LEVERAGING SINGLE-USER APPLICATIONS FOR
MULTI-USER COLLABORATION

By
Qian Xia

A DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT OF
THE DEGREE OF
DOCTOR OF PHILOSOPHY

AT
THE SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY
FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY
GRIFFITH UNIVERSITY
BRISBANE, QLD 4111, AUSTRALIA
MARCH 2006

© Copyright by Qian Xia, 2006

GRIFFITH UNIVERSITY

Date: March 2006

Author: Qian Xia
Title: Leveraging Single-User Applications for Multi-User Collaboration

Department: School of Information and Communication Technology

Degree: Ph.D. Year: 2006

I declare this work has not previously been submitted for a degree or diploma in
any university. To the best of my knowledge and belief, the thesis contains no material
previously published or written by another person except where due reference is made

in the thesis itself.

Signature of Author

11

Table of Content

TABLE OF CONTENT I
LIST OF FIGURES VI
LIST OF TABLES VI
LIST OF TABLES VIII
ABSTRACT 1
CHAPTER 1 INTRODUCTION 3
1.1. COLLABORATION AWARENESS AND COLLABORATION TRANSPARENCY ...c.ccovvevvievreneeennens 3
1.2. SCOPE OF THIS THESIS ..ttt eteeeteeeteeete ettt et et eteeeaeeeas e eneseneeeaeeeteeseenseenseensesssestsesseenseanees 4
1.2.1. Problem SEAtEIMIENL.cccooooeeeeeeeeeeeeeeee e e 4
1.2.2. RESCAIrCH HYDOUNECSISttt 6
1.2.5 ROSCAICH APDIOACHcceeeee oottt 7

1.3. SUMMARY OF CONTRIBUTIONceeetiietietieeeeeteeeteeeteeeteeseseeeeneseseeeseeeseenseensesnsesssesssesssesseenssenes 8
1.4. DISSERTATION OVERVIEW ...cuviiviitiieeeeteeeteeeteeeteeeeeeeeeeeeteeeseeseeseenseeseesssesseenssenessnsseseesseenns 10
CHAPTER 2 RESEARCH BACKGROUND 11
2.1. CSCW AND GROUPWARE OVERVIEWvtiuiiuieieteeeeeteeteeeeeeeeeeeeseeseereeseeneensesessessseseeneenea 11
2.2. CENTRALIZED AND REPLICATED ARCHITECTURE . uuvvtteeeeteeeeeeeeeeeeeeeeeeeeeeesseseesesesesssereees 13
2.3. CONSISTENCY MAINTENANCEcuvtitieiteeeteeete et eeeeteeeteeeteeeteeeeeneeeseeeteeeseensesnseensesseesseeseennas 15
2.5.1. FIOOF COMEEOL. ... e 16
2.3.2. LOCKITIG ... ettt 17
2533 SOITALIZATTON. ... e et 17
2.54. Operational TranSIOFTIIATION.cc.oeccueeeeeeeee e 18

2.4, WORKSPACE AWARENESScviittiteeteeteeeteeeteeeteeetseeseaeeeveeeseeseenseenssessesssesssensseneseneseneeeseenns 20
24.1. Workspace Awareness [NIOITIALION.ccc..oeeeeeeeeeeeeeeeeee e 21
2.4.2. Widely—-Used Workspace Awareness Featuresc..ccoccveeveeeeeecneennns 22

2.5. SESSION MANAGEMENTuoouieiiteeteeteete et eteeeeeeeeeseeseereeseeseeseesseseeseeseeseeseensessensesessseseeseeneas 23
2.5.1. EXplicit S€SS100 MANAGEOIMIECILc..coceeeeeeeeeeeeeeeee et 23
2.5.2 Implicit S€SSION MANAQOIIOCIILcceeeeeeeeeeeee et 24

2.6. COLLABORATION TRANSPARENCY ...ooiuiiitiitietieteeeeeeteeeteeeteeeeeeeeeaeeeseeeseenseenseessesssesseenssanens 25
2.6.1. Centralized Generic Application SAAIINGc..cccccceeeeeieeiieeeiieiieeeeeeeeeenns 26
2.6.2. Replicated Generic Application SHArINgGccccccoveiveeeeeeeeeeeeeeeeeeeeeeeeeennn 26
2.6.5 Component REPIACEITICIITcocc.eeeeeeee et 28
2.6.4. Collaboration Transparency and Heterogene itycweccveeereeereveeneneen. 29

2.7. SUMMARY ettt ettt ete ettt e ee e eteeeteeeteeeaeeaseneseaeeeseeeseenseenseeseeeseeatseeteeaeeneseneeereeereenns 30
CHAPTER 3 THE TRANSPARENT ADAPTATION APPROACH 33
3.1. INTRODUCTIONuvitviteeteeteeteete et et eeeeeteeteete st eee et eseeseeseeseeseereeseenseseeseeseeseeseeneenseseeseereereens 33
3.2. THE DATA MODEL ADAPTATIONuuiiitiiiiieeeiieeeieeeeeeeeeeeeeeeteeeeeeeeateeeteseeeseseaseesnsesennessnne e 35
321 Word Data Mode] AGADIALION.cc.ooeeeeeeeeeeeeeee e 35
322 PowerPoint Data Model AADLATION.............c.c.c.ooeeeeeeeeeeeeeeeeeeeeeeee e 40

111

3.3. THE OPERATION MODEL ADAPTATIONotiiuiiitiitieeeeeeeeeeeteeeteeeeeeeeesneesaeeseeesasessensesnnesnnens 47

33 1. ThE AAADIEA ODOEATION.coeeeeeeeeeeeeeeeeeeeeeeeeeee e 47
352 Defining AOs for Word and POWEIEPOINE............ccccoveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 49
3.3.3. Event Interception and AO GENEIatION............c.cccccveieeeeeceeeceeeeeeeeeeeeeeieenn 52
3.3.4. AO=PO AGADLALION. ...t 56
3.3.5. AO=APT AAADEALION ... 58
3.4. SUMMARY ovtiviteetetietete ettt eet ettt ettt et ete et et ete et easeseesessese et easessesessessete s essetessensatesenseseesenserenne 59
CHAPTER 4 EXTENDING OPERATIONAL TRANSFORMATION FOR SUPPORTING TA
62
4.1. INTRODUCTIONotiutitieteete et eteet et et eteete vt ete s eseeseeteeteesseseessessesesseeseessessessessensesseesesseeaea 62
4.2. EXTENDING THE OT DATA MODELcoviitiitieeieeeeeeeeeeete e enes 63
4.2.1. Extending the OT Data MOdel...................cccccooeveiieociieiieiieeeeeeeeeeeeeeeeeeeenn 63
4.22. Target—-Domain Relationships among ODEIrationsccooueeeeveeeeeeeereeenenenn. 67
4.2.5. Checking Target—Domain RelationSAIDSocoeeeceveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 69
4.2.4. THE VOT FUNCHON. ... 71
4.2.5. Other Tree—-Based OT TECHANIGUESc..ccccoueceeeeeieieiieeeeeeeeeeeeeeeeen 73
4.3. EXTENDING OT FOR SUPPORTING UPDATEcuveouietiereereeeeeeeeeeeeeeeeteee et ereeeeveeneese e eneenes 74
4.4. SUMMARY ovttitetteteeteteete ettt ettt ettt ete et st ete et easeseesesseseesessesseseasessete s essesessesseresenseteesenseseane 75

CHAPTER 5 APPLYING TA TO COMPLEX APPLICATION DATA STRUCTURES AND
OPERATIONS 77

5.1. THE TA-BASED COLLABORATIVE TABLE EDITING TECHNIQUEc..coveveeeieeeeeereenene 78
5.1.1. Collaborative Table EGITITGc.ccccccooeecieeieeeeeeeeeeeeeeeeee e 78
5.1.2 The Data Mode]l AGADIATTIONc.coeeeeeeeeeeeeeeeeeeeeeeeeeeee e 79
5.1.5 Table Operation Model AQADIALION.ccccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 84
5.1.4. Supporting Collaborative Table Editing in CoOWord..........ccoouvveeeeeeeiiveennnn. 87
5.1.5. Comparison to Other Collaborative Table Editing Techniques.................. 91

5.2. THE COLLABORATIVE GRAPHIC OBJECT GROUPING TECHNIQUE.....ccocovevverveeeieereereenee. 92
5.2 1. Collaborative Graphic ObJeCt GIOUDIIGocoeeeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 92
522 Conflict Resolution in the Presence of Grouping Operations...................... 93
5.2.5. The Data Model Adaptation for Graphic OBJECES..........ocvceeeeeeeeeeeeeeeseeeeean, 98
5.2.4. The Operation Model Adaptation for Group Operations........................... 100
5.2.5. Comparison to Other Collaborative Graphic Object Grouping Technique

111
5.3. SUNMMARY .evtivieietieteteeeeteteeeeseseteetesseseesessessesessessesassessesessessesessessesassassesassessesassessasessessasens 114

CHAPTER 6 SUPPORTING WORKSPACE AWARENESS IN TA-BASED SYSTEMS....116

6.1. INTRODUCTIONcviutitieteete et etteet et et ettt et et et e eseeteeaeeteessesseseesessseteessessessensesesteereeeeens 116
6.2. RELATED WORK ...tiitieti ettt ettt ettt et et ettt eveeave et e easestsesraesteeseenneennas 119
0.2.1. Existing Object ASSOCIALION SCHCINES..........c..cccoevueeeeeieeeeeeeeeeeeeeeeeee e 119
6.22. Existing Graphics Representation TECANIQUEScccoeeeeeeveeeeeeeeeeeean, 121
6.3. THE MOAF OBJECT ASSOCIATION TECHNIQUEcoievevieriireerereereeeeriereeereeseeseveesesseneenas 122
6.5 1. ODbJeCt ASSOCIALION ETTOCES ... oo 122
0.3.2. Adapting Workspace Awareness AQ..........ccccoccueiiceeeeieeeieeeeeeeeeeeeeeen 127
0.3.5. Achieving Object ASSOCIAtION EITECES........c..ccocoiieiiceieeeeiceeeeeeeeeeeeeeeeeen 132
6.4. THE MOAF GRAPHICS REPRESENTATION TECHNIQUEc.coveeveeieereeeeereeeeeeeeeereeeeeeenes 136
6.5. SUPPORTING WA FEATURES WITH MOAF ... 137
0.5.1. RAGAE VIEW .o et 137

v

6.5.2. T CIODOIIIECE ... e 140

0.5.5. MUItT=USEE SCIOIIDAL ... 140
0.5.4. T OICSCICCEION ... 141
0.5.5. DISCUSSIOI. ...ttt 145
6.6. SUMMARY ottt ettt ettt et e et e ete e et e e e s e eaeeteeseeseeseene et e eseeseeseeseeseeneeseeneeteareereas 146
CHAPTER 7 THE COWORD AND COPOWERPOINT PROTOTYPES 148
7.1. A TA-BASED COLLABORATIVE SYSTEM ARCHITECTURE ...cvevvieveeveeeeeeeeeeeeeeveereee e 148
7.2. COMPONENTS AND MODULESuiitiotietieteeteeieeteete ettt ettt et ts e eas s eaeeaeeveeae e 150
7.2.1. The Collaboration AGAptOr..............cccccocveeiieiieiieeeeeeeeeee e 150
7.2.2 The Generic Collaboration ENGINE............c.cccccceoveeceecieeeeeeeeieeeeeeeeee e 153
7.3. THE PROTOTYPE SYSTEM...c.viutitiieeietieteeeetiiseeeesessessesessessesessessesessessesessessessssessessssessessssenes 155
7.3 1. CDRM Server and CHENL...............ccccooeeceeeeeeeeeeeeee e 155
7.3.2 COWOEF. ...t 159
7.3.3. COPOWEEPOINIE ... ettt 163
7.4. IMPLEMENTATION EXPERIENCEStetteee et et eeee e eeeeeeeeeeeeeeeeeseeseeeeeeeeesaesseeeeeeeeeas 167
7.5. USAGE FEEDBACK AND EXPERIENCESottteeuteeieeeteeeeeeeeeeeeeeeeeeeeeeseaeeeeeeaeeeseeneeeseraeeesens 168
7.5.1. USBQE FOOADACK.coeeeeeeeeee e 169
7.5.2. USBGEO CASOS. ..o et 170
7.6. SUMMARY ettt e e ete et et e et e eteeteeseeseeseene et e eseeseeseeseesseneeseeseeseereeneas 174
CHAPTER 8 DISCUSSION 176
8.1. DEALING WITH PROBLEMS RELATED TO THE REPLICATED ARCHITECTURE 176
81.1. Maintaining Application CONSISLEIICYcocuuiieeeeeeeeeeeeeeeee e 176
8.1.2. Managing Access (0 EXternal RESOUICES w......ouueeueveeeeeeseeeeeeeeieeeeeeeeeeeeeeen. 177
8.1.5. Accommodating LAt@ —COmIOLESoooeeeeeeee e 180

8.2. APPLICABILITY TO BOTH COLLABORATION AWARENESS AND COLLABORATION
TTRANSPARENCY ...ttt ettt ettt e et e e e e e e e aeee e e et e e eeaaeeseeaaeeesaaeeeeeaaseeseeneeesaaeeessaaseeseersaeesasaeeees 180
8.3. SUITABILITY FOR DATA—CENTRIC COLLABORATIONeoutiuvititeeeeeeeeeeeeeeeeeeeereeneeneeneeneas 181
8.4. REQUIREMENTS AND COMPLEXITIEScciiuietteieieeteeteeteeteeveeneeseeseeseeseeseessessessesseeseasseneas 183
8.4.1. Basic Requirements (0 tHE AP ... 183
8.4.2. Complexities of Adaptation TECANIQUESc..cccccoveeeceeeceeiceeieiieiieeen, 183
CHAPTER 9 CONCLUSIONS AND FUTURE WORK 185
9.1. SUMMARY OF CONTRIBUTIONSuiviutetiteeeetecteeeeteeteeeeteeseseesessessesessessesessessesessessesessenseseass 185
9.1.1. THE TA ADDEOACH. ... et 185
9.1.2 Extensions (0 the OT TEOCANIQUEcccouveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 186
9.1.5. Advanced Adaptation Techniques for Complex Application Semantics. 187
91.4. TA-Based Workspace Awareness TOCHAMIQUEcccoeeeeeeceeeeeeeieeenen, 188
9.1.5. Experimental ProtOtyDe SYSECITIS. ..o 189
9.2. FUTURE WORK ..ottt ettt ettt ettt ettt ettt et e eaeeteeaeeaeensensenseseeseeseeseas 189
REFERENCES 192
INDEX 206

List of Figures

Figure 2.1 The centralized archit@Ctures.coeoveeeiierieeiiieniieieece et 13
Figure 2.2 The replicated architeCture.cceeevviieiiieciiiecieeeee e 14
Figure 3.1 The user’s view and the adapted API’s view of a Word document. 36
Figure 3.2 A tree of linear addressing domains for a Word document. 39
Figure 3.3 The user's views and the API's view of a PowerPoint document.................. 41
Figure 3.4 A tree of linear addressing domains for a PowerPoint document.................. 46
Figure 3.5 Three layers in Word operation adaptation.............cccceeveerciienienieencenneennen. 50
Figure 3.6 Three layers in PowerPoint operation adaptation.ccccceeveevcvveenneeennnenn. 52
Figure 3.7 Intercepting keyboard events and generating the Ins_ Text AO in CoWord. 53
Figure 4.1 The XOTDM tree: an eXtended OT Data Model.ccceevevveivcieenieennnnen. 64
Figure 4.2 Concurrent operations in multiple domains of a CoPowerPoint document.. 68
Figure 4.3 Checking the target-domain relationship.cccceeevvieeiiiieecciieccieeeee e, 70

Figure 4.4 A wrapper OT function for transforming operations with vector addresses. 71
Figure 5.1 Table-related data models in APIs of different single-user applications. 80
Figure 5.2 Integrating the table into the global addressing space of the complex

AOCUIMENL.. ..oiiiiiiiiiiii ettt et st 83
Figure 5.3 Handling irregular tables and its effects on the data model.......................... 87
Figure 5.4 Effects of vertical cell merge on the user interface and data model. 88
Figure 5.5 Preserving the regularity effects of Ins Row and Ins_Col AO..................... 90
Figure 5.6 Combined effects between graphics editing operations.............ccceeeveeeeveenne. 96
Figure 5.7 An example for illustrating the combined MVSD effect of two conflict
GTOUP OPCTALIONS. ..vveeevieeiiieeiiieeitieeeireeetteestteesteeessteeessseeensseesnsseeansseesssneessseeensseesnsseens 98
Figure 5.8 The group objects data model..ccceeiiiiiiiiiiiniiiee e, 98
Figure 5.9 A scenario of three conflict ChangeAttAOyg.c.ccceoveveiriiicininiiiiins 101
Figure 5.10 Effects of GroupAO, and UngroupAQO........ccccceveririniniriiieieieniennn. 102
Figure 5.11 The routines for detecting grouping AO conflicts.cccceevvercreeriennnenn. 105
Figure 5.12 The routine for resolving conflicts among GroupAOQs,............ccccceueunee. 107
Figure 5.13 The routine for achieving combined effects for GroupAO, and
DeleteObJAOg.c.coviiiiiiiiiiiiiiic e 109
Figure 5.14 The routine for achieving combined effects for UngroupAQO, and
ChangeAttAQ, (targeting the group-object).ccoeveriieiiiiinininiiinieccceee 110
Figure 5.15. The routines for AO-PO adaptation in the presence of grouping AOs.... 111
Figure 6.1 The PRA effect.......cooiiiiiiiieeeee e 123
Figure 6.2 The RPP effect.. ...coooiiiiiieiieieeeeeeee e 124
Figure 6.3 The RPP effect when the telepointer is in a blank area.............cccceeveenneen. 124
Figure 6.4 The virtual local cursor for tracking the associated objectc..ccueene.n. 125
Figure 6.5 IT functions for the Refer operation...........ccccoeeueeiiiiiiiniiiiiinieceieeee 131
Figure 6.6 A scenario of achieving the RPP effect with the relative ratio position
PATAIMICTETS ... ettt ettt ettt ettt et e ettt e et e e et e e eateeeabbeeeabbeeeabbeeeabaeesabbeesabbeesabaeesabeeenas 132

vi

Figure 6.7 A scenario for preserving the object-associated effects in the face of view

CRANEE ...ttt ettt ettt e bt e st e e bt e ete et e e ate e b nee 135
Figure 6.8 The radar VIEWSccceeeiieiiiiiiieiieeie ettt ettt eveeseeebeessaeenneen 138
Figure 6.9 The telePOinter.cooiuiiiiiiiieeieeie ettt 140
Figure 6.10 The multi-user SCrolIDar.c.ccovveeiieiieiiieieeieecie et 141
Figure 6.11 The teleSelection.cocuieiuieiiiiiiieiiieie et 143
Figure 7.1 The TA-based collaborative system architecture.ccccceeeveeerierveennenn. 149
Figure 7.2 The architecture, components and modules of CoWord...........c.cccoceeeenene 151
Figure 7.3 The user interface of CDRM SEIVET.cceecuiieiieriieeiieniieeieeeie e 156
Figure 7.4 The user interface of CDRM client..........c.cccoceeviriiiniininiiniinicicnicneeens 157
Figure 7.5 The CoWord Control Panel.............cccccviviiiiiiiniieiiecieeieciecee e 161
Figure 7.6 Workspace awareness features of CoWord.........ccccceceviiniiiiniicniincnicnnen. 162
Figure 7.7 The CoPowerPoint Control Panel.c.ccccooviiiriiiiieniiieiiecieeeceeeiee 167

Vil

List of Tables

Table 2.1 The time and space matrix of groupware SyStems..........cceecveereeerieeneeesieennnenn 12
Table 2.2. Composition of workspace awareness information..............cccceeeeveerereeneennen. 21
Table 5.1. AO; ClassIfiCatION.coooviiiiiiiiiiii 86
Table 5.2. The conflict relation triangle of five operation types.ccccecvevveereieeveennen. 95
Table 5.3. Conflict relation triangle of five operation types in Ignat and Norrie (2004).

.. 112

viil

Acknowledgement

First of all, I would like to express my deepest gratitude to my supervisor, Prof.
Chengzheng Sun. He has looked after me throughout my PhD study period. He offered
enlightening and insightful ideas in my research project, offered critical but helpful
comments on my results, offered encouragement in times of difficulties, and offered
valuable advice in my living. More importantly, his spirit in hardworking and pursuing
academic excellence has significantly affected my attitude to my study and work. What
I have leaned from him has not only helped me complete my PhD study, but will also

help me in my academic career in the future.

I would also like to thank my supervisor Dr. David Chen. He is an important mentor
and friend, who has helped me in many aspects, including providing inspiring ideas for
my research, helping me revise papers and thesis and arrange my academic activities.
Without his help, I should have encountered many more difficulties. I would also like to
thank my associated supervisor, Prof. Geoff Dromey, who has also offered me generous

help.

Furthermore, I would like to thank colleagues in my groups, including David Sun,
Jingzhi Guo, Haifeng Shen and Kevin Lin. I have gained a lot through cooperative work

and discussion with them.

No words could express how much I am indebted to my family. My parents have
done everything they could to help me accomplish my study. My father, who sadly
passed away in the last stage of my PhD study, did not see me gaining the degree. I
believe my completing this thesis is the best gift for him. I also owe a lot to my wife.
She accompanied me in these years, perfectly arranging my everyday living, which
allowed me to focus on my study and research. Without her strong support and

passionate love, I could not have finished this thesis.

X

Publications Derived from This

Research

Sun, C., Xia, S., Sun, D., Chen, D., Shen, H. and Cai, W. “Transparent adaptation of
single-user applications for multi-user real-time collaboration”. To appear in ACM

Transactions in Human - Computer Interaction.

. Xia, S., Sun, D., Sun, C. and Chen, D. 2006. “An integrated session and repository
management approach for real-time collaborative editing systems”. In Proc. the Fourth
International Conference on Creating, Connecting and Collaborating through

Computing (C5 2006), January 2006, University of California, Berkeley, USA.

. Xia, S., Sun, D., Sun, C. and Chen, D. 2005. “Collaborative object grouping in graphics
editing systems,” In Proc. The First International Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom 2005),
December 2005, San Jose, CA, USA.

. Xia, S., Sun, D., Sun, C. and Chen, D. 2005. “Object-associated telepointer for real-
time collaborative document editing systems”. In Proc. The First International

Conference on Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom 2005), December 2005, San Jose, CA, USA.

. Xia, S., Sun, D., Sun, C. and Chen, D. 2005. “Supporting workspace-mediated
interaction in collaborative presentations with CoPowerPoint”. In Proc. The First
International Conference on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom 2005), December 2005, San Jose, CA, USA.

. Xia, S., Sun, D., Sun, C. and Chen, D. 2005. “A collaborative table editing technique
based on transparent adaptation”. In Proc. The 13th International Conference on
Cooperative Information Systems (CooplS 2005), LNCS, Springer Verlag, vol. 3760,
pp. 576 - 592, November 2005, Agia Napa, Cyprus.

7. Xia, S., Sun, D., Sun, C., Chen, D. and Shen, H. 2004. “Leveraging single-user
applications for multi-user collaboration: the CoWord approach”. In Proc. ACM 2004
Conference on Computer Supported Cooperative Work, pp. 162 - 171, November 2004
Chicago, IL USA.

8. Sun, D., Xia, S., Sun, C. and Chen, D. 2004. “Operational transformation for
collaborative word processing”. In Proc. ACM 2004 Conference on Computer

Supported Cooperative Work, November 2004, Chicago, IL USA.

9. Xia, S., Sun, D., Sun, C., Chen, D. and Shi, Y. 2004 “Interactive Presentation with
CoPowerPoint”. The Sixth International Workshop on Collaborative Editing Systems,
pp. 437 - 446, November 2004, Chicago, IL USA.

X1

Abstract

People rely on off-the-shelf commercial single-user software systems in their
daily lives and work to perform single-user tasks. People also need groupware
systems to perform collaborative or group tasks. The goal of this thesis work is to
develop innovative techniques for building computer applications that combine
conventional single-user functionalities with advanced collaboration capabilities

to effectively support people’s individual and group work.

This thesis work contributes an innovative Transparent Adaptation (TA)
approach and associated supporting techniques that can be used to convert
existing or new single-user applications into real-time multi-user collaborative
versions without changing their source code. The transparently adapted
collaborative systems not only support unconstrained collaboration and other
collaboration features that were previously seen only in advanced groupware
research prototypes, but also maintain the conventional functionalities and
interface features that were previously seen only in commercial off-the-shelf
single-user applications. Major technical contributions of the TA approach
include techniques for adapting the single-user application programming interface
to the data and operation models of the underlying generic collaboration

technique and a generic system architecture for collaborative systems.

The Operation Transformation (OT) technique has been chosen as the
underlying collaboration technique for the TA approach due to its capability of
supporting unconstrained collaboration and application independence. This thesis
work has also made important contributions to OT by extending OT from
supporting only collaborative plain text editing to supporting collaboration on

complex data structures and comprehensive functionalities.

To support the adaptation of complex data and operation models in a range of
applications, this thesis work has contributed a package of advanced adaptation
techniques for collaborative table editing and graphic object grouping. These
techniques have not only increased the capability of TA, but have also advanced

the state-of-the-art of collaborative editing techniques.

To facilitate natural and smooth collaboration, this thesis work has contributed
a multi-functional workspace awareness framework which is able to reduce the
effort for developing workspace awareness features, and to be extended to support
new workspace awareness features. Most importantly, this framework is able to
deliver correct and precise workspace awareness information in the face of
dynamic content and view changes in TA-based systems, which is an innovative

feature unavailable in existing techniques.

The TA approach and supporting techniques were developed and tested in the
process of transparently converting two commercial off-the-shelf single-user
applications - Microsoft Word and PowerPoint - into real-time collaborative

applications, called CoWord and CoPowerPoint, respectively. CoWord and
CoPowerPoint not only retain the functionalities and the “look-and-feel” of their
single-user counterparts, but also provide advanced multi-user collaboration
capabilities for supporting multiple interaction paradigms, ranging from
concurrent and free interaction to sequential and synchronized interaction, and for
supporting detailed workspace awareness, including multi-user tele-pointers and
radar views. The TA-based collaborative system architecture and the generic
collaboration engine software component developed from this work can be reused

in adapting a wide range of single-user applications.

Chapter 1
Introduction

Living in a social environment, people’s everyday activities, including work,
study and play, inevitably involve collaboration with others. As important tools
for assisting people in complex tasks in the modern society, computer-based
software systems also need to provide sufficient support to facilitate and enhance
collaboration. These needs draw interests of social and computer scientists into a
multi-disciplinary research field called Computer-Supported Cooperative Work
(CSCW), which ranges from sociological analyses and anthropological
descriptions on how people work in groups to the technological foundations of
computer systems for supporting group work (Poltrock and Grudin 1994). These
computer-based systems that support groups of people engaged in a common task
(or goal) and that provide interfaces to shared environments are called groupware

systems (Ellis et al. 1991).

This thesis explores technical issues about groupware systems that support
geographically distributed users to work collaboratively in real time. In particular,
it deals with the approach to leveraging single-user applications into real-time
collaborative versions. The rest of this chapter describes the context of this

research, the scope of this thesis and a summary of contributions.

1.1. Collaboration Awareness and
Collaboration Transparency

Real-time groupware systems are built in two approaches: collaboration

awareness and collaboration transparency (Lauwers and Lantz 1990). With the

collaboration-aware approach, groupware systems are developed especially for
the purpose of supporting collaboration and collaboration mechanisms are
internal to and aware by these systems and their designers. With the
collaboration-transparent approach, on the other hand, groupware systems are
based on existing (or new) single-user applications and collaboration mechanisms

are external to and unaware by these applications and their designers.

Although it seems natural to develop special groupware systems to support
collaboration, most existing collaboration-aware systems remain research
prototypes, whose main purpose is to demonstrate novel collaboration techniques.
Compared with off-the-shelf commercial single-user applications, functionalities
of collaboration-aware systems for supporting conventional single-user activities
(e.g. word processing, spreadsheet editing and graphics editing) are quite limited.
Therefore, collaboration-transparent systems also play an important role in
supporting collaboration. A significant advantage of collaboration-transparent
systems is that they allow users to collaborate with their familiar single-user
applications. This relieves users from the burden of learning new collaborative
systems. As pointed out by Grudin (1994b), “who would abandon their favorite
word processors to use a co-authorship application?” Moreover, by adding
collaboration functionalities to existing single-user applications, the effort for

developing groupware systems is significantly reduced.

1.2. Scope of This Thesis

1.2.1. Problem Statement

Existing collaboration-transparent approaches suffer from a series of problems,
which prevent them from having comparative collaboration capabilities as

collaboration-aware approaches.

Early collaboration-transparent systems, including NLS (Engelbart 1975),
MMConf (Forsdick 1985; Crowley et al. 1990), Dialogo (Lantz 1986; Lauwers et

al. 1990), Share (Greenberg 1990), XTV (Abdel-Wahab and Peit 1991), Shared X
(Garfinkel 1994), NetMeeting (Microsoft Corp. 2006a), SunForum (Sun
Microsystems Inc. 2006a) and Timbuktu (Netopia Inc. 2006), provide generic
application-sharing environments in which existing single-user applications can
be transparently shared by multiple users for real-time collaborative work. The
majority of these systems are designed to share existing single-user applications
for supporting computer-based real-time conferences. Strict WYSIWIS (What
You See Is What I See), modeled after the chalkboard in meetings, is a
fundamental abstraction for multi-user interfaces and is supported by all these
generic application-sharing systems. In a strict WYSIWIS mode, all users have to
view exactly the same segment of the shared workspace. Moreover, to meet the
needs of coordinated activities in many meeting processes, generic application-
sharing systems support a sequential interaction paradigm, where only one user
(i.e. the current holder of the floor) can interact with the shared application at any
instant of time. Finally, some important collaboration functionalities that are
supported in collaboration-aware systems, including detailed workspace
awareness and flexible session management functions, are difficult to incorporate

into generic application-sharing systems.

To solve these problems, Flexible JAMM (Begole et al. 1999) adopts a
component replacement approach. The basic idea is to replace selected single-user
components of the shared application with multi-user versions. These multi-user
components are able to make use of application semantic knowledge to maintain
consistency in the face of concurrent work and support relaxed WYSIWIS. With
this approach, Flexible JAMM also supports some workspace awareness features
(e.g. telepointer and radar view). Flexible JAMM requires that the underlying
environment support process migration, run-time component replacement,
dynamic binding, and interception/introduction of low-level user input events.
However, single-user applications and execution platforms meeting Flexible
JAMM requirements are limited. This approach cannot be applied to most

commercial off-the-shelf single-user applications.

ICT (Li and Li 2002) is another framework for transparent sharing of existing
single-user applications. In addition to the goal of achieving unconstrained
collaboration and relaxed WY SIWIS view-sharing, ICT also attempts to address
the heterogeneity and interoperability issues that arise from sharing different
applications in the same session. In a heterogeneous collaboration environment,
the strategy of applying the same sequence of input events at all collaborating
sites for consistency maintenance, as used in homogeneous application-sharing
systems, does not work any more. To address this heterogeneity problem, the ICT
work proposed to devise a mechanism that is capable of “understanding” the
semantic meaning of the user's inputs, so that the same user input semantics can
be interpreted by different input event sequences at different applications. The
Operational Transformation (OT) technique (Ellis and Gibbs 1989; Sun and Ellis
1998) was used in ICT to resolve consistency issues among concurrent editing
operations. For the ICT approach to work, the meta knowledge for understanding
the semantics of a specific application has to be formalized in advance. Due to the
tremendous difficulties in knowledge formalization and other technical challenges,
the ICT prototype preserves limited functionalities of the shared application:
editing operations exchanged among different editors are limited to plain text

insertion and deletion only.

1.2.2. Research Hypothesis

The research hypothesis of this thesis is that transparently converted systems can
not only have advanced collaboration capabilities that were previously seen only
in collaboration-aware systems, but also maintain conventional functionalities
and interface features that were previously seen only in commercial off-the-shelf

single-user applications.

The primary goal of this research is to develop techniques that can be used to
convert existing or new single-user applications into multi-user collaborative

systems which meet the following requirements:

(1) Application compatibility: the user interface features, functionalities, and
document formats of the original single-user application should be retained.

(2) Application transparency: no change to the source code of the original
single-user application is required.

(3) Fast local response: the response to the local user’s interaction should be as
fast as the original single-user application.

(4) Unconstrained collaboration: users should be allowed to perform any
operations on any data objects at any time, which implies relaxed WYSIWIS
and concurrent work.

(5) Workspace awareness: the system should support a variety of workspace
awareness features so that the user knows who is in the workspace, where
they are working, and what they are doing.

(6) Session management: the system should provide lightweight and flexible
session management support with which users can manage collaboration
sessions with little effort.

(7) Flexible interaction control: the system should provide a variety of
interaction control paradigms/policies ranging from concurrent and free
interaction to sequential and synchronized interaction in order to effectively

facilitate different collaborative tasks.

1.2.3. Research Approach

In this research, an experiment-driven approach has been taken to examine the
research hypothesis. Existing collaboration-transparent approaches and state-of-
the-art collaboration techniques adopted in collaboration-aware systems were first
studied. By comparing collaboration-transparent and -aware systems, the reasons
that caused the performance and capability deficiencies in existing collaboration-
transparent systems were then analyzed. Based on this analysis, an approach that
is able to overcome these deficiencies was devised. Then a collaborative system
based on this approach was designed and implemented. The system designed in

this experiment was CoWord - a collaborative word processor converted from

Microsoft Word. CoWord achieved advanced collaboration features that were
seen only in collaboration-aware systems, and at the same time preserved the user
interface, document format and other functionalities of Microsoft Word. Based on
the experiences from the first experiment, techniques invented and used in this
experiment were summarized, refined and formulated into an innovative approach,

named as Transparent Adaptation (TA).

To verify its generality, this TA approach was re-applied to another application,

Microsoft PowerPoint, and CoPowerPoint - a collaborative slides authoring and
presentation system - was developed. CoPowerPoint achieved the same effects

as CoWord in a different set of functionalities, thus providing a testimony of the

generality of the TA approach.

Then, these two experimental systems were used as the vehicles for studying
and experimenting with new collaborative editing techniques. Requirements for
new techniques were identified from the experimental systems. Afterwards, a
collection of new collaboration techniques was designed, including collaborative
table editing and graphics grouping techniques, as well as workspace awareness
techniques. These techniques were implemented in these systems to test their
correctness and feasibility. With the development of these new techniques, the
experimental systems acquired richer collaboration functionalities than existing

collaboration-aware systems.

These two experimental systems were publicly demonstrated on the Internet
and freely distributed around the world. Usage feedback and data collected from
users from all over the world provided valuable usability information and

confirmed the usefulness of the TA approach and experimental systems.

1.3. Summary of Contribution

This dissertation makes the following major contributions:

(1) The Transparent Adaptation (TA) approach. This approach is able to
transparently (i.e. without changing the source code) convert existing or new
single-user applications into real-time collaborative systems which not only
achieve effects previously only seen in collaboration-aware systems, but also
preserve the conventional functionalities and interface features of single-user
applications.

