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ABSTRACT

Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple
diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions.
However, the increasing number of available data sets represents a major challenge in terms of computation time and storage
requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events,
exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using
simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in
terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene
provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve
accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show
that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA
provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating
the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python
2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa.
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INTRODUCTION

Alternative splicing plays an important role in many cellular
processes and bears major relevance in the understanding of
multiple diseases, including cancer (David and Manley
2010;Ward and Cooper 2010). Numerous genome-wide sur-
veys have facilitated the description of the alternative splicing
patterns under multiple cellular conditions and disease states.
These studies are generally based on themeasurement of local
variations in the patterns of splicing, encoded as events, and
have been carried out using microarrays (Thorsen et al.
2008; Lapuk et al. 2010; Misquitta-Ali et al. 2011), RT-PCR
platforms (Klinck et al. 2008; Simpson et al. 2008), or RNA
sequencing (Pan et al. 2008; Wang et al. 2008). The descrip-
tion of alternative splicing in terms of events facilitates their
experimental validation using PCR methods and the charac-
terization of regulatory mechanisms using sequence analysis
and biochemical approaches (Bechara et al. 2013; Raj et al.
2014); and they provide a valuable description for predictive

and therapeutic strategies (Xiong et al. 2015; Hua et al.
2015). Events are generally defined as local variations of the
exon–intron structure that can take two possible configura-
tions and are characterized by an inclusion level, also termed
PSI or Ψ, which measures the fraction of mRNAs expressed
from the gene that contains a specific form of the event
(Venables et al. 2008; Wang et al. 2008). In terms of sequenc-
ing reads,Ψ is usually defined as the ratio of the density of in-
clusion reads to the sum of the densities of inclusion and
exclusion reads (Wang et al. 2008; Shen et al. 2012). Initial
methods to estimateΨ values were based on reads from junc-
tion, exons, or both (Pan et al. 2008; Sultan et al. 2008; Wang
et al. 2008). Later methods were developed that take into ac-
count the uncertainty of quantification from single experi-
ments (Katz et al. 2010; Wu et al. 2011), the comparison of
two conditions (Griffith et al. 2010; Katz et al. 2010; Shen
et al. 2012; Shi and Jiang 2013), as well as multiple replicates
per condition (Brooks et al. 2011; Singh et al. 2011; Shen et al.
2012; Hu et al. 2013) and paired replicates (Shen et al. 2014).
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Current tools to process RNA-sequencing data to study al-
ternative splicing events can takemore than a day to analyze a
single sample and often require excessive storage, so they are
not competitive to be applied systematically to large data sets,
unless access to large computational resources is granted. In
particular, methods for estimating Ψ values generally involve
the mapping of reads to the genome or to a library of known
exon–exon junctions, both of which require considerable
time and storage. Additionally, accuracy is often achieved at
the cost of computing time. All this represents a major obsta-
cle for the analysis of large data sets, and in particular, for the
reanalysis of public data and updates with new annotations or
assembly versions. More importantly, these analyses remain
unfeasible at small laboratories with limited computational
resources. On the other hand, recent developments in the
quantification of known transcripts have shown that consid-
erable accuracy can be achieved at high speed (Li and Dewey
2011; Roberts and Pachter 2013; Patro et al. 2014; Zhang and
Wang 2014). This raises the question of whether fast tran-
script abundance computation could be used to obtain accu-
rate estimates of Ψ values for local alternative splicing events
genome wide.

In this article we describe SUPPA, a computational tool to
leverage fast transcript quantification for rapid estimation of
Ψ values directly fromthe abundances of the transcripts defin-
ing each event. Using simulated datawe show thatΨ values es-
timated by SUPPA, coupled to Sailfish or RSEM transcript
quantification, are closer to the ground-truth than two stan-
dard methods, MATS and MISO. Additionally, using an ex-
perimentally validated set and matched RNA-seq data, we
show that SUPPA achieves slightly superior or comparable ac-
curacy comparedwithMATSandMISO.We further assess the
variability in terms of the choice of annotation andprovide ev-
idence that using complete transcripts rather than more tran-
scripts per gene in the annotation provides better estimates.
Moreover, we show that SUPPA coupled with de novo tran-
script reconstruction methods does not achieve accuracies as
high as using the quantification of known transcripts, but re-
mains comparable to existing methods. Finally, speed bench-
marking provides evidence that SUPPA can obtainΨ values at
a much higher speed than existing methods. We argue that
coupled to a fast transcript quantification method, SUPPA
provides a fast and accurate approach to systematic splicing
analysis. SUPPA facilitates the accurate splicing analysis of
large data sets, making it possible for laboratories with limited
computational resources to exploit data from large genomics
projects and contribute to the understanding of the role of al-
ternative splicing in cell biology and disease.

