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ABSTRACT

We propose a method combining machine learning with a static analysis tool
(i.e. Infer) to automatically repair source code. Machine Learning methods perform
well for producing idiomatic source code. However, their output is sometimes
difficult to trust as language models can output incorrect code with high confidence.
Static analysis tools are trustable, but also less flexible and produce non-idiomatic
code. In this paper, we propose to fix resource leak bugs in IR space, and to use a
sequence-to-sequence model to propose fix in source code space. We also study
several decoding strategies, and use Infer to filter the output of the model. On a
dataset of CodeNet submissions with potential resource leak bugs, our method is
able to find a function with the same semantics that does not raise a warning with
around 97% precision and 66% recall.

1 INTRODUCTION

Detecting and repairing bugs in source code necessitates strong reasoning skills over code structures.
Current models struggle to capture such reasoning in the absence of a sufficiently large and reliable
dataset of bug fixes. Several methods rely on mining GitHub to extract bugs and their corresponding
fixes using some forms of heuristics (Tufano et al., 2019; Chen et al., 2019; Gupta et al., 2017),
which can often introduce noise into the extracted dataset. Other works rely on synthetically created
bugs (Hellendoorn et al., 2020; Allamanis et al., 2021; Pradel and Sen, 2018; Yasunaga and Liang,
2020). While they are able to generate a large amount of parallel data, their examples do not always
match real bugs found in real code. There are also some fundamental challenges associated with
using machine learning models for bug repair. These challenges stem from the fact that these models
can make subtle or unexpected errors, and it is often difficult to trust the output of a machine learning
model without manual checks. Static analysis tools, on the other hand, produce reliable results, but
are frequently limited in scope and rarely capable of proposing idiomatic fixes to the source code.

Infer is an open-source static analysis tool developed at Meta and used in industrial settings. It targets
mobile apps written in Java/Kotlin or Objective C, and also C++ code used in website backends.
It already reported 100,000 issues (Distefano et al., 2019). At the moment, bugs revealed by Infer
are fixed manually by developers. Tools proposing automatic code repair would help improve the
bug-fixing rate. This often requested feature is difficult to add to static analysis tools like Infer,
because they do not directly analyze source code, but rather a low level representation (similar to
LLVM IR (Lattner and Adve, 2004)). In some situations, proposing a repair at IR level is feasible, but
still useless from the programmer point of view, as there are no tools to decompile IR to source code.

In this paper, we propose using machine learning in conjunction with infer (static analysis tool) to
fix bugs and repair code. This approach can be used to solve bugs in real code. It leverages neural
machine translation to generate fixed source code, while deferring the reasoning about bug detection
and correction to Infer, which is much more reliable in the absence of high-quality code repair data.
More precisely, we train a model to decompile Infer IRs to code, and use it to retrieve repaired source
code from repaired IRs.

Our main contributions are:

• We generate a parallel dataset of Java code and Infer IRs, and train a model to decompile
Infer IRs.

• We propose a reliable method to automatically fix resource allocation bugs in the Infer IR.
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• We combine the new auto-fix tool and the decompiler to repair resource allocation bugs
and recover fixed java source code. We use our new method to fix more than 66% of the
Infer warnings in our dataset. The proposed fixes still pass the unit tests for 96.9% of the
submissions.

2 METHOD

This section describes our method for automatically fixing resource leak bugs flagged by Infer in
Java. We describe our dataset, modeling choice, and how the fixes are done automatically in the IR.
Our modelization choices for IR inversion are largely inspirated by Szafraniec et al. (2022), who train
a model decompiling LLVM IRs for code translation.

Figure 1: Debugging using Infer IRs. The code is compiled into the Infer IR, then fixed at the IR level
and translated back to fixed source code using our model. We use the Infer and the java compiler to filter the
generations sampled from the model. We use the normalized edit distance in IR space to select a single candidate
to propose as a fix.

