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Leveraging supervised learning for functionally
informed fine-mapping of cis-eQTLs identifies an
additional 20,913 putative causal eQTLs
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Ran Cui1,2, Carlos Albors1,2, Nathan Cheng1,2, Yukinori Okada 6,8,9, The Biobank Japan Project*,

Francois Aguet 1, Kristin G. Ardlie1, Daniel G. MacArthur 10,11 & Hilary K. Finucane 1,2✉

The large majority of variants identified by GWAS are non-coding, motivating detailed

characterization of the function of non-coding variants. Experimental methods to assess

variants’ effect on gene expressions in native chromatin context via direct perturbation are

low-throughput. Existing high-throughput computational predictors thus have lacked large

gold standard sets of regulatory variants for training and validation. Here, we leverage a set of

14,807 putative causal eQTLs in humans obtained through statistical fine-mapping, and we

use 6121 features to directly train a predictor of whether a variant modifies nearby gene

expression. We call the resulting prediction the expression modifier score (EMS). We vali-

date EMS by comparing its ability to prioritize functional variants with other major scores.

We then use EMS as a prior for statistical fine-mapping of eQTLs to identify an additional

20,913 putatively causal eQTLs, and we incorporate EMS into co-localization analysis to

identify 310 additional candidate genes across UK Biobank phenotypes.
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A
lthough genome-wide association studies (GWAS) have
identified large numbers of loci associated with complex
traits1,2, identifying the underlying biological mechanisms

is often difficult. Two particular challenges are that (1) the
majority of the associated variants are in noncoding regions1, and
(2) the association signals from GWAS studies typically contain a
large number of variants in linkage disequilibrium (LD)3. Inter-
preting associations in GWAS to identify the underlying causal
mechanisms requires an understanding of the function of non-
coding variants at single-variant resolution.

Many approaches to characterize noncoding variants exist.
Large-scale consortium studies4,5 have provided a map of func-
tional and regulatory elements across the genome in different cell
types that are enriched in various trait heritability6–10. Reporter
assays have been powerful tools to test variant effects in cellular
contexts, but typical high-throughput massive parallel reporter
assays (MPRAs)11,12 do not represent the native chromatin
context in the human genome. Direct introduction of single base
pair variants in the native genome are still low throughput13.
RNA-seq studies combined with genotyping or whole-genome
sequencing have highlighted loci that are associated with gene
expression in humans (eQTLs)14–16. However, as with GWAS,
eQTL studies associate loci, rather than individual causal variants,
to gene expression.

Statistical fine-mapping3,17,18 is used to disentangle tightly
correlated structures of the nearby genetic variants in LD to
elucidate causal variant(s) in a locus identified by a genetic
association study, such as a GWAS on an eQTL study. For
example, Benner et al.19 uses stochastic search to enumerate and
evaluate possible causal configurations, and Wang et al.20 per-
forms iterative Bayesian stepwise selection to prioritize causal
variants. Such fine-mapping methods have been applied to
identify putative causal eQTLs (i.e., variants that modify gene
expression in native chromatin context) that are valuable both for
understanding gene regulation and for interpreting GWAS sig-
nals at a locus15,16,21–24. However, fine-mapped eQTLs fall short
of genome-wide characterization of noncoding function, as many
variants fail to be identified because of LD or small effect size.

While not providing the same level of confidence as genome
editing or fine-mapped eQTLs, computational predictions are
informative about variant function in native chromatin in human
cells, and can be applied to every variant in the genome. For
example, state-of-the-art computational methods predict the
effects of noncoding genetic variants on the epigenetic landscape
and on gene expression as a function of sequence context, using
deep neural networks25–30. These methods, rather than directly
training on gold standard expression-modifying variants, instead
predict expression level or other outcomes as a function of
sequence, and then score variants based on the difference in
predicted expression between the two alleles.