RESULTS

SUPPA

SUPPA provides an effective and easy-to-use software to cal-
culate the inclusion levels (Ψ) of alternative splicing events

exploiting transcript quantification (Fig. 1A). An alternative
splicing event is a local summary representation of the
exon–intron structure from the transcripts that cover a given
genic region, and is generally represented as a binary form, al-
though more complex variations may happen. Accordingly,
an event can be characterized in terms of the sets of transcripts

FIGURE 1. SUPPA pipeline. (A) SUPPA calculates possible alternative
splicing events with the operation generateEvents from an annotation,
which can be obtained from a database or built from RNA-seq data us-
ing a transcript reconstruction method. For each event, the transcripts
contributing to either form of the event are stored and the calculation
of the Ψ value per sample for each event is performed using the tran-
script abundances per sample (TPMs) (Materials and Methods). From
one or more transcript quantification files, which can be obtained
from any transcript quantification method, SUPPA calculates for each
event the Ψ value per sample with the operation psiPerEvent. (B)
Events generated from the annotation are given a unique identifier
that includes a code for the event type (SE, MX, A5, A3, RI, AF, AL)
and a set of start (s) and end (e) coordinates that define the event (shown
in the figure) (Materials and Methods). In the figure, the form of the al-
ternative splicing event that includes the region in black is the one for
which the relative inclusion level (Ψ) is given: For SE, the PSI indicates
the inclusion of themiddle exon; for A5/A3, the form thatminimizes the
intron length; for MX, the form that contains the alternative exon with
the smallest start coordinate (the left-most exon) regardless of strand; for
RI, the form that retains the intron; and for AF/AL, the form that max-
imizes the intron length. The gray area indicates the alternative form of
the event.
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that describe either formof the event, which can be denoted as
F1 and F2. For instance, for an exon-skipping event F1 repre-
sents the transcripts that include the exon, whereas F2 repre-
sents the transcripts that skip the exon. The inclusion value
(Ψ) of an event is defined as the ratio of the abundance of tran-
scripts that include one form of the event, F1, over the abun-
dance of the transcripts that contain either form of the event,
F1∪F2 (Venables et al. 2008;Wang et al. 2008; Katz et al. 2010;
Shen et al. 2012). Given the abundances for all transcript
isoforms, assumed without loss of generality to be given in
transcript per million units (TPM) (Li et al. 2010), which
we denote as TPMk, SUPPA then calculates Ψ for an event
as follows:

C =
∑

k[F1

TPMk/
∑

j[F1<F2

TPMj

.

(1)

SUPPA provides the identifiers for the transcripts that
describe either form of the event, which in combination
with the transcript quantification is used to obtain the Ψ val-
ues using formula (1) (Fig. 1A). SUPPA is agnostic of the ac-
tual methodology for quantifying transcripts and can read the
quantification frommultiple experiments froma single input.
SUPPA generates different alternative splicing event types
from an input annotation file in GTF format: exon skipping
(SE), alternative 5′ and 3′ splice sites (A5/A3),mutually exclu-
sive exons (MX), intron retention (RI), and alternative first
and last exons (AF/AL) (Fig. 1B). The Ψ value for an event
is calculated with respect to one of the two forms of the event
(Fig. 1B). Further details and options of the software are given
at https://bitbucket.org/regulatorygenomicsupf/suppa/.

Accuracy analysis with simulated data

Transcript abundances and corresponding paired-end reads
were simulated using FluxSimulator (Griebel et al. 2012)
with the RefSeq annotation as reference (Materials and
Methods). The reference set for accuracy analysis was built
using events in genes with only two alternative transcripts

