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Abstract 

Recent technological advances for the acquisition of multi-omics data have allowed an 35 

unprecedented understanding of the complex intricacies of biological systems. In parallel, a 

myriad of computational analysis techniques and bioinformatics tools have been developed, 

with many efforts directed towards the creation and interpretation of networks from this data. 

In this review, we begin by examining key network concepts and terminology. Then, 

computational tools that allow for their construction and analysis from high-throughput omics 40 

datasets are presented. We focus on the study of functional relationships such as co-

expression, protein-protein interactions, and regulatory interactions that are particularly 

amenable to modeling using the framework of networks. We envisage that many potential 

users of these analytical strategies may not be completely literate in programming languages 

and code adaptation, and for this reason, emphasis is given to tools' user-friendliness, 45 

including plugins for the widely adopted Cytoscape software, an open-source, cross-platform 

tool for network analysis, visualization, and data integration. 

 

Keywords 

correlation networks; graph; high-throughput sequencing; network analysis; omics; protein-50 

protein interaction; regulatory networks; systems biology. 

 

1. Introduction 

The analysis of high-throughput datasets using the framework of networks has gained 

widespread adoption in the biological sciences. With approaches in this field shifting from a 55 

mostly reductionist perspective towards a more holistic view of natural phenomena (Barabási 

and Oltvai, 2004; Berlin et al., 2017), the analytical tools used to extract knowledge from 

data have also adapted. The vocabulary of networks is particularly suitable for studying 

problems that explicitly focus on the relationships among elements, where the latter can be 

any entity under study, including but not limited to genes, transcripts, proteins, or 60 

metabolites. With sheer amounts of data that can be obtained from instruments such as high-

throughput sequencers, analytical strategies that permit broader insights of the functional 

roles of each element are warranted, and this can be achieved by the use of network 

approaches. 

 65 

In this Review, we focus on the various uses of network methods to the analysis of large-

scale omics datasets, which are those generated using medium- and high-throughput 

Provisional



3 
 

technologies in genomics, transcriptomics, proteomics, and metabolomics experiments. First, 

key concepts and terminology of this area are presented, followed by the introduction of 

biological network variants, namely correlation networks (Section 2.1), gene regulatory 70 

networks (Section 2.2), and protein-protein interaction networks (Section 2.3). Methods to 

perform key analysis in a network are presented in Section 2.4. With every approach, 

computational tools that we considered both appropriate and user-friendly are presented. 

User-friendly tools were defined as those that provide a point-and-click graphical user 

interface (GUI), which does not mean that they have limited functionality or that they are 75 

only used by those without extensive programming literacy. Rather, they can be used to 

complement analyses performed in different environments, such as R or Python scripts, and 

usually offer improved layouts and visualization modes compared to less friendly 

alternatives. Our Review differs from that of others who have engaged in similar challenges 

(for instance, the works of Aittokallio and Schwikowski, 2006; Huang et al., 2017; and 80 

Stevens et al., 2014), since we primarily target the non-programmer who wants to apply 

network methods to a dataset of interest. Luckily, network analysis is an area that has greatly 

benefited from the existence of excellent analysis software such as Cytoscape (Shannon et al., 

2003) (https://cytoscape.org/), Gephi (Bastian et al., 2009) (https://gephi.org), and 

NAViGaTOR (Brown et al., 2009), to name a few. Gephi and Cytoscape, in particular, can be 85 

extended by the many plugins created by third-party developers and available in official 

repositories (Saito et al., 2012), and these were at the heart of the current review. While the 

aforementioned types of networks are widely employed, there are many other applications 

that are not in the scope of this work. As an example, the modeling of (bio)chemical networks 

using graph-theoretic approaches have advanced our understanding of bacterial and 90 

eukaryotic metabolism (Dutta et al., 2014; Jha et al., 2015; Klein et al., 2012), and were the 

object of previous reviews (see, e.g., Cottret and Jourdan, 2010; Lacroix et al., 2008). 

Biology and Biomedicine are, indeed, areas which have been greatly benefited by the use of 

network techniques resulting from cross-pollination among disciplines. 