2.1 DATA

GitHub BigQuery. For our experiments, we use two data sets. First, there is the publicly accessible
GitHub dataset on Google BigQuery, which consists of a corpus of GitHub files. Similarly to
Szafraniec et al. (2022), we only train on the portion of this dataset that can be compiled independently,
so that we may create IRs to train the decompiler. This dataset was divided into three groups: training,
validation, and testing.

CodeNet. CodeNet (Puri et al., 2021) is a large-scale AI for code dataset for learning a variety of
coding tasks. It has about 14 million samples of code, each of which is meant to be a solution to one
of 4000 coding problems. We only use the java portion of the dataset, and we similarly filter out
non-compiling files. For this dataset, we divided it into training, validation, and testing based on
the problem ids. The java files in the dataset were submitted to 3219 problems, and we randomly
selected 300 ids for validation, 300 for testing, and the remaining 2619 for training.

We use every Java file from our datasets for pre-training. For tasks involving Infer IRs such as IR
decompilation, we limited ourselves to files that compile in isolation for practical reasons. The
number of files in our dataset is shown in Table 1.
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Table 1: Dataset. This table shows the size of our dataset, in number of files, number of tokens and gigabytes.
The full Java dataset is used for pre-training. The matched Java dataset corresponds to the subset of the full
java dataset for which we were able to create an Infer IR. It is used for IR decompilation. The Infer IR dataset
contains the matching IRs. It is used for both pre-training and IR decompilation.

FULL JAVA MATCHED JAVA INFER IR

NB FILES 15.6 M 1.6 M 1.6 M
NB TOKENS 16.5 B 0.6 B 6.4 B
DISK USAGE 77.5 GB 2.3 GB 37.7 GB

Data preprocessing. We use Tree-sitter1 to parse Java code into an AST and convert it to list of
tokens. We tokenize Infer IRs by splitting them on white spaces and newlines. We used the same
learned BPE (Sennrich et al., 2015) codes as TransCoder (Roziere et al., 2020) and DOBF (Lachaux
et al., 2021)2. It is learned on AST-tokenized Java, C++ and Python code. We compile code using
javac, get textual Infer representations using the -dump-textual options.

2.2 MODEL

Model architecture. We consider a sequence-to-sequence (seq2seq) transformer (Vaswani et al.,
2017) model, which consists of an encoder and a decoder of 6 layers each and a total of about 312M
parameters. We set the number of attention heads to 8, and the hidden dimension to 1024 (128 per
head). We use layer dropout (Fan et al., 2019) with a probability parameter of 0.15 to make our
training more efficient and reduce overfitting.

Model pretraining. Similarly to Szafraniec et al. (2022), we pre-train our model using the denois-
ing auto-encoding (DAE) task (Vincent et al., 2008) similarly to Ahmad et al. (2021), pre-trained
using the masked language modeling task similarly to Roziere et al. (2020). More precisely, we add
noise to a sequence using a variety of procedures (e.g. shuffling, removal, masking subsequences)
and train the model to retrieve the original sequence. We pre-train our model on our full Java dataset
and on all the Infer IRs we were able to generate. DAE is an effective task to simultaneously train a
model to understand IRs and generate Java source code.

IR inversion training. For the IR inversion task, we generate parallel Java/IR sequences with Infer
and train the model to reverse this process. More precisely, we feed our model with the Infer IR and
train it to retrieve each subtoken of the corresponding Java source code using the cross-entropy loss.

Code repair. In order to perform code repair, the model is used to decompile the automatically
corrected IRs of flawed programs into a bug-free version of these programs. The corrected IRs
are obtained automatically using the method described in Section 2.3. For this task, we favor
improvements that require only minimal changes to the source code (buggy program). Therefore, for
the decompilation of the repaired IRs, we select the best model using the edit distance.