Here, we combine such computational predictions with the
large-scale, though not comprehensive, gold standard data pro-
vided by statistical fine-mapping of eQTLs, with two goals: to
improve on existing computational predictors, and to expand the
set of confidently identified eQTLs. Toward the former goal, we
combine an existing sequence-based predictor28 with epigenetic
data and other gene features into a single predictor, leveraging
fine-mapped eQTLs (https://www.finucanelab.org/data) as train-
ing data. Specifically, we directly train a predictor of whether a
variant modifies expression using 14,807 putative expression-
modifying variant–gene pairs in humans as training data and
utilizing 6121 features; we call the resulting prediction the
expression modifier score (EMS). Toward the second goal, we use
EMS as a prior for statistical fine-mapping of eQTLs (analogous
to recently performed functionally informed fine-mapping of
complex traits31–33), increasing fine-mapping resolution and

identifying an additional 20,913 variants across 49 tissues. Finally,
using UK Biobank (UKBB)34 phenotypes as an example, we show
that EMS can be incorporated into colocalization analysis at scale,
and we identify 310 additional candidate genes for UKBB
phenotypes.

Results
Functional enrichment of fine-mapped eQTLs. To define the set
of putative expression-modifying variant–gene pairs, we analyzed
results of recent fine-mapping of cis-eQTLs (±1Mb window) from
GTEx v8 (ref. 16; https://www.finucanelab.org/data), including the
14,807 variant–gene pairs with posterior inclusion probability
(PIP) > 0.9 according to two methods19,20 across 49 tissues
(Supplementary Figs. 1 and 2). The size of our dataset allowed us
to quantify the enrichment of putative causal variant–gene pairs
for several functional annotations, including deep learning-
derived variant effect scores from Basenji28,29 and distance to
canonical transcription starting site (TSS), with high precision
(Fig. 1, and Supplementary Figs. 3 and 4). Our results are con-
sistent with previous studies24,35: putative causal variant–gene
pairs are enriched for a number of functional annotations, such as
5′UTR, H3K4me3 (>10× enrichment compared to random
variant–gene pairs) or distance to TSS (>500× enrichment for
variant–gene pairs with distance to TSS < 100), but are not
strongly enriched for introns (0.966×), and are depleted for a
histone mark related to heterochromatin state (H3K9me3; 0.510×
enrichment).

Building a predictor for putative causal eQTLs [EMS]. Next, we
built a random forest classifier of whether a given variant is a
putative causal eQTL for a given gene using 807 binary functional
annotations, including cell-type-specific histone modifications, as
well as non-cell-type-specific annotations from the baseline
model4–6, 5313 Basenji features corresponding to functional
activity predictors28,29, and distance to TSS. We then scaled the
output score of the random forest classifier to reflect the prob-
ability of observing a positively labeled sample in a random draw
from all the variant–gene pairs (Fig. 2a and “Methods”), and
named this scaled score the EMS. We performed the above
process for 49 tissues in GTEx v8 individually, to obtain the EMS
for variant–gene pairs in each tissue. In other words, EMS is an
estimated probability of a variant–gene pair being a putative
causal eQTL in a specific tissue, given the >6000 functional
annotations of the variant–gene pair. For whole blood, the Basenji
scores together had 55.0% of the feature importance for EMS, and
distance to TSS had feature importance of 43.1%. The binary
functional annotations together had <2% of importance (Fig. 2b,
c). Analyses of other tissues also showed that (1) distance to TSS
is by far the most important single feature, (2) Basenji scores
individually explain a small fraction of predictor performance,
but are collectively equally or more important than the distance
to TSS, and (3) compared to the distance to TSS and Basenji
scores, the feature importances of both cell-type-specific and
nonspecific binary functional annotations are much smaller
(Supplementary Data 1).

Performance evaluation of EMS. To evaluate the performance of
EMS, we focused on whole blood and compared EMS (calculated
by leaving one chromosome out at a time to avoid overfitting) to
other genomic scores26,36–39. EMS achieved higher prediction
accuracy than other genomic scores for putative causal eQTLs (top
bin enrichment for held-out putative causal eQTLs 18.3× vs 15.1×
for distance to TSS, the second best, Fisher’s exact test p= 3.33 ×
10−4, Fig. 3a; AUPRC= 0.884 vs 0.856 when using distance to
TSS, the second best, Supplementary Fig. 5 and “Methods”). EMS
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was among the top-performing methods in prioritizing experi-
mentally suggested regulatory variants from reporter assay
experiments12,40, despite not varying distance to TSS, the most
informative feature (Fig. 3b, c, Supplementary Fig. 6, and
“Methods”). Finally, EMS was also among the top-performing
methods in prioritizing putative causal noncoding variants for
hematopoietic traits in the UKBB dataset (17.6× for EMS, best, vs
17.1× for DeepSEA, the second best; Fig. 3d), although there are
known differences between the genetic architectures of cis-gene
expression and complex traits41. These results were consistent
when we performed the same set of analyses in different datasets:
hematopoietic traits in BioBank Japan42 and lymphoblastoid cell
line (LCL) eQTL in Geuvadis14,22 (Supplementary Fig. 7).

