June 2005.

 206

Index

Adapted Operation, 49

AOg, 100

AOt, 85

AOw, 129

AO-PO adaptation, 49

API, 35, 37, 42

API-AO adaptation, 49

architectures of groupware systems,

13

centralized architecture, 13

replicated architecture, 13

basic AO, 56

CA, 151

AO-PO Adaptation, 152

API-AO Adaptation, 152

LOH, 152

ROH, 153

AO Data Management, 154

CDRM, 157

CDRM client, 159

CDRM server, 157

CoGroup, 77

collaboration-aware, 183

collaboration-transparent, 26, 183

collaborative presentation, 168

combined effect, 90, 95

compatible relation, 94

component replacement, 5, 28

compound AO, 56

concurrency control, 16

floor control, 16

locking, 17

serialization, 17

Operational Transformation (OT),

18

conflict relation, 94

conflict relation triangle, 95

consistency maintenance, 15

consistency model, 15

CoPowerPoint, 9, 166

CoTable, 77

CoWord, 9, 161

CSCW, 3, 11

data model, 35, 40, 47, 63, 98

data-centric, 184

direct window-drawing, 122

display broadcasting, 27

event replay, 28

 207

externalities, 27

GCE, 151

OT, 155

WAC, 157

IC, 156

generic application-sharing, 26

glass pane, 123

graphics representation, 118, 122,

137

grouping operation, 93

groupware, 11

real-time systems, 12

non-real-time systems, 12

co-located systems, 12

distributed systems, 12

heterogeneity, 6, 30

image copy, 28

index-addressing scheme, 43

Interaction Control, 7, 156, 162

Action Control, 156

View Control, 156

irregular tables, 87

IRSM, 157

late-comer, 27, 183

linear addressing, 81

linear addressing domain, 39, 45, 63,

99

MOAF, 120, 157

MVSD, 75, 95

name-addressing scheme, 44

object association, 118, 120, 123

object association effects, 124

PRA, 124

RPP, 125

the local WA widget, 126

operation model, 35, 48, 74, 85, 100

OT-relevant parameters, 56

PPT-AO, 52

Repository View, 161

SA, 151

sequential interaction, 28

session management, 23

explicit session management, 23

implicit session management, 24

Session Management Panel, 159

Session View, 161

table data model, 79

table-centric, 91

transformation control algorithm, 19,

62

transformation function, 19, 62

IT, 19

ET, 20

Transparent Adaptation, 7, 8, 34, 189

data model adaptation, 36, 79, 98

 208

operation model adaptation, 48, 85

User Management Panel, 159

Word-AO, 50, 52

word-centric, 91

workspace awareness, 7, 9, 20, 117

multi-user scrollbar, 22, 142

radar view, 23, 139

telepointer, 22, 141

teleselection, 143

WYSIWIS, 5

XOTDM, 63

z-order, 44

	 Table of Content
	 List of Figures
	 List of Tables
	Abstract
	Chapter 1 Introduction
	1.1. Collaboration Awareness and Collaboration Transparency
	1.2. Scope of This Thesis
	1.2.1. Problem Statement
	1.2.2. Research Hypothesis
	1.2.3. Research Approach

	1.3. Summary of Contribution
	1.4. Dissertation Overview
	Chapter 2 Research Background
	2.1. CSCW and Groupware Overview
	2.2. Centralized and Replicated Architecture
	2.3. Consistency Maintenance
	2.3.1. Floor Control
	2.3.2. Locking
	2.3.3. Serialization
	2.3.4. Operational Transformation

	2.4. Workspace Awareness
	2.4.1. Workspace Awareness Information
	2.4.2. Widely-Used Workspace Awareness Features

	2.5. Session Management
	2.5.1. Explicit Session Management
	2.5.2. Implicit Session Management

	2.6. Collaboration Transparency
	2.6.1. Centralized Generic Application Sharing
	2.6.2. Replicated Generic Application Sharing
	2.6.3. Component Replacement
	2.6.4. Collaboration Transparency and Heterogeneity

	2.7. Summary

	Chapter 3 The Transparent Adaptation Approach
	3.1. Introduction
	3.2. The Data Model Adaptation
	3.2.1. Word Data Model Adaptation
	A Word Document from the User’s View
	A Word Document from the API’s View
	A Tree of Linear Addressing Domains for a Word Document

	3.2.2. PowerPoint Data Model Adaptation
	PowerPoint User Interface and API
	Addressing Slides in the Slides Sequence
	Addressing Graphic Objects inside Individual Slides
	Addressing Internal Structures of Individual Graphic Objects
	A Tree of Linear Addressing Domains for a PowerPoint Document

	3.3. The Operation Model Adaptation
	3.3.1. The Adapted Operation
	AO as the Vehicle for Representing and Propagating the User’s Interaction
	AO as the Bridge between the API and OT