Decoding strategies. We evaluate our IR inversion model using greedy decoding. For the bug
repair models, we use either beam search decoding (Koehn, 2004) or nucleus sampling (Holtzman
et al., 2019) with temperature 1.3, p-value 0.9, and test several number of samples to get candidate
programs from the decompiler. Before proposing a fix, we filter the generations to keep only those
that compile with javac and do not raise a warning with Infer. If several samples pass this filter, we
compute their IRs again and select the one with the minimal edit distance compared to the fixed IR.
If no sample compiles without any Infer warning, we do not propose a fix.

1https://tree-sitter.github.io/tree-sitter/
2https://github.com/facebookresearch/CodeGen/tree/main/data/bpe/

cpp-java-python
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2.3 AUTOMATIC IR FIXES

Infer reports about a broad collections of programming errors such as deadlocks, buffer overflows,
dubious dead code, null or dangling pointer dereferences, execution time regressions, etc. . . Among
them, resource leaks detection catches subtle bugs and is amenable to program repair. This analysis
tracks Java objects, the resources, that are supposed to be closed when not used any more in a
program. Failure to close them is a resource leak that unnecessarily consume limited system
resources (like file or socket handlers) and may lead to system crashes in production. Correct closing
of such resources requires to add enough call to a close method, taking into account exceptional
execution paths with try/catch/finally blocks.

For example, the following program is missing a call to fos.close() in the case where there is
an exception during fos.write(). It will abruptly end the execution of foo without executing
the close statement.

public static void foo () throws IOException{
FileOutputStream fos = new FileOutputStream(new File("..."));
fos.write(7);

}

To fix this problem, the programmer can use a finally block that is executed in both normal and
exceptional paths, as follow :

public static void foo () throws IOException{
FileOutputStream fos = new FileOutputStream(new File("..."));
try {

fos.write(7);
} finally {
fos.close();

}
}

At the IR level, resource leaks are detected at specific program points where all the following
condition are met: i) the resource is still opened ; ii) the resource is still reachable (in the heap) via
a local variable res; iii) on all paths from the current point to an exit (normal or exceptional) of
the current function, the variable res is not mentioned any more. Such a program point is not only
a right place to report for resource leak, but also to propose to add a close statement. Figure 4 in
the Appendix presents an example of such a repair at IR level. The Java program at the top of the
figure translates into the IR program on the left. Such a IR program is a list of instruction blocks.
Each block has a label (#node_0, ...) and ends with jumps to other blocks (jmp instruction).
The block #node_1 is the exit block (with an empty list of successors). Some block also have a
handler block (given with the keyword .handlers) which represents where the control flow will
be rerouted if an exception is thrown. The program is missing two close statements and the IR on the
right is the result of the automatic Infer fix. The first missing close is added after the normal execution
of the write call, in block #node_5. The second close is added in the block #node_4 that is
the handler block of block #node_5. If the write call ends with an exception, the rest of block
#node_5 will not be executed and the control will jump to block #node_4. In such a situation, the
method foo() will return an exception but the resource is properly closed before that.

2.4 EVALUATION

In this section, we define the metrics and methods used to evaluate our models for IR decompilation
and bug repair. Except for the unit tests accuracy metric, we test the performance of our model for IR
decompilation using the combined CodeNet and GitHub BigQuery datasets. The unit test accuracy
and the metrics for bug repair are evaluated using only the part of the CodeNet for which we were
able to extract working unit tests automatically.

IR inversion. We use the standard criteria for assessing machine translation models—perplexity,
BLEU score (Papineni et al., 2002), and next token prediction accuracy—to evaluate the translation
model’s performance during training. Furthermore, we monitor a number of additional indicators to
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buggy program Proposed fix

void reader() throws IOException {
FileInputStream fis = new FileInputStream("file.txt");
BufferedInputStream bis = new BufferedInputStream(fis);
try {

bis.read();
}

finally {
}

}

void reader() throws IOException {
FileInputStream fis = new FileInputStream("file.txt");
BufferedInputStream bis = new BufferedInputStream(fis);
try {

bis.read();
}

finally {
bis.close();