(2) Extension to the Operational Transformation (OT) technique. The OT
technique is the cornerstone of the TA approach. This research has made
several important extensions to the basic OT technique. These extensions
leverage the OT technique from supporting collaborative plain text editing to
supporting unconstrained collaboration on complex data structures and
comprehensive editing operations.

(3) Advanced adaptation techniques for complex application semantics. The
basic TA approach is able to adapt elementary editing functionalities (e.g. rich
format text and simple graphics editing). To convert editing functionalities
with complex semantics (e.g. table editing and graphic object grouping), a
collection of advanced adaptation techniques have been designed in the TA
framework. These techniques extend the capabilities of TA and the underlying
OT, and also have contributions to the research of collaborative editing
techniques.

(4) A multi-functional workspace awareness framework for TA-based
systems. For supporting workspace awareness in TA-based systems, a multi-
functional workspace awareness framework has been contributed in this thesis
work. Compared with existing workspace awareness techniques, this
framework has two unique features: (a) it is able to accommodate the dynamic
content and view changes in TA-based systems to deliver accurate workspace
awareness information; and (b) it can be easily extended to support a variety
of existing and new workspace awareness features.

(5) Two TA-based real-time collaborative systems: CoWord and
CoPowerPoint. As a result of the experiment-driven research, two TA-based

real-time collaborative systems have been developed, which are CoWord

(CoWord Demo 2006) and CoPowerPoint (CoPowerPoint Demo 2006).
CoWord is a collaborative word processor converted from Microsoft Word.
CoPowerPoint is a collaborative slides authoring and presentation system
converted from Microsoft PowerPoint. Furthermore, the generic collaboration
engine shared by these two systems can be reused to provide generic

collaboration support to other TA-based systems.

1.4. Dissertation Overview

This dissertation is organized as follows. First, representative prior researches are
reviewed in Chapter 2 as the research background of this thesis work. The basic
TA approach is discussed in Chapter 3. Next, extensions to the data and operation
models of the basic OT technique for supporting TA are presented in Chapter 4.
Issues and solutions for applying TA to complex application semantics, including
collaborative table editing and collaborative graphic object grouping, are
discussed in Chapter 5. In Chapter 6, a multi-functional workspace awareness
framework for TA-based systems is discussed. The experimental systems

developed in this research - CoWord and CoPowerPoint - are described in

Chapter 7. Chapter 8 compares the TA approach with replicated generic
application-sharing systems in dealing with a series of challenging problems,
discusses the applicability of the TA approach to collaboration-transparent and
collaboration-aware applications, and highlights its requirements and limitations.

Finally, contributions and future work are summarized in Chapter 9.

10

Chapter 2
Research Background

This chapter reviews prior research relevant to this thesis work. This review

serves as the research background of this thesis work.

2.1. CSCW and Groupware Overview

The idea of supporting collaboration with computer systems can be traced to the
1960s, when Douglas Engelbart illustrated the screen-sharing collaboration
capability of the NLS demonstration (Engelbart and English 1968). The term
Computer-Supported Cooperative Work (CSCW) appeared in the 1980s and soon
became a multi-disciplinary research field. In addition to computer science
researchers, it also attracted researchers from economy, social psychology,
anthropology, organizational theory and education etc. (Grudin 1994a). In the
following years, CSCW became a broad research field that ranges from
sociological analysis on how people work in groups to computer-based
technologies supporting people’s group work. At the same time, the term
groupware appeared to mean multi-user CSCW supporting software systems
(Baecker 1992). Research on groupware is more specific. It focuses on
technologies for designing and developing systems for supporting people’s group

work.

In recent decades, the fast development of computer hardware and software
technologies, especially the explosive expansion of Internet, has boosted research
on CSCW and groupware techniques. Numerous groupware systems have been

developed as commercial products and research prototypes.

11

Based on the time and space natures of the collaboration they support,

groupware systems can be classified as shown in Table 2.1.

Table 2.1 The time and space matrix of groupware systems (Ellis et al. 1991)

Same Time Different Times

Same Place Face to Face Interactions | Asynchronous Interactions

Different Places | Synchronous Distributed | Asynchronous Distributed

Interaction Interaction

In the time dimension, groupware systems can be classified as synchronous
systems and asynchronous systems. Synchronous groupware systems, also known
as real-time systems, support users collaborating at the same time. Example real-
time systems include collaborative editors and instant messaging systems
Asynchronous groupware systems, also known as non-real-time systems, support
users working on the same task at different times. Example non-real-time systems

include electronic mail and bulletin board systems.

In the space dimension, groupware systems can be classified as co-located and
distributed systems. Co-located systems support users collaborating at the same
place. One co-located system example is the meeting room-supporting system.
Distributed systems allow users to collaborate from different places. One
distributed system example is the tele-conference system that allows users to

attend a computer-supported conference from geographically distributed sites.

This thesis work focuses on real-time distributed groupware systems (the
shaded cell in Table 2.1). These systems are used to support geographically
distributed users to collaboratively work on common tasks in real time. Real-time
distributed groupware systems may be used to support collaboration in many
application domains. Example systems include text editors (Leland et al. 1988;
Sun et al. 1998), drawing systems (Greenberg et al. 1992; Chen and Sun 1999),
multi-user domains (MUD) (Mehlenbacher et al. 1994), video conferencing

12

(Nguyen and Canny 2005), media spaces (Bly et al. 1993) and shared whiteboards
(Elrod et al. 1992).

To meet the requirement of supporting group work, real-time distributed
groupware systems have to handle complex issues that do not appear in single-
user applications. Major design issues associated with the design and

implementation of groupware systems will be discussed in the rest of this chapter.

2.2. Centralized and Replicated
Architecture

Architectures of groupware systems fall into two categories - the centralized
architecture and replicated architecture (Lauwers et al. 1990). With the
centralized architecture (Figure 2.1), there is only one shared application instance,
which is maintained at a central site. Other collaborating sites have only client
end systems with limited functions. User input events to the shared application
are forwarded to the central instance. Graphical output information is generated
from the central shared application, then distributed to and displayed at the client

end.

Central Host

Shared
Application
and Data

Graphical Graphical Graphical User Input —>
Output Qutput Qutput

. . . Graphical Output =—»
Site 1 Site 2 Site 3

Figure 2.1 The centralized architectures.

13

The centralized architecture is easy to implement. Since there is only one
instance of the shared application, developers need not worry about the system
consistency. However, centralization also brings problems. The most significant
disadvantage is the slow local responsiveness. Every local input event has to be
sent to the central shared application; the local display cannot be updated until the
graphical output from the central shared application is received. The local
response time may be long with high network latency. Furthermore, centralized
systems use network bandwidth inefficiently. This is because display information
has to be broadcast to all collaborating sites, which usually consumes
considerable network bandwidth (Lantz 1986; Begole et al. 1999). Finally,
centralized systems may encounter compatibility problems if client sites have
different hardware devices than the central site. Since the display information is
generated at the central site, all client sites must have the capability to interpret

this information, otherwise the graphical output may be displayed incorrectly.

Shared
Application

A\
A

Shared — Shared
Application — Application
SiteD Site3 and Data
User Input =

Figure 2.2 The replicated architecture.

These problems motivated the replicated architecture, in which each
collaborating site has an instance of the shared application running at the local
site, as shown in Figure 2.2. The replicated architecture is able to achieve fast
local response because the user input events can be executed at the local site

before being sent to remote sites. Application replication also provides the

14

possibility of supporting relaxed WYSIWIS, because each replica of the shared
application may generate a different display. The use of network bandwidth is

also improved because there is no need to broadcast display information.

However, the replicated architecture is not without its own problems. The
major challenge is consistency maintenance. If users are allowed to interact with
their local application replica freely, user input events may be executed in
different orders among distributed sites. Maintaining consistency in the face of
concurrent user input events is nontrivial. Moreover, when the replicated
architecture is adopted in collaboration-transparent systems, more problems will
occur (to be discussed in Section 2.6). In the following subsection, techniques for

maintaining the system consistency will be reviewed.

2.3. Consistency Maintenance

Sun et al. (1996) have proposed a consistency model as a theoretical framework
for consistency maintenance in replicated groupware systems. In this model,

consistency is maintained by preserving the following properties.

(1) Convergence: When the same set of operations has been executed at all sites,
all copies of the shared document are identical.

(2) Causality preservation: Operations are always executed in their natural
causal order.

(3) Intention preservation: For any operation O, the effects of executing O at all
sites are the same as the intention of O, and the effect of executing O does not

change the effects of independent operations.

In essence, the convergence property ensures the consistency of the final results
at the end of a collaboration session; the causality preservation property ensures
the consistency of the execution orders of dependent operations during a
collaboration session; and the intention preservation property ensures (1) that the

effect of executing an operation at remote sites achieves the same effect as

15

executing this operation at the local site at the time of its generation, and (2) that
the execution effects of independent operations do not interfere with each other.
The consistency model imposes an execution order constraint on dependent
operations only, but leaves it open for the execution order of independent
operations as long as the convergence and intention preservation properties are
maintained. The consistency model effectively specifies, on the one hand, what
assurance a cooperative editing system promises to its users and, on the other
hand, what properties the underlying consistency maintenance mechanisms must

support (Sun et al. 1998).

There exist varieties of concurrency control techniques, which achieve some or

all of the above consistency properties, as reviewed in the following subsections.

2.3.1. Floor Control

Floor control (Lauwers and Lantz 1990; Greenberg 1991), also called turn-taking
(Greenberg and Marwood 1994), is a simple and coarse-grained concurrency
control technique. With this technique, a user must acquire the token (the floor)
before interacting with the shared workspace. Since there is only one floor in the
system, only one user (the floor holder) can interact with the shared workspace at
a time. Thus inconsistency problems are avoided. In addition to its simplicity,
another advantage is the independency of applications, so it has been applied to a
wide range of generic application-sharing systems, such as Microsoft NetMeeting

and Hewlett-Packard Shared X (Garfinkel et al. 1994).

In systems adopting floor control, users have to interact with the system
sequentially. Its applicability is limited to circumstances where a single active
user is sufficient, such as computer-based conferences, but is not suitable for
circumstances where high concurrency is required, such as collaborative

document editing.

16

2.3.2. Locking

With the locking mechanism, a user must acquire a lock for an object before
updating it. This technique avoids inconsistency problems by prohibiting
concurrent accesses to the same object. Floor control can be regarded as an
application-level locking in the sense that the active user acquires the lock for the
whole system. Finer-grained locking applies locks on objects within the system

such as text segments (Sun 2002b) or graphic objects (Chen and Sun 2001).

Locking mechanisms can be explicit or implicit. With explicit locking
mechanisms, a user must explicitly acquire the lock before manipulating an object
and explicitly release the lock after finishing manipulating the object. To relieve
the user from the burden of these explicit actions, implicit lock mechanisms
(Newman et al. 1992) allow the user to directly manipulate the object and the

system implicitly acquires and releases the lock on behalf of the user.

Lock mechanisms can also be pessimistic and optimistic. Locking requests
have to be sent to a central coordinator, which determines whether locking
requests should be approved. With pessimistic locking, the user cannot
manipulate the object until the locking permission is received from the
coordinator, which may cause degradation of system responsiveness. Optimistic
locking mechanisms (Greenberg and Marwood 1992; 1993) assume that the
possibility of conflicts is very low and allow the user to manipulate the object
before the locking request is approved. If conflicts occur, user actions are
cancelled and the object state rolls back, which is an unpleasant experience for the
user. Moreover, locking does not satisfy any of the consistency properties,

because it only focuses on preventing conflicts within locked areas.

2.3.3. Serialization

With serialization mechanisms, operations generated by distributed users are
executed in the same global order at all sites. In most serialization-based systems,

the global execution order is derived from timestamps (Lamport 1978) of

17

operations. Some other systems determine the global execution order by

recording the direct predecessor in every operation (Kanawati 1997).

Serialization can be pessimistic and optimistic. Pessimistic serialization
mechanisms delay the execution of an operation until all its predecessors have
been executed (Kanawati 1997). Since the execution of the local user’s input may
be delayed, this pessimistic strategy may lower the system’s responsiveness. On
the other hand, optimistic serialization mechanisms execute local user input
immediately even if its predecessors remain unexecuted. To enforce the global
order when an operation’s predecessors are received after its execution, optimistic
serialization mechanisms adopt an undo/do/redo strategy, which undoes the
executed operation, executes its predecessors, and redoes the undone operation
(Greenberg and Marwood 1993; Karsenty and Beaudouin-Lafon 1993). However,
with this optimistic strategy, there is a possibility that the effect of an executed

user input completely disappears in the undo/do/redo process.

Serialization can satisfy the convergence property, but cannot satisfy the

causality and intention properties.

2.3.4. Operational Transformation

Operational Transformation (OT) (Ellis and Gibbs 1989; Sun and Ellis 1998) is
an innovative optimistic concurrency control technique. With the OT technique,
local operations are executed immediately after generation to achieve a high local
responsiveness. Remote operations may need to be transformed against
concurrent operations before execution, so that they achieve the same effects as in
the local site. Combined with the causal ordering approach, OT is able to achieve
all three consistency properties. In addition, OT supports undoing any operations

(Sun 2002a).

The OT component in a collaborative editor is a complex system, but the basic
idea of OT can be illustrated with a simple text editing scenario as follows. Given

a text document with a string “abc” replicated at two collaborating sites; and two

18

concurrent operations: O; = Insert(0, “x”) (to insert character “x” at position 0),
and O, = Delete(3, “c”) (to delete the character “c” at position 3) generated by
two users at collaborating sites 1 and 2, respectively. Suppose the two operations
are executed in the order of O; and O, (at site 1). After executing O, the
document becomes “xabc”. To execute O, after O;, O, must be transformed
against O; to become: O, = Delete(4, “c”), whose positional parameter is
incremented by one due to the insertion of one character “x” by O;. Executing O’
on “xabc” will delete the correct character “c” and the document becomes “xab”.
However, if O, is executed without transformation, then it will incorrectly delete
character “b”, rather than “c”. In summary, the basic idea of OT is to transform
(or adjust) the parameters of an editing operation according to the effects of
previously executed concurrent operations so that the transformed operation can

achieve the correct effect and maintain document consistency.

An OT technique can be divided into two layers: the high-level transformation
control algorithms, and the low-level transformation functions. Transformation
control algorithms are responsible for determining which operation should be
transformed against other operations according to their concurrency relationships;
and transformation functions are responsible for determining how to transform
one operation against another according to their operation types, parameters and
other relationships. Varieties of transformation control algorithms have been
presented in different OT techniques. Typical transformation control algorithms
include dOPT (Ellis and Gibbs 1989), AdOPTed (Ressel et al. 1996), GOT (Sun
et al. 1998), GOTO (Sun and Ellis 1998), SOCT2 (Suleiman et al. 1997),
SOCT3/4 (Vidot et al. 2000), SDT (Li and Li 2004), LBT (Li and Li 2005a),
ABT (Li and Li 2005b) and COT (Sun and Sun 2006). On the other hand, there
are two types of transformation functions (Sun et al. 1998): one is the Inclusive
Transformation function - IT (O, O;), which transforms operation O, against
operation O, in such a way that the impact of O, is effectively included in the
parameters of the output operation; and the other one is the Exclusive

Transformation function - ET (O,, O;), which transforms operation O, against

19

operation O, in such a way that the impact of O, is effectively excluded in the

parameters of the output operation.

There are two underlying models in every OT technique: one is the data model
that defines the way in which data objects in a document are addressed by
operations; the other is the operation model that defines the set of operations that
can be directly transformed by OT functions. Different OT techniques may have
different data and operation models. For example, the OT techniques designed for
supporting collaborative plain text editing (Ellis and Gibbs 1989; Ressel et al.
1996; Suleiman et al. 1998; Sun and Ellis 1998; Vidot et al. 2000; Ignat and
Norrie 2003; Li and Li 2004) have an operation model consisting of two Primitive
Operations (PO): Insert and Delete, and a data model of a single linear addressing
space. Addresses in this linear addressing space ranges from 0 to N—1, where N is
the total number of characters in the document. We use the term basic OT
technique to mean these OT techniques defined for plain text editors. There are
also OT techniques extended from the basic OT techniques used to support
collaborative editing on more complex documents, such as spreadsheet (Fuller et
al. 1993) and XML/HTML documents (Davis et al. 2002). These extended OT

techniques have more complex data models and operation models.

2.4. Workspace Awareness

In a relaxed WY SIWIS view mode, users may work in different part of the shared
workspace. In such circumstances, it is important that the user be aware of the
status of other users so that they can collaborate naturally and fluently. Therefore,
workspace awareness, which is defined as the up-to-the-moment understanding of
another person’s interaction with the shared workspace (Gutwin and Greenberg
1996, Gutwin et al. 1996a), plays an important role in groupware systems.
Researchers have proved that workspace awareness significantly increases
groupware usability (Gutwin and Greenberg 1999). Particularly, workspace
awareness is used in groupware systems for managing coupling, simplifying

communication, coordinating actions, helping users to anticipate future actions

20

and understanding assistances from others (Gutwin 1997; Gutwin and Greenberg

2002).

2.4.1. Workspace Awareness Information

According to Gutwin and Greenberg (2002), workspace awareness information

consists of several items, as listed in Table 2.2.

Table 2.2. Composition of workspace awareness information (Grudin and Greenberg 2002).

Category Element Specific Questions
Presence Is anyone in the workspace?
Who Identity Who is participating? Who is that?
Authorship Who is doing that?
Presence History Who was here, and when?
Action What are they doing?
What Intention What goal is that action part of?
Artifact What object are they working on?
Action History How did that operation happen?
Location Where are they working?
Gaze Where are they looking?
Where View Where can they see?
Reach Where can they reach?
Location History Where has a person been?
How Action History How did that operation happen?
Artifact History How did this artifact come to be in this state?
When Event History When did that event happen?

The first column of Table 2.2 lists the basic categories of workspace awareness
information, including who we are working with, what they are doing, where they
are, how those events occur, and when various events happen. In each category,
there are several specific workspace awareness knowledge elements, as shown in
the second column. Each element can be described as the answer to a specific
question about the shared workspace, as shown in the third column (Gutwin and

Greenberg 2002).

21

2.4.2. Widely—-Used Workspace Awareness
Features

To deliver the above workspace awareness information, a wide range of
workspace awareness features have been devised. Reviews of some frequently-

used workspace awareness features follow.

(1) Telepointer. The telepointer is the avatar of a remote user’s mouse cursor
displayed on the local user’s screens in real-time groupware systems. As an
important groupware interface element, the telepointer is able to provide a
range of group awareness information including presence, location and
activity. In addition, telepointers can act as a communication channel by
conveying gestural messages (Gutwin and Penner 2002; Gutwin et al. 2003).
These features make telepointers a powerful means for providing users with a
collaboration context and helping users coordinate the group work.
Furthermore, researchers have made some extensions to improve the accuracy
and expressiveness of the telepointer. Examples include (a) Smart Telepointer
(Rodham and Olsen 1994), which associates the telepointer position with
objects in the shared workspace to accommodate the view differences resulted
from relaxed WYSIWIS, (b) Semantic Telepointer (Greenberg et al. 1996),
which extends the representation form of the telepointer with changeable
images or sound for delivering richer workspace awareness information, and
(c) a series of techniques proposed by Dyck et al. (2004) and Gutwin et al.
(2003) for improving the telepointer performance.

(2) Multi-User Scrollbar. The multi-user scrollbar (Baecker et al. 1993;
Roseman and Greenberg 1996a) is an extension of the single-user scrollbar. It
indicates remote users’ view positions and sizes by displaying their scroll box
positions in the local user’s scroll shaft.

(3) Radar View. The radar view (Baecker et al. 1993; Roseman and Greenberg
1996a; Begole et al. 1999) is devised to deliver more detailed location
information than the multi-user scrollbar in the two dimensional workspace. A

radar view is often implemented as a miniature view of the shared workspace

22

with view ports of remote users. Each view port covers the view range in the
shared workspace of a remote user. Furthermore, variations of the radar views
(Gutwin et al. 1996b) were proposed to extend the expressiveness of the basic

radar view.

In addition to the above widely-used workspace awareness features, researchers
have proposed other ideas to deliver workspace awareness information. Examples
include (1) user list (Ellis and Gibbs 1989; Isaacs et al. 1996; Roseman and
Greenberg 1996b) which displays a list of all user information in the same
collaboration session, (2) sound (Beaudouin-Lafon and Karsenty 1992), which is
often used to deliver remote users’ activity information, (3) video embodiment
(Tang and Minneman 1990; 1991), which creates remote users’ live images or
shadows in the shared workspace, and (4) Multi-user Ul (User Interface) widgets
(Hill and Gutwin 2003), which are the multi-user versions of single-user Ul

widgets and deliver activity information of remote users in these widgets.

2.5. Session Management

Session management plays a key role in groupware systems. It determines how
collaboration sessions are initiated and terminated and how individuals join and
leave a session (Patterson et al. 1990). Existing session management approaches

fall into two categories (Edwards 1994) - explicit and implicit session

management approaches.

2.5.1. Explicit Session Management

Explicit session management approaches initially appeared in some early
teleconferencing systems and are still widely used today in varieties of systems.
The major characteristic of these approaches is that they require users to take
explicit actions to initiate a collaboration session. Some of them require an
initiating user to invite others into a session, while others require users to find an

existing collaboration session and join.

23

MMConf (Crowley et al. 1990) adopts an initiator-based approach. After the
initiating user creates a session, he/she sends invitations to other users, who will
choose to accept or reject the invitations. The session begins after all invited users
have responded or time out. On the other hand, Collage (NCSA 2005) adopts a
joiner-based approach. To join an existing session, a user needs to manually input
the IP address or machine name of the session host and the port number of the

session Process.

Explicit session management approaches are suitable for supporting formal
collaboration because they facilitate explicit session-related actions. However,
they are not suitable for the spontaneous and impromptu collaboration
circumstances due to their lack of flexibility. Furthermore, explicit inviting or
joining actions involve too much overhead, which decreases the system usability.

Finally, these approaches provide hardly any session awareness information.

2.5.2. Implicit Session Management

Implicit session management approaches are designed to avoid the overhead of
explicit session management approaches and to support spontaneous and
impromptu collaboration. These approaches manage collaboration sessions based
on users’ actions in the collaborative environment. According to the types of user
actions they utilize to manage sessions, implicit session management approaches

are classified as artifact-based, place-based and activity-based approaches.

With artifact-based approaches, users accessing the same artifact are joined in
the same session. One typical example is Intermezzo (Edwards 1994). In the
Intermezzo system, applications publish activity records including identifiers of
the user, application and object to the session manager. The session manager
searches for records with overlapping object identifiers. If such records are found,
the session manager sends events to the corresponding applications to notify them
about the collaboration potential. Then the applications are responsible for

initiating the collaboration on their own.

24

Place-based approaches join users who have entered the same place into the
same session. These approaches are frequently adopted in virtual space systems
such as MASSIVE (Greenhalgh and Benford 1995). In MASSIVE, users are
represented as objects equipped with communication media in a virtual 3D world.
When objects are approximate enough and they support common communication

media, a peer connection (i.e. collaboration session) is established between them.

Rusken (Texier and Plouzeau 2003) adopts a hybrid of artifact-based and
place-based approaches. In the artifact-based aspect, Rusken extends the concept
of object in implicit session management to objects set. Users accessing the same
object set are joined into the same session. In the place-based aspect, session

joining and leaving are triggered by events of users entering and leaving locations.

An activity-based approach is adopted in Piazza (Isaacs et al. 1996). The
Encounter tool of the Piazza system detects users who are performing the same
task (e.g. viewing the same web page, editing the same document) and creates

connections for them to communicate.

The major problem of implicit session management approaches is that they
cannot provide users with sufficient session awareness information. Without the
session awareness information, it is the system rather than users who determines
whether to collaborate (Gutwin et al. 2005). The system’s decision may violate
users’ intentions. On the other hand, users do not have enough knowledge to
predict which session-related events will be triggered by their document accessing
actions. They do not know whether they will be thrown into a session by

accessing an object.

2.6. Collaboration Transparency

Collaboration-transparent approaches aim to share existing single-user
applications among distributed users. In the past decades, collaboration-

transparent techniques have been developed in several generations.

25

2.6.1. Centralized Generic Application Sharing

A wide range of early collaboration systems provide generic application-sharing
environments in which any existing single-user application can be transparently
shared by multiple users in real-time collaborative work. Most of these systems
adopt the centralized architecture (e.g. Microsoft NetMeeting, Sun Forum, Real
VNC (RealVNC Ltd. 2006), HP Shared X (Garfinkel et al. 1994), Rendezvous
(Patterson et al. 1990), Share (Greenberg 1990) and XTV (Abdel-Wahab and Peit.
1991)).

The technique used to transmit and display graphical output from the central
shared application is called display broadcasting (Begole et al. 1999). In X
Window-based generic application-sharing systems, display broadcasting is
implemented by taking advantages of the separation of the X Client — the
application process, and the X Server — the process that handles graphical
requests from X Clients and generates display output. On the other hand, in MS
Windows-based generic application-sharing systems, display broadcasting is
usually implemented based on ITU T.128 or its extended versions, which are

conceptually similar to its counterpart in the X-Window.

In addition to the problems resulted from the centralized architecture (see
Section 2.2), workspace awareness features supported in these systems are limited
to the telepointer (Crowley et al. 1990). In the strict WYSIWIS view-sharing
mode, all users are viewing the same segment of the shared workspace. There is
no need to provide other workspace awareness features to indicate view positions

and ranges of different users.

2.6.2. Replicated Generic Application Sharing

In attempts to deal with problems resulted from the centralized architecture, some
later systems adopt the replicated architecture in which each collaborating site has
an instance of the shared application. Examples include Dialogo (Lauwers et al.

1990), MMConf (Crowley et al. 1990), VConf (Lantz 1986) and Rapport (Ahuja

26

et al. 1990). In contrast to the display broadcasting technique used in centralized
systems, these systems adopt the event broadcasting technique, where input

events to the local site are broadcast to all remote sites.

In addition to the difficulty in consistency maintenance in the face of user
inputs, replicated generic application-sharing systems also encountered challenges
in maintaining consistency in the face of inputs from non-user external resources,
such as files, clocks, environment variables or network connections. Running in
different execution environments, replicas of the shared application may receive
different inputs from external resources, which breaches the system consistency.
This problem is known as externalities (Begole et al. 2001). Furthermore, when a
newcomer is to join an ongoing collaboration session, it needs the same execution
environment as existing sites. This problem, known as late-comer, is also

nontrivial in collaboration-transparent systems.

These problems were once regarded as intractable in early generic application-
sharing systems (Lauwers et al. 1990). Researchers have presented varieties of

solutions.

To maintain the system consistency in the face of user inputs, replicated
generic application-sharing systems have to ensure that all replicas receive user
inputs in the same order. To achieve this goal, explicit or implicit floor control
mechanisms are adopted. However, with floor control, only the user who has the
floor can interact with the system, which results in the sequential interaction
problem and the inability to support concurrent work (Begole et al. 1999, Sun et

al. 2006; Xia et al. 2004).

To handle the externalities problem, replicated generic application-sharing
systems create identical execution environment for all participants automatically
(Crowley et al. 1990; Lauwers et al. 1990) or manually (Lantz 1986). However,
these solutions are ad-hoc and they only handle the file accessing externalities

problem.

27

To accommodate late-comers, replicated generic application-sharing systems
usually adopt two late-joiner-accommodating techniques, including (1) event
replay (Chung et al. 1993), which records all input events to an existing site and
replays these events to the joining site, and (2) image copy (Chung and Dewan
1996), which copies the process image in the memory of an existing site and
imports it to the joining site. However, these approaches suffer from different
problems. Event replay approaches are inefficient. The performance could
degrade drastically in the face of long execution time and potentially expensive
operations (Begole et al. 1999). Image copy approaches are not widely applicable.
They require support from special underlying execution environments (Douglis
1990; Milojici¢ et al. 1993) or from development tools (Bharat and Cardelli 1995;
Zhang and Pande 2005).

2.6.3. Component Replacement

Flexible JAMM (Begole et al. 1999) represents a shift from seeking generic
solutions at the operating/windowing system level to exploring solutions at the
application interface library level. It adopts a replicated architecture for achieving

fast local response and efficient network usage.

The major innovation of Flexible JAMM is the component replacement
approach, which replaces selected user interface components (e.g. buttons or text
panes) of the shared application with collaboration-aware ones at runtime. These
collaboration-aware components understand the application semantics so that they
are able to solve most of the replication-related problems. First, these
collaboration-aware components can selectively broadcast user input events to
other collaborating sites. In addition to reducing the consumption of network
bandwidth, this event-filtering technique is also able to achieve relaxed
WYSIWIS by filtering events that do not affect the system consistency (e.g.
scrolling events). Second, a collaboration-aware text editing pane embedded with
the Operational Transformation technique is able to support unconstrained real-

time collaborative text editing. Third, based on the object migration capability of

28

Swing and JOS (Java Object Serialization), late comers can be accommodated by
migrating application objects from an existing site. Finally, this approach is able
to support detailed workspace awareness features, including the telepointer and

radar view.

Flexible JAMM also applies the object replacement combined with a proxy
approach to handle the externalities problem (Begole et al. 2001). An external
resource is wrapped in an externality server. External resource accessing objects
in the shared application are replaced with externality proxies, which always
acquire data from the externality server. Both externality proxies and servers are
collaboration-aware, so that the inconsistency possibility related to external

resources can be avoided.

The object replacement approach has its own limitations: (1) objects created
after sharing cannot be replaced; and (2) subclasses of replaceable classes cannot
be replaced. Moreover, this approach requires special supports from the execution
platform. Therefore, this approach is not widely applicable. Currently, it can only

be applied to Swing-based Java applications.

2.6.4. Collaboration Transparency and
Heterogeneity

The above collaboration-transparent systems are homogeneous ones since they
require users to collaborate with the same shared application. While users are
allowed to share different single-user applications in the same session, the

heterogeneous issue arises.

In addition to its goal of achieving unconstrained collaboration and relaxed
WYSIWIS view-sharing, ICT (Li and Li 2002) attempts to address the
heterogeneity and interoperability issues in collaboration-transparent systems.
The main challenge is that the event interception and replay approach used in
generic application-sharing systems no longer works in heterogeneous

environments because different applications process events in different ways. The

29

solution adopted in ICT is to devise a mechanism that is able to understand the
semantics of the user input events. With this mechanism, the heterogeneity issue
is addressed by translating local system-specific events into higher-level
operations at the local site, and translating operations into remote system-specific
events at the remote site. Furthermore, the consistency maintenance issue is
addressed by processing operations with the Operational Transformation

technique.

However, discovering and formalizing semantic knowledge of commercial off-
the-shelf single-user application’s functionalities and interface features are
tremendously difficult while the shared application is assumed as a black box.
Due to this problem, ICT can only preserve limited conventional functionalities
and user interface features of the shared application. The ICT prototype, which
supports interoperation between MS Word and GVim, is limited to supporting

collaborative plain text insertion and deletion only.

2.(. Summary

This chapter has reviewed relevant prior research on CSCW and groupware

techniques.

CSCW is a broad research field that ranges from sociological analysis to
computer-based technologies, while groupware research focuses on technologies
for designing and implementing systems for supporting people’s group work.
From the time dimension, groupware systems can be classified as real-time and
non-real-time systems. From the space dimension, they can be classified as co-

located and distributed systems.

Groupware systems adopt two architectures. With the centralized architecture,
there is only one instance of the shared application maintained at a central site.
With the distributed architecture, each collaborating site has an instance of the

shared application. The centralized architecture has a series of problems,

30

including slow local response, inefficient network bandwidth use and
compatibility. On the other hand, the major problem of replication is the difficulty

of consistency maintenance.

System consistency can be described with a consistency model with three
properties: convergence, causality preservation and intension preservation. Major
consistency maintenance mechanisms include (1) floor control, in which a user
must obtain the token (the floor) before interacting with the shared workspace, (2)
locking, in which a user must acquire a lock for an object before manipulating it,
(3) serialization, which forces operations generated by distributed sites to be
executed in the same global order at all sites, and (4) Operational Transformation,
which adjusts parameters of editing operations according to previous executed

concurrent operations.

While WYSIWIS is relaxed, workspace awareness is important to improve
groupware systems’ usability. Different workspace awareness features are able to
deliver presence, location and activity information of others in the same
collaboration session. Widely-used workspace awareness features include

telepointer, multi-user scrollbar and radar view.

Session management determines how collaboration sessions are initiated and
terminated and how individuals join and leave a session. Explicit session
management requires users to take explicit session-related actions, so it cannot
support spontaneous and impromptu collaboration. Implicit session management
solves these problems by implicitly managing collaboration sessions according to
users’ object accessing actions, but it cannot provide sufficient session awareness

information.

Collaboration transparency is an approach to developing groupware systems by
converting existing single-user applications into collaborative versions without
changing their source code. Most of collaboration-transparent systems are generic

application-sharing systems. Centralized generic application-sharing systems

31

adopt the display broadcasting technique to deliver the graphics output from the
central instance to collaborating sites. Replicated generic application-sharing
systems adopt the event broadcasting technique to deliver user input from the

local site to other collaborating sites.

Generic application-sharing systems with the replicated architecture have
difficulties in handling several problems, including consistency maintenance,
accommodating late-comers and externalities. Flexible JAMM handles these
problems by dynamically replacing selected components of the single-user
application at runtime. However, the major problem of this component-replacing
approach is its special requirements to the execution environment, so it is not
widely applicable. ICT attempts to address the heterogeneous issues arising when
different single-user applications are shared in the same session with a
mechanism that understands the semantics of the shared application. Due to the
tremendous difficulty in knowledge discovering and formalizing, the ICT

prototype only preserves limited functionalities of the shared application.

32

Chapter 3

The Transparent Adaptation

Approach

The Transparent Adaptation (TA) approach is the central contribution of this
thesis work. It was designed to leverage existing or new single-user applications
for multi-user real-time collaboration. Based on this approach, two collaborative
editing systems, CoWord, which is a collaborative word processor, and
CoPowerPoint, which is a collaborative slides authoring and presentation system,
have been developed. This chapter takes these two systems as examples to discuss

the TA approach.

3.1. Introduction

Unlike existing application-sharing approaches, the TA approach tackles the
transparent conversion of single-user applications from a different angle. Rather
than endeavoring to share any single-user application in an operating/windowing
system (e.g. NetMeeting and SunForum) or with a library (e.g. Flexible JAMM),
the TA approach transparently converts individual single-user applications into
collaborative versions. The major benefit of the relaxation of the generic
application-sharing constraint is the possibility of taking advantage of application
semantic knowledge and introducing application-specific treatment to the target
application, so that some challenging problems associated with the generic
application-sharing environments are significantly simplified or completely

avoided. Moreover, to postpone dealing with complex collaboration issues in

33

heterogeneous environments (Knister and Prakash 1990; Li and Li 2002), the
current TA work is restricted to homogeneous collaboration environments in
which all users are required to use the same converted application in a

collaboration session.