Functionally informed fine-mapping using EMS. Since EMS is
in units of estimated probability, one natural way to utilize EMS
for better prioritization of putative causal eQTLs is to use it as a
prior for statistical fine-mapping. We developed a simple algo-
rithm for approximate functionally informed fine-mapping and
applied it with EMS as a prior to obtain a functionally informed
posterior, denoted PIPEMS, in whole blood (“Methods”). As
expected, we found that PIPEMS identified more putative causal
eQTLs than the original PIP calculated with a uniform prior,
denoted PIPunif. Specifically, 95.4% of variants with PIPunif > 0.9

also had PIPEMS > 0.9 (2152 out of 2255), while only 33.8% of
variants with PIPEMS > 0.9 had PIPunif > 0.9 (1125 out of 3277;
Fig. 4a). Similarly, credible sets mostly decreased in size (Fig. 4b
and Supplementary Data 2). Previous work in functionally
informed fine-mapping33 adjusted the prior so that the maximum
prior value did not exceed 100 times the minimum prior value.
We conducted a second round of functionally informed fine-
mapping with a similar adjustment of the prior, identifying fewer
additional putative causal eQTLs, as expected (1125 with EMS as
a prior vs 269 with EMS adjusted to a max/min ratio of 100 as a
prior; Supplementary Fig. 8).

We evaluated the quality of PIPEMS by comparing it with
PIPunif and a publicly available eQTL fine-mapping result that
uses distance to TSS as a prior16,23 (denoted PIPDAP-G) in two
ways (other methods for functionally informed fine-mapping
based on expectation maximization31,32,35 would be computa-
tionally intensive for a dataset this size, while the recently
introduced PolyFun33 is designed for complex traits). First,
PIPEMS had the highest enrichment level of reporter assay QTLs40

(raQTLs) in the PIP > 0.9 bin (16.8× vs 12.9× in PIPunif and 11.4x
in PIPDAP-G, Fisher’s exact test p= 1.65 × 10−2 between PIPEMS

and PIPDAP-G; Fig. 4c). Second, complex trait causal noncoding
variants were comparably enriched in PIP > 0.9 bins (Supple-
mentary Fig. 9). These results suggest that PIPEMS is a valid
measure for identifying putative causal cis-regulatory variants.

Fig. 1 Examples of the enrichment of variant–gene pairs in whole-blood eQTL PIP bins for functional genomics features. Enrichments of variant–gene

pairs in different posterior inclusion probability (PIP) bins in binary functional features (non-tissue specific (a), tissue-specific in peripheral blood

mononuclear cells (b), deep learning-derived regulatory activity (CAGE46) prediction in neutrophils (c), and distance to TSS (d) are shown (n is the

number of variant–gene pairs).
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Applying functionally informed PIP (PIPEMS) in gene prior-
itization across 95 traits. We next compared the utility of PIPEMS

to PIPunif for complex trait gene prioritization, as in Weeks
et al.43. To do this, we first calculated PIPEMS for 49 GTEx tissues
using EMS of matched tissues as priors (Supplementary Figs. 10
and 11), resulting in a total of 20,913 additional eQTLs with
PIPEMS > 0.9 (Fig. 5a, Supplementary Fig. 12, and Supplementary
Data 3). Tissue-specificity of putative causal eQTLs were char-
acterized by enrichments of corresponding tissue-specific tran-
scription factor (TF) activity scores in the Basenji model
(Fig. 5b–d, Supplementary Figs. 13 and 14, and “Methods”). We
then colocalized the eQTL signals with 95 UKBB phenotypes.
Using the evaluation gene set described in ref. 43, PIPEMS achieved
higher precision and higher recall than PIPunif (Table 1 and
“Methods”). Overall, PIPEMS elucidated 310 candidate genes for
UKBB phenotypes that were not identified with PIPunif

(Supplementary Data 4). On the other hand, PIPDAP-G showed
lower precision than PIPEMS and PIPunif but higher recall
(Table 1), suggesting the value of future studies in investigating
different priors in eQTL fine-mapping and the trade-off between
precision and recall for gene prioritization.