}
}

Figure 2: Examples of function fixed by our pipeline. The function on the left has potential resource leaks.
We use infer to create the corrected IRs for this function, and then we use the decompiler to translate the corrected
IR back to the original source code. The outcomes is an edited version of the source code that has no resource
leak.

make sure the decompilation step introduces little to no modifications to the ground truth program’s
semantics. Concretely we evaluate the model on the following metrics, shown in Table 2:

• Mean normalized edit distance: the mean normalized edit distance (NED) between the
ground truth program and the model’s prediction. Normalized edit distance—as the name
suggests—is the Levenshtein distance normalized by the length of the reference program.

• Compilation accuracy: the percentage of the model’s output that compiles with Javac.

• IR exact match: percentage of retrieved source code that are compiles to exactly the same
IR as the ground truth.

• Unit test accuracy: for the CodeNet dataset, we parse the unit-tests from the problem
description and only consider samples in the dataset that pass all their unit tests. We then
decompile the IRs of those samples and run the unit tests on the output. The unit test
accuracy is the percentage of the outputs that pass all the unit-tests. This metrics tests
whether the generations semantically match the input.

Bug Repair. We evaluate our model for bug repair on CodeNet submissions with working unit tests.
We fix the resource leak automatically in IR space as described in Section 2.3. Then, we use our IR
decompiler model to generate N candidate solutions from the fixed Infer IR, and run infer again to
select successful fixes with no Infer alarm. Then, we select the top candidate among the successful
fixes using the edit distance in IR space and run the unit tests. We evaluate our model for bug repair
using these metrics:

• Fix proposed: percentage of times when our model was able to propose at least one fixed
version with no Infer alarm

• Fix precision: percentage of times when the proposed fix passes all the unit tests in CodeNet

• Fix recall: percentage of times when our system proposed a correct fix, i.e. there was at
least a solution raising no alarm and the selected fix passes the unit tests.

3 RESULTS AND DISCUSSION

Table 2 displays the results of the decompiler on the combined CodeNet and GitHub BigQuery
datasets. The version of our model pretrained with denoising auto-encoding reaches a slightly higher
compilation rate than the model trained from scratch. It also reaches much higher scores on the IR
match and unit test accuracy metrics, indicating that pretraining is especially beneficial for generating
semantically valid decompiled code. Based on these metrics, we use the pretrained version of our
decompiler for bug fixing.

Table 3 shows the performance of our model for fixing resource leak bugs from the CodeNet dataset
for nucleus sampling and beam search with several sample sizes. As expected, increasing the number
of samples increases the number of proposed fixes for both decoding strategies. With our temperature
value of 1.3 (selected through grid search), nucleus sampling starts much lower than beam search but
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its performance is essentially the same with sample size 100. The precision of the fix, measured using
unit tests extracted from input and output examples from the CodeNet problem statement, tends to
decrease with the number of samples. However, the recall still increases with the number of samples
due to the increase in number of proposed fixes. We hypothesize that, with more samples, our model
starts proposing fixes for harder code snippets, therefore decreasing precision but increasing recall.

Several methods could be studies to avoid the decrease in fix precision when increasing the number
of samples. Our criterion to select the best candidate based on the edit distance between IRs may
be lacking for large sample sizes. Additional methods, based on the number of the ratio of fix
candidates that compile and raise no Infer warning could be used to decide whether to propose a fix.
We could also develop better methods to evaluate the semantic equivalence of Infer IRs. Overall,
the decoding strategy and number of samples should depend on requirements in terms of latency,
computational costs, precision and recall. While beam search seems clearly preferable for low sample
sizes, sampling is likely to outperform it for sample sizes above 100.