in the RefSeq annotation that did not overlap any other
events. In these cases, the Ψ of the event is identical to the
relative abundance of one of the two transcripts. The
ground-truth Ψ values were then defined to be the relative
abundances of the transcript isoforms in these genes, where
the transcript abundances were taken to be the simulated
abundances. Simulated RNA-seq reads were mapped to the
genome and used to calculate ΨMISO and ΨMATS values
with MISO (Katz et al. 2010) and MATS (Shen et al. 2012),
respectively (Materials and Methods). The same simulated
reads were used to quantify transcript abundances with
Sailfish (Patro et al. 2014) and RSEM (Li and Dewey 2011),
and ΨSailfish and ΨRSEM values were then calculated with
SUPPA (Materials and Methods). Only genes with total tran-
scripts per million (TPM) abundance (calculated as the sum
of the TPM of its transcripts) >1 were considered. This re-
sulted in a set of 144 events (Supplemental Data 1).
Comparing the four sets of estimated Ψ values with the
ground-truth, the ΨSailfish and ΨRSEM values calculated with
SUPPA show the highest correlations (Table 1; Fig. 2A).
Moreover, calculating how different the estimated Ψ values
are from the ground-truth, SUPPA Ψ values (ΨSailfish and
ΨRSEM) show the closest behavior, followed by MISO and
MATS, which behave similarly (Fig. 2B). Separating the
events by type, MATS and MISO improve in A5 and RI
events, but their accuracy drops dramatically for MX events;
whereas SUPPA maintains a high correlation (R > 0.9) for all
event types (Supplemental Table 1).

Accuracy analysis with experimentally validated events

To further validate the calculation of Ψ values with SUPPA,
we used a set of 163 alternative splicing events, all of type
SE, validated by RT-PCR in MDA-MB-231 cells under
two conditions: with overexpression of the splicing factor
ESRP1 (ESRP1) and with an empty vector (EV) (Shen et al.
2012). We used the RNA-seq data obtained from the same
samples (Shen et al. 2012) to predict the Ψ values as before.

TABLE 1. Correlation values (annotation-based)

Annotation Data set

Sailfish + SUPPA RSEM+ SUPPA MATS MISO

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

RefSeq Synthetic 0.971 0.959 0.987 0.978 0.833 0.819 0.862 0.815
ESRP1 0.778 0.769 0.795 0.779 0.763 0.753 0.701 0.715
EV 0.767 0.766 0.808 0.823 0.805 0.815 0.765 0.782

Ensembl ESRP1 0.633 0.627 0.682 0.673 0.723 0.715 0.708 0.691
EV 0.608 0.613 0.664 0.668 0.794 0.790 0.747 0.774

Ensembl (CDS) ESRP1 0.699 0.682 0.686 0.673 0.736 0.711 0.711 0.697
EV 0.690 0.661 0.725 0.706 0.782 0.799 0.743 0.747

First row: correlation values (Spearman and Pearson) between the estimated and ground-truth Ψ values using simulated data. The comparison
involves 144 events. The following rows show the correlation values (Spearman and Pearson R) between the estimated Ψ values from ESRP1-
overexpressed (ESRP) and empty-vector (EV) RNA-seq data sets and the RT-PCR validation for the same samples (Shen et al. 2012) using the
common events that had a Ψ value from every method for RefSeq (60 events), Ensembl (91 events), and Ensembl CDS (64 events).

Fast computation of alternative splicing profiles
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From both RNA-seq data sets we quantified the RefSeq tran-
scripts using Sailfish and RSEM and calculated the SUPPA
ΨSailfish and ΨRSEM values. RNA-seq reads were mapped to
the genome to run MISO and MATS to obtain the corre-
sponding Ψ values (Materials and Methods). From the 163
validated events, we finally compared those 60 that were pre-
sent in the RefSeq annotation and for which we had Ψ values
for all methods (Supplemental Data 2). Sailfish + SUPPA and
RSEM + SUPPA show an overall slightly better correlation
than the other methods for the ESRP1 sample, whereas
RSEM + SUPPA and MATS show the best correlations for
the EV sample (Table 1; Fig. 3A). Although RSEM + SUPPA
shows the highest correlations in all cases, Sailfish + SUPPA
correlations are comparable to the rest. Calculating the abso-
lute difference between the estimated and the experimentalΨ
values for each event, we observe that SUPPA, either com-
bined with Sailfish or RSEM, is comparable to MISO and
MATS (Fig. 3B).

Performing the same analysis using the Ensembl annota-
tion, comparing a total of 91 events common to all approach-
es (Supplemental Data 3), we observed a general decrease of
accuracy in all methods with a bigger drop in the perfor-
mance of SUPPA (Table 1; Supplemental Fig. 1). This sug-
gests that using the Ensembl annotation has a negative
impact in transcript quantification, possibly due to the in-
complete annotation of transcripts (Supplemental Fig. 2).
To test this possibility, we performed the benchmarking using
only the Ensembl annotation of coding sequences (CDSs).
For the 64 common SE events obtained (Supplemental Data
4), compared with the accuracies of the full Ensembl annota-
tion, we observed a significant increase of SUPPA when used
in conjunction with either Sailfish or RSEM, especially for the

EV sample; whereasMISO andMATS have similar accuracies.
Still, MISO and MATS remain superior to SUPPA with the
Ensembl annotation, which indicates that the choice of anno-
tation has a significant impact on transcript quantification
and in turn on Ψ estimates by SUPPA.