The TA approach is based on (1) the use of the single-user application’s API
(Application Programming Interface) to intercept and replay the user’s operations,
so it requires no access or change to the application’s source code (thus being
transparent), and (2) the use of Operational Transformation (OT) to manipulate
intercepted user operations for supporting responsive and unconstrained (i.e.
concurrent and free) multi-user interactions with the shared application. For the
TA approach to work, however, the shared application’s API must be adaptable to
the data model and operation model of the OT technique. With the support of OT,
TA-based collaborative applications are able to achieve fast local response,

concurrent work, relaxed WYSIWIS, and detailed workspace awareness.

Microsoft Word was chosen as the first target single-user application for
transparent adaptation. This is because word processors are among the most
commonly used single-user applications, and Word provides a set of
comprehensive, complex, and interesting data types, operations, and a
sophisticated API for investigation. Our goal is to covert Word into a real-time
collaborative word processor, called CoWord, which allows multiple users to
view and edit any objects in the same Word document at any time over the
Internet. As a follow-up of CoWord, the TA approach was re-applied to convert
Microsoft PowerPoint into CoPowerPoint — a multi-user real-time slides
authoring and presentation system. The CoPowerPoint work tested the generality
of the TA approach and provided new insights and solutions for adapting different

classes of applications.

The rest of this chapter is organized as follows. First, data model adaptation
issues and techniques in CoWord and CoPowerPoint are discussed in Section 3.2.

Then, operation model adaptation issues and techniques in CoWord and

34

CoPowerPoint are discussed in Section 3.3. Finally, this chapter concludes with a

summary in Section 3.4.

3.2. The Data Model Adaptation

As one of the major technical components of the TA approach, the data model
adaptation is responsible for bridging the gap between the API addressing
schemes and the OT data model. In this section, some basic ideas and techniques
learnt from adapting two different applications, Word and PowerPoint, will be

discussed.

3.2.1. Word Data Model Adaptation

A Word Document from the User’s View

Unlike a plain text document, where all characters are presented at the user
interface in a linear sequence, a Word document, when viewed by a user, does not
always look like a linear sequence of objects. For example, graphic objects may
appear at any position in the document’s two-dimensional display space.
Furthermore, a graphic object may be moved freely from one location to another
without affecting the locations of other objects, which is different from moving
(inserting and deleting) a character in a string. As shown in Figure 3.1, the user’s
view of a Word document consists of some sequences of formatted character
objects (e.g. “CoWord, a collaborative word processor’”), some graphic objects
that are inline with character sequences (e.g. the “Welcome” ClipArt object that is
inline with the sequence of characters “To CoWord”), and some graphic objects
that are floating in the two-dimensional space and may overlap with each other

(e.g. the Textbox with text “Word” that is on top of another ClipArt object).

35

Y ntroCawurd doc - Microson Word - injx|

Imwwmtmmmmww =
|Dﬂﬂg§§[ﬂ7 3 'ﬂdn ﬂ.ﬂmﬂlx‘x -
|ticemal v v W EEEEE® A
HE I S N | R B 8+ -9- 1100111 8
u &

Al e

i o c9 Word, |

,:,:: T

A
2
= ."\
i
i
i
i
i
i
i
i
i

User View
flnﬁ#uumu'umonmya' a.'aali’:a
|Nqa‘ siuz: .’ 1 :J; "a:’muﬁ ululkct(,\ N i e
II :!111111111\1\1\’\'
YN 1:/111//’/'//'[(»\\\
[R Y B S B A A B A A B B AN [S A S S A S A A WA
L L1 1 | p *
Adapted Data ri-l. 1 D% KX o'twlolrlal . Data.. 1ol Tclo
API View |[Pos|o]1 6|7]8]9 11]12]13]14[15]16|:| Pos|0]1]2

Figure 3.1 The user’s view and the adapted API’s view of a Word document.

This irregular and arbitrary presentation/view of data objects in the Word
document appears to be a major obstacle for applying OT to Word documents
since this view does not match the linear addressing space of the basic OT data
model. However, our investigation discovered that the presentation of data objects
at the user interface is actually irrelevant to the applicability of OT. What really

matters is how data objects are addressed from the application’s API.

A Word Document from the API's View

Word provides a comprehensive API which conforms with Component Object
Model (COM) Automation (Iseminger 2000). With this API, software developers
can change the behavior of the application, enhance the application’s
functionality, or incorporate the application into other applications. In particular,
this API provides high level interfaces for accessing and manipulating data

objects in a Word document.

From the Word API’s view, data objects of various types (e.g. text, ClipArt
objects, Drawing objects, and WordArt objects) are modeled by some basic

36

objects (Microsoft Corp. 2006b), including Text' (e.g. a sequence of formatted
characters), InlineShape (e.g. a ClipArt object embedded in a sequence of
characters), and Shape (e.g. a floating graphic object). For the purpose of address
adaptation, the most relevant feature of this API is the ability to access all data
objects from a global linear addressing space by means of a Range object. All
Text objects and InlineShape objects are displayed sequentially in the document,
and can be accessed by their position references in the Range-based linear
addressing space; floating graphic objects (i.e. Shape objects) are displayed at
arbitrary positions in the drawing layer of the document, but they have
corresponding anchors in the Range-based linear addressing space. From these

anchors, the corresponding floating objects can be accessed.

The relationship between the data objects at the user interface and their position
references in the Range-based linear addressing space from the Word API is
illustrated in Figure 3.1. Every data object at the Word user interface has a
corresponding position reference in the linear addressing space of the Word API.
For example, the floating ClipArt object at the left-top location of the drawing
space has an anchor, denoted by S/, at position “0” of the linear addressing space;
the “Welcome” inline ClipArt object has a position reference “1”’; the inline

character “T” has a position reference “2”, and so on.

When the user draws a new floating graphic object (the “+” sign) in the
drawing layer of the document (the user view in Figure 3.1-(b)), this object’s
anchor, denoted by S6, is automatically inserted at a suitable position (“14” in this
example) in the linear addressing space. Meanwhile, other objects’ position
references on or higher than the new anchor’s position are shifted to the right by
one position, as shown in the Word API’s Range-based linear addressing space in
Figure 3.1-(b). If an object is removed from the document, its position in the

linear addressing space will be removed and all other objects’ position references

"In fact, text is treated as part of the Range object, rather than as a separate object in the Word
API. Text is treated as an object for the sake of convenience.

37

on the right of the removed object will be shifted to the left by one position (not

shown in Figure 3.1).

It is worth pointing out that the Word API also provides alternative ways to
access floating objects (e.g. by their unique names). However, creating/removing
a floating object in/from the drawing space always results in inserting/deleting an
anchor to/from the global linear addressing space, which unavoidably has an
impact on the positions of other objects in the document. Therefore, the anchor’s
position must be used as the identifier of editing operations for floating objects in
order to use OT for concurrency control of all editing operations in CoWord. In
other words, the use of the position references in the Range-based linear
addressing space is not only sufficient but also necessary to address all types of

data objects in CoWord.

A Tree of Linear Addressing Domains for a Word
Document

Apart from the main body of a Word document, there are also other auxiliary
document elements, such as Comments, Footnotes, Headers, and Footers, which
are displayed in designated locations of the document. The user can annotate the
document by attaching Comments or Footnotes to selected text segments, or break
the document into multiple Sections and associate different Headers and Footers
with these sections, etc. At the user interface, these elements are interrelated and

form integral parts of the document.

For the purpose of address adaptation, these elements can be viewed as
mutually independent editing areas: operations performed on data objects in one
element have no impact on the data objects in other elements. After similar
address adaptation analysis was applied to these elements, it was found that data
objects in each element form a linear addressing domain as well. Moreover, it was
found that these elements are linked to the main body of the document by special

links, each of which occupies one position in the main body document.

38

Consequently, the main body of the Word document and all auxiliary document
elements form a tree of linear addressing domains, as shown in Figure 3.2. The
top layer of the tree contains the linear addressing domain corresponding to the
main body of the document. The second layer of the tree consists of multiple
independent linear addressing domains corresponding to Comments, Footnotes,
Headers, and Footers, etc. For each second layer domain, there is a corresponding
link in the top layer domain. For example, a link for a Comment or a Footnote
occupies one position in the top linear addressing domain, and provides a
reference to the Comment or Footnote itself. A Section-Break link also occupies
one position in the top linear addressing domain, and provides a reference to a
collection of Headers and Footers associated with the corresponding section.
Each of the Headers and Footers can be identified by its unique name
(determined by the Word API), and forms one independent linear addressing

domain.

Main Text
|c|E|c|s|c|G|F|O|i|...|c|
/ Section \ Comment
1 Leli [-]c
S——— T c c
L J
pomaryfosor [o Lo | - |1
Foot Note
First Page Header ‘
i {c]..]lc ¢ Character
Last Page Header nn \\ J i Inline Shape
. s Shape
i 4 A ;
Shape Group E Section Mark
Even Page Header - G Shape Group
nu-n F Foot Note Mark|
_ y O Comment Mark|

Figure 3.2 A tree of linear addressing domains for a Word document.

Based on the data model in Figure 3.2, to access a data object in the main body
of the document, the position reference of this data object in the top linear

addressing domain is needed. To access a data object in a Comment or Footnote,

39

two position references are needed: one is the position of the Comment or
Footnote link in the top linear addressing domain, and the other is the position of
the data object itself inside the addressing domain corresponding to the Comment
or Footnote. To access a data object in a Header of a section, the following pieces
of information are needed: the position reference of the corresponding Section-
Break link in the top linear addressing domain, the unique Name of the Header,
and the position of the data object itself inside the linear addressing domain

corresponding to the Header.

3.2.2. PowerPoint Data Model Adaptation

PowerPoint is different from Word in its functionalities, user interfaces, and API,
thus providing a vehicle for investigating and illustrating the diversity of the data

address adaptation techniques in different applications.

PowerPoint User Interface and API

PowerPoint provides the user with multiple levels of interfaces, called views, to
edit or show the document. One editing interface is the slide-sorter-view, as
shown in Figure 3.3-(a)-(1). In this view, a PowerPoint document is presented as
a sequence of slides. The granularity of the user’s actions in this view is at the
slide level. For example, the user can insert or delete slides, re-arrange the order

of slides, or customize the design template or background of all slides.

From the slide-sorter-view interface, the user can “zoom” into any individual
slide to edit the graphic objects in that particular slide. Another view, called
normal-view, is provided for users to edit graphic objects inside a slide, as shown
in Figure 3.3-(a)-(2). From this view, the user can create, remove, or change any
graphic objects in a slide, including Textboxes, ClipArts, etc. In addition to the
drawing space, each slide is also associated with a separate Notes area for the user

to write explanatory notes for the corresponding slide.

40

(0)

(1)

| Slide I (2)

(@) (b)

Figure 3.3 (a) The user's views of a PowerPoint document. (b) The API's view
of a PowerPoint document.

Apart from these editing views, there is another presentation interface, called
slide-show. From this slide-show interface, the user can control the presentation
(e.g. go to the next, previous, or a specific slide, animation, or annotate the

presentation screen with a virtual pen), but cannot change the contents of slides.

Despite the various differences in these user interfaces, the data objects being
viewed from different views belong to the same document and are accessible in
the same way from the PowerPoint API. For example, the same graphic object in
a slide can be viewed by the user from the slide-sorter-view, normal-view, or
slide-show. However, there is only one internal representation of this graphic
object in the document and it can be addressed from the API in the same way,
regardless from which view it is accessed by the user. From the PowerPoint API,
a three-level hierarchical structure of the data objects in the PowerPoint document
can be extracted: slide sequence, individual slides, and individual graphic objects.

The following address adaptation discussions will be organized according to this

41

three-level hierarchical structure of the data objects in PowerPoint, rather than the

different views at the user interface.

Addressing Slides in the Slides Sequence

From both the user interface and the API, the slides in a PowerPoint document are
organized as a sequence, shown in Figure 3.3-(1), which directly matches the
basic OT data model. Apart from the sequence of normal slides, there are some
special master slides at the top level of a PowerPoint document, including Slide
Master, Title Master, Handout Master, and Notes Master. The contents of these
master slides are integrated with normal slides in the user interface presentation,
but, from the API’s view, these top-level masters are independent of the normal
slides and independent of each other. Data objects in these masters can be edited
and addressed in similar ways as in other normal sides, as discussed in the next

subsection.

Addressing Graphic Objects inside Individual Slides

At the individual slide level, there are two independent editing areas: one is the
graphic object drawing area, and the other is the explanatory Notes area. The
Notes area is a text editing area, as shown in Figure 3.3-(2), which directly
matches the basic OT data model. The following discussion focuses on addressing

graphic objects in the drawing area.

Unlike the slides sequence or the text editing area, graphic objects in a slide
drawing area do not appear to be organized in any sequence at the user interface.
Similar to the Range-based addressing scheme for floating objects in the Word
API (see Section 3.2.1), the PowerPoint API also supports an index-addressing
scheme, which can be used to address graphic objects in a slide sequentially. For
example, the slide in Figure 3.3-(a)-(2) contains five graphic objects, which can
be addressed by index-addresses: 0, 1, 2, 3 and 4, as shown in Figure 3.3-(b)-(2).
An important property of this scheme is that index-addresses are interrelated like

the positions of characters in a string. The creation of a new graphic object or the

42

removal of an existing graphic object may change the index-addresses of those
objects with index-addresses larger than the created/deleted object. The change of
an existing object’s attribute (e.g. color, size, font) will have no effect on the
index-addressing space. Clearly, the index-addressing space matches very well
with the basic OT data model. This is another example where the data objects
may be presented at the user interface in a non-sequential way but can be

addressed sequentially from the API.

It is worth pointing out that the PowerPoint API also provides another name-
addressing scheme: every existing graphic object can be addressed by its unique
name, which is assigned at the time of creating this object. An important property
of the name-addressing scheme is that names are independent, which means that
creation of a new graphic object or deletion of an existing one from a slide does
not affect the names of other objects. If the independent name-addressing scheme
were used to access graphic objects in a slide, then there would be no need for
using OT to ensure consistency at this level (Sun and Chen 2002). A question
arises: why not use this name-addressing scheme to access graphic objects in
CoPowerPoint? The main reason against using the name-addressing scheme is
that this scheme is incapable of addressing multiple replicas of the same object at
different sites. This is because replicas of the same group of data objects may be
created in different orders in an unconstrained collaboration session, and these
replicas may be assigned different local names by their respective local
PowerPoint. To support collaborative editing of replicated objects based on the
name-addressing scheme, an additional global object naming scheme for all
replicated objects and corresponding consistency maintenance techniques has to
be devised, which is nontrivial. The index-addressing scheme is preferred because
it allows the use of the same established OT technique at all levels, thus saving
the trouble of having to devise and test new techniques as required by the name-

addressing scheme.

Another reason for choosing the index-addressing scheme is the need to ensure

consistent z-order-values of replicated graphic objects inside a slide. The z-order

43

values of objects represent their relative layering in the z-dimension of the
drawing space; the z-order-values range continuously from 0 to N—1, where N is
the total number of objects in a slide. When a new graphic object is created, it is
initially assigned the current largest z-order-value and placed at the top of the z-
dimension of the drawing space. In an unconstrained collaboration environment,
if no special measure is taken, the z-order values of objects (i.e. their overlapping
relationships) may become inconsistent at different sites. For example, consider
two graphic objects G; and G; created concurrently by two users. Suppose these
two objects are overlapping. After the two objects are created at both sites in
different orders, G; will be on top of G; at the site where G, was created last; and
G, will be on top of G; at the site where G, was created last. Moreover, z-order
inconsistency may also occur when users concurrently change the z-order-values
of existing objects (e.g. by invoking “Bring to Front” or “Send to Back” interface
commands). The z-order inconsistency problem is the same in nature as the
inconsistency problem encountered in performing concurrent insertion and
deletion operations in any sequence. Therefore, OT is needed here to ensure

consistent z-order values of replicated objects.

In the PowerPoint API, the index-address of a graphic object has the same
value as its z-order-value. Therefore, the index-addressing scheme combined with
the OT technique can not only correctly identify replicated objects, but can also

consistently maintain the z-order values for all graphic objects in PowerPoint.

Addressing Internal Structures of Individual Graphic
Objects

Individual graphic objects may have internal structures that can be manipulated
by PowerPoint built-in operations or by external applications. For example, a
Textbox object contains a sequence of formatted characters, to which various
built-in editing operations can be applied. Clearly, the sequence of characters in a
Textbox forms a linear addressing domain at a lower layer, to which the basic OT

technique can be applied in order to merge concurrent operations at this layer.

44

However, not all graphic objects can be treated in this way. If the internal
structure of certain graphic objects is inaccessible from the API (e.g. objects
created by external applications), or cannot be modeled as a linear addressing
domain (e.g. bitmap image objects), or is of no interest for the collaborative work
(so the internal structure is ignored), operations performed on internal elements
can be simply treated as Replacement operations on these objects themselves. A
Replacement operation consists of a Delete operation on the old version of the
object, followed by an Insert operation for the new version of the object.? This is
a useful and important data address adaptation technique for determining the data

granularity of collaborative activities that can be merged by using OT.

A Tree of Linear Addressing Domains for a PowerPoint
Document

Based on the address adaptation analysis in previous subsections, all data objects
of a PowerPoint document can be mapped into a tree of linear addressing domains,
as shown in Figure 3.4. The root node corresponds to the top level of the
document and contains multiple independent linear addressing domains for the
sequence of normal slides in the document, the Slide Master, the Title Master, the
Handout Master, and the Notes Master, respectively. A second-level node
corresponds to a slide and contains two independent linear addressing domains:
one is for the sequence of graphic objects inside this slide, and the other is for the
sequence of characters in the Nofes editing area. A linear addressing domain in a
particular node can be identified by a unique name within that node (determined
by the PowerPoint API). A third-level node corresponds to a Texthox object and

contains a single linear addressing domain.

% The new version of the object contains the effects of the operations performed on the internal
elements of the object.

45

Presentation
¢ Character
Slide Master S

G Graphic Object

S Slide -
Handout Master
T Textbox

Slide Sequence | S | S [- | S

=

Slide

Notes Area -
~\
Drawing Areal T|G|..[T | [Slide ___[Slide] [S“de]... {Slide]

= | "7 1

Textbox

- Textbox Textbox Textbox

Figure 3.4 A tree of linear addressing domains for a PowerPoint document.

According to the data model in Figure 3.4, to access a normal slide in the top-
level slides sequence, one pair of information pieces is needed: the unique name
for the domain corresponding to the normal slides sequence, and the target slide’s
position reference (i.e. its sequence number). To access a graphic object in the
graphic drawing area of a normal slide at the second-level, however, two pairs of
information pieces are needed: the first pair contains the unique name for the
domain corresponding to the slides sequence, and the target slide’s position
reference; and the second pair contains the unique name for the domain
corresponding to the graphic drawing area in the slide and the target graphic
object’s position reference. To access a character object in a Textbox at the third
level, three pairs of information pieces are needed: apart from the first two pairs
for addressing the Textbox object, the third pair is to address the specific character

in the Textbox.

As discussed above, data models of both Word and PowerPoint can be adapted
to a tree of linear addressing domains (see Figure 3.2 and Figure 3.4). In
unconstrained collaboration, concurrent editing operations generated by

distributed users may target any linear addressing domain. The underlying OT

46

technique should be extended to support this data model. Issues related to

extending the OT data model will be discussed in Chapter 4.

3.3. The Operation Model Adaptation

The objective of the operation model adaptation is to bridge the gap between
operation models of the single-user application API and OT. In operation
adaptation, the following issues must be addressed: how user-generated
operations are intercepted, represented, and propagated among collaborating sites;
how user-generated operations are processed by the OT technique for consistency
maintenance; and how OT-processed operations are interpreted by the
application’s API for replaying their effects at remote sites. This section discusses
operation adaptation-related issues and techniques learned from adapting the

operation models of Word and PowerPoint.

3.3.1. The Adapted Operation

AQ as the Vehicle for Representing and Propagating the
User’s Interaction

By means of the application’s API, the user’s interactions can be intercepted as a
sequence of input events, such as key-down, key-up, and mouse-move. These input
events, however, cannot be directly propagated to remote sites and replayed as-is.
This is because, in an unconstrained collaboration environment, remote
applications may be in different status and replaying the same sequence of input
events on them may not achieve the desired effect. Moreover, there is no need to
propagate all local input events to remote sites. For example, local input events
that remote sites are not interested in (e.g. some window open/close events) may
not need to be propagated. Most importantly, these low level events must be
converted into high level operations in order to take advantage of OT for
consistency maintenance. Therefore, the sequence of local input events needs to
be filtered and converted into a sequence of semantically meaningful units, called

Adapted Operations (AO). In this role, AOs serve as the vehicle for representing

47

the user’s interactions with the application and for propagating the user’s
interactions among collaborating sites. Technical issues involved in AO

generation will be discussed in Section 3.3.3.

AQ as the Bridge between the API and OT

When an AO arrives at a remote site, it must first be processed by OT for
consistency maintenance, and then be interpreted by means of the API for
replaying its effect on the remote document. In this role, AOs act as the bridge
between the API and underlying OT. With AOs residing between the API and OT,
the task of operation adaptation between the API and OT is decomposed into two

subtasks:

(1) AO-PO adaptation, which translates the AO into suitable Primitive
Operations (PO) to be processed by OT; and
(2) API-AO adaptation, which interprets the AO by means of the APL

One approach to AO-PO adaptation is to extend the basic OT operation model
to cover all AOs (i.e. treat every AO as a PO), so that every pair of AOs can be
directly transformed by a specific OT function. If a single-user application
supports N different data-manipulation AOs, then N * N different transformation
functions are needed for adapting this application. A major problem with this
approach is that application level transformation functions are too complex to
design and to ensure correctness.’ Another problem is that transformation
functions defined for AOs are application-specific and not reusable in different

applications.

Another approach, proposed in this work, is to extend the basic OT operation
model with a new Update operation, and to translate application level AOs into
three generic POs: Insert, Delete, and Update. The advantage of this approach is

that the extended OT operation model becomes more powerful and capable of

3 To get an idea about the complexity of designing two string-wise editing operations /nsert and
Delete, the reader is referred to Sun et al. (1998).

48

supporting word processing applications, and at the same time remains small and
application-independent. The challenge with this approach is how to translate an
AO into suitable POs so that applying OT on these POs can achieve the correct
transformation effect on the AO itself. Technical issues involved in translating
AOs to POs are discussed in Section 3.3.4. Issues and solutions involved in

extending OT for supporting Update will be discussed in Chapter 4.

3.3.2. Defining AOs for Word and PowerPoint

Since AOs play a central role in bridging the gap between the operation models of
the application API and the underlying OT technique, the definition of AOs for an
application is a key aspect of operation adaptation for that application. In the
following subsections, the data-related AOs defined for Word and PowerPoint
will be briefly described.

Adapting Word Operations

The AOs defined for Word (Word-AO) are illustrated in Figure 3.5-(b). To
facilitate the interpretation of Word-AOs by the Word API, it is essential for
Word-AOs to carry the type information of the target data objects. This is because
different types of data object are manipulated by different object methods in the
Word API to achieve data-type-dependent editing effects. The strategy is to group
and name Word-AOs according to the Word API data object types they are
processing. These operation groups include: the fext operation group
(corresponding to the Range object in the Word API), the inlineObj operation
group (corresponding to the inlineShape objects in the Word API), and the
floatingObj operation group (corresponding to the Shape object in the Word API),
etc. It should be pointed out that AOs are aware of data object types but need not
be aware of the internal data structures of these types, which is the knowledge of

the Word API implementation.

49

Document —I |

Selection Range Shapes |
SubDocuments InlineShape Shape
Font
Comments Fill Qgczorp -
a Revisions Line fenesiien
() Range N_ame
InsertAfter() Width ... Fill
Delete() : L o
Delete() Delete()
ConvertToShape()] | ConvertTolnlineShape(

L

1 Word API-AO Adaptation I

rﬁﬂoatianb” ﬂ%floatianbd me floatianbi| r{ |

(b) Ins_inlineObj | r{el_in;i'r'leObj | [R/esize_.i.n.lineObj| F|
) [fomnin o]
((

Ins_text Del_text hange_font earch_replace
(pos,len,text) pos,len,text) pos,len,nval,oval listofBAO)

—— 1|

L

Word AO-PO Adaptation

(c)

Insert(pos,len,objSeq) |Delete(pos, len,objSeq) |Update(pos,len,key,nval,oval)

L—

Figure 3.5 Three layers in Word operation adaptation.

At the OT layer, there are three primitive operations (Sun et al. 2004):

(1) Insert(pos, num, objSeq) denotes an Insert operation to create a sequence of
num objects objSeq starting at position pos in the OT data model.

(2) Delete(pos, num, objSeq) denotes a Delete operation to remove a sequence of
num objects 0bjSeq starting at position pos in the OT data model.

(3) Update(pos, num, key, nval, oval) denotes an Update operation to change the
attribute key, from old-value oval to new-value nval, of a sequence of num

objects starting at position pos in the OT data model.

These three POs are generic in the sense that they are independent of object
types (the objSeq parameter may refer to a sequence of characters, or graphics,
etc.), attribute types (the key parameter may represent any object attribute like

color, size, or position, etc.), and attribute values (the nval or oval parameter may

50

represent any attribute value). The OT layer does not need to know the object

type, attribute type, or attribute value to do its work (Sun et al. 1998; Sun 2002b).

To facilitate the translation from Word-AOs to POs (shown in Figure 3.5-(c)),
Word-AOs are also named and grouped in another dimension according to the
three PO types: Insert, Delete, and Update. For example, for the text operation
group, there are Insert-text, Delete-text, and Change-font (an Update for text), etc.;
for the inline object operation group, there are Insert-inlineObj, Delete-inlineObyj,
and Resize-inlineObj (an Update for inline objects), etc.; and for the floating
object operation group, there are Insert-floatingObj, Delete-floatingObj, and
Move-floatingObj (an Update for floating objects), etc.

Word-AOs must carry information needed by the underlying OT to support
group undo (Sun 2000; 2002b). For example, all delete operations carry one
parameter for saving the deleted object (a text, inline, or floating object); and all
update operations carry one extra parameter (denoted as oval in Figure 3.5-(b))

for saving the old attribute value before performing the update.

Adapting PowerPoint Operations

The PowerPoint API (Figure 3.6-(a)) models a PowerPoint document as a
Presentation object. From the Presentation object, a Slides object can be accessed,
which models the sequence of slides in the document. The Slides object contains
various methods for creating Slide objects and accessing a particular slide (by
slide-sequence). From the Slide object, a Shapes object can be accessed, which
models the collection of graphic objects inside a slide. The Shapes object contains
various methods for creating Shape objects and accessing an existing Shape

object (by index-address or object-name).

The AOs defined for PowerPoint (PPT-AO) are illustrated in Figure 3.6-(b). To
facilitate the interpretation of PPT-AOs by the PowerPoint API, PPT-AOs are
named and grouped according to the PowerPoint API data object types they are

processing. These groups include: the slide group (corresponding to the Slide

51

object in the PowerPoint API), and the graphicObj group (corresponding to the
Shape object in the PowerPoint API), etc. On the other hand, to facilitate the
translation from PPT-AOs to POs, PPT-AOs are also named and grouped in
another dimension according to the three PO types. For example, for the slide
group, there are Insert-slide, Delete-slide, and Change-effect (an Update for the
Slide object), etc.; for the graphicObj group, there are Insert-graphicObj, Delete-
graphicObj, and Resize-graphicObj (an Update for the graphicObj object), etc.
Like Word-AOs, PPT-AOs also carry additional parameters required by the
underlying OT for supporting group undo.

Presentation _I

PageSetup Slides 1 Slide f—r—1 Shapes - Shape
SlideShowSettings
Rt SlidelD BBl xae
Paste() y Paste() Left
) Slidelndex
InsertFromFile() SlideName Item() Top
Item() ZOrderPosition
NotePage Fil
(a) HeaderFooters Type
TextFrame
Select()
Delete() Select()
Duplicate() Delete()
i
—_ —

1PPT API-AO Adaptation!

Ins_slide Del_slide hange_effect Move slide
(pos, len, slide) (pos, len, slide) pos,len,nval,oval opos, Ie_n, npos
(b) [
Ins_graphObj Del_graphObj Resize_graphObj[| [Change_ZOrdet
(pos,obj) (pos, obj) (pos,nval,oval) (ovp,nvp)

— y
PPT AO-PO Adaptation
(c) ITsert(pos,Ien,objSeq) I?elete(pos, len,objSeq) l@te(pos,len,key,nval, oval)
L—

Figure 3.6 Three layers in PowerPoint operation adaptation.
3.3.3. Event Interception and AO Generation

The complexity of intercepting the user’s interactions depends on the interface
techniques adopted by the application, the operation types supported by the
application, and the level and power of the API of the application and its

execution environment.

52

In the current CoWord and CoPowerPoint systems, the user is restricted to
using the keyboard and mouse to interact with the application. All user input
events can be intercepted before they reach the application. The information
available from the intercepted input events, however, is not sufficient to fully
define an AO. To generate an AO, the application’s API must be used to detect
what object (e.g. text, inline, or floating) the user is accessing, to determine what
operation (e.g. insert, delete, or update) the user is performing on the object, and
to derive the parameters of this operation, including the position references of the
object in data model, the inserted/deleted object, or the updated object attribute

(both new and old values).

y = 4
CoWord

Insert-text (pos, len, text)

Selection.GetStart()

Sigea-mnee

Figure 3.7 Intercepting keyboard events and generating the Ins_Text AO in CoWord.

Figure 3.7 shows an example of intercepting keyboard events and generating an
Insert-text AO in CoWord. When the user inputs a character into the Word
document from the keyboard, a pair of key-down and key-up input events will be
generated and intercepted. Parameters of these events include some low-level
information, such as the virtual code of the pressed key and the state information
of some auxiliary keys. From the intercepted events, we know the user has

inserted a character into the document, thus deriving that the AO type is Insert-

53

text. Then the Word API is called to get parameters of this Insert-text AO. For
example, the position reference of this insertion is derived from the current cursor
position, which can be obtained via the Word API Selection. GetStart(). Also, the
real effect (i.e. the formatted character) of this insertion can be obtained by calling
other Word API functions. This formatted character, rather than the raw key code
from the intercepted input events, is used as the text parameter of the Insert-text

AO.

We must stress the importance of querying the application for the real effect of
the user-inserted character and using the formatted character as the AO parameter.
If we used the raw key code from the intercepted input events as the AO
parameter for the inserted character, then it would be very difficult to correctly
determine its full effect at remote sites in the presence of concurrency. This is
because the determination of the full effect (e.g. font, size, color) of a character
inserted from the keyboard is dependent on the context (i.e. the existing
characters surrounding the newly inserted character). Rather than re-inventing
Word’s internal functionalities, we let Word do the real work (in determining the
full effect of the user’s interaction), and then query Word for the final effect and

carry this effect as an AO parameter to remote sites for replay.

Another issue is the timing of querying the application for deriving AO
parameters. Since the user’s input events are intercepted before they reach the
application, we can derive AO parameters by querying the application before

and/or after the local execution of the user’s input events:

(1) For creation operations (e.g. Insert-slide(pos, num, slide)), the created
object (slide) can be obtained after the local execution.

(2) For deletion operations (e.g. Delete-slide(pos, num, slide)), the deleted
object (slide) must be obtained before the local execution.

(3) For update operations (e.g. Resize-GraphicObj(pos, nval, oval)), the

parameter oval (the old size of the graphic object) must be obtained before

54

the local execution, but the parameter nval (the new size of the graphic

object) can be obtained after the local execution.

Finally, the functional knowledge of the application (from the user’s point of
view) also plays an important role in the process of understanding the user’s
interaction and generating the AO. For example, when the user selects a range of
characters and then clicks the “Bold” button, we (the programmers) know that the
user must have generated an Update operation on the selected characters
according to the application’s function from the user’s point of view. Moreover,
the functional knowledge of the application is also important in determining
whether or not a user-level operation should be converted to an AO. In Word, for
example, the user may perform a local Copy operation on a selected object. From
the functional knowledge of Word, we know that a Copy operation creates a copy
of the selected object in the local clipboard buffer but has no effect on the
document state, so it need not be converted into an AO. When the user later
performs a Paste operation, a previously copied object in the local clipboard
(determined by Word) will be inserted into the document. At this moment, one
Insert AO can be generated and propagated to remote sites. In effect, a pair of
user-level Copy and Paste operations are merged into a single Insert AO
according to their combined effect on the document state. This solution is simple
and clean because it does not require any change to the execution of local Copy
and Paste operations or any additional mechanisms for supporting remote Copy
and Paste operations. If Copy and Paste were represented as separate AOs, then
not only would there be a need to devise additional mechanisms for treating Copy
as a special read AO, but we would also have to maintain consistent clipboard

buffers (in addition to consistent document states) at all sites.

In summary, information from the following three sources are needed in
generating AOs: (1) the user’s interactions (intercepted by the application API),
(2) the effect of the user’s interaction on the application state (queried from the
application’s API), and (3) the functional knowledge of the application (obtained

from usage experience or the application’s user manual).

55

3.3.4. AO-PO Adaptation

The task of AO-PO adaptation is to translate an AO into suitable POs for OT
processing. The term OT-relevant parameters is used to mean those AO
parameters that may be affected by concurrent operations, such as the position
references of an AO (including the pos and num parameters). The following two
criteria have been used as guidelines to determine what POs should be used to

represent a given AO.

(1) The OT-relevant parameters of the AO must be fully represented by the POs.
(2) The impact of the AO on the OT-relevant parameters of other concurrent AOs
must be fully captured by the POs.

An AO is called a basic AO if it can be represented by a single PO, or a
compound AO if it must be represented by multiple POs. For example, an AO for
creating an object, removing an object, or changing an attribute (e.g. color, font
style, or size) of an object, is a basic AO since its OT-relevant parameters and its
impact on other concurrent AOs can be fully captured by a single PO. The
translation from a basic AO to a single PO is straightforward: the PO-type
information in the AO’s name (see Figure 3.5-(b) and Figure 3.6-(b)) can be used
to determine the type of the PO (i.e. Insert, or Delete, or Update); the OT-relevant
parameters (e.g. position references) of the AO can be directly used in the PO.
For example, an Insert AO (e.g. Insert-text, Insert-inlineObj, or Insert-floatingOby)
can be translated into an Insert PO, whose pos and length parameters are taken
directly from the AO, but whose 0bjSeq parameter is just a reference to a generic

object - the real object type (text, inline, or floating) and internal structure of the

data object are of no interest to OT.

On the other hand, an AO for moving one character from position X to position
Y (in CoWord) is a compound AO since it has to be translated into two POs: a
Delete operation representing the deletion of the character at position X, and an

Insert operation representing the insertion of the deleted character at position Y.

56

Another example compound AO is the Search-and-Replace operation, which
must be represented by a sequence of Delete and Insert PO pairs. Moreover, the
user may select a collection of disjoint objects (e.g. floating graphic objects in
Word, or slides in PowerPoint), and apply a single operation (e.g. deletion or
update) on them. This single user-level operation can be expressed as a single AO,
but this AO has to be treated as a compound AO since no single PO is able to
identify multiple disjoint objects.