An example of PIPEMS resolving a credible set that is
ambiguous with PIPunif is shown in Fig. 6. Here, four variants
upstream of CITED4 are in perfect LD in GTEx, giving PIPunif=
0.25 for all four (Supplementary Fig. 15). In UKBB, the four
variants are also in high LD, with PIP for neutrophil count
between 0.133 and 0.181 for all four. Thus, standard colocaliza-
tion analysis does not identify CITED4 as a neutrophil count-
related gene (CLPP < 4.53 × 10−2 for all variants; “Methods”).
However, one of the four variants, rs35893233, creates a binding
motif of SPI1, a TF known to be involved in myeloid
differentiation44,45, and presents epigenetic activity in myeloid-

Fig. 2 Schematic overview and feature importance of the expression modifier score (EMS). a EMS is built by (1) defining the training data based on fine-

mapping of GTEx v8 data, (2) annotating the variant–gene pairs with functional features, and (3) training a random forest classifier. We do this for each

tissue. b, c Feature importance (mean decrease of impurity MDI59) for four different feature categories (b), and top features for each category (c). Baseline

annotations are non-tissue-specific binary annotations from Finucane et al.6, and histone marks are tissue-specific binary histone mark annotations from

Roadmap5. In b, n is the number of features in the category.
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Fig. 3 Performance evaluation of EMS. Comparison of the different scoring methods in prioritizing putative causal whole-blood eQTLs in GTEx v8 (a),

massive parallel reporter assay (MPRA) saturation mutagenesis hits12 (b), reporter assay QTLs40 (raQTLs) (c), and putative hematopoietic-trait causal

variants in UKBB (d) in different score percentiles.

Fig. 4 Functionally informed fine-mapping with EMS as a prior. a Number of variant–gene pairs in different PIP bins using a uniform prior vs EMS as a

prior. b Number of variants in the 95% credible set (CS) identified by fine-mapping with uniform prior vs EMS as a prior. c Enrichment of reporter assay

QTLs (raQTLs) in different PIP bins (gray: publicly available eQTL PIP using DAP-G23, blue: uniform prior, orange: EMS as a prior).
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Fig. 5 Functionally informed fine-mapping across 49 tissues. a The number of additional putative causal eQTLs (defined by PIPEMS > 0.9 and PIPunif < 0.9)

for each tissue is shown in descending order. b–d Mean Basenji score in different classes of tissue-specific putative causal eQTLs for tissue-specific TF-

related Basenji features for liver (b), whole blood (c), and LCLs (d). In 39 out of all 42 features across all three tissues, the mean Basenji score in tissue-

specific putative causal eQTLs identified by PIPEMS is significantly higher in the corresponding tissue than in control tissues (t test p < 0.05/42). This

changes to 36 in 42 when using PIPunif instead of PIPEMS. The enrichment of mean Basenji score in putative causal eQTLs in the corresponding tissue

compared to control tissues is higher for PIPEMS than PIPunif for all 42 tissues (p < 10−100 in aggregate), consistent with our understanding that functionally

informed fine-mapping using EMS utilizes cell-type-specific functional enrichments, identified from putative causal eQTLs identified with a uniform prior, to

identify additional putative causal eQTLs. Duplicated names are distinct features corresponding to biological replicates in the TF activity measurements.

Out of 17,960 tissue-specific putative causal eQTLs, n= 222 were for liver (b), n= 1758 were for whole blood (c), and n= 140 were for LCL (d).
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related cell types, such as showing the highest basenji score for
cap analysis gene expression (CAGE)46 activity in acute myeloid
leukemia. This variant has >25× greater EMS than the other three
variants (1.73 × 10−3 vs 6.11 × 10−5, 1.00 × 10−5 and 8.62 × 10−6,
respectively), enabling PIPEMS to narrow down the credible set to
the single variant (PIPEMS= 0.956 for rs35893233). Integrating
EMS into the colocalization analysis thus allows identification of
CITED4 as a neutrophil count-related gene (CLPP= 0.173).
Additional examples are described in Supplementary Fig. 16.