Variability associated to replicates
and annotation choice

To further assess how the choice of annotation may impact
the accuracy of Ψ estimation, we obtained RNA from two bi-
ological replicates for the cytosolic fractions of MCF7 and
MCF10 cells and performed sequencing using standard
protocols. Correlation between replicates of the SUPPA Ψ
values, using quantification with Sailfish on the RefSeq anno-
tation, is high in all comparisons (Pearson R∼ 0.86–0.89)
(Supplemental Fig. 3). Furthermore, restricting this analy-
sis to genes with TPM> 1, calculated as the sum of the
TPMs from all transcripts in each gene, the correlation be-
tween replicates increases (Pearson R∼ 0.95–0.97) (Supple-
mental Fig. 3). We then compared the results obtained
using SUPPA with the quantifications on the RefSeq and
Ensembl transcripts. SUPPA Ψ values were calculated using
both replicas of the cytosolic MCF7 RNA-seq data (similar
results were observed for MCF10, data not shown). The
comparisons were performed using the 9301 (MCF7, repli-
ca 1) and 9287 (MCF7, replica 2) events that were found in
both annotations and not overlapping with other events
from the same replica. We observe variability in the estima-
tion of Ψ between annotations that does not depend on the
difference in the number of transcripts used for Ψ calcula-
tion (Fig. 4A). Similarly, this variability is also independent

FIGURE 2. Benchmarking with simulated data. (A) Correlation of the ground-truth Ψ values (Materials and Methods) with those estimated with
Sailfish + SUPPA using simulated data. The blue line and gray boundaries are the fitted curves with the LOESS regression method. (B)
Cumulative distribution of the absolute difference between the ground-truth Ψ values and the ones estimated with Sailfish + SUPPA (SAILFISH),
RSEM+SUPPA (RSEM), MISO and MATS. The lines describe the proportion of all events tested (cumulative percent, y-axis) that are predicted at
a given maximum absolute difference from the ground-truth value (ΔΨ, x-axis). Using a rank-sum test, the distributions are significantly different
comparing Sailfish + SUPPA and MATS (P-value = 8.89 × 10−12), Sailfish + SUPPA and MISO (P-value = 1.86 × 10−13), RSEM + SUPPA and MATS
(P-value = 2.72 × 10−16), as well as RSEM + SUPPA and MISO (P-value = 2.2 × 10−16) (Supplemental Table 2).
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of the difference in the number of transcripts annotated in
the gene in which the event is contained (Supplemental Fig.
4). Moreover, the disparity in Ψ estimates is also indepen-
dent of the mean expression of the gene in which the event
is contained (Fig. 4B). On the other hand, the dispersion of
Ψ estimates comparing replicas and using the same annota-
tion decreases with the mean expression of the gene (Fig.
4C), which at low expression is comparable to the disper-

sion for Ψ estimates as a result of differ-
ences in annotation (Fig. 4A,B).

Annotation-free estimation

Theprevious analyses suggest that incom-
plete annotations lead to inaccurate tran-
script quantification, which will in turn
have a negative impact on theΨ estimates
by SUPPA. Methods for de novo tran-
script reconstruction facilitate the discov-
ery of new transcripts missing from the
annotation and the completionof existing
ones from RNA-seq reads (Trapnell et al.
2010; Li et al. 2011a,b; Li and Jiang 2012;
Mezlini et al. 2012; Behr et al. 2013;
Tomescu et al. 2013; Maretty et al. 2014;
Rossell et al. 2014). As thesemethods pro-
duce annotation of transcripts and their
corresponding abundances, their output
can be used with SUPPA to calculate al-
ternative splicing events and their Ψ val-
ues. They thus provide an opportunity
to assess whether a de novo prediction
of transcript structures and subsequent
quantification from RNA-seq data may
lead to more accurateΨ values than using
a fixed annotation. To test this, we ran
Cufflinks with the de novo options with
RNA-seq data from the ESRP1 and EV
samples (Materials and Methods). Using
the resulting annotation, we calculated
all possible alternative splicing events
and their contributing transcripts with
SUPPA. Similarly, we calculated the Ψ
with MATS and MISO using the same
reads mapped to the genome, this time
guided by the Cufflinks annotation. We
then compared the Ψ values obtained
for the events in common with the exper-
imentally validated set (Shen et al. 2012):
82 for ESRP1 and 47 for EV (Supplemen-
tal Data 5). We observed that for all ap-
proaches the correlation of Ψ values
decreases (Table 2). The ΨCufflinks values
obtained with SUPPA (Table 2; Fig. 5)
are comparable to the values obtained us-

ing the Ensembl annotation (Table 1). Moreover, we recalcu-
lated the transcript quantification using Sailfish on the
Cufflinks annotations, but found no improvement (Table 2).