Our decompiler also proposes interesting improvements to the coding style. Consider the second
example of Figure 3 in the Appendix: while the original code used the generic Exception class in
the catch statement, the decompiled version of the example suggests using specific types of exceptions
(i.e. IOException and ClassNotFoundException), which is generally regarded as better
practice. Similarly in the first example of Table 3, the model extracts the value 4096 into a constant
BUFFER_SIZE = 4 * 1024. In the third example, our model rewrites the modern try with
resources3 construct into a more classical try syntax. This type of refactors have no impact on the
IR due to compilation-time optimizations.

Table 2: IR inversion evaluations.. This table shows our performance for decompiling Infer textual IR to
Java source code. The token accuracy corresponds to the accuracy of the model when predicting the next token.
NED stands for Normalized Edit Distance, or the Levenstein distance between the output and the ground truth
divided by the length of the ground truth. These metrics were computed using greedy decoding. The unit test
accuracy was computed on a subset of the CodeNet dataset containing only the functions with working unit tests.
The performance of the model trained from scratch is close to that of the pretrained model for the perplexity,
compilation rate, BLEU score and edit distance, but much lower for the IR match and unit test accuracy metrics.
Even though an IR match implies that the semantics of the function are the same, the unit test accuracy score is
lower than the IR match score for the model from scratch because the unit tests are run only on a subset of the
dataset.

MODEL FROM SCRATCH PRETRAINED

PERPLEXITY 1.221 1.178
BLEU 79.4 78.9
TOKEN ACC 96.1% 96.6%
MEAN NED 0.034 0.035
COMPIL RATE 86.5% 89.7%
IR MATCH 60.6% 71.2%
UNIT TEST ACC 59.5% 86.9%

4 RELATED WORK

4.1 MACHINE LEARNING FOR AUTOMATIC BUG REPAIR

Based on mined bug fixes. Several studies use examples of manually fixed bugs to train machine
learning algorithms. For instance, (Tufano et al., 2019) create a parallel dataset of buggy-fixed source
code by selecting GitHub commits with words like "fix" or "solve" in their messages. Then, they
train a model to translate from buggy to fixed code. SEQUENCER (Chen et al., 2019) is a similar
model, which specialized in one-line repairs. It is trained on a mined dataset of (buggy program,
line number of the bug, fixed line). DeepFix (Gupta et al., 2017) trains a neural network to address
compilation errors, they use a compiler as an oracle to validate patch candidates before suggesting
them to the user.

3https://docs.oracle.com/javase/tutorial/essential/exceptions/
tryResourceClose.html
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Table 3: Debugging results for CodeNet submissions with working unit tests. We show the performance of
our model for bug fixing with both nucleus sampling and beam search and for several sample sizes. As expected,
the number of proposed fixes increases with the sample size, as it increases the probability to find a Java function
which is not flagged by Infer. The fix precision decreases slightly with the number of samples and the recall
increases. Nucleus sampling is performed with temperature 1.3. These metrics are evaluated on 843 CodeNet
submissions with working unit tests.

Decoding strategy Fix proposed Fix precision Fix recall

Sampling 1 56.8% 97.3% 55.3%
Sampling 5 64.5% 97.4% 62.9%
Sampling 10 66.3% 97.3% 64.5%
Sampling 50 68.0% 97.0% 66.0%
Sampling 100 68.3% 96.7% 66.1%

Beam Search 1 (Greedy) 61.5% 97.9% 60.1%
Beam Search 5 65.6% 97.7% 64.1%
Beam Search 10 67.4% 97.2% 65.5%
Beam Search 50 68.6% 96.9% 66.4%
Beam Search 100 68.3% 96.7% 66.1%

DeepRepair (White et al., 2019) use auto-encoders to compute similarity scores between different
code snippets to prioritize and transform repair components, and improve on redundancy-based
program repair techniques. Another pattern-based method, called AVATAR (Liu et al., 2019), uses
fix patterns of static analysis violations as components for patch generation. Getafix (Bader et al.,
2019) proposed a new hierarchical clustering technique that arranges fix patterns into a hierarchy
ranging from broad to narrow patterns. This clustering approach is used to quickly choose the best
fix to recommend to the user.