In the above compound AO examples, the relationship between the compound
AO and its representing POs is obvious, but this is not always the case. In Word,
for example, the user can insert a new comment into the document, which is
represented as a single Comment-insert AO in CoWord. The overall effect of this
AO on the document consists of highlighting (with a color) the selected text
segment, and creating a comment element in the Comment Story (an editing area
independent of the main document). This AO carries, among others, three OT-
relevant parameters: (1) the starting position of the selected segment, (2) the
length of the selected segment, and (3) the insertion position of the comment
element in the Comment Story. These parameters are OT-relevant since they may
be changed by and have impact on other concurrent operations. This Comment-
insert AO is a compound operation since no single PO is able to represent all
three parameters and to capture its impact on other concurrent operations. Based
on the two criteria for AO-PO adaptation, this compound AO can be translated
into two POs: one Update operation (Highlighting) for representing parameters (1)
and (2), and one Insert operation for representing parameter (3) and its impact on
other concurrent AOs. It must be pointed out that these POs are involved in OT

processing only, not in the API interpretation of the AO (see Section 3.3.6).

The types of compound AO and the methods of translating compound AOs into
POs are application-specific. Techniques for adapting complex compound AOs
will be discussed with examples of collaborative table editing and collaborative

graphic object grouping in Chapter 5.

57

After translating an AO into suitable POs, OT will be applied to these POs.
Then, these transformed POs will be used to update the corresponding OT-
relevant parameters of the AO. In this way, the AO is effectively transformed by
OT. Therefore, AO-PO adaptation can be regarded as an application-specific

extension to the OT operation model.

3.3.5. AO-API Adaptation

The task of API-AO adaptation is to interpret the transformed AO by means of
the API. The interpretation of a basic AO is straightforward: the data type
information (e.g. text, inline, or floating object) encoded in the AO name (see
Figure 3.5-(b) and Figure 3.6-(b)) is used to determine suitable API object class
types for the target object; the position references of the AO are used to find out
the target object in the document; other parameters of the AO are used in the API

method calls in order to replay the AO’s effect on the document.

Some compound AOs are composed of a list of basic AOs since the effects of
these compound AOQOs are achieved by sequentially executing these basic
composing AOs. The interpretation of these AOs can be achieved by sequentially
interpreting the basic composing AOs as well. For example, a Search-and-
Replace AO is composed of a list of basic Delete and Insert AO, which are
determined at the local site. When this compound AO arrives at a remote site, all
composing basic AOs are first translated into corresponding POs and processed
by OT in the AO-PO adaptation phase. Then, in the API-AO adaptation phase, all
transformed basic composing AOs are interpreted one by one to achieve the effect

of the compound AO.

However, not all compound AOs are composed of multiple basic AOs. As
discussed in Section 3.3.4, the Comment-insert AO is a compound AO since it has
to be translated into two POs (one Update plus one Insert) for the purpose of OT.
This compound AO, however, is not composed of a basic Update AO (to

highlight the selected text segment) and a basic Insert AO (to insert the comment

58

element into the document) since the effect of inserting a comment into the
document cannot be achieved by sequentially executing these two basic AOs. In
fact, the Word API provides a special method to insert a comment into the
document. Therefore, the interpretation of the Comment-insert compound AQO is
achieved by invoking a single Word API method. This example highlights the
independency of the API interpretation and the PO translation: the API
interpretation of an AO is based on the semantics of this AO, which is not related

to the POs that represent the AO for the purpose of OT.

The relationship between AO-PO adaptation and API-AO adaptation can be
summarized as follows: the former is responsible for getting the AO’s parameters
(syntax) right in the presence of concurrency; the latter is responsible for getting
the AO’s execution effect (semantics) right under the current application context.
Because of this division of responsibilities, POs (and OT) do not require the
awareness of the semantics of AOs, and the API interpretation does not need to

worry about concurrency.

3.4. Summary

In this chapter, an innovative Transparent Adaptation (TA) approach which can
be used to convert single-user applications into collaborative ones without

changing the source code of the original application, has been discussed.

The TA approach is based on (1) the use of the single-user application’s API to
intercept and replay the user’s operations, and (2) the use of Operational
Transformation (OT) to manipulate intercepted user operations for supporting
responsive and unconstrained (i.e. concurrent and free) multi-user interactions
with the shared application. For this approach to work, the shared application’s
API needs to be adapted to the data and operation models of the OT technique.
Two TA-based systems, CoWord and CoPowerPoint, were used as examples to

discuss data and operation model adaptation techniques.

59

The user’s view of a Word document does not look like a linear sequence of
objects, but from Word API’s view, all objects, including characters, inline
objects and floating objects, can be accessed by their positional references in a
linear addressing space. Taking other auxiliary document elements (e.g.
Comments, Headers, Footers) into account, the whole Word document can be
modeled as a tree of linear addressing domains. Similarly, with the PowerPoint
API, all data objects in a PowerPoint document can also be accessed with
positional references in a tree of linear addressing domains. To adapt the data
models of Word and PowerPoint, the OT data model should be extended

correspondingly.

In the TA approach, user input events are converted into semantically
meaningful Adapted Operations (AO) for representing and propagating the user’s
interaction. Moreover, AO is also the bridge between OT and the API, so the
operation model adaptation task is decomposed to (1) AO-PO adaptation, which
translates the AO into suitable Primitive Operations (PO) to be processed by OT,
and (2) API-AO adaptation, which interprets the AO by means of the API to
replay the user’s interaction. For the purpose of AO-PO adaptation, the OT

operation model should be extended to support a new Update operation.

To adapt the operation models of Word and PowerPoint, a set of Word-AOs
and PPT-AOs are defined respectively. To facilitate the interpretation of
Word/PPT-AQOs by the API, Word/PPT-AOs are named and grouped according to
the data object types they are processing. In another dimension, to facilitate the
translation from Word/PPT-AOs to POs, AOs are also named and grouped
according to the three PO types.

To generate AOs in response to the user’s interaction, three sources are needed:
(1) the user’s interaction intercepted by the application’s API, (2) the effect of the
user’s interaction on the application state queried via the application’s API, and (3)
the functional knowledge of the application. However, to perform AO-PO
adaptation and API-AO adaptation for different AO, different strategies are

60

needed. For basic AOs, both AO-PO adaptation and API-AO adaptation are
straightforward, but adaptation methods for compound AOs are more complex:

application- and operation-specific methods are needed.

61

Chapter 4

Extending Operational

Transformation for Supporting TA

As discussed in Chapter 3, leveraging single-user applications into multi-user
collaborative versions based on the TA approach requires extensions to both the
data model and the operation model of the basic OT technique. In the data model
aspect, the OT technique should be extended to support the data model based on a
tree of linear addressing domains; in the operation model aspect, the OT
technique should be extended to support a new operation type, Update. This

chapter discusses these two extensions to the basic OT technique.

4.1. Introduction

The OT technique consists of two layers: high-level transformation control
algorithms and low-level transformation functions (see Chapter 2). When the data
and operation models of the OT technique are extended, the transformation
control algorithm needs no change, because it is independent of the addressing
schemes and operation types. Changes should be done at the transformation
function level, because they are related to the addressing schemes and operation
types. Existing transformation functions in the basic OT technique are capable of
handling /nsert and Delete operations based on a single linear addressing domain

only. Therefore, our strategy is to extend the transformation functions so that they

62

can handle transformation of all three operations on the extended data model. At

the same time, the high-level control algorithms are kept unchanged.

The rest of this chapter is organized as follows. The extension to the OT data
model is discussed in Section 4.2. The extension to the OT operation model for
supporting Update is discussed in Section 4.3. Finally, this chapter concludes

with a summary in Section 4.4.

4.2. Extending the OT Data Model
4.2.1. Extending the OT Data Model

XOTDM: an eXtended OT Data Model

To meet the need for supporting complex data models, such as those of Word
(Figure 3.2) and PowerPoint (Figure 3.4), the basic OT data model should be
extended from a single linear addressing space to a tree of addressing groups,
where each group consists of multiple independent linear addressing domains, as
shown in Figure 4.1. XOTDM is used as the name of this eXtended OT Data
Model. Inside each addressing group, independent linear addressing domains are
identified by their unique names within that group. A data object is mapped to a
position in a linear addressing domain only if it has the position number as its
address in this domain. A data object is a terminal object if it has no internal data
structure or its internal data structure is not addressable. A data object is an
intermediate object if it has an addressable internal data structure. In XOTDM, a
terminal object has no link out of it, but an intermediate object has a link leading
to a lower level addressing group, which represents this object’s internal

addressing space.

Data objects of a wide range of different types of document can be mapped
onto XOTDM. For example, all characters in a plain text document can be

mapped into a tree of a single addressing group, which contains a single linear

63

addressing domain. All data objects in this domain are terminal objects since

plain text characters have no internal structure.

Figure 4.1 The XOTDM tree: an eXtended OT Data Model.

Data objects in a Word document can be mapped into a two-level XOTDM
(compare Figure 3.2 with Figure 4.1). The top-level addressing group contains a
single linear addressing domain, corresponding to the range of data objects in the
main body of the document. Characters and graphic objects without addressable
internal structures (or where the internal structure is of no interest) are terminal
objects. Graphic objects with addressable internal structures, Comments, Notes,
and Section-Breaks are intermediate objects which have links to addressing
groups at the second level. A second-level addressing group for a Comment or
Notes contains a single linear addressing domain, corresponding to the sequence
of characters in the comments or notes; a second-level addressing group for a
Section-Break contains multiple linear addressing domains, corresponding to the
multiple independent sequences of data objects in the Headers and Footers

associated with the section.

Data objects of a PowerPoint document can be mapped into a three-level
XOTDM as well (compare Figure 3.4 with Figure 4.1). The top-level group

contains multiple independent linear addressing domains, corresponding to the

64

sequence of normal slides in the document, and various master slides. All data
objects in the top-level group are intermediate objects since they represent slides
which have addressable internal data structures. A second-level addressing group
corresponds to the internal addressing space of an individual slide, with two
independent linear addressing domains: one is for the sequence of graphic objects
in the drawing area, and the other is for the sequence of characters in the notes
area. Data objects in the notes area are all terminal objects. Textboxes in the
drawing area are intermediate objects since they have addressable internal data
structures (represented by third-level nodes). All other data objects in the drawing
area are treated as terminal objects because either they have no addressable
internal structure or their internal structures can be ignored. All data objects in a

third-level node (representing a Textbox node) are treated as terminal objects.

It should be stressed that XOTDM reflects only the relationships of data object
addresses, rather than data objects themselves. Data objects in an application may
have arbitrarily complex relationships, which cannot and need not be mapped into
XOTDM for the purpose of applying OT. Two data objects are mapped into two
adjacent positions of a linear addressing domain in XOTDM just because they
have adjacent positional addresses in this domain. Their dynamic positional
relationship in the addressing domain is independent of their static relationship in
the object class hierarchy and is independent of their visual relationship on the

user interface.

Addressing Data Objects

Under XOTDM, a data object inside a given addressing group can be uniquely
addressed by a pair (n, p), where n is the name of a linear addressing domain in
this group, and p is the object’s position in this domain. To address any data

object in an XOTDM, a vector of (n, p) pairs is needed:

vp = [(no, po), (n1, p1), ..., (M, pi), .., (N, P)]

where vp/i] = (n;, pi), 0 <i <k, represents one addressing point at level i.

65

For a Word document, a vector of two (n, p) pairs can be used to identify a data
object at the main document layer (addressed by the first pair), and a data object
inside an intermediate object (addressed by the second pair). For example, to
perform an operation in the main document, the editing operation needs a vector
of only one (n, p) pair: vp = [(“Main Text”, py)], where py refers to the target
object’s linear position in the main document. To create a data object in a Header
associated with a Section-Break in the main document, however, the editing
operation should carry a vector of two (n, p) pairs: vp = [(“Main Text”, py),
(“Header-1”, p;)], where py is the position of the Section-Break link in the main
document, and p; is the position of the created data object in the linear addressing

domain named as “Header-1"".

For a PowerPoint document, a vector of two (n, p) pairs can be used to identify
a slide at the top slides sequence level or in a master slide (addressed by the first
pair), and a graphic object (in the drawing area) or a character (in the notes
editing area) inside this particular slide (addressed by the second pair). For
example, to insert or delete a slide in the “slide-sequence” at the top level, the
editing operation needs a vector of one (n, p) pair, such as vp = [(“slide-sequence”,
2)] refers to slide “2” in the “slide-sequence” domain. To update a graphic object
in a normal slide, the editing operation should carry a vector of two (n, p) pairs,
such as vp = [(“slide-sequence”, 1), (“drawing area”, 3)] refers to the graphic
object at position “3” in the “Drawing Area” of slide “1” in the “slide-sequence”
domain. To insert a character object in a Textbox in a normal slide, the editing
operation should carry a vector of three (n, p) pairs, such as vp = [(“slide-
sequence”, 1), (“drawing area”, 2), (“Textbox”, 3] refers to the character object at
position “3” in the “Textbox™, which is the number “2” graphic object in the

“drawing area” of slide “1” in the “slide-sequence” domain.

66

4.2.2. Target—-Domain Relationships among
Operations

As discussed earlier, to extend the OT data model to support XOTDM, changes to
the OT technique are to be done at the transformation function level. To achieve
this goal, one strategy is to redefine existing transformation functions so that they
become capable of handling operations with vector addresses, as is done in Davis
et al. (2002). The problem with this strategy is that all existing transformation
functions have to be revised and re-tested, which is nontrivial. The strategy
adopted in this research is to encapsulate the impact of the vector of (n, p) pairs in
a wrapper vector-based OT function (the VOT () function), but to keep all
existing transformation functions unchanged. This strategy allows us to localize
the impact of XOTDM and maximize the reuse of existing algorithms and

functions.

Under XOTDM, the target data object of an operation must fall into one
particular linear addressing domain. This particular domain is called the farget-
domain of this operation. The target-domain relationship among operations is
very important in determining whether and how operations should be transformed
against each other. For convenience of discussion, the following terminologies are
introduced. Domain A is an ancestor-domain of domain B if there is a sequence
of arrows from A to B in the XOTDM tree. The sequence of domains from the
root domain to the target-domain (inclusive) of an operation is called the domain-

path of this operation.

In an unconstrained collaborative editing session, multiple users may generate
concurrent operations in the same or different target-domains. Concurrent
operations in the same target-domain (e.g. O, and O, performed on slide-1 in
Figure 4.2) should be transformed against each other. This is because the
execution of one operation in its target-domain may have impact on the position

references and other parameters of concurrent operations in the same target-

67

domain. Existing OT functions for a single linear addressing domain can be

directly used to transform operations performed on the same target-domain.

Figure 4.2 Concurrent operations in multiple domains of a CoPowerPoint
document.

The question is whether concurrent operations in different target-domains need
to be transformed against each other. The answer is yes and no, depending on the
relationship between the target-domains of these operations. Given two
concurrent operations O, and O in different target-domains, if O,’s target-domain
is an ancestor-domain of O,’s target-domain, and O is executed before O,, then
0O, must be transformed against O since O,’s execution in the ancestor-domain
may have changed O,’s corresponding position reference. For example, in Figure
4.2, O; is performed on the root domain which is an ancestor of O,’s target-
domain. If O, is executed before O,, O, must be transformed against O, since the
execution of O; may change O,’s slide-sequence-number, which is a part of O,’s
address. It should be pointed out that existing OT functions cannot be directly
used to transform O, against O;, and a new function for transforming operations

on different domains is needed (to be discussed later).

However, if the target-domain of O, is not an ancestor-domain of O,, then O,

need not be transformed against O, since the execution of O, may not have any

68

impact on O,. For example, in Figure 4.2, O, in slide-1 does not need to be
transformed against another operation O3 in slide-0, or against operation Oy in the
notes area of slide-1, since the target-domains of both O; and O, are not on the

domain path of O,.

To summarize, given two concurrent operations O, and Oy and supposing O is
executed before O,, O, needs to be transformed against O, under the following

two circumstances:

(1) O, and O, have the same target-domain; and

(2) O,’s target-domain is an ancestor-domain of O,’s target-domain.

In both cases, O,’s target-domain is one of the domains on the domain-path of
O,. This target-domain relationship between operations is called domain-

dependence. A more precise definition of this relationship is given below.

L) . . ‘“ d ”» . .
Definition 4.1. Domain-dependence relation “O,—»0;”. Given two operations

O, and O,. Let D, and D, denote the target-domains of O, and O, respectively.

. . d . . .
Oy, is domain-dependent on O,, denoted as O, —» O, if D, is one of the domains

on the domain-path of D;.

If D, is not on the domain-path of Dj, then O, is not domain-dependent on O,,

denoted as O, 7dz>0;,.

4.2.3. Checking Target—Domain Relationships

Like the concurrency relationship among operations, the domain-dependence
relationship among operations is an essential condition in determining whether
two operations need to be transformed. Also like the vector of operation counters

(i.e. the state vector (Ellis and Gibbs 1989; Sun et al. 1998)) used for checking the

69

concurrency relationship among operations,* the vector of (1, p) pairs is used to

check the domain-dependence relationship among operations.

Check_target_domain_relation(On, Ox)

{
if(Domain_dependent(On, Ox))
if(|On.vp| == |Ox.vp|); //|On.vp| is the vector's length
return SAME_DOMAIN;
else
return ANCESTOR_DOMAIN;
else
return INDEPENDENT_DOMAIN;

}

Domain_dependent(On, Ox)

if(|On.vp| < |Ox.vp|)
return false;
for(inti =0;i < |Ox.vp| - 1; i++)
if(On.vp[i] = Ox.vpl[i]) //Note: vp[i] is a (n, p)-pair
return false;
if(On.vp[|Ox.vp| - 1].n = Ox.vp[|Ox.vp| - 1].n)
return false;
return true;

Figure 4.3 Checking the target-domain relationship.

The Check target domain_relation() function in Figure 4.3 has been devised
to check the target-domain relationship of O, against O, based on the vectors of (n,

p) pairs (i.e. their vp address parameters). The Domain_dependent(O,, O)

function checks whether O, is domain-dependent on O, (i.e. Ox—d—>0n). If O, is
domain-dependent on O,, it is further differentiated whether the two operations
have the same target-domain (return SAME DOMAIN), or O,’s target-domain is
an ancestor-domain of O,’s target-domain (return ANCESTOR DOMALIN). This
differentiation is necessary because different transformation functions will be

used for transforming O, against O, in these two sub-cases (see the VOT{()

* The concurrency relationship among operations is checked by high level transformation control
algorithms based on operations' state vector time-stamps (Sun et al. 1998; Sun 2002b).

70

function in Figure 4.4). If O, is not domain-dependent on O, then

INDEPENDENT DOMAIN is returned.

4.2.4. The VOT function

VOT(On, Ox)
{
switch(Check_target_domain(On, Ox)) {
case SAME_DOMAIN:
Transform_same_domain(On, Ox);
break;
case ANCESTOR_DOMAIN:
Transform_ancestor_domain(On, Ox);
break;
case INDENPENDENT_ DOMAIN:
break; /[do nothing

}

Transform_ancestor_domain(On, Ox)
{
last = |Ox.vp| - 1;
switch(Ox.type) {
case Insert:
if(Ox.vp[last].p <= On.vp[last].p)
On.vp[last].p++;
break;
case Delete:
if(Ox.vp[last] < On.vp[last])
On.vp[last].p--;
else if(Ox.vp[last] == On.vp[last])
SetNULL(On);
break;
case Update:
break; //[do nothing

Figure 4.4 A wrapper OT function for transforming operations with vector
addresses.

As described in Chapter 2, the transformation control algorithm of an OT
technique determines which operation should be transformed against other
operations, and then calls the transformation functions to do the transformation.
In particular, when a new operation from a remote site arrives, the control

algorithm (e.g. GOTO (Sun and Ellis 1998)) scans (and may also reorder) the

71

history buffer of executed operations, and selects operations to transform against
the new one.” To transform the new operation against those in the history buffer,

the control algorithm calls the transformation functions (i.e. IT and ET).

However, to transform an operation O, against a concurrent operation Oy
defined in XOTDM, we do not directly call the IT or ET functions. Instead, the
VOT() function in Figure 4.4 is called. In the VOT() function, the
Check target _domain_relation() function is first called to differentiate the three
kinds of target-domain relationship: SAME _DOMAIN, ANCESTOR DOMAIN
or INDEPENDENT DOMAIN, between O, and O,, based on their vp parameters.

Then three different transformation cases are handled separately.

First, if both O, and O, have the same target-domain, then the execution of O,
may have impact on O,’s last position and other parameters (e.g. attribute values).
In this case, O, can be transformed against O, by using transformation functions
based on singular positions. This is achieved by calling the
Transform_same_domain() function, which encapsulates the conversion between
vector positions and singular positions, and the invocation of existing

transformation functions.®

Second, if O,’s target-domain is an ancestor of O,’s target-domain, then the
execution of O, may have impact only on O,’s corresponding position, not on
O,’s attribute value parameters. In this case, O, must be transformed against Oy
by a new function Transform_ancestor _domain(). The transformation result is
dependent on O,’s type and the relationship between O,’s last position and O,’s
corresponding position (which is the position with the same index as Oy’s last

position). If Oy is an Insert and its last position is smaller than or equal to O,’s

> For details of the GOTO algorithm, the reader is referred to Sun and Ellis (1998).

Details of vector versus singular positions conversion are omitted for conciseness. For

definitions of transformation functions based on singular positions, the reader is referred to Sun et
al. (1998); Sun and Ellis (1998); Sun et al. (2004).

72

corresponding position, then O,’s position is incremented by one.’ If Oy is a
Delete operation and its last position is smaller than O,’s corresponding position,
then O,’s position is decremented by one; but if these two positions are equal,
which means O,’s target-domain has been removed by O,, then function
SetNULL(O,) is invoked to set O, to NULL.®If O, is an Update operation, no
change is made to O,’s position. It should be highlighted that O,’s type has no
influence on the transformation result, which is a major difference between
Transform_ancestor _domain() and existing transformation functions defined for

singular positions (Sun et al. 1998).

Third, if O, is not domain-dependent on O,, then the execution of O, cannot

have any impact on O,. In this case, O, is returned without any change.

Finally, it should be pointed out that although CoWord and CoPowerPoint use
a vector of maximum two or three (n, p) pairs, the VOT() function supports

vectors of any number of (n, p) pairs.

4.2.5. Other Tree—-Based OT Techniques

The extension of the basic OT technique to support a tree of multiple linear
addressing domains represents an important advancement from previous work
(Davis et al. 2002). The tree-based document modeling and vector-based
addressing scheme have already been discussed in the context of XML-based
documents in Davis et al. (2002), but the discovery of the tree-based document
modeling and vector-based addressing in the Word and PowerPoint APIs is a
valuable research finding. This finding is significant because it reveals the
excellent match between the OT technique and a wide range of existing
commercial off-the-shelf single-user applications, and thus greatly increases the

applicability of the OT technique.

7 For simplicity, it is assumed that each operation targets only one object. In other words, the
value of its num parameter is always one.
¥ NULL is an empty operation without any effect on the document or in transformation.

73

Technically, the extension of the basic OT technique to the tree-based OT
technique was achieved by embedding the vector positional references in all
existing transformation functions in Davis et al. (2002). In contrast, the extension
in this work encapsulates the impact of the vector-based addressing and
transformation inside a wrapper transformation function (VOT()), and keeps
existing OT control algorithms and transformation functions unchanged. Above
all, the tree-based OT technique presented in this chapter is the only one fully

implemented and tested (in the CoWord and CoPowerPoint systems).

There is another tree-based OT technique, TreeOPT (Ignat and Norrie 2003),
which is very similar to Davis et al. (2002). Some specific points of the TreeOPT
algorithm include: the use of a tree of history buffers to reduce the number of
transformations (at the cost of maintaining an explicit tree of buffers), and the use
of an artificial zero-length Delete operation to represent an operation when it is
transformed against other operations at high layers in the tree (which is a trick to
get around the problem of the lack of knowledge of vector-based addressing in

the basic OT technique).

The data models used in Davis et al. (2002) and Ignat and Norrie (2003) can be
regarded as special cases of XOTDM, in the sense that there is only a single linear

addressing domain in each addressing group.

4.3. Extending OT for Supporting
Update

After the Update operation is introduced into the OT operation model, the OT
technique supports three primitive operations: Insert, Delete and Update (see

Chapter 3).

For supporting Update, OT needs to be extended with a set of Update-related
transformation functions. However, the central issue in supporting Update is

conflict resolution. This is because, in an unconstrained collaborative

74

environment, users may concurrently update the same attribute of a common
object, resulting in conflicts. Corresponding techniques embedded in
transformation functions are needed for conflict resolution and preservation of

user’s effort.

In GRACE (Chen 2001; Sun and Chen 2002), a Multi-Versioning (MV)
technique was devised to preserve all operations’ effects in the face of conflicts.
With this technique, multiple versions of the same object are created to
accommodate the effects of multiple conflicting Updates. This MV technique
provides users with a complete picture about what other users intended to do in
the situation of conflict, so that they could better assess the situation and react

accordingly.

Due to the differences between the frameworks of GRACE and OT, directly
applying the GRACE MV technique in OT for conflict resolution could
significantly complicate the OT framework. In this research, a new MV technique,
called Multi-Version Single-Display (MVSD) has been devised. The basic idea of
MVSD is the following: when an object is updated by conflicting operations,
multiple versions of the target object will be created and maintained internally
(similar to GRACE), but only one version is displayed at the user interface
(different from GRACE). Moreover, all versions of an object can be displayed
(one by one) by invoking an AnyDisplay algorithm (Sun 2004).

The major merit of MVSD is that it fits very well in the OT framework.
Furthermore, it naturally matches the interface features of existing single-user
applications (e.g. MS Word). For details about supporting Update in OT and the
MVSD technique, the reader is referred to Sun (2004).

4.4. Summary

This chapter has discussed techniques for extending the basic OT technique in

two aspects. On the one hand, the data model of the basic OT technique has been

75

extended to support the XOTDM (eXtended Operational Transformation Data
Model). On the other hand, the OT operation model has been extended to support
a new operation, Update. With these two extensions, the TA approach is

applicable to a wider range of single-user applications.

After the data model of OT is extended to a tree of linear domains, operations
involved in the transformation may have different target-domain relations. Based
on the target-domain relation definition, the solution to transforming operations in
XOTDM was designed in two steps. First, an algorithm is designed to check the
target-domain relation of two operations according to their position parameters.
Then, a transformation function is designed to transform two operations
according to their target-domain relation. To keep existing transformation
functions unchanged, the impact of the vector-based addressing and
transformation is encapsulated inside a wrapper transformation function. This
extension to the OT technique has increased the capability of the OT technique to
support collaboration on complex data structures (e.g. the Word and PowerPoint

documents).

To extend the OT data model to support the Update operation, the first task is
to design transformation functions that transform Update against other operations.
Unlike [Insert and Delete, Update operations may conflict with each other.
Therefore, a conflict resolution technique must be designed. The multi-versioning
strategy is ideal for conflict resolution due to its ability to preserve all users’
intensions in the face of conflict, but exiting the multi-versioning technique
cannot be directly applied in the OT framework. To achieve the multi-versioning
effect with OT, a Multi-Version Single-Display (MVSD) strategy is adopted in
this research. In the face of conflict, multiple versions of the target object of
conflict Update operations are maintained internally, but only one version is
displayed in the user interface. Moreover, an AnyDisplay algorithm is able to

display any version of an object.

76

Chapter b
Applying TA to Complex
Application Data Structures and

Operations

In Chapter 3, a basic TA approach which can be used to adapt common rich
format text and graphics editing in single-user applications, has been presented.
However, many off-the-shelf commercial single-user applications have complex
data structures and editing functionalities that cannot be directly adapted by the
techniques presented in Chapter 3. To support these complex data structures and
editing functionalities in collaborative versions, special adaptation techniques

need to be designed in the TA framework.

In this thesis work, two special adaptation techniques - CoTable and CoGroup
- have been devised to support collaborative table editing and collaborative
graphic object grouping, respectively. The reasons for targeting collaborative
table editing and graphic object grouping are as follows. First, table editing and
graphic object grouping are practically useful single-user editing functions and
are widely supported in off-the-shelf commercial single-user applications.
Supporting collaborative versions of these functions significantly increases the
usefulness of collaborative editing systems. Second, among a variety of editing

functions, adaptation techniques of table editing and graphic object grouping are

77

technically representative. The CoTable technique focuses on adapting complex
data structures and operations defined on these data structures, and the integration
of different object models. CoGroup focuses on resolving application-semantics-
level conflicts, achieving desirable effects and adapting complex compound AOs

with AO-level mechanisms.

The rest of this chapter is organized as follows. First, the CoTable technique is
discussed Section 5.1. Then the CoGroup technique is discussed in Section 5.2.

Finally, this chapter concludes with a summary in Section 5.3.

5.1. The TA-Based Collaborative Table
Editing Technique

5.1.1. Collaborative Table Editing

Complex information that includes multiple interrelated items is difficult for
human beings to comprehend without proper organization. Tables are an efficient
way to organize such information. A table is usually defined from two perspec-
tives (Silberhorn 2001). From the presentation-oriented perspective, a table is a
two-dimensional structure consisting of rows, columns and cells. From the struc-
ture- or content-oriented perspective, a table is a collection of interrelated
information items. Each item is semantically associated with multiple categories.
Due to these characteristics, tables provide a powerful means for facilitating
information organization, comprehension, and comparison (Wang 1996). Because
of their usefulness and convenience, tables are supported in a wide range of
computer document processing applications such as word processors (e.g. MS
Word, OpenOffice Write), web design systems (e.g. MS FrontPage, Macromedia
Dreamweaver), and spreadsheet systems (e.g. MS Excel, OpenOffice Calc).

In their ethnographic interviews with users of spreadsheets, which are a special
form of tables, Nardi and Miller (1990) noted that most spreadsheets are

developed from collaborative work of users with different expertise. Generally,

78

collaboration is an essential part of table editing. Collaboration may be involved

in both table designing and filling processes (Xia et al. 2005a).

5.1.2. The Data Model Adaptation

According to the TA approach, supporting collaborative table editing involves the
adaptation of data and operation models of the single-user application’s table
editing APIL. In this subsection, the table editing data model adaptation technique

will be discussed first.

To adapt table-related object data models exposed by the API to those of the
underlying OT technique (i.e. the XOTDM), it is important to have a clear

understanding of these table-related data models.

Table Data Models of Single-User Application APIs

When viewed from the user interface, a table is a two-dimensional rectangular
data structure, consisting of a collection of rows and columns. Each row or
column consists of a sequence of cells. A cell may be associated with a row and a
column at the same time. A cell may contain some text or graphic objects, which
are in a linear sequence. In this conceptual model of tables, objects in a table may
have various relationships. First, hierarchical relationships exist in the following
object pairs: table—column/row, column/row-cell, and cell—cell content. Second,
objects in the same collection form a separate linear sequence. For example, each
cell has an ordinal index in a row, with which the cell can be accessed from the
cell sequence in the row. The ordinal indices range from 0 to N—1 where N is the
number of cells in the row. Removing or inserting cells affects indices of other
cells that have higher indices in the same row, but does not affect indices of cells

in other rows.

When viewed from the API of an application, the table data model may or may
not correspond to the conceptual model. Typically, there are three categories of

API table data models, as shown in Figure 5.1.

79

13 [14]
t [o]
r Wr -
/ \
(b) C iC c _{c _
|(G| dic! ‘EY |(C| [T A - |(P’ (0) |(A’d(0’EI
t
0
r r A] (o) T (o] -
. . []
(c) éc ' C
i G o
i’ c c ¢ Cell
O] o Column
\ r Row
‘G‘ ;C n E! E :Py 5 (0; :Ay (0! lC‘ ‘A‘ n t Table

Figure 5.1 Table-related data models in APIs of different single-user
applications. (a) The single linear tree data model; (b) the row-based tree data
model; (¢) the two dimensional data model. The numbers at the lower right
corners of each cell stand for object positions in corresponding linear
sequences.

(1) Single linear data model. In this data model, table data objects can be
accessed from a linear addressing space. Inserting or removing objects
contained in cells of a table may affect positions of other data objects.
Moreover, row/column and cell objects also have marks and occupy positions
in the linear addressing space. Therefore, this data model can be represented
as a single linear sequence, as shown in Figure 5.1-(a). This data model can be
found in APIs of some word-processing applications including MS Word.

(2) Row-based tree data model. The most significant feature of this data model is

the absence of columns, and table data objects can be accessed from the row-

80

dimension only. Hierarchical relationships between table-row, row-cell and
cell-cell content still exist, and the linear relationships between objects in the
same collection also remain. This data model can be represented as a row-
based tree, as shown in Figure 5.1-(b). This data model can be found in APIs
of some HTML editors, such as MS FrontPage.

(3) Two-dimensional data model. In this data model, table data objects can be
accessed from both the row-dimension and the column-dimension. This data
model directly matches the conceptual model of tables and can be represented
as a hierarchical graph, as shown in Figure 5.1-(c). This data model can be
found in APIs of a variety of single-user applications, including MS Excel,

MS PowerPoint, OpenOffice Writer, and OpenOftice Calc.

Table Data Model Adaptation Schemes

With the variations of API table data models, different adaptation schemes are
needed to adapt these data models to the XOTDM. Here the adaptation schemes

for the three API data models in Figure 5.1 are discussed respectively.

First of all, the single linear data model is a special form of the XOTDM in
which only the root level addressing group exists and there is only one linear
addressing domain in this group. In the single linear data model, an object is
uniquely addressed with an integer as the position in the linear sequence. This
address is also a special form of the (n, p) pair vector address of the OT where
there is only one pair in the vector, and the » parameter in this pair can be set to a

constant since there is only one linear addressing domain.

Moreover, the row-based tree data model is also a special form of XOTDM, in
which (1) the total number of levels is 4, (2) terminal objects exist only at level 3,
and (3) there is only one linear addressing domain in each addressing group. In
the row-based tree data model, an object is uniquely addressed with a vector of

integer. This address is also a special form of the OT vector address where £ < 3

81

(k is the number of (n, p) pairs in the address; see Chapter 3), and the n

parameters in each pair can be set to a constant for the same reason.

Finally, the two-dimensional data model is not directly compatible with
XOTDM due to the dual hierarchical relationships between cells and
rows/columns. However, a comparison of the two-dimensional data model and
the row-based tree data model reveals that removal of column objects from the
two-dimensional data model reduces the dual hierarchical relationships to a single
one and hence converts the two-dimensional data model to the row-based tree

data model.

In summary, the three API data models are all adaptable to XOTDM. The
single linear data model and the row-based tree data model are adapted directly;
and the two-dimensional data model is adapted after a conversion to the row-

based tree data model.

Integrating the Table Data Model in Complex Documents

The data model adaptation schemes not only provide a solution to mapping the
API table data model into that of OT, but also are the key to integrating tables

into the global addressing space of the complex document, as shown in Figure 5.2.