Discussion
In this study, we introduced EMS, a prediction of the probability
that a variant has a cis-regulatory effect on gene expression in a
tissue. To derive EMS, we trained a random forest model that
takes >6000 features. By analyzing the importance of each feature
in the model, we showed that the importance of direct epigenetic
measurements, such as binary histone mark peak annotation is
relatively limited once distance to TSS and deep learning-derived
variant effect scores (Basenji) were incorporated. Taking whole
blood as an example, we showed that EMS accurately prioritizes
putative causal eQTLs, reporter assay active variants, and putative
complex trait causal noncoding variants. We provided a broader
set of putative causal variants (n= 20,913 across 49 tissues) by
using EMS as a prior to perform approximate functionally
informed eQTL fine-mapping, and utilized EMS for colocaliza-
tion analysis to identify 310 additional candidate genes for
complex traits.

Evaluating predictors of noncoding variant function is com-
plicated by the absence of gold standard data. While EMS out-
performed other scores for prioritizing putative causal eQTLs,
which we believe to be the closest to gold standard of existing
large-scale base-pair resolution datasets, it did not outperform
existing scores in prioritizing reporter assay active variants or
putative complex trait causal noncoding variants. These latter two
datasets, while valuable for independent validation, do not fully
recapitulate the challenge of prioritizing causal expression-
modifying variants in native context41,47. On the other hand,
we recognize that putative causal eQTLs on a held-out chromo-
some do not constitute a fully independent validation set. As
genome editing technologies continue to improve, we look for-
ward to future large-scale datasets that will enable independent,
gold standard evaluation and comparison of scores of noncoding
functions at base-pair resolution.

Although our work refines our understanding of cis-gene
regulatory mechanisms at single-variant resolution, it also pre-
sents limitations. First, there are biases in the way the training
variants are ascertained: the power to call a putative causal variant
is affected by the recombination rate and the allele frequency of
the variant48,49, and the GTEx cohort is highly biased towards
adult samples with European ancestry background. Second,
although we utilize over 6000 features in EMS, larger sets of
variant and gene annotations, such as 3D configuration of
genome50,51, constraint52–54, or pathway enrichment43 of genes
could allow us to further improve prediction accuracy. Third, we
simplified the prediction task by thresholding PIP. We formed a

binary classification problem rather than a regression problem to
build a predictor due to a highly skewed distribution of PIP, and
because of LD-induced biases in variants with intermediate PIPs,
but with larger sample size and a more principled hierarchical
model, we could potentially take advantage of variants with
intermediate PIP as well.

In this work, we focused on the task of predicting putative
causal eQTLs. Future work could use a similar framework to
predict putative causal splicing QTLs or other molecular QTLs
for which statistical fine-mapping has identified a large number of
high-PIP variants. In addition, although noisy effect size estimates
from eQTL studies present a challenge, future work could explore
leveraging features correlated with the sign and magnitude of
effect (Supplementary Fig. 17) to estimate these values. As recent
studies have suggested, such approaches would also be valuable in
understanding the gene expression and complex trait regulation
landscape in light of natural selection55. Our approach of utilizing
statistical fine-mapping of eQTLs to define training data,
assembling large number of features to train a predictor, and
using the predictor output to expand the set of putative causal
eQTLs is highly generalizable. EMS for all variant–gene pairs in
GTEx v8 are publicly available for 49 tissues. Our study provides
a powerful resource for deciphering the mechanisms of non-
coding variation.