	3.3.2. Defining AOs for Word and PowerPoint
	Adapting Word Operations
	Adapting PowerPoint Operations

	3.3.3. Event Interception and AO Generation
	3.3.4. AO-PO Adaptation
	3.3.5. AO-API Adaptation

	3.4. Summary

	Chapter 4 Extending Operational Transformation for Supporting TA
	4.1. Introduction
	4.2. Extending the OT Data Model
	4.2.1. Extending the OT Data Model
	XOTDM: an eXtended OT Data Model
	Addressing Data Objects

	4.2.2. Target-Domain Relationships among Operations
	4.2.3. Checking Target-Domain Relationships
	4.2.4. The VOT function
	4.2.5. Other Tree-Based OT Techniques

	4.3. Extending OT for Supporting Update
	4.4. Summary

	Chapter 5 Applying TA to Complex Application Data Structures and Operations
	5.1. The TA-Based Collaborative Table Editing Technique
	5.1.1. Collaborative Table Editing
	5.1.2. The Data Model Adaptation
	Table Data Models of Single-User Application APIs
	Table Data Model Adaptation Schemes
	Integrating the Table Data Model in Complex Documents
	Discussion

	5.1.3. Table Operation Model Adaptation
	5.1.4. Supporting Collaborative Table Editing in CoWord
	Special Issues in Word Table Data Adaptation
	Special Issues in Word Table Operation Adaptation

	5.1.5. Comparison to Other Collaborative Table Editing Techniques

	5.2. The Collaborative Graphic Object Grouping Technique
	5.2.1. Collaborative Graphic Object Grouping
	5.2.2. Conflict Resolution in the Presence of Grouping Operations
	Conflict Relations among Operations
	Combined Effects for Conflict and Compatible Operations

	5.2.3. The Data Model Adaptation for Graphic Objects
	5.2.4. The Operation Model Adaptation for Group Operations
	Basic AOs targeting Group-Objects
	Grouping AOg Representation
	Grouping AOg Translation
	Grouping AOg Conflict Detection
	Resolving Conflicts among Grouping Operations
	Achieving Combined Effects for Compatible Operations in the Presence of GroupAOg
	Grouping AO-PO Adaptation Algorithm

	5.2.5. Comparison to Other Collaborative Graphic Object Grouping Technique

	5.3. Summary

	Chapter 6 Supporting Workspace Awareness in TA-Based Systems
	6.1. Introduction
	6.2. Related Work
	6.2.1. Existing Object Association Schemes
	6.2.2. Existing Graphics Representation Techniques

	6.3. The MOAF Object Association Technique
	6.3.1. Object Association Effects
	Positional Reference Adjusting (PRA) Effect
	Relative Position-Preserving (RPP) Effect
	The Local WA Widget
	Discussion

	6.3.2. Adapting Workspace Awareness AO
	The Workspace Awareness AO Definition
	Adapting Data Object-Referring AOw in the TA Framework
	Extending OT to Transform Refer

	6.3.3. Achieving Object Association Effects
	Handling Concurrent Editing Operations
	Handling Subsequent Editing Operations
	Handling View Changes

	6.4. The MOAF Graphics Representation Technique
	6.5. Supporting WA Features with MOAF
	6.5.1. Radar View
	6.5.2. Telepointer
	6.5.3. Multi-User Scrollbar
	6.5.4. Teleselection
	6.5.5. Discussion

	6.6. Summary

	Chapter 7 The CoWord and CoPowerPoint Prototypes
	7.1. A TA-Based Collaborative System Architecture
	7.2. Components and Modules
	7.2.1. The Collaboration Adaptor
	7.2.2. The Generic Collaboration Engine
	Operational Transformation, Consistency Maintenance and Group Undo
	Interaction Control
	Workspace Awareness Control

	7.3. The Prototype System
	7.3.1. CDRM Server and Client
	7.3.2. CoWord
	Collaborative Word Processing
	Interaction Control
	Workspace Awareness Features

	7.3.3. CoPowerPoint
	Collaborative Slides authoring
	Collaborative Presentation

	7.4. Implementation Experiences
	7.5. Usage Feedback and Experiences
	7.5.1. Usage Feedback
	7.5.2. Usage Cases
	Collaborative Document Writing
	Collaborative Court Transcript Creating
	Collaborative Captioning

	7.6. Summary

	Chapter 8 Discussion
	8.1. Dealing with Problems Related to the Replicated Architecture
	8.1.1. Maintaining Application Consistency
	8.1.2. Managing Access to External Resources
	8.1.3. Accommodating Late-Comers

	8.2. Applicability to both Collaboration Awareness and Collaboration Transparency
	8.3. Suitability for Data-Centric Collaboration
	8.4. Requirements and Complexities
	8.4.1. Basic Requirements to the API
	8.4.2. Complexities of Adaptation Techniques

	Chapter 9 Conclusions and Future Work
	9.1. Summary of Contributions
	9.1.1. The TA Approach
	9.1.2. Extensions to the OT Technique
	9.1.3. Advanced Adaptation Techniques for Complex Application Semantics
	9.1.4. TA-Based Workspace Awareness Technique
	9.1.5. Experimental Prototype Systems

	9.2. Future Work

	 References
	Index