Bhatia et al. (2018) combine neural networks and constraint-based reasoning to repair syntax errors.
Dinella et al. (2020) cast the problem of program repair as learning a sequence of graph transforma-
tions. Their model makes a sequence of predictions including the position of buggy nodes in the
program’s graph and corresponding graph edits to produce a fix for Javascript programs. Vasic et al.
(2019) develop a multi-headed pointer networks for locating and correcting variable misuse bugs.
DeepDebug Drain et al. (2021) train a transformer model with back-translation, and fine-tune it using
various program analysis information obtained from test suites.

Based on generated bugs. Other methods generate parallel buggy/fixed code pairs by introducing
bugs automatically in correct code. For instance, BUGLAB (Allamanis et al., 2021) makes use of a
selector model that decides which bug to apply to a code snippet and a detector model that detects
and repair the inserted bug (if one was inserted). Yasunaga and Liang (2020) generate large amounts
of bugs from correct code using several corruption rules. They train a graph-based neural network,
dubbed Dr Repair on the obtained data. Ye et al. (2022) generate more than 1 million examples of
training samples by perturbing code from open source projects. They outperform supervised repair
approaches on Defects4J (Just et al., 2014).

Real-world datasets. There are a few manually curated bug fix datasets for Java (Just et al., 2014;
Durieux and Monperrus, 2016; Saha et al., 2018; Madeiral et al., 2019; Bui et al., 2022) and other
languages (Böhme et al., 2017; Tan et al., 2017; Hu et al., 2019). Due to their small sizes, they are
generally used only for evaluation purposes.

Large language models. Large language models trained on code have recently demonstrated
strong capabilities for detecting and resolving bugs in code, with PALM (Chowdhery et al., 2022)
outperforming Dr Repair on DeepFix Gupta et al. (2017). They can also explain the bug and the
proposed fix, which are useful features for programming assistants. (Prenner and Robbes, 2021; Kolak
et al., 2022) study the capabilities of such models for code debugging on quantitative benchmarks.
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4.2 NEURAL IR DECOMPILATION

Other works used neural networks for decompilation. Katz et al. (2019) train a sequence-to-sequence
model to retrieve C code from either LLVM IRs or assembly code. Fu et al. (2019) uses a LSTM
model to generate code sketches for binary decompilation. In a second phase, these sketches are
refined and corrected iteratively. Liang et al. (2021) trained a transformer model to decompile
binaries to C. Szafraniec et al. (2022) leveraged LLVM IRs for source code translation, studying
both IR inversion and IR-augmented pretraining methods. Similarly to our work, they consider IR
decompilation to be a proxy objective for another task (code translation in their case).

4.3 INTERMEDIATE REPRESENTATIONS FOR STATIC ANALYSIS

Static analysis is often performed on intermediate representations instead on the source code itself. A
first immediate advantage is that one single IR can serve several language front-ends. This is also a
design choice that is popular in compilers (see for example the LLVM project (Lattner and Adve,
2004)) which also perform static analysis, but for optimizations purposes rather than bugfinding. IR
languages are much simpler than source languages: fewer syntactic constructs, and simpler language
features. Analyzer designers save development and maintenance time with such an architecture.

4.4 AUTOMATIC PROGRAM REPAIR

Automatic program repair is a popular technique in IDE. For example, the Eclipse editor provides
program repair for syntax errors. Our contribution deals with semantic error. For such errors, the
dominant approach is based on testing (Perkins et al., 2009). When a program does not pass a test, a
fixed program is searched and the success criterion is passing all the test suit. This approach can be
directly driven at the source language level but it only observes a finite number of traces while static
analysis can explore an infinite number by symbolic execution. A repair by static analysis is provided
by the ccheck tool for C# programs (Logozzo and Ball, 2012). The static analysis is performed
at the level of .NET bytecode language, which is a higher level representation than Infer IR, that
deals with a strictly bigger set of frontend languages. The repaired properties they tackle are also of
different nature because they require to modify a guard or adding an assignment in a linear block of
instruction, while resource leak repair requires to build new control flow constructs like a try ...
finally ... statement.