Speed benchmarking

The time needed by each methodology to obtain theΨ values
from a FastQ file depends on multiple different steps. To

FIGURE 3. Benchmarking using experimentally validated events. (A) Correlation of the exper-
imentalΨ values with those estimated with Sailfish + SUPPA inMDA-MB-231 cells with (ESRP1,
left panel) and without (EV, right panel) ESRP1 overexpression. Experimental Ψ values were ob-
tained by RT-PCR (Shen et al. 2012) and estimated Ψ values were obtained from RNA-seq data
from the same samples (Shen et al. 2012). The blue line and gray boundaries are the fitted curves
with the LOESS regression method. (B) Cumulative distribution of the absolute difference be-
tween the same experimental Ψ values and the ones estimated with Sailfish + SUPPA
(SAILFISH), RSEM+ SUPPA (RSEM), MISO, and MATS from RNA-seq data from the same
samples (Shen et al. 2012). The lines describe the proportion of all events (cumulative percent,
y-axis) that are calculated at a given maximum absolute difference from the RT-PCR value
(ΔΨ, x-axis). The distributions are not significantly different from each other (rank-sum test
P-values >0.1) (Supplemental Table 2).
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make a comparative assessment of com-
putation times, we broke down the
benchmarking into three different tasks,
equivalent to the three necessary steps
for the SUPPA analysis. The first step in-
volves the calculation of alternative splic-
ing events from an annotation file, which
only needs to be carried once for a given
annotation. To calculate 66577 alterna-
tive splicing events from the Ensembl
75 annotation (37,494 genes, 135,521
transcripts), SUPPA generateEvents took
20 min, whereas the calculation of
16,714 alternative splicing events from
the RefSeq annotation (25,937 genes,
48,566 transcripts) took 3 min.
The second step consists in the as-

signment of reads to transcripts and/or
genomic positions. For the purpose of
speed benchmarking of read-assignment
to transcripts, although transcript abun-
dance estimation includes extra com-
putation steps, we considered the
transcript quantification by Sailfish to
be approximately equivalent to the read
mapping to a reference genome. To per-
form this speed comparison we used the
synthetic data (45 million paired-end
reads) and both (ESRP1 and EV) RNA-
seq samples from the MDA-MB-231
cells pooled together (256 million sin-
gle-end reads), and used STAR (Dobin
et al. 2013) and TopHat as a compari-
son. Sailfish and STAR are the fastest to
assign reads to their likely molecular
sources, compared with TopHat and
RSEM (Fig. 6A).
The third and final step is the Ψ calcu-

lation from either transcript quantifica-
tion (SUPPA) or from the mapped reads
(MISO and MATS). SUPPA psiPerEvent
operation took less than a minute to pro-
duce an output size of 1 Mb for 16,714
events and was >1000 times faster than
MISO and MATS on the same data sets
(Fig. 6B). In summary, the total time
from the raw reads in FastQ format to
the Ψ values for Sailfish + SUPPA against
the RefSeq annotation-derived events
took 214 (∼3.5min) and 4022 (∼1 h) sec-
onds for the synthetic and theMDA-MB-
231 samples, respectively. We conclude
that when used in conjunction with
Sailfish, SUPPA is much faster than
MISO and MATS, even if an ultra-fast

FIGURE 4. Annotation dependencies. Boxplots of the difference of Ψ values estimated by
SUPPA for Ensembl and RefSeq annotations from Sailfish quantification (y-axis) as a function
of (A) the difference in the number of transcripts defining each event in Ensembl and RefSeq
or as a function of (B) the mean expression of the gene in which the event is contained. The
x-axis in B is grouped into 10 quantiles according to the log10(TPM) scale. The variability (y-
axis) is represented for both replicates (7C1 and 7C2) of the cytosolic RNA-seq data from
MCF7 cells. (C) Boxplots of the distribution of Ψ differences (y-axis) between replicates for
the estimates from the Ensembl (left panel) and RefSeq (right panel) annotations as a function
of the mean expression genes (x-axis), grouped into 10 quantiles in the log10(TPM) scale, using
genes with TPM> 0. Mean expression is calculated as the average of the log10(TPM) for each gene
in the two replicates for C or for each gene in the two annotations in B.
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aligner such as STAR (Dobin et al. 2013) is used for readmap-
ping to the genome.