Methods
The expression modifier score. Fine-mapping of GTEx v8 data is described in
https://www.finucanelab.org/data and is summarized in the Supplementary
Methods. We constructed a binary classification task by labeling the variant–gene
pairs with PIP > 0.9 for both of the two fine-mapping methods (FINEMAP19 and
Sum of Single Effects, SuSiE20) as positive, and the ones with PIP < 0.0001 for both
methods as negative. Each variant–gene pair was annotated with 6121 features
(distance to TSS annotated in the GTEx v8 dataset, 12 non-cell-type-specific binary
features from the LDSC baseline model6, 795 cell-type-specific binary features from
the Roadmap Epigenomics Consortium5, where variants falling in narrow peak are
annotated as 1, and others are 0, and 5313 deep learning-derived cell-type-specific
features generated by the Basenji model28,29; Supplementary Data 5). The 152 most
predictive features were selected based on different prediction accuracy metrics,
such as F1 measure and mean decrease of impurity for each feature (Supple-
mentary Methods). A combination of random search followed by grid search was
performed to tune the hyperparameter for a random forest classifier that max-
imizes the AUROC of the binary prediction in the held-out dataset (Supplementary
Data 6). Finally, for each prediction score bin, we calculated the fraction of posi-
tively labeled samples and scaled the output score, to derive the EMS. Further
details are described in the Supplementary Methods.

Performance evaluation of EMS. To evaluate the performance of EMS, for each
chromosome, we trained EMS using all the other chromosomes to avoid over-
fitting. CADD36 v1.4 and GERP38 scores were annotated using the hail56 anno-
tation database (https://hail.is), and ncER39 scores were downloaded from https://
github.com/TelentiLab/ncER_datasets. In order to annotate the DeepSEA26 v1.0
and Fathmm37 v2.3 noncoding scores, we mapped hg38 coordinates to hg19 using
the hail liftover function, removed variants that do not satisfy 1-to-1 matching, and
followed their web instructions (https://humanbase.readthedocs.io/en/latest/
deepsea.html, and http://fathmm.biocompute.org.uk) to score the variants. Inser-
tion and deletions were not included in the Fathmm scores. For DeepSEA, we
calculated the e-values from the individual features, following ref. 4. We computed
the area under the receiver operating characteristic curve and the precision recall
curve (Supplementary Fig. 5), as well as enrichments of different variant–gene pairs
or variants, as described in the next sections (Fig. 3).

Computation of enrichment. Enrichment of a specific set of variant–gene pairs
(e.g., putative causal variants in GTEx whole blood) in a score bin is defined as the
probability of drawing a variant–gene pair in the set given that the variant–gene is
in the score bin, divided by the overall probability of drawing a variant–gene pair in
the set. The error bar of enrichment denotes the standard error of the numerator,
divided by the denominator (we assumed the standard error of the denominator is
small enough, since the total number of variant–gene pairs is typically large;
>100,000,000 for all the variant–gene pairs in GTEx v8). When testing binary
functional features as in Fig. 1, the score is the individual functional feature, and
the set is defined by the specific PIP bin.

Table 1 Precision and recall of the gene prioritization task

for three different PIPs.

Method Tool Prior Precision Recall

PIPEMS SuSiE EMS 0.556 0.052

PIPunif SuSiE Uniform 0.525 0.039

PIPDAP-G DAP-G Distance to TSS 0.500 0.078
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enrichment analysis of eQTL, complex trait, and reporter assay data.
Saturation mutagenesis data12 was downloaded from the MPRA data access portal
(http://mpra.gs.washington.edu). An MPRA hit was defined as having a
bonferroni-significant association p value (<0.05 divided by the total number of
variant–cell type pairs) for at least one cell type, regardless of the effect size and
direction. The raQTL data40 was downloaded from https://osf.io/w5bzq/wiki/
home/. EMS was rescaled to have a constant distance to TSS (200 bp, roughly
representing the scale of typical distance to TSS in plasmids12), which is expected
to significantly decrease the performance of EMS compared to in native genome.
Similarly, when comparing EMS with other scores for enrichments of MPRA hits
or raQTLs, distance to TSS was not used for the comparison.

Fine-mapping of UKBB traits is described in https://www.finucanelab.org/data.
To focus on noncoding regulatory effects, we annotated the variants in VEP57 v85
and filtered out coding and splice variants for the UKBB dataset. For each
(noncoding) variant, we calculated the maximum PIP over all the hematopoietic
traits, as well as the maximum whole-blood EMS over all the genes in the cis-
window of the variant, since a variant can have different regulatory effect on
different genes, for different phenotypes. A variant was defined as putative
hematopoietic-trait causal if it has SuSiE PIP > 0.9 in any of the hematopoietic
traits. In UKBB, we focused on the variants that exist in the GTEx v8 dataset to
reduce the calculation complexity.