5 CONCLUSION AND FUTURE WORKS

Static analysis tools can flag potential issues in code, but they are often unable to propose suitable
fixes. For instance, Infer produces an IR in which resource leaks can be found and fixed easily, but
fixing the bug in the source code is difficult. We train a neural decompiler to retrieve the original
source code from an Infer IR. This model generalizes to automatically fixed IRs, and it is able to
propose proper fixes for up to 66.4% of the code snippets in our test dataset. We measure the semantic
correctness of our proposed fixes using unit tests and show that the precision varies between 96.4%
and 97.9%. We believe that our method is precise enough to propose automatic PR for bug fixes, or
automatic fixes in IDEs.

In this work, we only used Infer IRs built from Java files that compile in isolation. Integrating Infer
to build tools and running it on entire projects would allow us to train the decompiler on much larger
datasets and to improve its performance. The lack of correctness guarantees frequently hinders the
adoption of machine learning models for code repair. Assuming that the compiler and our fixes in
IR space are correct, it would be possible to get such guarantees for our system. The source code
we produce can be compiled to IR again, and compared to the fixed IR. In our current setting, our
fixed IR are unnatural and often do not match the IR produced by compiling any source code. Hence,
we would like to develop automated methods to compare IRs semantically Benton (2018) or even
propose semantic distances between programs. We also plan to extend this method to other types of
bugs flagged by Infer, such as buffer overflows, dead code, and null or dangling pointer dereferences.
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A GENERATION EXAMPLES.

Original program Decompiled program

final class UploadRequest {
private static void writeFileToOutputStream(

File file,
OutputStream outputStream)
throws IOException {

FileInputStream inputStream = null;
try {
inputStream = new FileInputStream(file);
byte[] buffer = new byte[4096];
int bytesRead;

while ((bytesRead = inputStream.read(buffer)) > 0) {
outputStream.write(buffer, 0, bytesRead);

}
outputStream.flush();

} finally {
if (inputStream != null) {
inputStream.close();

}
}

}
}

final class UploadRequest {
private static final int BUFFER_SIZE = 4 * 1024 ;
private static void writeFileToOutputStream(

File file,
OutputStream outputStream)
throws IOException {

FileInputStream inputStream = null;
try {
inputStream = new FileInputStream(file);
byte[] buffer = new byte[BUFFER_SIZE];
int bytesRead;
while ((bytesRead = inputStream.read(buffer)) > 0) {
outputStream.write(buffer, 0, bytesRead);

}
outputStream.flush();

} finally {
if (inputStream != null) {
inputStream.close();

}
}

}
}

static ArrayList<String> readListFromFile(File targetFile) {
ArrayList<String> fileContents;
try (ObjectInputStream inputStream = new ObjectInputStream(

new FileInputStream(targetFile))) {
fileContents=(ArrayList<String>) inputStream.readObject();
return fileContents;

} catch (Exception e) {
return new ArrayList<>();

}
}

static ArrayList<String> readListFromFile(File targetFile) {
try {

ObjectInputStream inputStream = new ObjectInputStream(
new FileInputStream(targetFile));

ArrayList<String>
fileContents=(ArrayList<String>) inputStream.readObject();
return fileContents;

}
catch (IOException e) {

return new ArrayList<String>();
}
catch (ClassNotFoundException e) {

return new ArrayList<String>();
}

}

private static void addFileToZip(
File base,
String filePath,
ZipOutputStream outZipStream)
throws IOException {

try (FileInputStream inputStream = new FileInputStream(
new File(base, filePath)); ) {

byte[] buffer = new byte[BUFFER_SIZE_BYTES];
outZipStream.putNextEntry(new ZipEntry(filePath));
int bytes_read;
while ((bytes_read = inputStream.read(buffer)) > 0) {

outZipStream.write(buffer, 0, bytes_read);
}

} finally {
outZipStream.closeEntry();