The complex document in Figure 5.2-(a) consists of three linear object
sequences: a header, a footnote and a main text. The main text includes three parts.
The first line contains an inline graphic object “Hello”, followed by a return
character. Afterwards there is a table containing two columns and two rows. The
footnote mark is in the first cell of the table. The last line contains some text.
Suppose the API exposes the same data model for non-table objects as Word. The
document is adapted into a tree of linear addressing domains, in which the header
objects are in the section addressing domain, and the footnote objects are in the

footnote addressing domain (see Chapter 3).

82

CoTable: a collaborative table editing technique based on TA

GCE!' | CA

PO AO

Operation Translation

(a)

Main Text
8 R 0 R 0 o e e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
\ \
Section Footnote
e R)RR 1]
(b)
Main Text

o] 9 | e

e J®Jwn Jt Tow e []
Section

Primary [|, [+ [, [w

Header |C|° |T |a |b | |

o e

c
/ E Section
Footnote F Footnote

T T 1=] o Column

r Row

(c) t Table

Figure 5.2 Integrating the table into the global addressing space of the
complex document. (a) The user’s view of the complex document, (b) the data
model in which the table is adapted to a single linear sequence, (c) the data
model in which the table is adapted to a row-based tree.

In the main text, the graphic object and the text segment can be mapped into
two linear sequences separated by the table. Based on different table data models
exposed by the API, the table can be adapted to a single linear sequence or a row-
based tree. Both adapted data models can be merged with the linear sequence of
objects outside the table. The merged data models of both cases are shown in

Figure 5.2-(b) and (c), respectively. It is clear that both merged models are

&3

compatible with the XOTDM. All objects in the document can be accessed with a
vector of (n, p) pairs. For example, the first character in the footnote can be
accessed with the vector address [(“Main Text”, 6), (“Footnote”, 0)] in the single
linear data model (Figure 5.2-(b)), and can be accessed with the vector address
[(“Main Text”, 3), (“Table”, 0), (“Table”, 0), (“Table”, 3), (“Footnote”, 0)] in the
row-based tree data model (Figure 5.2-(c)).

Discussion

There are some issues worth discussing in the above data adaptation schemes.
First, while adapting the two-dimensional data model, it is theoretically
equivalent to remove either columns or rows, because both a row-based and a
column-based tree can be adapted to XOTDM. Without losing generality, the

following discussions will be based on the assumption of a row-based tree.

Second, the row-based tree converted from the two-dimensional data model
does not need to be semantically equivalent to its original two-dimensional form.
The conversion process selectively preserves some information about the table
structure but discards the rest, including the hierarchical relationships between
cells and columns. This is acceptable because the XOTDM needs to maintain
only information relevant to OT. For example, OT needs to know only the vector
address of a cell object in the XOTDM, regardless which column the cell is
subordinate to, so information about columns can be ignored. However, it is
important for OT to know that one cell is located before another in the same

collection, so such information is retained.

5.1.3. Table Operation Model Adaptation

Table-related AOs could target objects contained in table cells (e.g. text or
graphics) or table structure objects (e.g. cell or row). The data model adaptation

schemes have integrated objects in the table into the global data model of the

84

whole document, so AOs used to manipulate objects (e.g. text or graphics)
outside a table can also be used for table content objects, and the operation
adaptation techniques for existing AOs can be directly inherited. However, table
structure operations are table-specific and cannot be supported by existing AOs
designed for graphics or text (see Chapter 3). They require special adaptation
techniques. Therefore, the following discussion on CoTable operation model

adaptation focuses on the table editing operations only.

The solution to bridging the gap between operation models of the table editing
API and OT is to define a set of table structure AOs, denoted as AO;. As a vehicle
for the translation between the API and POs, the AO; should (1) correctly reflect
the table editing API’s effects by covering all affecting factors, and (2) facilitate
the translation between the table editing API and PO.

Following the operation model adaptation strategy in Chapter 3, AO; are
organized in two dimensions. One dimension the types of table structure object
that the AO; targets. In this dimension, there are three table structure object types:
row, column and cell. Therefore, there should be three AO; categories in this
dimension, which are Row-AQO;, Column-AQO; and Cell-AO,. The other dimension
is the PO types. The three AO; categories in this dimension include Insert-AOx,
Delete-AOy, and Update-AO:.

Based on this two-dimensional classification, any AO; can be placed in a
suitable cell in Table 5.1. In fact, there are many more AO; in real applications
than those listed in Table 5.1. For example, additional Cell-Update-AO; may
include Change_CellFillColor, Change_CellBorderStyle,
Change CellBorderColor. Nevertheless, for the purpose of investigating issues of

operation translation, the AO; listed in Table 5.1 are representative and adequate.

Parameters of the AO; show that they are defined directly on the XOTDM. The
parameter vp is a vector of (n, p) pairs. It indicates the starting position of an AO;

effect range in the XOTDM. The parameter /en indicates the length of an AO;

85

effect range. Apart from positional references, other OT-relevant parameters are
also kept. For Insert- and Delete-AQ,, objects affected by the AO, are kept as the
last parameter: row, col or cell. For Update-AQ;, the old value o val and new
value n_val of the target attributes are recorded. These parameters are needed in

OT for consistency maintenance and group undo (Sun 2002a).

Table 5.1. AO classification.

Obj
PO~ Row Column Cell

Insert Ins_Row(vp, len, row) |Ins_Col(listOf<vp, len>, col) |Ins_Cell(vp, len, cell)
Delete |[Del_Row(vp, len, row) |Del_Col(listOf<vp, len>, col) |Del_Cell(vp, len, cell)
Change_rowHeight Change_ColWidth Change_cellColor

(vp, len, o _val, n_val) | (listof<vp, len>, 0_val, n_val) | (vp, len, o_val, n_val)

Update

The effect range parameters (vp and /en) are able to locate any continuous
range in XOTDM. Therefore, for an AO; that has a single continuous effect range
(Row- or Cell-AOy), the effect range parameters are sufficient in any API data
models. However, a Column-AQ; has dispersed effect ranges in both single linear

and row-based tree data models, so a list of effect range parameters is needed.

With the AO; definition in Table 5.1, the translation from the AO; to both PO
and the API are straightforward. In AO-PO translation, the PO type is just the PO
category of the AOy; parameters of the PO can be directly taken from the OT-
relevant parameters of the AO. A Row- and Cell-AO; are basic AOs, so they are
translated into individual POs. However, Column-AQO; are compound AOs, so
they should be translated into sequences of POs due to their dispersed effect
ranges. Each PO represents the effect on a single cell. On the other hand, while
interpreting AO; with the API, the effect range parameters are used to locate the
target object in the API data model; the target object type encoded in the AO; type
provides information about the target object’s API interface (e.g. method
definitions); the PO type encoded in the AO; type is used to choose the method to

invoke; other AO; parameters are used as method invocation parameters.

86

5.1.4. Supporting Collaborative Table Editing in
CoWord

The CoTable technique has been implemented in the CoWord and CoPowerPoint
systems. Application-specific issues that emerged in adapting data and operation

models of Word table-editing API will be discussed in this subsection.

Special Issues in Word Table Data Adaptation

As discussed in Chapter 3, the Word API exposes a data model compatible with
XOTDM. In a Word document, the table structure is organized as the single
linear data model. Objects inside table cells and outside ones (but in the same
document element, such as main text, comment or footnote) are mapped into the
same linear addressing domain and can be accessed with their positional
references, as shown in Figure 5.1-(b). Moreover, there are end-of-cell and end-
of-row marks for each cell and row in the linear addressing domain with unique

positions.

However, some objects in a Word document are hidden in both the user
interface and the API. To ensure the correctness of the data address adaptation, it
is important that these objects also be located and mapped to the XOTDM. One
example of such hidden objects is the invisible cells generated while handling

irregular tables.

User Interface Padding |
) 1
Views :

Single Linear el el 3 cE‘ el
Addressing Models

C C

3 4

(a) (b) (c)

Figure 5.3 Handling irregular tables and its effects on the data model. (a) A
row-irregular table; (b) the padding effect on the data model; (c) a column-
irregular table. To better match the user interface views of tables, single linear
data models are shown in rectangular forms.

87

Some Word tables are irregular, in the sense that some cells cannot be
definitely subordinated to certain rows or columns. Figure 5 3°-(a) and (c) show

tables that are irregular in two different dimensions.

In the row-irregular table in Figure 5.3-(a), an ambiguity exists in determining
which row the right cell belongs to, because it spans two rows. In the Word API
data model, this cell is associated with the upper row. At the same time, an
invisible cell is padded beneath the spanning cell in the lower row to eliminate the
ambiguity (shown in Figure 5.3-(b)). In contrast, in the column-irregular table in

Figure 5.3-(¢c), no padding is needed.

Such invisible cells must not be ignored in the data model adaptation. Although
these cells are invisible in the user interface and inaccessible from the Word API,
they are also assigned with positions in the global linear addressing space.
Ignoring these cells would have the consequence of ruining the correctness of the

data model adaptation.

Special Issues in Word Table Operation Adaptation

In the Word table operation adaptation, there are also some special issues worth

discussing. The first one is the approach to supporting irregular tables.

| P,

Cro C,T 1‘2

4

Vertical Merge

3 4

Figure 5.4 Effects of vertical cell merge on the user interface and data model.

As a TA-based system, CoWord generates AO; by intercepting the user’s table-
editing interactions with the Word user interface; the user’s interactions may

trigger Word table-editing functionalities to change the document state. Therefore,

? Addresses of table structure objects are vectors of (n, p) pairs. In this figure, only their linear
indices in the leaf-level linear addressing domain are shown to simplify the discussion.

88

an important basis for the AO; generation is a precise understanding of these

functionalities’ effects.

Word table-editing functionalities have visible effects on the user interface and
invisible effects on the API data model. In most cases, these effects are consistent,
but sometimes they may be inconsistent. Under any circumstances, the generation

of AO, should always be based on the API data model effects.

One example where this inconsistency occurs is the vertical cell merge, whose
effects on the user interface and the data model are shown in Figure 5.4. When
two cells are merged vertically, the effects on the user interface is that the lower
cell is removed and the upper cell spans two rows. This vertical merge causes
irregularity, so the padding scheme is applied (by Word) in the data model. As
shown in Figure 5.4, there is no positional difference between the data model
states before the merge and after the padding. The only difference is that the
lower cell becomes invisible. According to this data model effect, a Cell-Update-

AO needs to be generated to set the visibility attribute of the lower cell to false.

Another issue is to preserve regularity effects of AO; In the single-user
environment, only /ns Cell and Del Cell AO; could irregularize a regular table;
the application of a Row/Column-AQ; to a regular table preserves the regularity of
the table. This regularity effect of the AO; should be preserved in the
collaborative environment. However, in the single linear data model of the Word
API and in the face of concurrency, the regularity effect may be lost without

special treatment.

As shown in Figure 5.5, from the initial table state (shown in Figure 5.5-(a)),
site 1 generates an AO; O; that inserts a new column. Concurrently site 2
generates an AO; O, that inserts a new row. Both Insert-AO; contain two cells.
After executed locally (shown in Figure 5.5-(b)), they are propagated to remote
sites. When O; arrives at site 2, it is translated to POs, processed by OT and

executed, which results in the insertion of two cells and leads to the table state

89

shown in Figure 5.5-(c). Site 1 goes through a similar process after the arrival of

O, and reaches the same table state.

The additional
. cell
Site 1 [e foern] e
C4 C5 Cs r7 I
& o)
[4 (& C r
o] e cfo 1 ¢zl r co c1 2 ra
el el il 51 “[e 4 5 5 7
co] ¢l rrz crlvCn] < rh—o‘ ClepOel Cfd "
c C r
Site 2 sl [e] [5]
5l °7] [
(a) (b) (c) (d)

Figure 5.5 Preserving the regularity effects of Ins_Row and Ins_Col AO.. (a)
The initial state; (b) after local execution; (c) after remote execution; (d) after
the execution of the addition AO,. In this figure, O,=Ins_Col (<1, 1>, <5, 1>,
col); O,=Ins_Row 3, 3, row); Os;=Ins_Cell (6, 1, cell); O, and O, are OT-
processed forms of O, and O,.

The table in Figure 5.5-(c) is an irregular one, whose irregularity comes from
the combined effect of two concurrent Row- and Column-AO:. In other words, the

regularity effect of these two AO is lost in the face of concurrency.

The correct combined result of these two AO; should be that shown in Figure
5.5-(d), where the regularity is still preserved after the insertion of a row and a
column. The difference between the tables in Figure 5.5-(c) and (d) is that the one
in Figure 5.5-(d) has an additional cell, which helps preserve the table’s regularity.
To convert the table state from that shown in Figure 5.5-(c) to (d), an additional

Ins_Cell operation O3 is needed to insert that additional cell.

A thorough investigation shows that this problem occurs only when a column
AOx (i.e. Ins_Col, Del Col and Upd Col) and a concurrent Ins Row AO; target
the same table. An additional AO; needs to be generated in these cases to preserve

the table’s regularity.

90

5.1.5. Comparison to Other Collaborative Table
Editing Techniques

Prior work on collaborative table editing has been restricted to collaboration-
aware table-centric (spreadsheet) applications. The CoTable technique is unique
in providing a collaborative table editing solution to both table-centric and word-

centric applications.

Super Spreadsheet (Fuller et al. 1993) is a collaborative spreadsheet system for
face-to-face users. Management of concurrency, spreadsheet version and history
is performed in an object-oriented way. For concurrency control, a transaction-
based approach has been adopted. The user’s interactions with the system are
organized as transactions. During the execution of a transaction, implicit locks are
used to lock the data objects before updating (i.e. pessimistic locking), and locks
are released at the transaction commitment time, which is chosen by the user
explicitly. Locks of multiple objects can be acquired in arbitrary orders (i.e. non-
strict 2-phase locking), so deadlock is possible. There exist automatic deadlock
detection mechanisms in the system but users must be involved in deadlock
resolution by negotiation. This solution works well in the local-area network
environment (for face-to-face users). However, if this approach were applied in
the Internet environment, the system responsiveness may suffer due to the use of

pessimistic locks.

Similarly, the Shared Spreadsheet (WARP 2006) also takes a transaction-
based approach as its concurrency control mechanism. Users need to explicitly
start a transaction before editing and end the transaction afterwards. Transactions
failing in conflicts have to be rolled back, which may result in the loss of
collaborative work. Besides, a series of auxiliary features has been implemented

to increase performance and reduce the possibility of rolling back.

Transaction/lock-based concurrency control solutions are able to protect data

integrity by prohibiting conflicting updates on shared data objects, which is

91

important in achieving semantic consistency (Dourish 1996; Sun and Ellis 1998)
in collaborative applications. On the other hand, OT-based solutions can ensure
syntactic consistency (characterized by convergence, intention-preservation, and
causality-preservation (see Chapter 2)), and provide high responsiveness, fine-
grain concurrency, and a high degree of freedom to the users in their interactions
with the shared application in the Internet environment. OT and
transaction/locking are complementary techniques and could be integrated for

achieving both syntactic and semantic consistency.

An OT-based distributed collaborative spreadsheet system was proposed by
Palmer and Cormack (1998). Their OT technique is specially designed for
supporting the two-dimensional data model, and spreadsheet-specific operations:
insert and delete rows or columns in a table, and set, format, and copy the cell
value of a table. These spreadsheet-specific operations are at the same level as the
AO; in CoTable. In contrast, CoTable is based on an OT technique which directly
supports only three generic primitive operations (I/nsert, Delete, and Update), and
an adaptation technique to map application-level table editing operations (i.e. the
AOy) into these primitive operations. The benefits of the CoTable approach is the
reduced complexity in designing transformation functions and the reusability of
transformation functions for supporting a wide range of data types in complex

documents.

5.2. The Collaborative Graphic Object
Grouping Technique

5.2.1. Collaborative Graphic Object Grouping

Documents of graphics editing applications (e.g. slides authoring systems and
CAD systems) often contain a large number of objects with complex logical
structures. Managing complex structures on the basis of individual objects would
cost significant efforts or sometimes may be infeasible. Object grouping, which

packs multiple logically related objects into a single group-object and vice versa,

92

is an effective means to help manage the complexity of graphics editing. When
objects are grouped, they behave like a single object in response to modifications
to any attribute. At the same time, the user can also choose to modify some
attributes (e.g. fill color) of group members individually. Furthermore, a group-
object can be a member in another group-object, which provides a multi-level
hierarchical structure for managing complex documents. In summary, object
grouping not only protects the logical relationship among group members against
mistaken actions, but also provides the convenience of modifying group members

individually (Xia et al. 2005c¢).

Supporting collaborative object grouping is nontrivial due to the increased
complexity in both the data and operation models. First, existing collaborative
graphics editing techniques often treat graphic objects as independent entities, but
object grouping introduces group relationships among graphic objects. Second,
existing collaborative graphics editing techniques focus on supporting three types
of basic operations: a CreateObj operation creates a new object (e.g. a line, circle,
square or textbox); a DeleteObj operation removes an existing object; and a
ChangeAtt operation changes an attribute (e.g. size, color or position) of an
existing object. Object grouping requires support for two additional operations: a
Group operation packs a collection of objects into a single group-object; and an
Ungroup operation unpacks a group-object into a collection of individual objects.
In this chapter, the term grouping operation is used to mean either a Group or an

Ungroup operation.

5.2.2. Conflict Resolution in the Presence of
Grouping Operations

Conflict Relations among Operations

The main technical challenge in supporting collaborative graphic object grouping
is conflict resolution and consistency maintenance in the presence of group-

objects and grouping operations in a TA-based real-time collaborative

93

environment. As discussed in Chapter 4, conflicts may occur when multiple users
concurrently update the same attribute of a common object. Moreover, two
concurrent Group operations may also conflict with each other if they target
common objects since these common objects cannot belong to two different result

group-objects at the same time.

Before designing conflict resolutions, the conflict relation between graphics
editing operations is defined as follows. To define the conflict relation, the
following notions are used: (1) Type(O) denotes the type of operation O; (2)
Target(O) denotes the set of identifiers of target objects of operation O; and (3)
Att.Key(O) denotes the attribute type of operation O if O is a ChangeAtt operation.

Definition 5.1. Conflict relation “®”. Two operations O; and O, conflict with
each other, expressed as O, & 0,, if and only if (1) O; and O; are concurrent; (2)
Target(O;) N Target(O,) # ®; and (3)

a. Type(O;) = Type(O;) = Group; or
b. Type(O)) = Type(O,) = ChangeAtt and Att.Key(O;) = Att.Key(Oy).

Definition 5.2. Compatible relation “®”. Two operations O; and O, are
compatible, expressed as O; @ O,, if and only if they do not conflict with each
other; that is, —(0; ® 0,).

According to the above definitions, sequential operations are compatible;
operations without common target objects are compatible; and operations of
different types are compatible. Conflict relations occur only between a pair of
Group operations or a pair of ChangeAtt operations under the conditions specified
in Definition 5.1. The conflict/compatible relations among the three basic
operations and the two grouping operations are summarized in Table 5.2 (called a
conflict relation triangle in Sun and Chen (2002)). The meaning of shaded cells

will be explained later in this chapter.

94

Table 5.2. The conflict relation triangle of five operation types.

CreateObj |DeleteObj |ChangeAtt |Group |Ungroup
CreateObj ® ® ® ® ®
DeleteObj ® ® ® ®
ChangeAtt Q/® ® ®
Group /@ ®
Ungroup ®

In Chapter 4, the Multi-Version Single-Display (MVSD) conflict resolution
strategy and its suitability for TA-based collaborative systems have been
discussed. This strategy is also adopted in the TA-based CoGroup technique to

resolve conflict among Group and ChangeAtt operations.

Combined Effects for Conflict and Compatible Operations

Based on the conflict/compatible relations given in Table 5.2 and the MVSD
strategy, the combined effects among the five operations CreateObj, DeleteObj,
ChangeAtt, Group, and Ungroup, are specified in this subsection.

According to Table 5.2, a CreateObj operation is always compatible with all
operations, including another CreateObj operation, because the object to be

created cannot be targeted by another concurrent operation.

A DeleteObj operation is always compatible with all other operations as well
because the effect of a DeleteObj operation can be combined with the effect of

any other concurrent operation targeting the same object.

(1) The combined effect with another DeleteObj operation is the deletion of the
target object (Figure 5.6-(b)). Their effects have been combined in the sense
that the deleted object can be recovered only after undoing both operations.

(2) The combined effect with a ChangeAtt operation is the change of the attribute
and the deletion of the target object (Figure 5.6-(c)).

95

01 02 03 04 O5 06

_V@<
@
@y

G G1 .

G1 @ G1 : i

“e
o] (e | | EIRCE .

Figure 5.6 Combined effects between graphics editing operations: (a) the
initial document state and operations: O1 = Group(G1l, G5); 02 = O3 =
DeleteObj (G2); O4 = ChangeAtt (G2, FillColor, red); and O5 = 06 = Ungroup
(GS5); and the combined effects between (b) O2 and O3, (¢) O2 and 04, (d) 02
and O1, (e) O2 and OS5, (f) O4 and O1, (g) O4 and OS5, (h) O1 and O5, (i) O5
and O6, respectively.

(3) The combined effect with a Group operation is the creation of a group-object
containing all member objects targeted by the Group operation, except the
member object targeted by the DeleteObj operation (Figure 5.6-(d)).

(4) The combined effect with an Ungroup operation is the unpacking of the
member objects in the group-object targeted by the Ungroup operation and

the deletion of the member object targeted by the DeleteObj (Figure 5.6-(¢)).

A ChangeAtt operation may conflict with another ChangeAtt operation under
the condition specified in Definition 5.1; but it is always compatible with other
operations because the effect of a ChangeAtt operation can be combined with the

effect of any other concurrent operation targeting the same object.

96

(1) The combined effect with a DeleteObj operation is illustrated in Figure 5.6-(c).

(2) The combined effect with a Group operation is the creation of a group-object
containing all target member objects, and the change of the attribute of one
member object targeted by the ChangeAtt operation (Figure 5.6-(f))

(3) The combined effect with an Ungroup operation is the unpacking of all
member objects inside the target group-object, and the change of attribute of

the member object targeted by the ChangeAtt operation (Figure 5.6-(g)).

A Group operation may conflict with another concurrent Group operation if
they target common objects; but it is always compatible with other operations
because the effect of a Group operation can be combined with the effect of any

other concurrent operation targeting the same object.

(1) The combined effect with a DeleteObj or a ChangeAtt operation has been
illustrated in Figure 5.6-(d) and Figure 5.6-(f), respectively.

(2) The combined effect with an Ungroup operation is the creation of a group-
object containing all member objects targeted by the Group operation and
the unpacking of the group-object (a member object targeted by the Group
operation as well) targeted by the Ungroup operation (Figure 5.6-(h)).

An example for illustrating the combined MVSD effects of two conflict Group
operations is given in Figure 5.7. Initially, the document contains five objects: G/,
G, ..., Gs, and suppose two operations O; = Group(G;, G, G3) and O; =
Group(Gs;, G4, Gs) are generated concurrently, as shown in Figure 5.7-(a). Since
O; and O, target a common object G3, they conflict with each other. To achieve
the MVSD effect, two versions G3.o; and G3.0» should be created to accommodate
the effects of both O; and O,, but only Gs.; is displayed in the group-object
created by O; (Figure 5.7-(b)), provided that O; has a higher priority than O,. The
version Gs.0; 1s maintained internally in the group-object created by O, but is
invisible at the user interface due to the single-display strategy. However, after O,

is undone, G;.0; will become visible as shown in Figure 5.7-(c).

97

O1 03 02

0
n '
Y '
PEERR \ .
’ IR \ s
' \ N -
' \ .
h N VA '
' S . !
- ' '
' < I
N '
' s~
' ¥ '
v
: v -
'
'
'
'
'

@l &

¢ @

\\ G3 i SSRE
@ sle sle e
b e

(a) (b) (c)

Figure 5.7 An example for illustrating the combined MVSD effect of two
conflict Group operations.

An Ungroup operation is always compatible with other operations for the
reasons explained above and illustrated in Figure 5.6-(e), Figure 5.6-(g) and
Figure 5.6-(h) respectively. The combined effect of two concurrent Ungroup
operations targeting the same group-object is the unpacking of the target group-
object (Figure 5.6-(1)). Both Ungroup operations have been combined in the sense

that the group-object can be recovered only after undoing both operations.

5.2.3. The Data Model Adaptation for Graphic
Objects

As the first step of supporting collaborative graphic object grouping in the TA
framework, the data model adaptation technique of graphic objects, particularly
group-objects into a data model that is compatible with that of OT (namely the
XOTDM in Chapter 3), will be discussed in this subsection.

177511 g« G3| ‘0 |TG32

|
‘: TN O B [6d,]@
'-::L._:: = A J0;
@ (b)

—_

Figure 5.8 The group objects data model. (a) The user interface representation;
(b) The data model in the API.

98

A wide range of graphics editing applications (including Word and PowerPoint)
have provided varieties of mechanisms (in their APIs) for mapping any graphic
objects, including group-objects, into a tree of linear addressing domains. To
illustrate this address mapping, consider the following example: Figure 5.8-(a)
shows a graphic document when viewed from the user interface; and Figure 5.8-
(b) shows the mapping of the graphic objects in this document to a tree of linear
addressing domains when viewed from the API. In this example, the top three
objects (G}, G, and G3) are mapped into the top-level linear addressing domain in
the tree; the member objects in the two group-objects G, and G; are mapped into
two second-level addressing domains, respectively; and the member objects in
group-object G4 are further mapped into a third-level addressing domain. As
shown in this example, member objects of a group-object form a separate linear
addressing domain; a group-object (e.g. G4) can be a member object of a higher

level group-object (e.g. G,), allowing multiple levels of object grouping.

Under the data model in Figure 5.8-(b), any graphic object can be accessed
with the vector address. For example, the address of the pentagon can be
expressed as a vector address [2, 0, 1], where “2” refers to the group-object G3,
“0” refers to the group-object G4 and “1” refers to the pentagon object.
Comparing with the XOTDM (see Chapter 3), the data model in Figure 5.8-(b) is
a special case of XOTDM in which there is only one linear addressing domain in
every addressing group, like the row-based tree data model in the CoTable
technique (see Section 5.1.2). The vector of integer address for accessing graphic
objects can be easily converted into the vector of (n, p) pairs address in the
XOTDM. While the CoGroup technique is applied in applications in which there
are multiple linear addressing domains in each node (i.e. addressing group) like
Word and PowerPoint, the domain identifier can be attached to the top level
integer and constants can be attached to integers at lower levels, so that a vector
of integers is converted into a vector of (n, p) pairs. For example, the above
integer vector [2, 0, 1] is converted into [(“Main Text”, 2), (“Graphic Group”, 0),
(“Graphic Group”, 1)] in CoWord if these graphic objects exist in the main

99

document. To simplify the discussion, the integer vector is used in the rest of this

chapter to address graphic objects.

5.2.4. The Operation Model Adaptation for Group
Operations

The second step of supporting collaborative graphic object grouping in the TA
framework is to adapting graphics editing functions to the operation model of OT,

which contains three POs: Insert, Delete and Update (see Chapter 4).

Basic AOs targeting Group—Objects

Our strategy for adapting graphics editing functions is to define a set of graphics
editing AOs, called AO,. For the three basic graphics editing operations, there are
three corresponding basic AO,: CreateObjAO, DeleteObjAO, and
ChangeAttAQ,. Effects of these basic AO, in the group-object data model can be
fully captured by POs, so the built-in mechanisms of OT are capable of resolving

conflicts among basic AO, without any additional mechanisms at the AO level.

An example of resolving conflicts among ChangeAttAO, targeting group-
objects is shown in Figure 5.9. From the initial document state (Figure 5.9-(a)),
three operations are generated concurrently: O; = ChangeAttAO4([0, 0, 0],
FillColor, Red) to change the filling color of non-group object G; into Red, O, =
ChangeAttAO,([0, 0], FillColor, Green) to change the filling color of group-
object G5 to Green, and O3 = ChangeAttAOq([0], FillColor, Blue) to change
group-object G4 to Blue. According to the conflict definition (Definition 5.1),

these three AO, conflict. Assume their priority relation is O; > O, > Os.

The conflicts among these AO, can be detected in OT from their common PO
types (all are type Update), the same target attribute type (all are FillColor), and
overlapping target ranges, (Oz.addr is the prefix of O,/O;.addr, and O2.addr is
the prefix of O,.addr). These conflicts can be solved with the conflict resolution

algorithm for the Update PO (Sun et al. 2004) and the combined MVSD effects

100

shown in Figure 5.9-(b) are achieved. In this result, multiple versions for objects
targeted by conflict AOs are created, but only the versions created by AO, with
the highest priorities (e.g. G101, G».02 and Gs.¢2) are displayed.

'Ge________ : 1 G6___ .
1[G2], 8% ! 620 S
@] | [
0:1 012 0‘3—\ Géi5
o fesdln e 55 Red
[l Green
1m0 Ol D E=Blue

Figure 5.9 A scenario of three conflict ChangeAttAO,.
Grouping AO, Representation

For object grouping, there are two grouping AO,, named as GroupAO, and
UngroupAQ,, respectively. To determine the representation of these grouping
AQ,, it is necessary to analyse their effects on both the real objects (visible from

the user interface) and the object data model (visible from the API).

As illustrated in Figure 5.10, the effect of a GroupAO, on the real objects is to
pack multiple target objects into a single group-object; and its effects on the
internal addressing model include: (1) inserting a group-object in the current
addressing domain (at the position before the first target object); and (2) moving
all target objects into a lower level addressing domain (linked to the group-object).
In moving these target objects, their original relative sequence relationships are

preserved (see Figure 5.10-(b)).

The effect of an UngroupAQO, on the real objects is to unpack the target group-

object into multiple member objects; and its effects on the data model include: (1)

101

moving all member objects to the position of the target group-object in the higher
level addressing domain; and (2) deleting the target group-object (see Figure

5.10-(c)).

o | L Y ©

-OQH_AZ Qﬁ1 OW.TAz

E5 A
(@) (b) (©)

Figure 5.10 Effects of GroupAO, and UngroupAQ,. (a) The initial state; (b) the
state after grouping; (c) the state after ungrouping.

It should be pointed out that after executing the UngroupAO, operation, the
document state returns to the previous state before the execution of the GroupAO,
operation at the user interface; but the internal addresses of these objects are not
restored, as can be seen by comparing Figure 5.10-(a) and (c). These object
grouping effects are supported by the APIs of a wide range of single-users
applications, including MS Word, MS PowerPoint and OpenOffice Presentation.

To facilitate grouping AO, adaptation, their representations must capture their
effects on both the data objects (needed for replaying their effects in 40-API
Adaptation (see Chapter 3)), and on the object addressing space (needed for OT-
processing in 4A0-PO Adaptation). Since both GroupAO, and UngroupAO, have
the effect of moving existing objects between different addressing domains, a new
operation, named Move4Q,, needs to be introduced, to represent this effect. The

MoveAQ, can be represented as follows:

e MoveAO, (from, to, obj) denotes the effects of deleting the object obj at the

address from and inserting the same obj at the address zo.

102

Based on the basic AO, and MovedAO,, the two grouping AO, can be

represented as follows:

(1) GroupAOq(CreateObjAO,(addr, go), MoveAO,(from-1, to-1, obj-1), ...,
MoveAQO,(from-n, to-n, obj-n)) denotes the effects of creating a group-object
go at address addr and moving the target member objects obj-1, ..., obj-n
from addresses from-1, ..., from-n, to new addresses fo-1, ..., to-n at a lower
level addressing domain.

(2) UngroupAQO,(DeleteObjAOg(addr, go), MoveAOq(from-1, to-1, obj-1), ...,
MoveAQO,(from-n, to-n, obj-n)) denotes the effects of deleting the target
group-object go at address addr and moving the member objects obj-1, ...,
obj-n from addresses from-1, ..., from-n, to new addresses to-1, ..., to-n at a

higher level addressing domain.

It should be stressed that the object addresses used in all AO; are positional
references in the data model (see Figure 5.8), rather than the visual locations of

the data objects at the user interface.

Grouping AO, Translation

For processing AO, with OT, AO, should be translated into POs. Translation of
the basic AO, is straightforward: a CreateObjAO, has the effect of inserting an
object in the data model, so it can be translated into an Insert PO; a DeleteObjAQO,
has the effect of deleting an object from the data model, so it can be translated
into a Delete PO; a ChangeAttAO, has the effect of changing an attribute of an

object in the data model, so it can be translated into an Update PO.

On the other hand, GroupAO,; and UngroupAO, are compound AO, in the
sense that they cannot be translated into single POs. The translation of a

compound AQ, consists of translating each composing AQ, into a list of POs.

Definition 5.3. Translation Rules for Grouping AO,. For each composing AO,

in a grouping AQ,, it is translated as follows:

103

(I)if the composing AO, i1s a basic AO, CreateObjAO,/
DeleteObjAO,/ChangeAttAO,, then it is translated into a single PO:
Insert/Delete/Update;

(2) if the composing AO, is MoveAO,, then it is translated into a pair of POs:
Delete and Insert, where the two POs must refer to the same object (which

is different from a pair of independent Delete and Insert).

Let GroupAOg-POList denote the translated PO list for GroupAO,,
UnGroupAQ,-POList denote the translated PO list for UngroupAQ,. Based on the

translation rules in Definition 5.3, grouping AQO, are translated as follows:

(1) GroupAO4-POList = [Insert(go-addr, go-ref), Delete(from-1, moref-1),
Insert(to-1, moref-1), ..., Delete(from-n, moref-n), Insert(to-n, moref-n)).
(2) UngroupAO4-POList=[Delete(go-addr, go-ref), Delete(from-1, moref-1),

Insert(to-1, moref-1), ..., Delete(from-n, moref-n), Insert(to-n, moref-n)).

It should be stressed that the translated PO list captures only part of the
grouping AQ, effects (including the timestamps for detecting concurrency (Sun et
al. 1998) and priorities) that are needed for generic OT processing. Additional
application-specific mechanisms are needed to detect and resolve operation

conflict at the AO level, as discussed in the following subsections.

Grouping AO, Conflict Detection

Based on the grouping AO, representation and translation schemes, conflicts
among basic AO, can be fully detected and resolved by the mechanisms built in
the OT technique. However, detection of conflicts among GroupAQ, requires the
knowledge of operation type Group (see Definition 5.1), which is unknown to OT.
Therefore, conflict detection in the presence of grouping AO, requires additional

mechanisms at the AO level.

According to Definition 5.1, a pair of GroupAO, may conflict under three

conditions: (1) they are concurrent; (2) they have overlapping target objects; and

104

(3) they have the same operation type GroupAO,. OT is able to detect the first
two conditions by examining the POs translated from GroupAO,, but the third
condition must be checked at the AO level. To facilitate the check of the third
condition and to propagate the concurrency and overlapping conditions resulting
from the PO level to the AO level, bi-directional references are established
between each AO and its translated POs. A routine GetAO(PO) is provided to get
the AO associated with the PO. Moreover, the underlying OT functions have been
extended as follows: when a PO is transformed against a concurrent PO, and
found to have overlapping target objects with PO,, this finding and PO;’s
reference to its associated AO must be recorded in the transformed PO;. At the
AO level, a routine POConcurrentAndOverlapping(PO)) is provided to check
whether PO; has been found concurrent and overlapping with another operation,
and another routine GetCOAO(PO)) is provided to get the AO associated with
PO;. Based on the above extensions, conflict relationship between two GroupA40,
can be determined by invoking the 4AOgConflictDetection() routine defined in
Figure 5.11.