For all four datasets, the variants (or variant–gene pairs in GTEx) other than
putative causal ones were randomly downsampled to achieve a total number of

Fig. 6 An example of a putative causal eQTL prioritized by EMS. rs35873233, an upstream variant of CITED4, was prioritized by functionally informed

fine-mapping using EMS as a prior. From top to the bottom: PIP with uniform prior (PIPunif), EMS, PIP with EMS as a prior (PIPEMS); Basenji score for

CAGE46 activity in acute myeloid leukemia (AML), H3K27me3 narrow peak in K562 cell line (red if the variant is on the peak, blue otherwise), sequence

context60 of the alternative allele aligned with the binding motif61 of SPI1, and PIP for neutrophil count in UKBB (https://www.finucanelab.org/data, ref. 34)

with uniform prior.
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variants to be exactly 100,000, to reduce the computational burden, while keeping
enough number of variants to observe statistical significance. GTEx enrichment,
MPRA hits enrichment, raQTL enrichment, and UKBB enrichment are thus
defined as the enrichment of putative causal eQTLs, MPRA hits, raQTLs, and
putative hematopoietic-trait causal variants in the downsampled dataset,
respectively.

Approximate functionally informed fine-mapping using EMS. In the SuSiE
model, for a given gene, the vector b of true SNP effects on that gene is modeled as
a sum of vectors with only one non-zero element each:

b ¼ ∑
L

l¼1
bl

jjbljj0 ¼ 1

where b and bl are vectors of length m and m is the number of variants in the locus.
Intuitively, each bl corresponds to the contribution of one causal variant. One
output of SuSiE is a set of m-vectors α1; :::; αL , with αLðvÞ equal to the posterior
probability that blðvÞ≠0; i.e., that the lth causal variant is the variant v. Credible sets
are computed for each l from αl , and credible sets that are not pure—i.e., that
contain a pair of variants with absolute correlation < 0.5—are pruned out. The αl

are also used to compute PIPs.
Our algorithm for approximate functionally informed fine-mapping takes the

approach of re-weighting the posterior probability calculated using the uniform
prior, analogous to ref. 32, and proceeds as follows. For each gene and each tissue,
we start with α1; :::; αL computed by SuSiE using the uniform prior. For each l, if αl
corresponds to a pure credible set, we re-weight each element of αl by the EMS of
the corresponding variant, and we normalize so that the sum is equal to 1,
obtaining α̂l . In other words, letting w1…wm denote the EMSs for the m variants,
we define α̂lðvÞ for the variant v to be

α̂lðvÞ ¼
wvαlðvÞ

∑
m
u¼1 wuαlðuÞ

if αl corresponds to a pure credible set; otherwise, we set α̂l ¼ αl . We then use the
updated α̂1; :::; α̂L to compute updated PIPs and credible sets, as in the original
SuSiE method. See Supplementary Methods for further details.

Performance evaluation of PIPEMS and application to gene prioritization. PIP
using distance to TSS as a prior (PIPDAP-G) was downloaded from the GTEx portal
(https://gtexportal.org/). The raQTL data was downloaded from https://osf.io/
w5bzq/wiki/home/, and the negative variants were randomly downsampled to a
total of 100,000 variants. For complex trait causal noncoding variant prioritization,
a threshold of PIP > 0.1 was chosen to account for low sample size. We defined a
gene prioritization task using 49 tissues in GTEx v8 and 95 complex traits in
UKBB, using the following steps (further details are described in Weeks et al.43):

Across all traits, we identified 1Mb regions centered at unresolved credible sets
(no coding variant with PIP > 0.1) that additionally contained at least one
“evaluation gene” (protein-coding variant with PIP > 0.5) for the same trait. There
were 2897 such regions and 1161 evaluation genes. Our intuition is that the gene
with the fine-mapped protein-coding variant is most likely to be the primary causal
signal, and that a nearby noncoding signal is more likely to act through this gene
(i.e., via regulation) than through a different gene.