DISCUSSION

We have described SUPPA, a tool to calculate alternative
splicing events from a given annotation and to estimate their
Ψ values from the quantification of the transcripts that define
the events. Using synthetic and experimental data, we have
shown that SUPPA accuracy is generally comparable to and
sometimes higher than other frequently used methods.
Importantly, SUPPA can obtain Ψ values at a much higher
speed without compromising accuracy. Moreover, SUPPA
needs very little configuration, requires a small number of
command lines for preprocessing and running, and has no
dependencies on Python libraries.
Although RNA-seq data presents a number of systematic

biases that need correction for accurate transcript quantifica-
tion (Hansen et al. 2010; Li et al. 2010; Roberts et al. 2011), we
did not observe differences in the accura-
cy of SUPPA when comparing corrected
or uncorrected transcript quantification
with Sailfish (data not shown). In fact,
previous reports have already indicated
that bias correction in RNA-seq data
does not influence the estimation of Ψ
values (Shen et al. 2012; Zhao et al.
2013). On the other hand, we did observe
that there is variability in the estimation
of Ψ values associated to the choice of
annotation. In the benchmarking using
experimental data, using Ensembl anno-
tation provides slightly worse accuracy
than using RefSeq annotation, and this
behavior is consistent among all the test-
ed methods. Interestingly, the observed
variability between annotations does not
depend on the difference in the number
of transcripts per gene, on the number
of transcripts used to describe the events,
or on the expression of the gene in which
the event is contained. On the other
hand, the observed variability is compa-

rable to the expected one for lowly expressed genes between
biological replicates. Such variability is in fact also present
in transcript quantification methods (Maretty et al. 2014;
Patro et al. 2014). Taking into account the uncertainties
of transcript quantification for the Ψ estimates in SUPPA
would likely improve its accuracy. It should be noted that
RefSeq annotation includes less transcripts per gene than
Ensembl, but these transcripts are mostly full-length
mRNAs. In particular, RefSeq transcripts generally include
complete untranslated regions, which generally hold a large
contribution of the reads coming from a transcript, whereas
a large proportion of Ensembl transcripts may be incomplete.
These facts, together with our results, suggest that the com-
pleteness of the transcript structures, rather than the number
of transcripts in genes, is the determinant for an accurate
estimate of transcript abundances, and consequently, for the
correct estimate of event Ψ values with SUPPA.
Although SUPPA at the moment generates the most com-

mon types of events, its model can be potentially expanded to

TABLE 2. Correlation values (annotation-free)

Cufflinks + SUPPA Cufflinks + Sailfish + SUPPA MATS MISO

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

ESRP1 0.613 0.627 0.549 0.582 0.622 0.610 0.605 0.611
EV 0.659 0.650 0.597 0.602 0.709 0.701 0.630 0.604

Correlation values (Spearman and Pearson R) between the estimated Ψ values from ESRP1-overexpressed (ESRP) and empty-vector (EV) RNA-
seq data sets and the RT-PCR validation for the same samples (Shen et al. 2012). This comparison involves 83 events in the ESRP1 sample
and 47 in the EV sample that are present in the Cufflinks + SUPPA predictions and are common to MATS and MISO.

FIGURE 5. Annotation-free PSI estimation. Correlation of the experimentalΨ values with those
estimated with Cufflinks de novo + SUPPA in MDA-MB-231 cells with (ESRP1, left panel) and
without (EV, right panel) ESRP1 overexpression. Experimental Ψ values were obtained by RT-
PCR (Shen et al. 2012) and estimated Ψ values were obtained from RNA-seq data in the same
samples (Shen et al. 2012). The blue line and gray boundaries are the fitted curves using the
LOESS regression method.
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more complex events, possibly involving more than two pos-
sible conformations. However, these complex events may not
always be easy to test experimentally. On the other hand, the
complexity of splicing may not always have to do with the
number of possible conformations, but rather with a binary
change that cannot be easily described in terms of just one
or two exon boundary changes, as described recently for
the gene QKI in lung adenocarcinomas (Sebestyén et al.
2015). We argue that a large proportion of the relevant splic-
ing variation can be encapsulated with the binary events de-
scribed by SUPPA and that more complex variations may be
better described using transcript isoform changes (Sebestyén
et al. 2015). Although SUPPA is limited to the splicing events
available in the gene annotation, events can be expanded with
novel transcript variants obtained by other means, like de
novo transcript reconstruction and quantification methods.
In this case we observed accuracies similar to the tests per-
formed with the Ensembl annotations but lower than when
using the RefSeq annotations. Moreover, performing quanti-
fication on the reconstructed transcripts using a different
method does not improve the accuracy, indicating that there
is still a limitation on how correctly we can predict de novo
the exon–intron structures from RNA-seq.