AOgConflictDetection(TPO)

{
if(POConcurrentAndOverlapping (TPO) == true)

if(GetAO(TPO).type == GetCOAO(TPO).type == Group)
return true;

}

return false;

}

Figure 5.11 The routines for detecting grouping AO conflicts.
Resolving Conflicts among Grouping Operations

OT is able to resolve conflicts among basic AO,, but additional mechanisms at
the AO level are needed to resolve conflicts among GroupAO,. This is because
resolving GroupAQO, conflicts requires semantic knowledge of the GroupA4AO, and
its representation, which are not captured by individual POs and hence are

unknown to OT. For the same reason, to achieve combined effects among

105

compatible AOs in the presence of grouping AOs, additional mechanisms at the
AO level are also needed. In other words, resolving conflicts among conflict
operations and achieving the combined effects among compatible operations
require interaction and collaboration between the underlying OT technique and

the AO-PO adaptation in the TA framework.

An overall picture of the responsibility distribution between these two
components is shown in Table 5.2: the non-shaded cells indicate the sole
responsibility areas of the generic OT technique for resolving conflicts and
achieving the defined combined effects among basic AO,; the shaded cells
correspond to joint responsibility areas of OT plus additional AO-level
mechanisms (in the AO-PO adaptation) for resolving conflict and achieving

combined effects in the presence of grouping AO,.

In the following discussion, the following auxiliary functions will be used: (1)
GetMove(POy) returns the composing MoveAO, from which the PO PO is
translated; and (2) GetCOMove(POy) returns the composing MoveAO, of the
grouping AO, whose reference is recorded in the PO PO,. Implementation of
these functions is straightforward, based on the AO-PO association and AO
reference recorded in a transformed PO. Furthermore, the term Common Target
MoveAO, (CT-MoveAO) is used to mean a composing Move4AO, of a grouping

AOQ, that moves a common target object targeted by another concurrent AQ,.

According to the MVSD combined effect, the conflict between two GroupAO,
is resolved based on their priorities. Given two conflict GroupAO,: O; with a
higher priority and O, with a lower priority, their common target objects should
be packed in the group-object created by O; and excluded from the group-object
created by O..

In the GroupAO, representation, the effects of moving target objects are
represented by composing MoveAO,. Therefore, for a pair of conflicting

GroupAO, O; and O, there must be a CT-MoveAO in each of them, which targets

106

a common target object. Based on this observation, the strategy of resolving the

conflict between O; and O; is as follows:

(1) if the O, is executed after O, the from parameter of the CT-MoveAO of O,
should be set to the to parameter of the C7-MoveAO of O,, so that the
common target object will be moved to the group-object created by O;.

(2) if O, is executed after O;, the CT-MoveAQO of O, should be cancelled so that

the common target object is excluded from the group-object created by O,.

Based on the above strategy, the routine 4OgConflictResolution(TPO) 1is
defined (Figure 5.12) for resolving the conflict between the GroupAQO, (obtained
by calling Get4A0O) from which the 7PO was translated and the GroupAO,
(obtained by calling GetCOAQO) with which TPO was associated due to their

concurrent and overlapping relationship.

AOgConflictResolution(TPO)

if(GetAO(TPO).priority > GetCOAO(TPO).priority)
GetMove(TPO).from = GetCOMove(TPO).to;
else
GetMove(TPO).cancelled = true;

Figure 5.12 The routine for resolving conflicts among GroupAOQO,.

Based on the MVSD effect, this conflict resolution approach also supports
selectively displaying versions that are hidden by default. Assume that between
the two conflict GroupAO, O; and O,, O; has a higher priority than O,.
According to the MVSD effect, two versions of the common target object are
created, but only the version created by O; is displayed. To display the version
created by O, a simple strategy is to undo O;. The disadvantage of this strategy is
that all O;’s object-packing effects are unnecessarily discarded, including those
non-common target objects. To preserve O;’s effects to the maximum extent, a
better strategy is to partially undo the composing C7-MoveAO of O;. From the

adjustment to this MoveAO, to resolve the conflict between O; and O,, it is clear

107

that the effect of this undo is only to move the common target object from O;’s
group-object into O’s, while all other member objects in O,’s group-object are

intact.

Achieving Combined Effects for Compatible Operations in
the Presence of GroupAQ,

According to the combined effects of concurrent and compatible operations (see
Figure 5.6), their effects should be accommodated on the common target object at

the same time.

Here scenarios in which two concurrent and overlapping compatible AO, are
involved and at least one of them is a grouping AO, will be discussed. Given a
pair of AO,, O; and O; involved in such a scenario, suppose O; is executed after
0,. When O; is executed, its parameters need to be adjusted according to the
changes caused by O; to achieve the combined effect. Next, adjustment strategies

for different AO, type combinations will be discussed.

In the routines discussed in this subsection, the input parameter 7PO is the
transformed PO of the currently processed AO, (i.e. O;). With TPO, O; can be
obtained by calling GetAO,; O, can be obtained by calling GetCOAO; the CT-
MoveAO, of O; can be obtained by calling GetMove if O, is a grouping AO,; and
the CT-MoveAO of O, can be obtained by calling GetCOMove if O; is a grouping
AOQ,.

Consider the scenario in which O; is a GroupAO, and O; is a DeleteObj4AO,
(see Figure 5.6-(d)). When Oy is executed, the common target object has been
deleted by O,. Therefore, this object should be excluded from the group-object
created by O;. The GroupAQ, representation shows that the effect of moving the
common target object is represented by the CT-MoveAO of O, so our strategy for
this scenario is to cancel the CT-MoveAO of O,. This strategy also applies to the

108

AQO, combinations of UngroupAQO, versus DeleteObjAOglo (the DeleteObjAO,
targets a member object of the UngroupAO,’s target group-object) and
UngroupAO, versus UngroupAQ,.

On the other hand, if O, is a DeleteObjAO, and O;1s a GroupAO,, when O is
executed, its target object has been moved into the group-object created by O;.
The GroupAO, representation also shows that the current address of the common
target object is indicated by the fo parameter of O,’s CT-MoveAQ, so our strategy
for this scenario is to set O;’s address to the fo parameter of O,’s CT-MoveAO.
This strategy also applies to AO, combinations ChangeAttAO,/DeleteObjAO,
versus UngroupAQO, (the ChangeAttAO,/DeleteObjAQ, targets a member object
of the UngroupAQ,’s target group-object), DeleteObjAO, versus GroupAQO,, and
UngroupAQO, versus GroupAQ,.

Based on the above strategies, the routine for achieving combined effects for

concurrent and overlapping GroupAO, and DeleteObjAO, is shown in Figure 5.13.

CE_GroupDeleteObj(TPO)

{
if(GetAO(TPO).type == GroupAQ)
GetMove(TPO).cancelled = true;
else
GetAO(TPO).addr = GetCOMove(TPO).to;

Figure 5.13 The routine for achieving combined effects for GroupAO, and
DeleteObjAO,.

Consider the scenario in which O; is a ChangeAttAO,, O; i1s an UngroupAO,
and they both target the same group-object. When O; is executed, the common
target group-object has been unpacked into a continuous range of multiple objects
by O, (see Figure 5.6-(c)). The UngroupAO, representation shows that the
address and length of the unpacked object range are indicated by O,’s composing

MoveAO:s. Therefore, our strategy for this scenario is to set O;’s effect range (i.e.

' In this pair, the former AQ;, is the AO, currently being processed (i.e. O,), and the latter AO, is
the one concurrent and overlapping with the former (i.e. O,).

109

address and length) to cover all unpacked objects. This strategy also applies to
AO, combinations DeleteObjAO, versus UngroupAQ, (the DeleteObjAO, targets
the same group-object as the UngroupAQO,) and GroupAQO, versus UngroupAQ,.

In the scenario in which O; is an UngroupAO, and O, is a ChangeAttAQOq,
when Oy is executed, O; has applied its effect on all member objects of the target
group-object. To make sure that after ungrouping, all the unpacked objects will
still have O,’s effect, our strategy is to apply O,’s effect to data objects of all O;’s

composing MoveAQ,.

Based on the above strategies, the routine for achieving combined effects for
concurrent UngroupAQ, and ChangeAttAO, targeting the same group-object is

shown in Figure 5.14.

CE_UngroupChangeAtt(TPO)

if(GetAO(TPO).type == ChangeAttAO)
SetEffectRange(GetAO(TPO), GetCOAO(TPO));
else

{
for(i = 0; i < GetAO(TPO).MoveAOList.count; i ++)

ApplyChangeAtt(GetAO(TPO).MoveAOList[i].obj, GetCOAO(TPO));

Figure 5.14 The routine for achieving combined effects for UngroupAO, and
ChangeAttAO, (targeting the group-object).

Grouping AO-PO Adaptation Algorithm

With the routines discussed above, the AO-PO adaptation in the TA framework

can be extended to support grouping AO,, as shown in Figure 5.15.

First, the input AQ, is translated into a series of POs saved in a PO list. Then,
each PO in the list is processed as follows. The PO is first transformed in OT.
Then, if this AO, involves in a GroupAO, conflict, the conflict resolution routine
is invoked. Otherwise, if this AO, is overlapping with another concurrent

compatible AO, and at least one of them is a grouping AO,, the

110

CompatibleAOgCombinedEffects routine is invoked to apply AO, level
mechanisms for achieving combined effects for compatible AO,. In the
CompatibleAOgCombinedEffects routine, suitable routines discussed above are

invoked according to AO, type combinations.

AOg-POAdaptation(AQO)

POList = TranslateAO(AQ);
for(i = 0; i <POList.count; i++)

{
TransformPO(POList][i]);

if(AOgConflictDetection(POList[i]) == true)
AOgConflictResolution(POList[i]);
else if (POConcurrentAndOverlapping(POList[i]) == true &&
IncludingGroupingAO(GetAO(POList[i]), GetCOAO(POList[i])) == true)
CompatibleAOgCombinedEffects(POList[i]);

Figure 5.15. The routines for AO-PO adaptation in the presence of grouping
AQs.

5.2.5. Comparison to Other Collaborative Graphic
Object Grouping Technique

To the best of our knowledge, the operation serialization technique reported in
Ignat and Norrie (2004) is the only prior work on collaborative object grouping in
graphic editing systems. Both the CoGroup work in this chapter and the work in
Ignat and Norrie (2004) address similar issues involved in conflict resolution for a
similar collection of graphics editing operations, but these two works are very
different in their approaches to conflict definitions, combined effects among

conflicting/compatible operations, and techniques for conflict resolution.

The notion of conflict in CoGroup is based on the conditions that operations
are concurrent, target common objects, and cannot be accommodated in the
common target objects. Under this conflict definition, conflict may occur only
between ChangeAtt operations or between Group operations and the relations

among all other operations are compatible (as shown in Table 5.2). Operation

111

conflicts are resolved by an all-operations-effect technique: multiple versions of
the common target objects are created to preserve the effects of all operations, but
one version at a time is displayed at the user interface (the MVSD technique).
CoGroup is based on and extends OT for conflict resolution and consistency

maintenance.

The notion of conflict in Ignat and Norrie (2004) is based on the conditions that
operations are concurrent and do not commute. Under this conflict definition,
conflict may occur not only between ChangeAtt operations and between Group
operations, as in the CoGroup technique (see Table 5.2), but also among other
operations, as shown Table 5.3 (in which the ChangeAtt operation represents the
setColor, SetBckColour, setZ, SetText, translate, scale operations in Ignat and

Norrie (2004)).

Table 5.3. Conflict relation triangle of five operation types in Ignat and Norrie (2004).

CreateObj |DeleteObj |ChangeAtt |Group \Ungroup
CreateQObj ® ® ® ® ®
DeleteObj K/® 0, X/® ®
ChangeAtt K/® K/® K/®
Group Qe | O
Ungroup R®

For the purpose of resolving operation conflict, two types of conflict are further
distinguished in Ignat and Norrie (2004): real conflicts are those which can be
resolved by preserving the effect of one of the conflict operations (or none of
them); and resolvable conflicts are those which can be resolved by combining
partial effects of conflict operations. Regardless whether the conflict is real or
resolvable, conflict resolution is based on operation serialization, which achieves
the defined effects either by using operation-specific ordering rules for resolvable
conflicts, or by using any priority scheme for real conflicts. Serialization is
essentially a single-operation-effect or null-effect conflict resolution technique

(Sun and Chen 2002).

112

It is well known that the combined effects achievable by an all-operations-
effect technique cover all combined effects achievable by a single-operation-effect
technique, but the inverse is not true (Sun and Chen 2002). Furthermore, some
combined effects among conflict Group operations achievable by CoGroup are
not achievable by the serialization work in Ignat and Norrie (2004). For example,
when two concurrent Group operations target some common and non-common
objects, they are regarded as conflict operations in both CoGroup and the
approach in Ignat and Norrie (2004) (a real conflict). The combined effects in
CoGroup are the following: both Group operations will succeed in creating their
result group-objects; both group-objects contain their non-common target objects,
but only one of them has the common target objects displayed (see Figure 5.7).
However, the combined effects in Ignat and Norrie (2004) are the following: one
of the two Group operations will win and create the group-object containing all
target objects, but the other one will lose completely and have no any effect (not

even the effect of grouping the non-common target objects).

In Ignat and Norrie (2004), achieving the partially combined effects for some
resolvable conflicts is the main motivation for disqualifying OT from being
applied for this purpose and for devising the new operation serialization technique.
As shown in the example in Figure 5.9, however, the partially combined effect in
Ignat and Norrie (2004) can be achieved by using the generic OT technique
without additional application-level support, and more comprehensive MVSD
combined effects can be achieved by extending OT with the application-level
adaptation. A major problem with operation serialization is its undoing and
redoing conflict operations when they are executed out of the correct conflict
resolution order, which may cause potential interface disruption (when the
undo/redo effects are visible at the user interface) and major performance
overheads. It should be pointed out that the undo/redo involved in operation
serialization is different from the collaborative undo capability in OT: the former

is initiated by the internal system out of the necessity for resolving conflict among

113

grouping operations, but the latter is initiated by the external user for the purpose

of eliminating the effect of error grouping operations (Sun 2002a).

It is worth pointing out that there exist other alternative approaches to conflict
resolution based on locking (e.g. Ensemble (Newman-Wolfe et al. 1992) and
GroupDraw (Greenberg and Marwood. 1992)) or different kinds of serialization
(e.g. GroupDesign (Karsenty et al. 1993) and LICRA (Kanawati 1997)), but none
of them addressed the issues related to collaborative object grouping. The reader
is referred to Sun and Chen (2002) for detailed comparisons between the multi-
versioning approach, on which CoGroup is based, and these alternative

approaches.

5.3. Summary

In this chapter, two TA-based advanced adaptation techniques have been
discussed. The first one is a collaborative table editing technique, called CoTable,
and the second one is a collaborative graphic object grouping technique, called

CoGroup.

The CoTable technique includes techniques for adapting data and operation
models of table editing APIs. Single-user application APIs provide a variety of
data models for accessing table objects. Typical ones are single linear data model,
row-based tree data model and two-dimensional data model. The single linear
data model and the row-based tree data model can be directly adapted to that of
OT; and the two-dimensional data model can be adapted after being converted to
the row-based tree data model. These three data model adaptation schemes not
only map the API table data models to that of OT, but also help integrate tables

into a global addressing space of the complex document.

The CoTable operation adaptation technique is to define a set of table structure
editing AOs, called AO;. AO; are named and grouped in two dimensions: the PO
types and the target object types. Translation of AO; is straightforward. Row- and

114

Cell-AO; are translated into individual POs, and Column-AQO; are translated into

multiple POs of the same type, because they are compound AOs.

The CoGroup technique involves adapting the data and operation models of
graphic editing APIs in the face of object grouping, and resolves conflicts
between Group operations to achieve the MVSD effect. To resolve the conflict
between Group operations, the conflict relation and combined effect for conflict

and compatible graphics editing operations are defined.

Single-user graphics editing application APIs have provided mechanisms for
mapping graphic objects into a tree of linear addressing domains, which meets the
data model adaptation requirement. To map graphics editing operations to the OT
data model, a set of graphics editing AO, called AO, are defined, which include
basic AO, and grouping AO,. Conflicts among basic AO, can be resolved with

built-in mechanisms of OT.

Both detecting and resolving conflicts among Group AO, require AO-level
knowledge. To propagate conflict information detected by OT to the AO level,
corresponding extensions have been made to both OT and TA. With these
extensions, OT and TA can collaborate to detect and resolve conflicts among
Group AQO,. Moreover, desirable combined effects for compatible graphics
editing operations can also be achieved with a series of AO-level adjustment

strategies.

115

Chapter 6

Supporting Workspace Awareness

in TA-Based Systems

Workspace awareness is particularly important for improving the usefulness of
TA-based systems, because it provides the user with the current situation of other
collaborators in the unconstrained collaboration environment. This chapter
discusses technical issues in supporting workspace awareness in TA-based

systems.

6.1. Introduction

Workspace Awareness (WA) is essential for groupware systems. TA-based
collaborative systems (e.g. CoWord and CoPowerPoint) have particularly high
demands on WA because of the following reasons. First, the workspace of a TA-
based system, namely the shared document, may contain numerous data objects in
complex structures. Second, TA-based systems allow geographically distributed
users to concurrently edit any objects and view any parts of shared documents at
any time, which results in constant changes to the workspace. Without effective
WA support, it is very difficult for users to perceive others’ interactions with this

spacious, complex and dynamic workspace.

Collaborative editing activities are centred on the workspace, the shared
document, so TA-based collaborative systems have similar WA requirements to

other groupware systems. Widely used WA features, including the telepointer

116

(Crowley et al. 1990), radar view (Gutwin et al. 1996b) and multi-user scroll bar
(Roseman and Greenberg 1996), are able to deliver such WA information and

thus are suitable for TA-based collaborative systems.

Software reuse has proved to improve software quality and productivity (Basili
et al. 1996). It is necessary to design a reusable WA framework for multiple TA-
based systems. In addition to reducing the development effort of existing WA
features, this WA framework should also facilitate the development of new WA
features. This is because TA may be applied to a wide range of single-user
applications with drastically different functionalities and interface features, and
requires varieties of WA support, some of which may be beyond the capabilities
of existing WA techniques and can only be supported by new WA features. To
achieve this goal, the WA framework needs to address two technical issues:

object association and graphics representation.

For users to obtain meaningful WA information, WA widgets are usually
associated with workspace objects. Existing WA techniques adopt static object
association schemes in the sense that the object identifier does not change. For
example, while the telepointer refers to a window component, it is associated with
the target component identifier, which never changes. While referring to a
character in a text viewing component, the telepointer is associated with a
constant identifier of this component plus a constant index of the character in the
text buffer. The invariable object identifiers ensure the correctness of the static

reference scheme in a range of groupware systems.

Unfortunately, the static association scheme does not work in TA-based real-
time collaborative systems. This is because in such systems, users can edit any
objects in the shared document at any time. As a result, positional references of
content objects are subject to dynamic changes. These changes may cause
problems under two circumstances. First, when a WA widget (e.g. a telepointer)
is about to relocate to a new associated object in response to a remote user’s

action (e.g. mouse cursor movement), the object may have been moved by

117

concurrent editing operations, which causes the widget to be located at an
incorrect position. Second, after a WA widget is relocated, the associated object
may be moved by subsequent editing or view changing actions, which may also
cause the widget to refer to an incorrect position. The reason of these problems is
that existing techniques associate WA widgets with objects’ positional references,
rather than the objects themselves, so they cannot accommodate the dynamic
changes. To solve this problem, a dynamic object association scheme is needed to

accommodate the dynamic workspace changes.

Another challenge related to object association is that different object
association schemes are adopted by different WA features. For example, a
telepointer is used to refer to a specific point in the workspace, so associating it
with a single object is sufficient. In a text-based editor, a view port of the radar
view should cover the whole view range of a remote user, which is determined by
the two objects existing at the view boundaries, so it should be associated with
those two objects. Moreover, the telepointer is usually displayed in the main
document view, so it should be associated with objects displayed in the main view,
while the view port is usually displayed in a miniature document view, so it
should be associated with objects displayed in the miniature view. To address this
challenge, the object association scheme in the WA framework must be generic

enough to accommodate these differences.

Graphics representation is another important technical issue that the WA
framework should address. This is because WA features represent WA
information by means of graphic widgets. Due to the differences among the WA
information types (e.g. presence, location and activity, see Chapter 2), different
WA features are represented in different ways. For example, a telepointer is
usually represented as an arrow attached with a user name, while a radar view is
usually represented as a miniature document view with rectangular view ports. In
existing systems, there is no generic graphics representation technique that is able

to accommodate these differences.

118

In this chapter, an innovative technique called Multi-functional wOrkspace
Awareness Framework (MOAF) is presented. This framework includes an object
association technique and a graphics representation technique, which are able to
meet the object association and graphics representation requirements of different
WA features. Moreover, the MOAF object association technique solves the static
object association problem by really associating WA widgets with workspace
objects, rather than their positional references. This framework is application-
independent, so it can be reused in multiple TA-based collaborative systems.
Finally, MOAF not only supports existing WA features, but also can be extended

to support new ones.

The rest of this chapter is organized as follows. First, existing object
association schemes and graphics representation techniques of WA features are
reviewed in Section 6.2. Next, the MOAF object association technique for
achieving the object association effects is discussed in Section 6.3. In Section 6.4,
the MOAF graphics representation technique is discussed. Afterwards, examples
of supporting WA features with MOAF are presented in Section 6.5. Finally, this

chapter concludes with a summary of contributions in Section 6.6.

06.2. Related Work

This section reviews existing object association schemes and graphics

representation techniques used for WA features.

6.2.1. Existing Object Association Schemes

In existing groupware systems, different object association approaches have been
invented to support WA features. For example, multiple object association
schemes have been adopted during the evolution process of the telepointer
technique. In early generic application-sharing systems, such as CoLab (Stefik et
al. 1987) and MMConf (Crowley et al. 1990), the telepointer is displayed at the

same position in the shared window. In other words, the telepointer is associated

119

with the shared window. With the strict WYSIWIS view mode adopted in these
systems, all users have the same view of the shared window. This ensures that
each object is placed at exactly the same position in the shared window, and the
same coordinates point to the same object at all sites, so the window coordinates

are sufficient for a telepointer to locate any objects in the shared window.

In a relaxed WYSIWIS view mode, a shared window can have different layouts
among participating sites. To accommodate the view difference, techniques
associating telepointers with components inside windows have been proposed,
including Smart Telepointer (Rodham and Olsen 1994) and GroupKit (Roseman
and Greenberg 1996). With these techniques, a telepointer is associated with
identifiers of a user interface (UI) component in the shared window, and is
provided with the relative position inside the component space. For example, in
Smart Telepointer, the telepointer’s reference parameters include (1) a path in the
component tree from the root to the leaf-level component that contains the
telepointer, and (2) the relative position information within the leaf-level

component.

Some UI components have internal structures or contents (e.g. a text editor or
an HTML viewer). In a relaxed WYSIWIS view mode, the internal content may
be formatted and displayed differently due to different view customizations
among collaborating sites. For such components, the component-level association
is not enough. Smart Telepointer associates the telepointer with the content object
position by attaching the index of the associated object (e.g. the character index in
a text buffer) in the telepointer reference parameters, so that the telepointer can
point to the same content object as the local cursor does. This technique is also

adopted in GroupWeb (Greenberg and Roseman 1996).

Similarly, other WA features in existing collaborative systems have their
specific object association schemes. For example, the multi-user scrollbar in
Groupkit displays multiple scroll boxes to indicate remote users’ scroll box

locations in a shared scrollbar. The scrolling WA information is collected from

120

the remote user’s scroll shaft and is interpreted based on the current position and
size of the local scroll shaft, so the multi-user scroll boxes are associated with the
scroll shaft. On the other hand, the Groupkit radar view collects the view
awareness information from remote users’ scrollbars and interprets this
information in the local miniature view. So, the view ports in the radar view are
associated with both the (remote) scroll bar and the (local) miniature view

window.

Although these object association schemes work well in their own
environments and could achieve the effects they were designed for, they are not
suitable for TA-based real-time collaborative systems due to dynamic content and
view changes. Moreover, these object association schemes are designed for
specific WA features. No existing work has been found in the literature that

provides generic object association mechanisms for different WA features.

6.2.2. Existing Graphics Representation
Techniques

Graphics representation techniques used in existing WA techniques can be
generally classified into two categories. The first one is called direct window-
drawing, which directly draws WA widgets in the underlying workspace window
in an XOR mode. When a WA widget (e.g. a telepointer) moves, it is erased from
its current position and redrawn to the new position. This approach has been
adopted in GroupSketch, GroupDraw (Greenberg et al. 1992) and Dialogo
(Lauwers and Lantz 1990). This technique is error-prone because WA widgets
have to compete for the drawing area with other functional modules responsible
for the graphics representation of the workspace. Since WA widgets are drawn in
the same window with the document view, it is difficult to prevent them from

interfering with each other and to guarantee the proper display of both sides.

To avoid problems of the direct window-drawing approach, later systems adopt

another technique called glass pane, which creates a transparent window on top

121

of the workspace and draws WA widgets on it. This approach has been adopted in
GroupKit (Roseman and Greenberg 1992) and MAUI (Hill and Gutwin 2003).
Since WA widgets are drawn in a window separated from the workspace, they do
not interfere with each other and problems of the direct window-drawing are
hence avoided. However, the glass pane window inevitably intercepts all mouse
input events to the workspace because it covers the whole workspace area. For the
user to manipulate the workspace as usual, mouse input events must be replayed
to original target windows in the underlying workspace. In addition to the
performance degradation, replaying events properly involves many nontrivial
tasks including finding the correct target window and modifying event parameters,
which should have been done by the operating system if the glass pane were
absent. Therefore, this approach has to end up with a reinvention of the operating
system’s event dispatching mechanisms. Furthermore, a common problem of the
above two approaches is that the movement scope of WA widgets is restricted.
The direct window-drawing approach restricts WA widgets within the workspace
window; and the glass pane approach restricts WA widgets within the glass pane

window (Hill and Gutwin 2003).

6.3. The MOAF Object Association
Technique

This section discusses the MOAF object association technique. This technique not
only accommodates the dynamic changes in TA-based real-time collaborative
systems, but also meets the object association requirements of different WA

features.

6.3.1. Object Association Effects

First of all, the desirable object association effects that this technique should
achieve are defined. In the following discussion, the telepointer will be used as an

example to define the object association effects.

122

Positional Reference Adjusting (PRA) Effect

In a TA-based system, associated objects are identified with their positional
references in the document. A WA widget should be able to adjust the positional
references in order to track the associated objects in the face of dynamic content

changes caused by editing operations.

@) TeleE)lnter

St
0123 4887 89 10

Steveén' ™
6 7

w The ~~T:ele%?i nter

teven
101

LSt
0123435

1121314

Figure 6.1 The PRA effect (the telepointer tracks the reference character “p”).
(a) The initial state; (b) The state after executing an insert; and (c) The state
after executing a delete.

Examples of the PRA effect are shown in Figure 6.1. At the initial state (Figure
6.1-(a)), the telepointer is pointing to the character “p” at position 4. After the
execution of an insert or delete operation, the positional reference of the character
may be changed. To achieve the PRA effect, the telepointer positional reference
must be adjusted so that it still points to the character “p”, as shown in Figure 6.1-
(b) and (c). It should be pointed out that editing operations could be generated

concurrently with or sequentially after a telepointer moving operation. The PRA

effect must be achieved under both circumstances.

Relative Position—Preserving (RPP) Effect

The WA widget position relative to the associated object should be preserved in
the face of dynamic changes to the document. An example of the RPP effect is
shown in Figure 6.2. At the initial state (Figure 6.2-(a)), the telepointer is pointing
at the centre of the picture. After the execution of a size-updating operation, the

picture is resized to a quarter of the original size. To achieve the RPP effect, the

123

telepointer position must be adjusted to accommodate the effect of the updating
operation on the object so that it still points to the centre of the picture (Figure

6.2-(b)).

kSteven g

v \f:Steven
(a) (b)

Figure 6.2 The RPP effect. (a) The initial state; (b) The state after executing a
resize operation: the telepointer remains inside the picture.

When the user is performing gestures with the mouse cursor, the cursor is more
often outside rather than inside the associated object. The RPP effect should also
be achieved when the telepointer is outside the associated object or in a blank area.

In this case, the telepointer is associated with the nearest object.

An example is shown in Figure 6.3. In the initial state (Figure 6.3-(a)), the
telepointer is in the blank area near the picture. After the picture is resized, the
telepointer is relocated accordingly so that it still points at the same position

relative to the associated object (Figure 6.3-(b)).

iy
kSteven .
(a) (b) }Steven

Figure 6.3 The RPP effect when the telepointer is in a blank area. (a) The
initial state; (b) the state after executing a resize operation on the picture: the
telepointer remains outside the picture.

- 'Steven
-

124

The Local WA Widget

Telepointers are used to represent the positions of their corresponding local
cursors, and therefore they should be kept consistent with the local cursors. To
achieve the PRA and RPP effects, telepointers may be relocated dynamically to
track the associated objects. After the relocation of the telepointers, the positions
of these telepointers at remote sites may no longer be consistent with their

corresponding local cursor.

One way to keep them consistent is to relocate the local cursor as well, but this
can be disruptive to the user. To solve this problem, the notion of a local WA
widget, which is the same as a WA widget but displayed at the local site, is
introduced. For the telepointer, the local WA widget is a virtual local cursor.
When relocation of the telepointer occurs at a remote site, the virtual local cursor
will be relocated to track the associated object, but the local mouse cursor is not
moved. This virtual local cursor provides feedback to the local user about the

locations of his/her telepointers at remote sites.

TeIeRointer

(a)
0123 l:l\§5 678910
Inserting
The virtual local cursor
®) The 'Relep\oiﬁt er

AV
01 2 3 45567 8791011121314

Figure 6.4 The virtual local cursor for tracking the associated object. (a) The
initial state; (b) the state after the associated object is pushed to the right. The
virtual local cursor follows the associated object, but the real local cursor is
not affected.
Consider the example shown in Figure 6.1. When the string “The ” is inserted,
the telepointer is relocated to track the character “p” (Figure 6.1-(b)). What
happens at user Steven’s local site at the same time is shown in Figure 6.4. In the

€C_ %

initial state (Figure 6.4-(a)), the local cursor is pointing at the character “p” at

125

position 4. After the string is inserted, the virtual local cursor appears and tracks

the associated object (Figure 6.4-(b)), but the real local cursor is not affected.

When the user moves the local cursor, the virtual cursor should disappear.
While moving the local cursor, the user may intend to point to another object. In
this case the new associated object should be identified and associated with the
telepointers, and remote telepointers should be relocated accordingly. The user
may also want to move the local cursor to point to the original associated object.
With the virtual local cursor pointing to the original associated object, it is much

easier for the user to find the moved object from the documents.

Discussion

There are some issues related to the above object association effects that are

worth discussing.

To guarantee the correctness of gesturing WA features (e.g. the telepointer),
one alternative to the dynamic object association is to prohibit all users from
editing during the (non-deterministic) gesturing period. It may seem natural that
the gesture-generating and accepting users would not edit during the gesturing
period. However, in the same collaborative editing session, not all users are
interested in the gestures. Prohibiting everyone from editing while someone is
gesturing is undesirable. Another alternative is to require the gesture-generating
user to wait until others have stopped editing. This solution is also undesirable
because the occurrence of such a quiescent moment is unpredictable. Even if there
are only two users (i.e. the gesture generator and accepter), it will be beneficial if
they have the convenience to gesture and edit at the same time without any extra

effort.

The degrees to which different WA features achieve the object association
effects are also different, because different WA features have different behavior
and characteristics in response to these changes. For example, the telepointer is

often used as a gesturing tool. It requires high precision and smooth movement,

126

so it needs to achieve the RPP effect. On the other hand, the radar view is used to
indicate which objects a remote user can see. One seldom needs to know precisely
which part of a character at the view boundary a remote user can see. In this sense,

achieving the RPP effect is not necessary for the radar view.

The local widget of different WA features also behaves differently. The virtual
local cursor for the telepointer appears only when the local mouse cursor is
inconsistent with its telepointers. However, the local view port of the radar view
is always displayed in the miniature view, because it provides the local user with

location information about where his/her view range is in the global workspace.

6.3.2. Adapting Workspace Awareness AO

Like other TA-based collaboration techniques (e.g. CoTable and CoGroup in
Chapter 5), the MOAF object association technique is also supported by a set of

AO and corresponding adaptation techniques.

The Workspace Awareness AQO Definition

To carry object-associated WA information among distributed collaborating sites
running the TA-based collaborating editing system, a set of Workspace
Awareness AO, called AO,, are defined. When any event that changes the
workspace state occurs at the local site, an AOy, is generated and propagated to all
remote sites. When a collaborating site receives an AO,, it interprets the WA
information contained in this AO,, and updates the position or shape of the
corresponding WA widget to reflect the WA information encapsulated in the AO,,.
The MOAF object association technique is applied to guide the AO,, processing.

As a polygon, the position and shape of a WA widget are determined by its
vertices, so AO,, need to carry information about positions of all vertices of the

WA widget. The following two AO,, are defined to carry such WA information.

(1) MoveAO,,(wa_type, vertex;)

127

(2) ReshapeAO,,(wa_type, vertex, vertex; ... vertex,)

The wa type parameter is the identifier of the WA feature type. A vertex
parameter contains information for calculating the X and Y coordinates of a

vertex, so it is defined as follows.

vertex ((obj_id x, offset x), (obj _id y, offset y))

The parameter obj id x is the identifier of the object associated with the X
coordinate of the vertex. When a vertex refers to a data object in the document,
this parameter is the object’s positional reference in the document data model (i.e.
a vector of (n, p) pairs, see Chapter 4). When the vertex refers to a Ul object (e.g.
a button), this parameter is the Ul object’s globally unique identifier. The
parameter offset_x is the horizontal distance between the vertex and the associated
object’s left edge. This distance is measured as a relative ratio to the width of the
associated object, rather than an absolute pixel number. For example, an offset x
value 0 indicates the X coordinate value of the associated object’s left edge; and
an offset x value 1 indicates the X coordinate value of the associated object’s

right edge.

Parameters obj id y and offset y are defined similarly but are used to calculate
the vertex’s Y coordinate. With these parameters and the current status of the
associated object, coordinates of a vertex can be calculated with the following

formulae:

vertex.x = obj _xleft + obj _x.widthx offset _x
vertex.y =obj _y.top+obj _y.height x offset _y

MoveAO,, is used to change the position of a WA widget without affecting its
shape, so it contains information for calculating the position of the first vertex
only. MoveAQ,, is suitable for WA features whose shapes never change, such as
the telepointer. ReshapeAO,, 1s used to change both the position and shape of a

WA widget, so it contains information for calculating positions of every vertex.

128

Moreover, the vertex number encapsulated in the AO,, may be different from the
current vertex number of the WA widget. That means the vertex number of a WA
widget may also be changed upon receiving a ReshapeAO,. ReshapeAO,, is
suitable for WA features whose shapes may change as well as positions, such as

the view port.