 95 

1.1. Beyond the empirical, towards formalism: what are networks? 

Network is a general term used in many different contexts: social networks, traffic networks, 

ecological networks, computer networks, among others, all share a common theme related to 

the interaction among a set of disparate elements, viz. people, vehicles, species, and 

computers. The topology of networks and the interactions within can be formally studied 100 

from a graph-theoretic viewpoint, which allows for a mathematical representation and 
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formalism, while also facilitating visualization of the network. Since several distinct graph 

representations exist, for generality we will focus on the description of simpler types of 

graphs. In general, a graph 𝓖 = (𝑉, 𝐸) is composed of a finite set 𝑉 of nodes (or vertices), 

and 𝐸 of (directed or undirected) edges (or links). In the case of omics datasets, each node 105 𝑣 ∈ 𝑉 could represent a (bio)chemical entity such as a gene, transcript, protein, or metabolite, 

and an edge 𝑒 = {𝑣1, 𝑣2} ∈ 𝐸 exists between two nodes when there is evidence for their 

interaction, which in turn depends on the specific aim of the modeled network, which guides 

the definition of interaction. For instance, in the simplest type of correlation network, one 

could specify a hard threshold over all pairwise values of Pearson's correlation coefficients in 110 

order to determine whether any two nodes are connected. On the other hand, in a protein-

protein interaction (PPI) network, edges between protein nodes exist when evidence for their 

physical interaction is available, which could be obtained by a wealth of techniques that 

include co-immunoprecipitation, affinity purification, proteomics, and computational 

approaches (Ngounou Wetie et al., 2014). 115 

 

The edges in a graph can be undirected (Figure 1A) or directed (Figure 1B,C), depending on 

whether the interactions between elements are symmetric or not. In directed graphs, there is a 

specific sense pointing at the direction of a given interaction, such as a transcription factor 

that regulates a given gene in a regulatory network (a causal relationship), while undirected 120 

graphs describe two-way associations such as the co-expression of genes in a correlation 

network, in which a significant correlation per se does not provide sufficient evidence to infer 

whether any of the compared genes regulates or is being regulated by the other, or even by an 

upstream regulator acting on both simultaneously. That is, correlation does not imply 

causation, and hence the undirected graph is a more appropriate representation of this 125 

relationship. 

 

Graphs can also have numerical weights associated with each interaction, the interpretation of 

which depends on the specific application under study (Figure 1C). In a correlation network, 

for instance, weights could represent the magnitude of the correlation statistic. Also possible 130 

is to set weights based on the confidence of the interaction as measured by a relevant 

parameter. As an example, the STRING database (http://string-db.org), which harbors 

information on physical and functional protein-protein interactions, quantifies interaction 

weights between proteins as a combined score dependent on the nature (experimental or 
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computational prediction) and quality of the supporting evidence (Szklarczyk et al., 2017). 135 

Table 1 summarizes the biological interpretation of nodes, edges, and edge weights for the 

three types of networks considered in this study. While these interpretations are typical for 

these kinds of biological networks, studies may employ different analytical strategies that 

lead to variations on how to account edge directionality or weights, for instance. As an 

example, regulatory networks are usually inferred using a bipartite graph representation, 140 

where nodes are of two different types (either a transcription factor or a target gene). In this 

case, edge directionality characterizes an underlying regulatory event (activation or 

inhibition) of a transcription factor towards a target gene, hence these networks are usually 

modeled as a directed graph (Narasimhan et al., 2009; Song et al., 2017). 

 145 

2. How to disclose networks from high-throughput omics datasets 

In the following sections, we review and discuss methods to construct various types of 

networks using a wealth of omics datasets as input (Figure 1D). While many different 

computational methodologies to achieve the construction of a network exist, we focus on 

those that we considered more apt for users without a computational background, especially 150 

those that are based on plugins for the popular software Cytoscape (Shannon et al., 2003), 

which allows visualization, rendering, and analysis of networks in the same computational 

environment, with the advantage of being open-source, platform-independent, and 

continuously updated. Once the tools to build these biological networks are covered, we shift 

our focus towards analysis and visualization aspects of graphs, which are covered in Section 155 

2.4 (Figure 1E). 

 

2.1. Correlation networks allow disclosing of relevant associations in omics datasets 

Recent advances in high-throughput technologies have increased our capacity to assess the 

elements in different omics layers, allowing their simultaneous treatment in single grouped 160 

mechanisms that together explain biological events (Carpenter and Sabatini, 2004; Vella et 

al., 2017). In this sense, the processes that allow for life maintenance in cells can be regarded 

as an intricate web of complex relationships between molecules such as proteins, lipids, 

metabolites, and nucleic acids (RNA and DNA) (Barabási et al., 2011). Correlations are 

arguably the dominant way to infer relationships not only between the elements in these 165 

distinct layers of information but also within each layer, as it allows simultaneously 

examining the associations that drive an observed biological effect, and there are several 

ways of calculating correlation coefficients. Statistically, the correlation is a measure of the 
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two-way linear association between a pair of variables (Mukaka, 2012). The correlation 

coefficient permits estimating the degree or strength of this association. The most common 170 

and classic correlation statistic is the Pearson's correlation coefficient (or r), which measures 

linear associations between two variables under the assumption that the data be normally 

distributed and that observations are independent (Walter and Altman, 1992). Non-parametric 

methods based on ranks avoid the assumption of normality and are preferred when the data is 

ordinal, skewed, or presents extreme values (outliers). One such method is the Spearman 175 

correlation coefficient, which is a calculation of Pearson's correlation coefficient on the ranks 

of the observations, rather than on the raw data, and yields an rS statistic (also called ρ, rho). 