As transcript reconstruction and quantification methods
improve in accuracy and methods for RNA sequencing in-
crease their efficiency and reliability, our knowledge of the
census of RNA molecules in cells will keep on progressing.
Although single molecule sequencing methods may eventual-
ly lead to the abandonment of transcript reconstruction
methods, they are still costly and error prone, and quantifica-
tion still relies on short read sequencing. Transcript quantifi-
cation methods will therefore continue to be an essential
component in the description of the abundance of RNAmol-
ecules in cells. As fast reliable methods still depend on the an-

notation, future efforts may perhaps focus on improving
transcript annotations under multiple conditions. In parallel
to these advances, the local description of alternative splicing
in terms of events will remain a valuable description of RNA
variability in genes in the context of studies of RNA regulation
(Bechara et al. 2013; Raj et al. 2014) and of predictive and
therapeutic strategies (Hua et al. 2015; Xiong et al. 2015).
In summary, when coupled to a fast transcript quan-

tification method, SUPPA outperforms other methods in
speed without compromising the accuracy. This is of spe-
cial relevance when analyzing large amounts of samples.
Accordingly, SUPPA facilitates the systematic analyses of al-
ternative splicing in the context of large-scale projects using
limited computational resources. We conclude that SUPPA
provides a method to leverage fast transcript quantification
for efficient and accurate alternative splicing analysis for a
large number of samples.

MATERIALS AND METHODS

Alternative splicing events

The Ensembl annotation (Release 75) (Flicek et al. 2014) and the
RefSeq annotation (NM_ and NR_ transcripts) (Pruitt et al. 2014)
(assembly hg19) were downloaded in GTF format from the
Ensembl FTP server and the UCSC genome table browser, respec-
tively. All annotations on chromosomes other than autosomes or
sex chromosomes were removed. In total, 37,494 genes and
135,521 transcripts were obtained for the Ensembl annotation,
while 25,937 genes and 48,566 transcripts were obtained for the
RefSeq annotation. We applied SUPPA to each annotation to obtain
16,714 and 66,577 events from RefSeq and Ensembl, respectively,
including exon skipping (SE), alternative 5′ and 3′ splice sites (A5/
A3), mutually exclusive exons (MX), and intron retention (RI)
events (Supplemental Table 3). Alternative first (AF) and last exons

FIGURE 6. Speed benchmarking. (A) Time performance for read assignment/mapping to transcript/genome positions by RSEM, Sailfish, STAR, and
TopHat on the synthetic as well as the ESRP1 and EV RNA-seq data sets separately (Materials andMethods). RSEM and Sailfish include the transcript
quantification operation. (B) Time performance for the Ψ value calculation from the already mapped reads (MATS, MISO) or quantified transcripts
(SUPPA). ESRP1 and EV samples were pooled for this benchmarking (MDA-MB-231). MATS includes the calculation of theΔΨ between samples and
MISO the calculation of the confidence interval, which we could not separate from the Ψ calculation. All tools were run in multithreaded mode when
possible. Time reported for all cases is the actual cumulative time the process used across all threads (Materials and Methods).

Alamancos et al.

1528 RNA, Vol. 21, No. 9



(AL) were not included in the analysis but can be also computed
with SUPPA. Each event has a unique identifier that includes the
gene symbol, the type of event, and the coordinates and strand
that characterize the event: <gene_id>;<event_type>:<seqname>:
<coordinates_of_the_event>:strand, where gene_id, seqname and
strand are obtained directly from the input annotation in GTF, seq-
name is the field 1 from the GTF file, generally the chromosome.
The field coordinates_of_the_event is defined by start and end coor-
dinates that define the event_type (SE, MX, A5, A3, RI, AF, AL).

RNA-sequencing data

A total of 45million 2 × 50-bp paired-end simulated reads were gen-
erated using FluxSimulator (Griebel et al. 2012) (parameter file de-
scribed in Supplemental Table 4). RNA-sequencing data from
Shen et al. (2012) were also used, corresponding to ESRP1-overex-
pression (ESRP1) and empty-vector (EV) experiments in MBA-
MD-231 cells, available from the short read archive (SRA) under
id SRX122589. Moreover, RNA sequencing was also performed in
duplicate on cytosolic fractions of MCF7 and MCF10 cells using
standard protocols (Supplemental Material), available at SRA under
id SRP045592.