To generate an AO,, when the workspace state is changed, WA information
needs to be represented in the context of workspace objects (may be data objects
in the document or Ul objects). For WA information originally represented in
absolute screen positions (e.g. the mouse cursor position), a translation process is

required. Typically, the translation process involves the following two steps.

(1) First, workspace objects that are suitable for the association are identified. For
every coordinate value contained in the WA information, one object is
identified.

(2) Next, the relative horizontal and vertical positions are calculated according to

the current status (e.g. positions and sizes) of associated objects.

In the TA framework, techniques to process AO,, can be designed in the same
way as processing techniques for other AOs. The desirable object association

effects can be achieved by processing AOy, as discussed in the following.

Adapting Data Object—Referring AO,, in the TA Framework

Objects referred by AOy, could be UI objects or data objects. In the former case,
static global identifiers of target Ul objects can satisfy the identification needs
because such identifiers are never affected by content and view changes. In the
latter case, however, AOy, need to refer to target data objects with their XOTDM
addresses like editing AOs. Therefore, concurrency-related inconsistency
problems that may happen to editing operations may also happen to these data
object-referring AO,. To handle these problems, data object-referring AO,,
should also be adapted in the TA framework so that they can be transformed by
OT. On the other hand, unlike editing AOs, AO,, never change the state of target

129

objects. Instead, they only refer to objects. This characteristic cannot be captured
by the three POs supported by OT, so it is not suitable to translate data object-
referring AOy, into any existing PO types.

To address this issue, a new PO type, called Refer is defined as follows:

Refer(vp) denotes referring to the object at the position vp.

The vp parameter is the same one as in the Insert, Delete or Update POs, which
is a vector of (n, p) pairs to indicate the address of the associated object in the

document data model.

Data object-referring AO,, are compound AOs because one AO,, should be
translated into multiple Refer POs. When translating an AOy, into Refer POs, the
obj id x and obj id y of every vertex parameter are individually passed to a
Refer PO as the vp parameter. In this way, every verfex parameter is translated

into two Refer POs.

Extending OT to Transform Refer

OT is able to transform three PO types, which do not include Refer. To support

transforming Refer, OT needs to be extended correspondingly.

As discussed in Chapter 4, for supporting a new PO type, a set of
transformation functions for the new PO type should be designed, and the high-
level transformation control layer should be kept unchanged. Since Refer does not
have effects on other operations, ET functions for Refer are not needed. For the
same reason, IT functions that transform other POs against Refer are not needed
either. Therefore, only IT functions for transforming Refer against other POs need
to be designed. Finally, mechanisms for processing operations targeting different
linear addressing domains are encapsulated in the VOT function (see Chapter 4),
so only IT functions for transforming operations targeting the same linear

addressing domain are needed.

130

The OT technique supports three primitive operations, which are Insert, Delete
and Update. IT functions transforming Refer against these operations are shown

in Figure 6.5.

IT_RI(Or, Oi)
{
if (Oi.vp[last] <= Or.vp[last])
Or. vp[last] = Or. vpl[last] + Oi.len;
return Or;

}

IT_RD(Or, Od)
{
if (Od. vp[last] + Od.len < Or. vp[last])
Or. vp[last] = Or. vpl[last] - Od.len;
else if ((Od. vp[last] < Or. vp[last]) && (Od.pos + Od.len >= Or. vp[last]))
Or. vp[last] = Od. vp[last];
return Or;

}
IT_RU(Or, Ou)
{

return Or;

}

Figure 6.5 IT functions for the Refer operation.

When a Refer is transformed against an Insert (IT_RI), the Refer’s position is
shifted to the right by the Insert’s length if the Insert’s position is to the left of the
Refer’s position, because the associated object is pushed to the right. If the
Insert’s position is to the right of the Refer’s position, then the Refer’s position

parameter is not changed.

Transforming a Refer against a Delete (IT_RD) is more complex. If the range
of the Delete is completely to the left of the Refer’s position, then the Refer’s
position is shifted to the left by the Delete’s length, because the associated object
is pulled to the left. If the Delete’s range covers the Refer’s position, then the
position of the Refer is set to the position of the Delete, because the original
associated object is deleted by the Delete and the object at the Delete’s position

(Od.vp) becomes the new associated object. Finally, if the Delete’s position is to

131

the right of the Refer’s position, then the Refer’s position parameter is not

changed.

When a Refer is transformed against an Update (IT_RU), the Refer’s position
parameter is not changed, because an Update does not affect the position of the

associated object in the data model.

6.3.3. Achieving Object Association Effects

With the AO,, definition and the adaptation technique in TA and OT, the

desirable object association effects can be achieved, as discussed in the following.

Handling Concurrent Editing Operations

The major technical challenge of achieving the PRA effect is to locate the
associated object whose positional reference has been changed due to concurrent
editing operations. With the AQO,, processing technique discussed above, the
object identifier parameters in an AO,, can be adjusted with OT and TA, so that
an AQO,, can always locate the associated objects correctly in the face of
concurrent editing operations. Therefore, the PRA effect is achieved with the

support of OT and TA.

0 50 80 100 0 2.54_0 50 10 .
: b1 >x (pixel) = > x (pixel)
1
| 1 25 - 4= [
) Ky
-4 L 1 50 = Steven
% * ' Resizing 60T===" *
Ste\:en N avid
100 : 1004
120q=-=-=-=-=---- * 15
v . l
v (pixel) David y (pixel)

(a) (b)

Figure 6.6 A scenario of achieving the RPP effect with the relative ratio
position parameters. (a) The initial state; (b) The state after resizing.

The RPP effect can be achieved by making use of the relative ratio position

parameters of the AO,. When the associated object has been found from the

132

document, coordinates of the new vertex position can be calculated with its
current status and the relative ratio position parameters. In this way concurrent
attribute changes (e.g. resizing) to the associated object can be accommodated.

An example of achieving the RPP effect for the telepointer is shown in Figure 6.6.

In the initial state (Figure 6.6-(a)), the associated object, whose positional
reference is obj pos, occupies an area of 100 * 100 pixels. The first vertex of user
Steven’s telepointer is at the centre of the associated object, so this vertex is
specified as ((obj pos, 0.5), (obj pos, 0.5)), corresponding to the relative pixel
position <50, 50>. User David’s telepointer is outside the associated object and
the relative ratio position is ((obj pos, 0.8), (obj pos, 1.2)), corresponding to the
relative pixel position <80, 120>. After the associated object is resized to 50 * 50
pixels (Figure 6.6-(b)), positions of the two telepointers are recalculated. Based
on the new size of the associated object and the relative ratio positions, the
relative pixel position of user Steven’s telepointer’s first vertex is changed to <25,
25>, so that it is still at the centre of the associated object; the relative pixel
position of user David’s telepointer’s first is changed to <40, 60>, so that it is still

at the same position relative to the associated object.

To keep the local WA widget consistent with remote widgets, the PRA and
RPP effects should also be achieved while relocating the virtual local cursor.
Since the local WA widgets act as mirrors of the remote counterparts, they can be

controlled by the same technique for handling remotes widgets.

Handling Subsequent Editing Operations

Apart from concurrent editing operations, subsequent editing operations executed
after an AO,, may also change the on-screen position or size of the associated
object and hence invalidate the association between the WA widget and its

associated objects.

Editing operations executed at any address could affect the position or size of

the associated object. First, operations targeting the associated object could

133

directly change its position or size. Second, operations executed before an
associated object (in the data model) could change its address in the data model
and thus affect its on-screen position (see Figure 6.1-(b) and (c)). Finally,
operations executed after the associated object could change the layout of the
document view, and hence indirectly affect the associated object’s on-screen

position.

To solve these problems, the following WA widget relocation scheme for

accommodating changes caused by subsequent editing operations is devised.

(1) Addresses of all associated objects are adjusted to accommodate the effect of
the subsequent editing operation. This adjustment can be done by
transforming the latest AO,, of each WA widget against the editing operation
(Xia et al. 2005c¢).

(2) New positions of all WA widgets vertices are recalculated based on the
current status of associated objects.

(3) WA widgets are moved or reshaped to new positions if necessary.

It should be pointed out that this relocation scheme is also applied to the local
WA widgets so that it can also achieve the object association effects in the face of

dynamic changes caused by subsequent editing operations.

Handling View Changes

WA widgets are displayed in a layer different from the document view windows
(to be discussed in the graphics representation technique in the next section).
Therefore, view changes (e.g. scrolling up and down, zooming in and out) could
also affect the association between WA widgets and associated objects. An

example is shown in Figure 6.7.

In the initial state (Figure 6.7-(a)), the telepointer is pointing at the centre of the
character “A”. After the document view is scrolled up, the position of the

associated object, character “A” is moved. To preserve the PRA and RPP effects,

134

the telepointer needs to be moved up as well so that it still points at the centre of

the character “A” (Figure 6.7-(b)).

" The Object-Associated . achieve the Positional
Telepointer is able to - Reference Adjustment J

achieve the Positional | 5 o and RelativeARosition
Reference Adjustment - Preserving £ffects.

' and Relativ@&Resition M Steven

- Preserving Effects. :

(@ (b)

Figure 6.7 A scenario for preserving the object-associated effects in the face of
view change. (a) The initial state; (b) The state after scrolling.

Like editing operations, view changes could also be concurrent with or
sequential to the AO,,. The effect of the concurrent view change is accommodated
in the vertex position calculation process. When an AO,, operation is executed at
a remote site, the current status (after the view change) of the associated object is
used to calculate the vertex positions. In this way, the WA widgets position has

taken the effect of view changes into account.

View changes affect the position and size of the associated objects without
changing their internal state in the document. Therefore, when a subsequent view
change occurs, addresses of associated objects in the data model do not need
adjustment. Only the vertex position recalculation and WA widgets relocation are
needed. For the example shown in Figure 6.7, after the view has been scrolled up,
the new status of the associated object the character “A” is obtained first. Then
the new on-screen position of the telepointer is calculated based on the current
status of the associated object and the relative position parameters of the

telepointer. Finally, the telepointer is moved to the new position.

135

6.4. The MOAF Graphics
Representation Technique

This section discusses the MOAF graphics representation technique. To
accommodate varieties of graphics demands of different WA features, the MOAF

graphics representation technique should meet the following requirements.

(1) It should support creating and maintaining graphic objects with all attributes
needed by different WA features, including shape, position, filling color and
semi-transparency.

(2) It should support easy manipulation of graphic objects. WA widgets are
frequently moved or reshaped. It is important that the mechanism to
manipulate related attributes is simple and efficient.

(3) Graphics representation of WA widgets should be independent of the shared
workspace. Attribute changes of WA widgets should not interfere with the

workspace display.

In the MOAF graphics representation technique, windows, the basic Graphic
User Interface (GUI) element in windowing platforms, are used as the graphics
representation means of WA widgets. This approach takes advantage of the GUI
functionalities of windowing platforms (e.g. Microsoft Window, X Windows, and
Mac OS), which support windows in any non-rectangular shapes. With the
support of the graphics functionalities of the windowing platform, window-based
WA widgets can be created with customized shapes and other graphic attributes
to meet the graphic demands of different WA features. Moreover, graphs can be
drawn in these windows to provide more detailed WA information. For example,
a telepointer can be represented as an arrow-shaped window attached with a text
string; and a view port can be represented as a semitransparent rectangular

window with a text string in it.

With this approach, control of WA widget windows is simple. Graphic

attributes of WA widget windows can be easily manipulated with the windowing

136

platform APIs. For example, moving a WA widget requires only one API call in
MS Windows. On the contrary, with the direct window drawing or the glass pane
approach (see Chapter 6.2), moving a WA widget involves complex tasks
including erasing the widget from its current position and redrawing it at the new
position. Moreover, window-based WA widgets are able to move around the

whole screen without any limitation.

6.5. Supporting WA Features with
MOAF

With the MOAF technique, the main tasks for supporting a WA feature include
analysing the relationship between WA widget vertices and workspace objects,
and defining the corresponding AO,, to express this relationship. In this section,

how these tasks are performed will be illustrated with examples.

6.5.1. Radar View

As shown in Figure 6.8, a view port of the radar view is a semitransparent
rectangle covering all objects a remote user can see, so the AO,, for the radar
view should contain position information of the four vertices of the view port
rectangle, including their associated object identifiers and offset values, as shown

in the AOy, definition below:

ReshapeAO,, (RADAR _VIEW, V1, V2, V3, V4), in which RADAR VIEW 1is the
WA type identifier of the radar view, and the remaining parameters encapsulate

object-associated vertex positions.

Two different object association schemes can be adopted for the radar view. In
the user interface of a typical graphics-based editor (see Figure 6.8-(a)), graphic
objects are placed in a drawing canvas, which is the global coordinates space for
all distributed collaborating sites. A user’s view of the workspace is a segment of

the global canvas. Positions of graphic objects are defined in this canvas, so the

137

canvas is an ideal associated object for the view ports. Therefore, coordinates of
all vertices are associated with the canvas object (in the miniature document
view). The vertex parameters of the graphics-based radar view AO,, are

represented as:

Workspace awareness
is important for real-time
roup editors by
providing remote users’
don about their
presence, action and
position. GOAF can be
applied to support a wide
range of workspace
awareness features for
V4cal-time group editing V3
system, including
telepointer, radar view,
multi-user scrollbar, and
tele-selection.

(@) (b)

Figure 6.8 The radar views. (a) The radar view of a graphics-based editor; (b)
the radar view of a text-based editor.

VI = (MINIATURE_CANVAS_ID, offset_1_X), (MINIATURE_CANVAS_ID, offset_1_Y)),
V2 = (MINIATURE_CANVAS_ID, offset_2_X), (MINIATURE_CANVAS_ID, offset_2_Y)),
V3 = (MINIATURE_CANVAS_ID, offset_3_X), (MINIATURE_CANVAS_ID, offset_3_Y)),

V4 = (MINIATURE_CANVAS_ID, offset_4_X), (MINIATURE_CANVAS_ID, offset_4_Y)),

in which MINIATURE_CANVAS ID is the identifier of the canvas object in the
miniature document view, and offset i x and offset i y indicate the horizontal
and vertical position of the ith vertex relative to the left top corner of the canvas

object.

In the user interface of a typical text-based editor, such a global canvas object
does not usually exist. However, user interfaces of these applications have
another characteristic - data objects (namely characters) are represented to users
in a linear sequence. So, a user’s view can be specified by the two objects existing

on the upper and lower view boundaries.

138

Figure 6.8-(b) shows the object association scheme for the view port in a text-
based editor. The left and right edges of the view port overlap with the left and
right edges of the miniature document view window. The top and bottom edges of
the view port overlap with the top and bottom edges of the data objects existing at
the view boundaries. Therefore, vertex parameters of the text-based radar view

AOQy, are represented as:

VI = (MINIATURE_VIEW_ID, 0), (obj_1, 0)),
V2 = (MINIATURE_VIEW_ID, 1), (obj_1, 0)),
V3 = (MINIATURE_VIEW_ID, 1), (obj_2, 1)),

V4 = (MINIATURE_VIEW_ID, 0), (obj_2, 1)),

in which MINIATURE VIEW ID is the identifier of the miniature document view
window; obj I and obj 2 are the positional references (in the data model) of data

objects existing at the upper and lower boundaries of the main document view.

The data object-based association scheme for text-based editors can also be
applied in graphics-based editors, because graphic objects can also be accessed
with their positional references in the data model (see Chapter 3 and Chapter 5).
This example illustrates that multiple object association schemes are applicable
while supporting WA with MOAF. Developers of TA-based systems may make
their decisions based on the characteristics of concrete applications. For example,
the data object-based association scheme is adopted in CoWord due to the
absence of the global canvas, although Word documents also contain graphic

objects.

139

6.5.2. Telepointer

The shape of a telepointer never changes, so MoveA4O,, is chosen as the AO,, for

the telepointer, which is defined as follows:

MoveAO,, (TELEPOINTER, V1), in which TELEPOINTER is the WA type
identifier of the telepointer, and V1 encapsulates the object-associated position of

the first vertex. V1 is defined as:

V1 = ((obj, offset_x), (obj, offset_y)),

in which obj is the identifier of the workspace object nearest to the remote user’s
mouse cursor. This object can be either a data object in the document or a Ul
object because the mouse cursor is free to move around the workspace. In the
former case, the obj parameter is the positional reference (in the data model) of
the data object. In the latter case, the obj parameter is a global identifier of the Ul
object. The offset x and offset y parameters are horizontal and vertical positions
of the mouse cursor relative to the left top corner of the associated object (as

shown in Figure 6.9).

Figure 6.9 The telepointer.

6.5.3. Multi—-User Scrollbar

As shown in Figure 6.10, a scroll box of the multi-user scrollbar is a rectangle
whose position and size are determined by its four vertices, so the multi-user
scrollbar AOy, should carry information to calculate positions of the four vertices,

as defined in the following.

140

ReshapeAO,, (MULTIUSER SCROLLBAR, VI, V2, V3, V4), in which
MULTIUSER SCROLLBAR is the WA type identifier of the multi-user scrollbar,

and the remaining parameter encapsulate object-associated vertex positions.

The multi-user scrollbar collects the scroll box position information from the
remote scroll shaft and interprets this information in the local scroll shaft, so
positions of its vertices should be associated with the scroll shaft object. To
realize this association, the vertex parameter of the multi-user scrollbar AOy,

should be defined as the following:

V1 = ((SCROLL_SHAFT_ID, 0), (SCROLL_SHAFT_ID, offset_top)),
V2 = ((SCROLL_SHAFT _ID, 1), (SCROLL_ SHAFT _ID, offset_top)),
VI =((SCROLL_SHAFT_ID, 1), (SCROLL_ SHAFT _ID, offset_bottom)),
VI =((SCROLL_SHAFT_ID, 0), (SCROLL_ SHAFT _ID, offset_bottom)),
in which SCROLL SHAFT ID 1is the identifier of the scrollbar shaft; the

offset top is the top position of the scroll box relative to the shaft; and the

offset_bottom is the bottom position of the scroll box relative to the shaft.

Workspace awareness ‘}
is important for real-time
group editors by T Shaft
providing remote users’
information about their
presence, action andV'|)
position. GOAF can be | Steven.-

applied to support a | _| et Local Scroll Box
wide range of VAEIV3 .~

workspace awareness -
features for real-time [
group editing system,
including telepointer,
radar view, multi-user
scrollbar, and tele- |
selection v

V2 e Remote Scroll Box

Figure 6.10 The multi-user scrollbar.
6.9.4. Teleselection

The last example is a new WA feature called teleselection, which indicates a

remote user’s selection range in the shared document. When the remote user does

141

not select anything, it is hidden in graphics-based editors and degrades to a tele-
caret in text-based editors. This WA feature is able to deliver rich WA
information including: (1) location, since it indicates where the remote user is
working; (2) activity, since the user’s actions can only happen in his/her selected
range; and (3) intention, since the user has to select the target objects before
manipulating them. Moreover, it can also be used as a collaborative highlighting
tool (Shen and Sun 2004) to facilitate gesturing and communication. The
teleselection feature has not been seen in existing groupware systems. This

example demonstrates the flexibility and extensibility of MOAF.

The teleselection widget is designed as semitransparent polygons covering all
data objects selected by the user. As shown in Figure 6.11, teleselection widgets
may have different shapes in different applications. In a graphics-based editor
(shown in Figure 6.11-(a)), the user can select multiple discrete objects, so the
teleselection widget for a remote user should be represented as multiple

rectangles, each covering one selected object.

To support the multiple rectangular teleselection widgets in graphics editors,

the AOy, is defined as follows:

ReshapeAO,, (TELESELECTION, VI 1, V1 2, V1 3, V1 4, V1 5, V2 1 ...), in
which TELESELECTION is the WA type identifier of the teleselection, and Vi j
contains the object-associated position information of the jth vertex of the ith

rectangle.

Vertex parameters of the ith rectangle are defined as follows:

Vi_l = ((obj_i, 0), (obj_i, 0)),
Vi_2 = ((obj_i, 1), (obj_i, 0)),
Vi_3 = ((obj_i, 1), (obj_i, 1)),
Vi_4 =((obj_i, 0), (obj_i, 1)),

Vi_5 = ((obj_i, 0), (obj_i, 0)),

142

in which obj i is the identifier of the ith selected object.

V1_

V2 1

(a)
Workspace awareness Workspace awareness
is important for real- is important for real-
time gxpgip editors byo time group editors by
j7ovidip providing remote users’
; infStewenion about their
presence, action and
action andV4 tion. position. The GOAF
VBhe COASY5 iproach approach can be
can be applied to applied to support a
support a wide range wide range of
of workspace workspace awareness
awareness features features for real-time
for real-time group group editing system,
editing system, including telepointer,
including telepointer, radar view, multi-user
radar view, multi-user scrollbar, and tele-
scrollbar, and tele- selection.
selection.
(b) (©)

Figure 6.11 The teleselection. (a) The teleselection of a graphics-based editor;
(b) the teleselection of a text-based editor (multiple lines); (c) the teleselection
of a text-based editor (single line).

It should be noted that 5 vertices are defined to specify the region of a rectangle.
The fifth vertex overlaps with the first one so that these vertices define a close
region of the rectangle. With this special treatment, rectangles are separated from

each other.

Unlike the radar view for graphics-based editors, the teleselection is associated
with selected graphic objects, rather than the canvas object. This is because
editing operations concurrent with the user’s selecting actions may change the

size or position of the selected object. When a teleselection AOy, is executed, the

143

selected objects may have already been moved or resized by concurrent
operations, and the teleselection widget may fail to cover them if it is associated
with a static Ul component (i.e. the canvas). By associating the teleselection with
data objects with positional references in the data model, the teleselection widget
can always be placed at the right position, thanks to the underlying TA and OT

techniques.

In a text-based editor (shown in Figure 6.11-(b) and (c)), the user can only
select continuous objects, so the teleselection widget is an octagon (shown in

Figure 6.11-(b)). Therefore, the AOy, is defined as follows:

ReshapeAO,, (TELESELECTION, V1, V2, V3, V4, V5, V6, V7, V§8). Vertex

parameters of this AO,, are defined as follows:

VI = ((obj_1, 0), (obj_1, 0))

V2 =((MAIN_VIEW_ID, 1), (obj_1, 0)),
V3 =((MAIN _VIEW_ID, 1), (0bj2, 0)),

V4 = ((obj_2, 1), (0bj_2, 0)),

V5 =((obj_2, 1), (0bj_2, 1)),

V6 = ((MAIN _VIEW_ID, 0), (0bj_2, 1)),
V7 = ((MAIN _VIEW_ID, 0), (objl1, 1)),

V8 = ((obj_1, 0), (0bj_1, 1)),

in which obj I and obj 2 are the identifiers of the first and last selected objects
and the MAIN VIEW ID is the identifier of the main document view window.

A special case is that when the selection is within one line (shown in Figure
6.11-(c)), the teleselection widget is a rectangle, rather than an octagon. However,
this case is also covered by the above AO,, definition. When obj 1 and obj 2 are
in the same line, their top and bottom boundaries are equal. So, vertices V2 and
V'3 merge to one vertex and so do vertices V6 and V7. In this way, the octagon

degrades to a rectangle. An alternative solution is to define the AOy, in this case

144

as a rectangle with four vertices. The disadvantage of this solution is that it
complicates the AO,, generation process since it has to distinguish two cases.
More importantly, even if the boundary objects are in the same line at the local
site, they may be in different lines at remote sites because of the view differences.
This solution cannot accommodate this case. Therefore, the unifying solution was

chosen to accommodate both cases.

6.5.5. Discussion

Similar to the glass pane technique, our WA widgets are placed on top of the
workspace. The problem of intercepting the user’s input event could also occur in
MOAF. In this subsection, we discuss issues and methods to alleviate or avoid
this problem without reinventing the windowing platform’s event dispatching

mechanisms.

WA widgets displayed in the miniature view do not interfere with the user’s
interaction, because the miniature view is not supposed to accept editing
operations. In the main document view, small WA widgets are unlikely to
interfere with the user’s interaction. For example, users seldom mistakenly click
the mouse bottom on a telepointer. Therefore, this problem mainly occurs on WA
widgets that are displayed in the main view and whose areas are considerably
large, such as teleselection widgets. One solution to this problem is to implement
them as frames which consist of only a few lines. In this way, the chance of
intercepting the user’s input events is significantly reduced to a negligible degree.
With the graphics capability of windowing platforms and the flexibility of MOAF,
supporting frame-shaped widgets is not difficult.

One possible problem from this solution is that the user may have difficulties in
seeing the frame-shaped widgets or differentiating them from workspace objects
in a crowded workspace. This problem can be solved by adding some attractive

features on the widget frames, such as flashing or animation.

145

6.6. Summary

In this chapter, an innovative MOAF technique to support WA features in TA-

based collaborative systems has been discussed.

MOAF contains an object association technique and a graphics representation
technique. The MOAF object association technique is able to preserve a series of
object association effects in the face of dynamic content and view changes. To
achieve this goal, a set of AOy, is defined to carry WA information. Each AOy,
contains information about object association parameters of all vertices of the
polygonal WA widget. To adjust object reference parameters of AOy, in the face
of concurrent and consequent editing operations and view changes, AO,
adaptation techniques are designed so that AO,, can be processed with the
underlying OT technique. Meanwhile, the OT technique is extended to support a
new PO type Refer, which denotes referring to an object in the data model
without modifying it. With these techniques, the desirable object association

effects can be preserved.

The MOAF graphics representation approach utilizes the GUI functionalities of
windowing platforms to represent WA information. The MOAF graphics
representation technique is able to meet the graphics representation requirements
of different WA features. With this technique, WA widgets do not interfere with
the workspace display. Furthermore, creation and manipulation of WA widgets

are easier and less error-prone than existing techniques.

Finally, examples of supporting existing and new WA features, including the
radar view, telepointer, multi-user scrollbar and teleselection, were presented to

demonstrate the feasibility and flexibility of MOAF.

The MOAF technique is able to reduce the effort for developing existing WA
features and can be easily extended to support new WA features in TA-based

real-time collaborative editors. It has been applied in the CoWord and

146

CoPowerPoint systems to support multiple WA features, thereby showing its
applicability in different applications.

147

Chapter 7

The CoWord and CoPowerPoint
Prototypes

CoWord and CoPowerPoint are two experimental prototype systems produced
from this research. These two systems verified the feasibility, effectiveness and
generality of approaches and techniques generated from this research. Moreover,
they are also useful collaborative editing systems on their own. This chapter
discusses the design and implementation issues and initial usage experiences of

these two systems.

The rest of this chapter is organized as follows. First, the system architecture of
CoWord and CoPowerPoint is described in Section 7.1. Then details of
components and modules of CoWord and CoPowerPoint are discussed in Section
7.2. Next, functionalities and user interface features of these two systems are
presented in Section 7.3. In Section 7.4, experiences accumulated from the
implementation of CoWord and CoPowerPoint are described. Afterwards, initial
usage experiences and feedback are discussed in Section 7.5. Finally, this chapter

concludes with a summary in Section 7.6.

7.1. A TA-Based Collaborative System
Architecture

Based on the TA approach, a system architecture is proposed, as shown in Figure

7.1-(a). This architecture consists of three components:

148

(1) Single-user Application (SA), which provides conventional single-user
interface features and functionalities. This component is unaware of multi-
user collaboration.

(2) Collaboration Adaptor (CA), which provides application-specific
collaboration capabilities and plays a central role in adapting SA to the
underlying GCE (see below). This component is aware of both single-user
application and multi-user collaboration.

(3) Generic Collaboration Engine (GCE), which provides application-
independent collaboration capabilities. This component encapsulates a
package of collaboration-supporting techniques, with OT at the core for
supporting consistency maintenance and group undo. This component is

aware of multi-user collaboration, but unaware of the single-user application.

The use of CA between SA and GCE hides application-specific issues from
GCE, facilitates independent debugging and testing of GCE, and promotes the
reusability of GCE. The ability to reuse GCE is important and valuable because
the design and implementation of a correct and efficient GCE is challenging due
to the complexity involved. To apply GCE to a new SA, one only needs to design
and implement a new CA for the target SA.

Single-user application(s4) [2][E)[X]

7%:% o CoSA ﬂ s> é@wérdm

Eop
cotayy gl

Fd

(a) (b) (C)

Figure 7.1 (a) A generic collaborative system architecture. (b) CoWord system
architecture. (¢) CoPowerPoint system architecture.

149

Based on the generic collaborative system architecture, two working prototype
systems, CoWord and CoPowerPoint, have been built to demonstrate the
feasibility of the TA approach, the system architecture, and supporting techniques.

The architectures of CoWord and CoPowerPoint are shown in Figure 7.1-(b) and

(©).

7.2. Components and Modules

Figure 7.2 shows the architecture of CoWord in more details. The architecture of
CoPowerPoint is similar, except that the SA component is PowerPoint, rather

than Word.

7.2.1. The Collaboration Adaptor

Major modules in the Collaboration Adaptor (CA) component (Figure 7.2) are

described as follows.

The API-AO Adaptation module is responsible for the interpretation of AOs
by means of the application’s API, as discussed in Chapter 3. In addition, this
module also provides an adapted API for other CA modules to access the
application’s API, thus hiding the application-specific details from the rest of the

system.

The AO-PO Adaptation module is responsible for translation between AOs
and POs, as discussed in Chapter 3. It also provides a common interface between

other CA modules and GCE.

The Local Operation Handler (LOH) module is responsible for intercepting
the local user interactions and generating corresponding AOs, as discussed in
Chapter 3. LOH also controls the granularity of AOs. For example, a sequence of
character insertions may be packed into a single string-wise insertion. LOH
makes use of the AO-PO Adaptation module to translate the generated AO into
suitable POs, which are timestamped and saved in the local history buffer of OT

150

(inside GCE) for consistency maintenance. Apart from data-manipulation

operations, LOH also intercepts non-data-manipulation events generated by the

user from the single-user application interface (e.g. moving the scroll bar, resize

the window, move the cursor), or from the CoWord/CoPowerPoint Control Panel

for interaction control and workspace awareness support.

| introCuurd doc _ Mecrsd) W
/&hb'-nltwu'lnmt
D@l @ar V) i e T T =0
tarna I B EEEE®A. T
? R TN T

e Hep

i

i mmi W

#22+. CoWord J
=)

o
?_.;’(

CoWord. a colaboratlve word processor.

Lestnate —_—y g
|Dpam v U g A OCH AT - d-Ar S0 T

[Bem P e

API-AO Adaptation

CA<

IOr

Data Management

AO

IO

AO-PO Adaptation

4

WAC

GCE<

IC

CM

| au

oT

Adapted Operation

AO Processing

Application Programming Interface
Collaboration Adaptor
Collaborative Document Repository Manager
Consistency Maintenance

Group Awareness

Generic Collaboration Engine
Group Undo

Interaction Control

Local Operation Handler
Operational Transformation
Primitive Operation

Single-User Application
Workspace Awareness Control

Figure 7.2 The architecture, components and modules of CoWord.

The Remote Operation Handler (ROH) is responsible for receiving and

processing remote AOs. If the received AO is related to data-manipulation, ROH

first uses the AO-PO Adaptation module to translate the AO into suitable POs,

which are processed by OT for consistency maintenance, and then ROH calls the

API-AO Adaptation module to interpret the transformed AO. For non-data-
manipulation AOs, ROH may invoke GCE (via the AO-PO Adaptation module)

for some generic service and then, if necessary, calls the API-AO Adaptation

151

module to interpret the AO. ROH also provides service to propagate local

operations to remote sites.

It should be noted that ROH and LOH are implemented as two concurrent
threads in CA. Only one of them could be active at any instant of time to ensure
the atomicity of local and remote operations. LOH is given a higher priority when
both are competing for the control of CA. When ROH is in control of CA in
processing a remote AO, the local user interaction with the application is

temporarily blocked.

CA also contains several utility modules. One of them is the AO Data
Management module, which provides services for storing, accessing, and
manipulating application-specific data objects contained in AOs. It makes use of
the API-AO Adaptation module to manipulate various types of data object

transparently.

To illustrate how various modules work together in processing an editing
operation, consider the following simple scenario in CoWord. Suppose a user
uses the keyboard and/or mouse to create a graphic object in the local Word

document, the following will occur at the local site:

(1) The sequence of local input events are intercepted, performed on the local
document copy, and translated into an AO [nsert-floatingObj(vp, num,
floatingObj) by LOH.

(2) LOH calls the AO-PO Adaptation module to translate this AO into a PO
Insert(vp, num, objSeq), which is then processed (e.g. timestamped) by the OT
module in GCE. Moreover, the AO is attached with the same timestamp as its
corresponding PO.

(3) LOH uses the service provided by ROH to propagate the timestamped AO to

remote sites.

When the AO Insert-foatingObj(vp, num, floatingObj) arrives at a remote site,
the following will happen:

152

(1) The AO is received by ROH, which will wait until it gets control over CA.

(2) ROH calls the AO-PO Adaptation module to translate the AO into a PO
Insert(vp, num, objSeq), which is then processed by the OT module in GCE.
Moreover, the transformed PO is used to update the OT-relevant parameters
of the AO.

(3) ROH calls the API-AO Adaptation module to interpret the OT-processed AO.

Although CA is application-specific, the CA components of CoWord and
CoPowerPoint are both designed in the above architecture. Moreover, they also
share many functional modules. This is one of the major reasons that the
development effort of the CoPowerPoint system is far less than that for CoWord.
This reusability is expected to significantly reduce the effort of developing the

CA components of other TA-based systems as well.

7.2.2. The Generic Collaboration Engine

The GCE component provides application-independent collaboration support to
the CA component in CoWord and CoPowerPoint. Moreover, GCE can also be

reused in other TA-based systems to provide collaboration support.

Operational Transformation, Consistency Maintenance and
Group Undo

Operational Transformation (OT) is at the core of GCE for supporting other
modules, especially Consistency Maintenance (CM) and Group Undo (GU). For
details of the techniques encapsulated in OT-based CM and GU modules, the
reader is referred to Sun et al. (1998), Sun and Ellis (1998), Sun (2000), Sun and
Chen (2002), Sun (2002b), Sun et al. (2004) and Sun et al. (2006).

Interaction Control

Based on the OT technique and the replicated system architecture, the Interaction
Control (IC) module provides support for multiple interaction paradigms/modes,

which are characterized by two control parameters: one is Action Control, which

153

determines who can edit (or act on) the document, and the other is View Control,

which determines who can view which part of the document.
The Action Control parameter may take one of the following two values:

(1) Multi-Actor: multiple users are allowed to edit any objects in the document at
the same time. This mode is supported by the OT technique.

(2) Single-Actor: a single user is allowed to edit the document at any instant of
time. This mode is implemented by a distributed protocol which blocks all but

one user’s editing operations.
The View Control parameter may take one of the following two values:

(1) Multi-View: multiple users may view different portions of the document, or
view any portion of the document in different formats or from different user
interface modes (if supported by the original application) at the same time.
This mode is naturally supported by the replicated architecture.

(2) Single-View: all users can view the same portion of the document in the same
format and from the same user interface mode. This mode is supported by a
distributed protocol which blocks all but one user’s view changing operations.