}
}

private static void addFileToZip(
File base,
String filePath,
ZipOutputStream outZipStream)
throws IOException {

try {
FileInputStream inputStream = new FileInputStream(

new File(base, filePath));
try {

byte[] buffer = new byte[BUFFER_SIZE_BYTES];
outZipStream.putNextEntry(new ZipEntry(filePath));
int bytes_read;
while ((bytes_read = inputStream.read(buffer)) > 0) {

outZipStream.write(buffer, 0, bytes_read);
}

}
finally {

outZipStream.closeEntry();
}

}
finally {
}

}

Figure 3: Example decompilations In this table, we highlight some examples of decompilations proposed by
the decompiler. In this case, the input to the model is the IR of the original program in the left side of the table
(without the repair step), and the output in the right side is the output of the model using greedy decoding. In
these examples, we observe some style improvements in exception handling and variable assignment. The third
example is a non-trivial decomposition of modern try-with-resources into multiple try finally statements.
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// Original function
public static void foo () throws IOException{

FileOutputStream fos = new FileOutputStream(new File("/tmp/bar.txt"));
fos.write(7);

}

# Infer IR
define Main.foo() : void {

#node_0:
jmp node_2
.handlers node_1

#node_1:
jmp

#node_4:
jmp node_1
.handlers node_1

#node_2:
n0 = __sil_allocate(<java::io::File>)
n1 = java::io::File.<init>(n0, "/tmp/bar.txt")
store &$irvar0 <- n0:*java::io::File
jmp node_6
.handlers node_4

#node_6:
n2 = __sil_allocate(<java::io::FileOutputStream>)
n3:*java::io::File = load &$irvar0
n4 = java::io::FileOutputStream.<init>(n2, n3)
store &fos <- n2:*java::io::FileOutputStream
jmp node_5
.handlers node_4

#node_5:
n5:*java::io::FileOutputStream = load &fos
n6:*java::io::FileOutputStream = load n5
n7 = n5.java::io::FileOutputStream.write(7)
jmp node_3
.handlers node_4

#node_3:
jmp node_1
.handlers node_4

}

# Fixed Infer IR
define Main.foo() : void {
#node_0:

jmp node_2
.handlers node_1

#node_1:
jmp

#node_4:

n4:*java::io::FileOutputStream = load &fos

n5 = n4.java::io::FileOutputStream.close()

jmp node_1
.handlers node_1

#node_2:
n0 = __sil_allocate(<java::io::File>)
n1 = java::io::File.<init>(n0, "/tmp/bar.txt")
store &$irvar0 <- n0:*java::io::File
jmp node_6
.handlers node_4

#node_6:
n2 = __sil_allocate(<java::io::FileOutputStream>)
n3:*java::io::File = load &$irvar0
n4 = java::io::FileOutputStream.<init>(n2, n3)
store &fos <- n2:*java::io::FileOutputStream
jmp node_5
.handlers node_4

#node_5:
n6:*java::io::FileOutputStream = load &fos
n7:*java::io::FileOutputStream = load n6
n8 = java::io::FileOutputStream.write(n6, 7)

n2:*java::io::FileOutputStream = load &fos

n3 = n2.java::io::FileOutputStream.close()

jmp node_3
.handlers node_4

#node_3:
jmp node_1
.handlers node_4

}

// Fixed function
public static void foo () throws IOException{

FileOutputStream fos = new FileOutputStream(new File("..."));
try {
fos.write(7);

} finally {
fos.close();

}
}

Figure 4: Resource leak fix in IR space. For the original function is shown on top of the figure, we show
the Infer IR on the left, and the automatically fixed Infer IR on the right. The lines added in the fixed IR are
higlighted in blue . Using our decompiler on the Infer IR on the right, we obtain the fixed function on the

bottom, which uses finally to safely close the resource.
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