Read mapping and PSI quantification

Read mapping to the genome was performed with the MATS pipe-
line (Shen et al. 2012), which uses TopHat (Trapnell et al. 2009) and
an input annotation to map the reads. Reads mapping to de novo
splice junctions were allowed, and those reads mapping to more
than one genomic position were filtered out. For benchmarking,
the same annotation used for transcript quantification was also
used for read mapping to the genome in each of the comparisons
(RefSeq, Ensembl, or de novo Cufflinks). The mapping pipeline
was run on simulated and real RNA-seq reads. Mapped reads for
each of the data sets were used with MATS, to obtain ΨMATS values
for the different alternative splicing events (Supplemental Table 5).
Similarly, mapped reads in SAM format were converted to BAM for-
mat and then sorted with Samtools (Li et al. 2009) and analyzed with
MISO (Katz et al. 2010) to calculate theΨMISO values for each of the
data sets (Supplemental Table 6).
Sailfish (Patro et al. 2014) and RSEM (Li and Dewey 2011) were

used to quantify all transcripts in the Ensembl and RefSeq annota-
tions using the simulated and the real RNA-seq data sets. The
FASTA sequences of the transcripts corresponding to the same an-
notation as the GTF described earlier, were downloaded and used to
generate the Sailfish index, selecting a k-mer size of 31 to minimize
the number of reads assigned to multiple transcripts. Sailfish was
then run using the FASTQ files for each read set and uncorrected
and corrected (for sequence composition bias and transcript length)
TPMs were calculated (Patro et al. 2014). RSEM was run as de-
scribed previously (Li and Dewey 2011). The psiPerEvent operation
of SUPPA was used to calculate the ΨSailfish and ΨRSEM values from
the transcript quantifications obtained by Sailfish and RSEM, re-
spectively, for the alternative splicing events generated before, us-
ing the simulated and real data sets. The number of events for
which SUPPA estimated a ΨSailfish or ΨRSEM value is given in Sup-
plemental Tables 7 and 8. For the purpose of benchmarking, the
PSI values obtained from SUPPA (ΨSailfish and ΨRSEM), MATS
(ΨMATS), and from MISO (ΨMISO) for those events identified by

all methods in each experiment were compared with the simulated
or the experimental values. Details of the commands used to run
the different analyses are provided in Supplemental Tables 9–12.
The alternative splicing events used in each of the comparisons
tested can be found in Supplemental Data file 1 (Synthetic data
with RefSeq), file 2 (Experimental data with RefSeq), file 3 (Exp.
data with Ensembl), file 4 (Exp. data with Ensembl CDS), file 5
(Exp. data with Cufflinks) and are available at https://bitbucket.
org/regulatorygenomicsupf/suppa/downloads/Supplementary_
Data.zip

Cufflinks analysis

The BAM files from 2 the MBA-MD-231 data sets were used to run
Cufflinks (Trapnell et al. 2010) in order to generate and quantify
transcriptome annotations de novo. The same read mapping as
before was used. A total of 47,211 transcripts were predicted
and quantified for the ESRP1 data set, whereas 37,699 tran-
scripts were predicted and quantified for the EV data set. SUPPA
generateEvents operation was then run on the GTF annotation gen-
erated by Cufflinks to calculate all the exon-skipping events. This
produced a total of 2566 and 2139 exon-skipping events for the
ESRP1 and EV data sets, respectively. Finally, SUPPA psiPerEvent
operation was used to calculate the ΨCufflinks values from the tran-
script quantification obtained by Cufflinks. For MISO and MATS,
reads were mapped with the MATS pipeline using the Cufflinks an-
notation as the input, and ΨMATS and ΨMISO were estimated as be-
fore. Additionally, Cufflinks reconstructed transcripts were used
with SUPPA to quantify them from the same RNA-seq data and
to calculate Ψ values with SUPPA as before. The events common
to all methods and coinciding with the experimentally validated
ones were used for the benchmarking.

Time benchmarking

All tools were run on the same node of an Oracle Grid Engine clus-
ter, with 98 Gb of RAM memory and 24 AMD Opteron (1.4 GHz)
processors. All tools were run inmultithreadedmodewhen possible,
but time reported is the actual cumulative time the process used
across all CPUs. MATS time includes the differential splicing calcu-
lation, which we could not separate from the Ψ calculation. MISO
time includes the calculation of a confidence interval, but not the
differential splicing calculation.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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