For each gene–region pair, we defined the colocalization posterior probability
(CLPP) for the gene to be the maximum of the product of the eQTL PIP and trait
PIP, across all tissues and all variants in the unresolved credible set. A gene is
prioritized if it has CLPP > 0.1 and it has the maximum CLPP in its region. We
compute the precision as the number of correctly prioritized genes (where the
prioritized gene is also the gene with the primary, protein-coding signal) divided by
the total number of prioritized genes. We compute recall as the number of correctly
prioritized genes divided by the total number of evaluation genes. The total number
of candidate genes is defined as the number of gene–trait pairs, presenting CLPP >
0.1 in at least one tissue and variant.

Tissue-specific putative causal eQTL analysis. Tissue-specific putative causal
eQTL in a tissue was defined as a variant–gene pair with PIPEMS > 0.9 in the tissue
and PIPEMS < 0.1 in all the other tissues (including cases where a variant is missing
in a tissue; Supplementary Data 7). A tissue-specific putative causal eQTL pair was
defined as a pair of tissue-specific putative causal eQTL on a same gene in two
different tissues, existing within 10 kb distance (Supplementary Fig. 14 and Sup-
plementary Data 8). Basenji features were classified as TF related if the feature
name contains the gene symbol classified as a human TF in an external database58

(http://humantfs.ccbr.utoronto.ca/download.php).
Then for each TF, we defined it as specific for tissue T if the expression level

(TPM) of the TF was higher in T than in all other tissues and was >2 standard
deviations away from the mean expression level across tissues. All the tissues for
which the TF had expression level ten times lower than that of tissue T were
defined as control tissues. TF-related Basenji features with no specific tissue, or
lacking control tissues were filtered out. We also filtered out the features where the
TF specificity and the assay cell type did not clearly match (Supplementary Data 9).

This resulted in 42 TF-related Basenji features corresponding to 30 unique TFs.
Enrichment of each TF-related Basenji feature was examined by comparing the
average score in the tissue-specific putative causal eQTLs for the corresponding
tissue with the average in the control tissues, using a t test (Supplementary Data 9).

Statistical analysis. All the statistical tests were two-sided. No adjustment was
made in the p value we report.

Error bar in Fig. 5b–d and Supplementary Fig. 13 is defined as the standard
error of the mean.

Error bar in the enrichment analyses (all the other figures, where error bars are
present) are explained in the “Computation of enrichment“ section in the
“Methods” . The set of software used for data generation, statistical analysis, and
plotting in the study are listed below:

SuSiE v0.8.1.0521 (https://github.com/stephenslab/susie-paper)
FINEMAP v1.3.1 (http://www.christianbenner.com)
ggseqlogo (https://cran.r-project.org/web/packages/ggseqlogo/index.html)
basenji v0.0.1 (https://github.com/calico/basenji)
brokenaxis v0.3.1 (https://pypi.org/project/brokenaxes/)
joblib v0.11 (https://joblib.readthedocs.io)
hail v0.2.26 (https://hail.is)
matplotlib v3.2.0 (https://matplotlib.org)
numpy v1.18.1 (https://numpy.org)
pandas v1.0.1 (https://pandas.pydata.org)
scikit-learn v0.21.3 and v0.23.2 (https://scikit-learn.github.io/stable)
scipy v1.2.1 (http://scikit-learn.github.io/stable)
seaborn v0.9.0 (https://seaborn.pydata.org).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
EMS for 49 tissues are available at https://www.finucanelab.org/data. CADD v1.4 and

GERP scores were annotated using the hail annotation database (https://hail.is). ncER

scores were downloaded from https://github.com/TelentiLab/ncER_datasets. DeepSEA

v1.0 scores were downloaded from https://humanbase.readthedocs.io/en/latest/deepsea.

html. Fathmm v2.3 noncoding scores were downloaded from http://fathmm.biocompute.

org.uk. Saturation mutagenesis data was downloaded from the MPRA data access portal

(http://mpra.gs.washington.edu). The raQTL data was downloaded from https://osf.io/

w5bzq/wiki/home/. Human transcription factor (TF) data was downloaded from http://

humantfs.ccbr.utoronto.ca/download.php. The UKBB fine-mapping results are deposited

at https://www.finucanelab.org/data.

Code availability
Code used in this manuscript is available at https://github.com/FinucaneLab/

Expression_Modifier_Score/.
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