A single user, who holds the view-floor, is allowed to change the shared-view.

Based on the above interaction control capability, a TA-based system can
support a variety of interaction control modes to facilitate different collaboration

tasks.

Workspace Awareness Control

The Workspace Awareness Control (WAC) module encapsulates an
implementation of the MOAF techniques (see Chapter 6) and provides workspace
awareness supports to TA-based systems. With the support of this module,
developers of TA-based systems can easily implement a variety of existing and

new workspace awareness features. Moreover, implementation of a range of

154

widely-used workspace awareness features (e.g. telepointer, radar view) is also

encapsulated. Developers can directly use them in TA-based systems.

7.3. The Prototype System

The CoWord/CoPowerPoint prototype system consists of the following

applications:

(1) CDRM Server: a collaboration session and shared document repository
manager.

(2) CDRM Client: a client application that provides the user interface to access
the session and repository management services provided by CDRM server.

(3) CoWord: a collaborative word processor converted from MS Word.

(4) CoPowerPoint: a collaborative slides authoring and presentation system

converted from MS PowerPoint.

7.3.1. CDRM Server and Client

To manage the shared documents and to provide an interface for starting or
joining collaborative editing sessions, a Collaborative Document Repository
Manager (CDRM) has been designed and implemented based on an Integrated
Repository and Session Management (IRSM) technique (Xia et al. 2006).

The CDRM system contains a CDRM server and a client. The CDRM server
can be installed on any user’s local machine to convert the private document
repository (the file system) into a shared document repository to support
collaborative editing. In the Internet-based CoWord/CoPowerPoint Demo,
however, only one CDRM server is used to provide world-wide users with remote
access to the Word and PowerPoint documents stored on a single machine hosted

by Griffith University, Brisbane, Australia.

155

i Collaborative Repository Manager __I_. I] 3]
File View Session LUser

Session Management | Liser Managemenll

Sessions Participantsin
Document Mame Face | 1T | Uset Mame | Join Tirne | E-mail
cowordyeadme. dor | Steven@20s.z,138.180 Dec 29 14:26:07 20...

comordiwelcomne, doc
q 2 David@132,234,103.123 Dec 20 14:27:36 20,., D, Sun@qriffith, ede
e

E 3 Chengeheng@132.234.10... Dec 29 14:34:02 20... C.Sun@qgrifficth.ede

(@)

=101 =|

Fke liew Semson Le=r

Sapsion Managemen; U= Maagemert I

Lsars I
A thask
B i
E rankest
P mbmed Paszaard | i
Aus
OEEEET
Petmissions
[¥ Hiow Dowripading
¥ now Lokbeding
[# Ao Dektng
[¥ Hior Cresting Directories
Add Lhsar Ol ek Lbser See

Figure 7.3 The user interface of CDRM server. (a) The Session Management
Panel; (b) the User Management Panel.

The user interface of the CDRM server contains a Session Management Panel
(Figure 7.3-(a)), from which the user can view detailed information of every
ongoing collaborative editing session, and a User Management Panel (Figure 7.3-
(b)), from which the user can configure user accounts for accessing sub-

repositories.

156

The CDRM client provides interfaces for users to access services provided by

the CDRM server. It is installed in the user’s local system, from whose interface

(Figure 7.4) the user can perform basic file and folder tasks, such as creating,

deleting, copying, and moving files and folders in the shared document repository

managed by the CDRM server. Moreover, the remote user can upload and

download documents between the local private file system and the shared

document repository.

=0 0 wom r @ =
Connect Disconnect Coce Up CoEdl Refiesh | Download Upload Delele Popeiies | Laigelcons Smallcons List
W] =] [(Hame. [Size[Twpe | LastModiied [Users [JonTme =]
+L] cool CaTsc Folder Oct 27 22:28:00 2004
L1 newcold Cin Folder Dot 27 222800 2004
il s Cluy Folder Dct 27 22:26:00 2004
& e " putatest Foder 0et27 222000 2004
=P PlanctherCoPPT.opt 20K PPTFle Feb1521:35:00 2005
3 Frobutg ¥ blah.doc KB DOCFle Aug 06 17,5200 2005
= ot F|CoPFT-test ppt 50KB FFTFie Jan2913.4300 2005
2 Guanluo FICOPPT.ppt 9TKE PPTFie Dot 30 23:.41:00 2004
1 Helsword FCoPPT Demoppl 108K PPTFle Aug 140037002005 oo
£ dikron Steven @132234103123 Aug 141437.30
O etz Jackson @ 132234103120 Aug 14143810
3 Intemational Business20021 David @ 132234103127 Aug 14144008
- kamal 3] CoPPTiyme. ppt BKE PPTFie Jun (4 10:00:00 2004
3 Myword 3] CoPPT vg.pat KB PPTFie Aug 28 110300 204
1 me] CowordXP-Cannct.. 19KB DOCFle Jun 04 10:00:00 2004
(1 New Folder ®Coword_Demodos 20KE DOCFile Jan 281817002005 coeeeoos oo
- newtest Tommy @ 132234103115 Aug 14 143745
(1 HiHao Jackson @132 234102120 Aug 14 144511
"L Nova Seotia Steven @ 132234103123 Aug 14145012
) —‘ D:fk) CowoddiTheway., 20KB DOCFile Jun 20 10:00:00 2004
j o HiDemo 7 comordFan doc 22KB DOCFie Jul D 20:45:00 2005
) Peate ¥)demo fealues.doc 30KB DOCFie Jul O 20.27.00 2005
1 Fioetios ¥ docl.do 20KB DOCFle Aug132210.00 2005
£ oy T ee.doc 2BKE DOCFile Jun 23004700 2005
2 Simlo) emply-quideline.doc 20K DOCFle Dec 20 21:47:00 2004
) soffred 7| FredSof.doc 20KB DOCFie Jul D7 00:26:00 2005
B3 suman ¥ gal01 doc 13KB DOCFie Jun 04 10:00:00 2004 |
£ Swin ¥ grace.doc 27KB DOCFie May 06 022400 2005
-0 T Handau.doc 27KE DOCFle Aug14000G00Z00S o
O teat Steven @ 132234103123 Aug 1414.37.20
-0 sttt Devid @ 132234103127 Aug 14143811
(1 Testing Kevin@132234103138 Aug 14144014
+L3 thomas Phil @132.234.103.128 Aug 14 14:41.00
18t _||®intemational traded . 11KB DOCFie Dec 18 05:3300 2004
=N fidoc 11K DOCFie Jun 04 10:00:00 2004
by | B newfe doe: 20KB DOCFle Sep 28 230400 2004 =l
Ready R

- B fHandout dac
§ R Steven@132.234.103.123
€ David @ 132,234.103,127

© B Kevin@132.234.103.138

© B PhI@132.234.103,125

1) fCoPPT_Dema.pot

© B steven@ 132.234.1035.123

{ B Jackson @132.234.103.120

{8 David @ 132.234.103,127

=+) fCoaniord_Dero.doc

{8 Tommy @ 132.234.103.115

{ B Jackson @132.234.103.120

{8 Steven @ 132.234.103.123

£) feoolidems. doc

“-§ Micheal @132,234,103.109
8 David @ 132.254.103.127

-8 Phil® 132,.234.103.128

Aug 14 14:37:20
Aug 14 14:38:11
Aug 14 14:40:14

fug 14 14:41:00

fug 14 14:37:30
Aug 14 14:38:10
Aug 14 14:40:09

fug 14 143745
Aug 14 14:45:11
Aug 14 14:50:12

Aug 14 14:33:30
Aug 14 14:36:15
Aug 14 14:40:00

(@

(b)

Figure 7.4 The user interface of CDRM client. (a) The Repository View; (b)
the Session View.

Based on the IRSM technique, the user can start or join a collaborative editing

session of a Word/PowerPoint document in the shared document repository by

simply double-clicking the selected document icon from the CDRM client user

interface (Figure 7.4-(a)). From the user’s point of view, this is no different from

starting a normal Word/PowerPoint editing session from the Windows Explorer.

However, what happens behind the scenes is quite different.

157

First, based on the type of the requested document, a suitable collaboration
engine, CoWord-Engine or CoPPT-Engine (which is a combination of CA and
GCE as discussed in Section 7.1) will be started, with the document path name as
the startup parameter. Next the CoWord/CoPowerPoint-Engine sends the
document request to the CDRM server. The CDRM server checks whether there
is an existing session editing the requested document. If so, it performs a late-
joining protocol to join the requesting site into this session. Otherwise, it creates a
new session for this requesting site. Next, the CDRM server sends the latest
version of the requested document to the requesting site. After receiving the
document, the CoWord/CoPPT-Engine starts Word/PowerPoint to edit this
document. The session awareness information is also updated in the CDRM
client’s user interface. After this, the collaborative editing process is under the
control of the CoWord/CoPPT-Engine. During a collaboration session, the
CoWord/CoPPT-Engine may communicate with the CDRM server to propagate
operations or save the edited document back to the shared repository. At the end
of a session, the CDRM client will get involved again to clean up the trails of

CoWord/CoPPT-Engine on the local machine.

This session management approach has the following advantages. First, it
relieves users from the burden of explicit session management actions. The effort
required to initiate or join a collaborative editing session is no more than opening
a document from the Windows Explorer. Second, it supports the impromptu and
flexible collaboration style. Users may join and quit an ongoing session at any
time. Third, it solves the common problem of implicit session management
approaches, which is the lack of session awareness information. The CDRM
client provides users with detailed session awareness information in its user
interface. As shown in Figure 7.4-(a), information about users who are currently
collaboratively editing documents is listed in the Repository View. With such
information, users know clearly whether opening a document will put them into a
collaboration session. Moreover, information about each ongoing collaborative

editing session is also listed in the Session View (Figure 7.4-(b)). This view

158

facilitates some pre-planned or formal collaborative activities. The user can easily

find the session he/she is interested in and directly join.

7.3.2. CoWord

Collaborative Word Processing

The major objective of CoWord is to convert single-user word-processing
functionalities provided by MS Word into collaborative versions. Based on the
unconstrained collaboration capabilities provided by GCE and the TA approach
presented in this thesis, the current CoWord supports a wide range of

collaborative word-processing functionalities, including the following.

(1) Collaborative rich format text editing, with which users can collaboratively
insert, delete text and change attributes (e.g. color, size, font type) of text in
the shared Word document. Moreover, users can also collaboratively edit
attributes of paragraphs (e.g. paragraph alignment, indent, numbering and
bulleting).

(2) Collaborative table editing, with which users can collaboratively create,
restructure, and fill tables in the shared Word document.

(3) Collaborative graphics editing, with which users can collaboratively create,
remove, update (e.g. color, size, position), group and ungroup graphic objects
in the shared Word document.

(4) Collaborative document commenting and change tracking, with which users
can collaboratively comment on the shared document and edit the document
in the change tracking mode. CoWord automatically merges changes from

different users.

CoWord allows users to use the above collaboration functionalities without any
constraints. For example, while some users are editing the text of the shared
document, some others may group graphics objects or edit a table. While some

users are editing in the tracking mode, others may be in the normal (non-tracking)

159

mode. CoWord accommodates all types of concurrent operations and maintains

the system consistency.

At the same time, the Word user interface features are preserved. The user can
interact with CoWord in the same way he/she interacts with the single-user Word.
However, the functionalities triggered by the user’s interaction are automatically
converted into collaborative versions. For example, when the user clicks the Undo
button in the single-user Word, his/her last action is undone, but in CoWord, a
collaborative undo function supported by the ANYUNDO algorithm (Sun 2002a)
is triggered. Preservation of the user interface features saves users the burden of
learning a new system for the purpose of collaboration and thus increases the

chance for user acceptance.

Interaction Control

Users may adopt different collaboration styles in collaborative document editing,
ranging from single to joint writing styles (Posner and Baecker, 1992). Different
interaction control modes are needed to facilitate these collaborative writing
styles. For example, to support the impromptu collaborative document writing, an
unconstrained collaboration mode is needed, in which any user can edit and view
any part of the document. To support the scribed writing mode in which multiple
users discuss an issue and one user writes down the discussion result, it is
necessary to adopt a Multi-View Single-Actor mode, in which only the scribe can

edit the document but discussers are allowed to view any part of the document.

To meet this requirement, CoWord supports the following interaction control

modes.

(1) Multi-View and Multi-Actor: multiple users can view and edit any portions of
the document at the same time. This mode corresponds to the unconstrained
collaboration mode, which is available in collaboration-aware systems, such

as REDUCE (Sun et al. 1998) and GRACE (Chen 2001; Sun and Chen 2002).

160

(2) Multi-View and Single-Actor: multiple users can view any portions of the
document, but only a single user can edit the objects in his/her view. This
mode is available in some application-sharing systems that support relaxed
WYSIWIS, such as the commercial Groove Virtual Office system (Groove
Networks Inc. 2006).

(3) Single-View and Multi-Actor: the same portion of the document is viewed by
all users, but multiple users can concurrently edit objects in the same view.
This mode is, to the best of our knowledge, not available in other existing
systems.

(4) Single-View and Single-Actor: the same portion of the document is viewed by
all users, and only one user is allowed to edit objects in the shared view. This
mode is similar to the strict WYSIWIS and the sequential interaction

paradigm supported by generic application-sharing systems.

£ Cullabur aliun Cunlrul Panel : it =101 x|

J{) Welcome 1o CovWord

Documen! | stion Corirol Mode | ActionFlacr Holdar | Misw Corimol Mode | isw oo Holder |
Lyaduca.gpafado.autcavordy.. Mutiple Actara Mukipls Viaw:

&‘.\mnﬁum.qmtcm.ammwumrﬂ. Single Achol Crergzheng 1] ShoeYien Steren [2]

Uaer || Jain Time | E-mai |

a Stmven@2(0.2.130. 180 1 Dec A 142607 2.
Davidia] 32 234,100,123 2 Oec 2314273620 D .Sun@gnlilh eduwau

3 Chargzherg@]32 23410, 3 Dec 231430 3. CSunEpifitedua

— Interaction Conbral

Acfich Capbil —————————————— Wiaw Cartrol
& Mulipk Actor & Muligla Yiswe
1 Singks Aclor ™ Singhe Wies

— Wiorkepaca Awarenees Conirol

¥ Propapale Maws: Foiler Measogea ¥ PropagsteYicn Measoaca
¥ DedasTempones W Dizpley Wimu Porlz
] Aksaps0On Tap

Figure 7.5 The CoWord Control Panel.

161

The user may initiate an interaction control mode from the CoWord Control

Panel (Figure 7.5).

Workspace Awareness Features

Based on the MOAF technique (see Chapter 6), CoWord supports two workspace
awareness features, the telepointer and the radar view, as shown in Figure 7.6.
From the radar view (on the right side of the workspace), it can be seen that three
users (Steven Xia, David Sun and Chengzheng Sun) are viewing an overlapping
portion of the document, but one user (David Chen) is viewing a different part of
the document. In the workspace, two tele-pointers for David Sun and Chengzheng

Sun are displayed since their view ports overlap with Steven’s.

= B Mo foree (- (0% |

CoWord and CoPowerPoint

Converting off-the-shelf single-user
applications for multi-user real-time
collaboration

CoWord and CoPowerPoint are Ir'eal—fime. collaborative
applications that suppert multiple users to
collabor‘%‘e_ LI‘:‘E Ih‘e same M5 Word and PowerPoint
documents at the same time over the Internet.

To end-users, CoWord and CoPowerPoint allow them
to enjoy real-time multi-user editing features in
their fam‘i'g;h&qf; Word and PowerPoint environment.
CoWard and CaPawerPaint einhnet a variety af

L ageivess - N W OB M- Z-A -7 0 @005
Sec | e M L%m ind Lol i] i

Figure 7.6 Workspace awareness features of CoWord

The user has control over the awareness information display and propagation.
The user can enable/disable the display of the telepointers or view ports of other

users, and the propagation of his/her own mouse pointer and view port change

162

messages. These functions are directly supported by the WAC module in GCE.
The user can set these options from the CoWord Control Panel (Figure 7.5).

Since a user can be involved in multiple collaborative editing sessions at the
same time, the CoWord Control Panel also provides dynamic session information
for all ongoing sessions,'" including the name of the document for each session,
the identifiers of current users in each session and their joining times, and the
interaction mode associated with each session. As shown in Figure 7.5, the local
user is involved in two collaborative sessions. The second session is in a Single-
View Single-Actor mode. The action floor and view floor are held by two

different users.

7.3.3. CoPowerPoint

MS PowerPoint has functionalities in two categories, which are slides authoring
and presentation. CoPowerPoint focuses on converting these two functionality

categories into collaborative versions.

Collaborative Slides authoring

A PowerPoint document is organized in multiple levels, including slides, graphic
objects and structures inside graphic objects (e.g. the text in a text box).
CoPowerPoint supports users to collaboratively edit any objects in the

PowerPoint document in any level at any time.

Meanwhile, the user interface features of PowerPoint are preserved while its
single-user functionalities are converted into the collaborative version. An
interesting outcome of the transparent adaptation of PowerPoint is that

CoPowerPoint not only preserves existing single-user PowerPoint interface

" The session awareness information displayed by CDRM (Figure 7.3) is similar to that provided
by the CoWord Control Panel; the difference is that the former is for all sessions, but the latter is
for sessions associated with one particular user.

163

features, but also creates new multi-user interface features from the combination

of multiple single-user interfaces.

Supported by the unconstrained collaboration capability of CoPowerPoint,
multiple users are free to choose which interfaces to interact with PowerPoint,
which naturally creates new multi-user interface features resulted from the

combination of multiple single-user interfaces at the same time.

For example, one user may be in slide-sorter-view, focusing on structuring the
overall presentation, while some other users are in the normal view, focusing on
creating and updating graphic objects inside individual slides. An interesting
interface feature of this combination is that the user in slide-sorter-view can not
only freely edit the slide sequence, but also observe the updates made on
individual slides by other users in real time. This new feature creates a new usage
of an existing interface: the slide-sorter-view interface can be used as a global
viewing panel for observing the dynamic contents of all slides. The capability of
observing real-time updates on all slides provides a natural group-awareness
support to collaborating users. The user in the slide-sorter-view can do a better
job in sorting slides thanks to the knowledge of up-to-mini-second updated
contents of individual slides. The users in other interfaces (e.g. normal-view) can
also take advantage of this group-awareness support by simply running one more
PowerPoint instance in slide-sorter-view (on the same machine). In this way, all
users in a session can view the global dynamics of the document while working

on any parts of the document.

Another interesting combination of multiple single-user PowerPoint interfaces
is a collaboration session consisting of one user in the slide-show presentation
interface showing the slides to the audience (e.g., using a LCD projector
connected to this user’s computer), and another one or more users in the slide-
view editing interface. In the single-user environment, the contents (including
animations) of the document being presented are pre-determined and cannot be

revised dynamically. With the combination of slide-show and normal-view

164

editing interfaces in the same session, it becomes possible to dynamically revise
the contents of the document being presented. This new multi-user interface
feature can be useful when multiple users are jointly discussing and revising a
PowerPoint document at the same time. For example, if an error was found in the
document being presented or a revision was suggested by one collaborator, the
document can be directly updated from a separate slide-view editing interface and
immediately reflected on the slide-show interface, without the need to switch
back and forth between the two interfaces. This combination has been an
important foundation in supporting collaborative presentation in CoPowerPoint

(to be discussed in the next subsection).

There are many other possible combinations of single-user PowerPoint
interface features available in unconstrained collaboration sessions. The
innovative use and management of these new interface features are interesting

topics for future research.

Collaborative Presentation

Computer-supported collaborative presentation applications are an important
branch of groupware systems (Isaacs et al. 1994; Gemmel and Bell 1997; Jancke
et al. 2000). CoPowerPoint supports collaborative presentation by converting the

single-user presentation functionality of PowerPoint into the collaborative version.

Collaborative presentation is a synchronized process in which all participants
view the same slide presented by the speaker. Based on the unconstrained
collaboration capability, CoPowerPoint supports collaborative presentation with

the following synchronization mechanism.

To start a collaborative presentation, all users in the same session enter the
slide-show-view. Then all non-speaker users’ inputs are blocked. Only the
speaker has the privilege to manipulate the slides (including selecting, annotating

and editing the current presented slide). The current presented slide chosen by the

165

speaker is presented on audiences’ screens. Annotations made by the speaker are

also displayed on audiences’ screens.

Moreover, CoPowerPoint also facilitates interaction in collaborative
presentation. In many interaction forms (e.g. questioning and discussion) in the
presentation, the audience also needs the privilege to manipulate the slides, which
is not supported in existing collaborative presentation system. This functional
insufficiency often makes interaction in collaborative presentations clumsy (Xia
et al. 2005b; 2006b). CoPowerPoint is able to solve this problem based on its
unconstrained collaboration capability and other presentation-supporting

techniques. Particularly, CoPowerPoint supports the following interaction forms:

(1) Lecturing, in which the speaker delivers the lecture and the audience passively
receives it. In this interaction form, the speaker has exclusive control to
manipulate the slides. The audience can only view the currently presented
slides.

(2) Questioning, in which a questioning audience raises a question and the
speaker answers it. While asking a question, the questioning audience is
allowed to manipulate the slides. After finishing asking, the speaker takes
back the control so that he/she can manipulate the slides while answering the
question.

(3) Discussion, in which all participants speak in turn. The speaking user holds
exclusive control to manipulate the slides. After a user finishes speaking,
control is passed to the next speaking user.

(4) Group discussion, in which users in the same session are divided into groups.
In each group, there is a floor circulating among group members, so that they

can perform discussion as in (3).

For details about techniques for supporting these interaction forms in

CoPowerPoint, the reader is referred to Xia et al. (2005b).

166

Quit CoPowerPoint Lecturing I Discussion Questioning I
— ——
] ﬂ—/ ~ -~ - - _ - - = e
-

Joina Group Quit a Group I
———

-

I CulluwerPuinl Sessium Panel r =0 =]

Fil knTnd: Cﬁnrﬂ e
Sasdons syrehranized @oups
Oocument Mame I TVRE I CLAer I Mamet Num, I

reduce .qusf, edu.aucosward COPPT. ppk GRP DISC 2 z
Wreduoa .qpsf, edu, autecwardi 0P P T, ppt

Users in this Se=ion
| m [Hame | 3ain Time
1 COOFFICETEST 32, 234, 100, 136 Oec 29 14: 53: 06 210600

z REDUCEREELG, 2,155,150 Dec 29 145 5542 20050

Figure 7.7 The CoPowerPoint Control Panel.

In CoPowerPoint, the user may initiate the above interaction forms, join an
existing interaction group and view the current situation of interaction forms from

the CoPowerPoint Control Panel, as shown in Figure 7.7.

7.4. Implementation Experiences

CoWord is the first prototype based on the TA approach (in fact, it was the
vehicle to drive the development of the TA approach). A group of researchers,
collectively with intimate knowledge of the OT technique and its implementation,
plus good programming experience with the API of Word and Windows, spent
approximately 3 man-years to investigate, design, and implement a publicly
demonstrable CoWord prototype. However, the follow-up CoPowerPoint
demonstrator was built in less than six man-months. The significant reduction in
the CoPowerPoint development time was largely due to the established TA

framework and the reuse of software components from CoWord.

In both CoWord and CoPowerPoint, the major development effort was in the

collaboration adaptor part. It requires significant effort to accomplish the

167

adaptation task. On the other hand, the generic collaboration engine was initially
converted from the REDUCE engine (Sun 2002a) and evolved into a more

generic, independent, and sophisticated component.

The separation of the collaboration adaptor and the generic collaboration
engine had allowed us to design, implement and test these two components
independently and in parallel, thus accelerating the whole system development.
With the availability of the generic collaboration engine component, the
adaptation of a new application is reduced into the design and implementation of

a new collaboration adaptor for this application.

The CDRM system is an important component of the demonstration system,
but this component is independent of the TA approach. It provides session and
document repository management services to both CoWord and CoPowerPoint.
Moreover, it is able to provide services to other TA-based systems and non-TA
based systems. Additional work is needed to transparently integrate this
component with existing single-user file managers (e.g. Window Explorer), so
that users can use the same file manager to manage both private and shared

documents and to launch single-user and multi-user applications.

7.5. Usage Feedback and Experiences

Although no formal usability study has been conducted up to now, considerable
usage experiences and feedback have been collected from our research group and
thousands of enthusiastic voluntary users around the world. The usage
information was collected from two sources. On the one hand, CoWord and
CoPowerPoint have been used as the collaboration-supporting tools in our
research group. During the over-three-year evolution process of these two
systems, we have been using them for collaborative writing of papers, thesis and
presentation slides. On the other hand, CoWord and CoPowerPoint were put on
the Internet for public demonstration in early 2003, and a free distribution version

of these systems was made available in late 2004. Since then, users from different

168

backgrounds are using these two systems in their different collaborative
application environments, and have provided much useful and interesting
feedback (and bug reports). The feedback not only helped the improvement of
CoWord and CoPowerPoint, but also provided many innovative application cases,
which have extended our understanding of the capability of our systems and

techniques.

7.5.1. Usage Feedback

Usage feedback so-far has been very encouraging. Users are most happy with the
fact that CoWord/CoPowerPoint allows them to wuse their familiar
Word/PowerPoint for collaboration - there is no need to buy or to learn a new

tool. Another commonly acknowledged positive point is that
CoWord/CoPowerPoint does not impose any specific working style or
collaboration process on users, giving users complete freedom in defining their

own collaboration processes to meet their divergent and dynamic needs.

Furthermore, users are particularly interested in two collaboration features. The
first one is collaborative change-tracking, which is able to mark the authors of
changes to the shared document. An example that benefits from this feature is as
follows. With an essay collaboratively authored by multiple students, the teacher
can clearly identify which student contributed which part. Moreover, it helps the
teacher to discover a student’s strength and weakness from what he/she
contributed to the essay. By reading others’ work, students can also learn from
each other. Users also appreciate the workspace awareness features, including the
telepointer and radar view. Users are excited to see other co-workers’ presence
and activities in the same collaboration task. These workspace awareness features

gave them a strong feeling of involvement in the collaboration.

Users also raised their wishes on new features in our systems for better support
of their specific application domains. For example, screenplay writers wish

CoWord to support macros that facilitate screenplay formatting; business

169

document writers wish CoWord to ensure the communication security; and many
users wish that other popular single-user applications (e.g. StarOffice (Sun
Microsystems 2006b)) should be leveraged to collaborative versions with the TA
approach and have similar collaboration capabilities; and the biggest wish of most
users has been the availability of a product-quality version of
CoWord/CoPowerPoint that could catch up with the newest version of MS
Word/PowerPoint. These wishes are important hints for the further development

of CoWord/CoPowerPoint and other TA-based systems.

7.5.2. Usage Cases

The majority of users use CoWord/CoPowerPoint for collaborative document
creating and editing. However, they collaboratively edit documents in different
circumstances. For example, in education circumstances, CoWord/CoPowerPoint
has been used for students to collaboratively create slides to study vocabulary
words and compose essays as a training of collaboration and communication
abilities. In magazine or newspaper publishing circumstances, CoWord has been
used to support editors and authors from all over the world to collaboratively edit
articles. In screenplay writing circumstances, CoWord has been used to support

screenplay writers for different characters to “talk” on the paper in real time.

Collaborative Document Writing

From our usage experience and external users’ feedback, the capability of
supporting spontaneous collaboration has been identified as an important usability
feature. To benefit from using CoWord/CoPowerPoint, users do not have to work
at the same time. In fact, even if users do not often work at the same time, they

can still benefit from having the same tool to edit the same document at any time.

For example, the editing process of this PhD thesis has been done with
CoWord. Three users were involved, including this PhD candidate as the author,
and two of his supervisors as the reviewers. One of the supervisors was overseas

during the thesis writing process; the other one is on the same campus as the

170

author is. In this collaborative writing process, the thesis was kept in the

collaborative document repository and all users collaboratively worked on it.

The collaboration task was conducted in a spontaneous style. In particular, the
author wrote the thesis full time. Reviewers reviewed the thesis and left
comments and revisions whenever they had time. With this collaboration style,
users often worked at different times, but they also worked at the same time either
because they had scheduled a real-time group editing session for online
discussion, or because their individual time schedules happened to overlap.'?
Regardless of whether they were working at the same time or at different times,
they used the same CoWord tool and had access to the most recent version of the
paper at all times; they did not need to distribute versions to each other and to
merge multiple versions into one; and they had no worry about inconsistency or

incompatible versions.

We consider this anytime collaboration capability as an important usability
benefit. An analogy to the telephone technology can be made here: full-duplex
telephone technology allows users to talk at anytime, whereas half-duplex
technology forces users to take turns in talking. Telephone users often talk in
turns - a half-duplex communication protocol, but this half-duplex protocol is
best supported by the full-duplex technology. The major usability advantage of
full-duplex phones is not only that they allow users to talk at the same time, but

also that they allow users to talk at different times without extra effort.

Users have discovered the applicability of CoWord/CoPowerPoint in many
interesting application domains other than collaborative document editing. Here

are some representative examples.

12
In the case of unintentional or accidental real-time sessions, co-authors were made aware of
each other through the session and workspace awareness support.

171

Collaborative Court Transcript Creating

One example is the use of CoWord in supporting real-time collaborative creation
and use of court room transcripts. The basic setting of the court room application
is as follows: one stenographer listens live and types the transcript of the court
proceedings; one editor listens to the digital recording and edits the transcript
produced by the stenographer;'® and the judge reads the transcript produced by
the editor. The stenographer and the editor are both using MS Word. In the
existing court room process, the editor has to wait for the stenographer to finish
up the draft transcript before he/she can start editing it (normally one day late);
and the judge has to wait for the stenographer and the editor to finish before
reading (so the judge needs to take his/her own notes during the court room

process).

In several real court room sessions (the longest trial lasted for 5 consecutive
days), CoWord was used to allow the stenographer to type and the editor to edit
the same transcript at the same time (in a pipeline fashion) so that the final
transcript could be produced immediately after each hearing. Moreover, the
transcript was presented to the judge via CoWord in real time as well, so the
judge could concentrate on analysis and judgement without the burden of taking
notes; the judge could directly mark the transcript to highlight or comment on the
testimonies which, by his/her judgement, were lies or contradictions, etc.'® The
main benefits here are not only faster creation of better quality court room
transcripts but also better support for the judge in the court room process. This is
particularly useful and important when a complicated court trail consists of
multiple hearings in consecutive days, in which the availability of the previous

day’s court room transcript is essential for the next day’s hearing.

B The stenographer uses shorthands/abbreviations in typing the transcript in order to keep up with
the speed of the court proceedings, so another editor is needed to convert the draft transcript into a
formal document.

" I CoWord, it is possible to control the propagation of any user's inputs. The judge's
highlights/comments on the transcripts could have local effects immediately, but they are not
propagated to remote sites until the end of the session, so the stenographer and the editor could not
see the judge's comments during the session.

172

Collaborative Captioning

In contrast to the above example, in which CoWord has significantly improved
the performance, CoWord is an essential and foundational tool in another
example - collaborative lecture captioning. The purpose of this application is to
provide real-time captions about dialogues in lectures for hearing-impaired

students, so that they know what the lecturer and students are talking about.

The basic system configuration includes a captioning machine and an editor
machine. Moreover, the result caption is projected in a large screen in the
classroom. A captioner (i.e. the user of the captioning machine) revoices what
was said in the classroom to the speech recognition system running in the
captioning machine, which translates the speech into text. The need for revoicing
is a result of the technical limitation of the current speech recognition techniques.
To achieve a higher accuracy, speech recognition systems can only be trained to
recognize the voice of a specific user (i.e. the captioner). Furthermore, the speech
recognition system is configured to achieve a high speed at the price of accuracy
degradation. The speech recognition system outputs text into a shared document
of CoWord"” with considerable errors. To correct errors, an editor collaboratively

edits this document on the editing machine.

Therefore, the captioning application is in fact a collaborative document editing
session participated in by multiple users. Moreover, both the captioning and
editing are stressful tasks. The captioner and the editor are busy with listening,
differentiating speakers and revoicing/editing at the same time. To alleviate the
stress and improve the accuracy, multiple captioners and editors are needed to

share the workload.

The real-time collaborative editing capability and high responsiveness of

CoWord are essential features in this application case. Furthermore, the

'* The speech recognition system inputs text into CoWord in a simulation of keyboard input, so
these inputs can be intercepted by CoWord.

173

captioning system can be easily extended by allowing each student to have a
computer running CoWord to collaboratively view and annotate the local copy of
the shared caption document (not propagated to other users). This extension not
only allows students to freely browse the caption, but also provides them

individual lecture notes with their own annotations.

Due to resource limitation, we have not yet conducted more systematic
usability studies on CoWord/CoPowerPoint. With the evolvement of CoWord and
CoPowerPoint in functionality and quality, we expect more novel usages will be
discovered or invented by users, and more questions about their usability will be

answered.

7.6. Summary

This chapter has discussed details of the TA-based prototype systems of this
research, which are CoWord, a collaborative word processor converted from MS
Word, and CoPowerPoint, a collaborative slides authoring and presentation

system converted from MS PowerPoint.

CoWord and CoPowerPoint adopted the same TA-based system architecture. This
architecture consists of three components, which are the Single-user Application
(SA), the Generic Collaboration Engine (GCE) and the Collaboration Adaptor
(CA). The SA component provides conventional single-user functionalities. The
GCE component encapsulates application-independent collaboration techniques
in the following functional modules: Operational Transformation (OT),
Consistency Maintenance (CM), Group Undo (GU), Interaction Control (1C) and
Workspace Awareness Control (WAC). The CA module is responsible for
adapting SA to GCE. It contains the following components: API-AO Adaptation,
AO-PO Adaptation, Local Operation Handler (LOH), Remote Operation Handler
(ROH) and 4O Data Management.

174

CoWord and CoPowerPoint serve as research platforms in this research. They
are used to develop and verify the correctness, feasibility and effectiveness of the
TA approach and other collaboration techniques. Moreover, they are also useful
groupware systems on their own. They support real-time unconstrained
collaborative editing on Word and PowerPoint documents, detailed workspace
awareness and flexible session management and flexible interaction control.
These two systems also provide reusable components for the development of new
TA-based systems. The GCE is application-independent and can be directly
reused in other TA-based systems. The TA-based architecture and many
functional modules in the CA component can also be reused. The CDRM server
and client are able to provide session and document repository management

service to any TA-based editing systems.

CoWord and CoPowerPoint have been publicly demonstrated on the web site.
Users from different backgrounds have used these two systems in different
application circumstances and provided useful feedbacks, including their opinions
on the existing collaboration features, their wishes for new features and some

interesting usage cases.

175

Chapter 8

Discussion

As discussed in Chapter 2, replicated generic application-sharing systems have
been facing challenging problems in maintaining application consistency,
managing access to external resources, and accommodating late-comers. This
chapter provides explanations of how and why some of these problems have been
simplified or circumvented by CoWord/CoPowerPoint. The applicability of the
TA approach to collaboration-transparent and collaboration-aware applications,

and its requirements and limitations, are also discussed in this chapter.

8.1. Dealing with Problems Related to
the Replicated Architecture

8.1.1. Ma