The Kendall rank correlation coefficient (also called τ, tau) uses the number of concordant 

and discordant rank pairs to evaluate association. The biweight midcorrelation is less prone to 

outlier influence because it is a median-based estimation and, like the two previous, yields a 180 

robust measurement of association, with the drawback that few tools are available that 

calculate this metric (Langfelder and Horvath, 2012). Correlation coefficients (r, rs, ρ, or τ) 

are a dimensionless quantity ranging from -1 to 1, where values close to zero indicate no 

(linear) association whilst values equal to or near 1 (or -1) indicate strong, positive (or 

negative) correlations, although absolute values as low as 0.3 can already be considered a 185 

weak correlation depending on the context (Mukaka, 2012).  

 

Since the relationships between genes, proteins, metabolites and biological entities in general 

are complex and often nonlinear, while having distributions that can be non-normal, 

alternative measurements of association are often required (Hardin et al., 2007), and include 190 

information-theoretical measures such as Mutual Information (MI). MI quantifies the 

dependence between a pair of random variables and, based on the concept of entropy, 

estimates how much knowledge is gained about a variable (say, expression values of a gene 

X) by observing a second variable (say, expression values of a gene Y), hence its name. The 

MI is zero when the variables are statistically independent, while a positive value denotes a 195 

degree of dependence (Steuer et al., 2002). In a scenario of statistical independence, the 

distribution of values of variable X is not altered at all when those of variable Y changes. It is 

worth noting that traditional association measures that disclose only linear relationships are 

insufficient to reveal statistical independence, exactly because there can be non-linear 

relationships in the data that these methods do not adequately capture. We refer the reader to 200 

the review of de Siqueira Santos et al. (2014) on statistical dependency identification, who 
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further provide illustrative biological examples and simulations using various association 

statistics. 

 

Correlations can be visually assessed by plotting the data as a scatter plot fitted by a line, 205 

where the further the data lie from the straight line, the weaker the correlation (Figure 2A). 

While this approach is feasible when few variables are compared, it has limited practicality 

when dealing with large-scale omics datasets, such as high-throughput expression profiling 

and proteomics. In these cases, methods that create correlation networks are preferred 

(Langfelder and Horvath, 2008; Vella et al., 2017; Zhang and Horvath, 2005). Once a 210 

correlation (or other association statistic) matrix is attained, a network can be inferred. A co-

expression network is a particular case of correlation network constructed using genome-

wide expression data, although the term is sometimes used to refer to networks created by 

correlating the abundance of protein or metabolites in proteomics and metabolomics studies. 

In this network, the nodes are elements such as genes, proteins, or metabolites, and an 215 

undirected edge connects a pair of nodes if the correlation statistic between them exceeds a 

given threshold (Figure 2C). This 'hard-threshold' approach represents the simplest form of 

inducing a network from omics data, and is limited by the arbitrary nature of the threshold 

used, which will dismiss slightly undervalued correlations that could be potentially relevant. 

An alternative, more sophisticated approach to disclose co-expression networks is by using 220 

soft-thresholding approaches, of which the weighted gene co-expression network analysis 

(WGCNA) algorithm is among the most widely employed methods (Langfelder and Horvath, 

2008). The main advantage of the WGCNA approach is that no arbitrary thresholding on the 

correlation values is enforced, which effectively preserves the continuous nature of the 

correlation distribution. In addition, it is not impacted by the arbitrariness of hard-225 

thresholding methods. In WGCNA, once all pairwise correlations are calculated, an 

adjacency matrix, which holds information on edge strengths, is obtained by applying a 

power transformation of the form 𝑓(𝑥) = 𝑥𝛽, where x are correlation values and β is the soft-

thresholding parameter, a positive value set by the user such that the resulting network 

presents an approximately scale-free property while maintaining high connectivity (see Box 1 230 

for a primer of important network definitions). As a result, high correlations are emphasized 

at the expense of low correlations, but without the need of setting an explicit threshold on the 

correlation values themselves. 
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User-friendly tools for constructing correlation networks 

Gene/protein correlation network analysis can be performed using in-house scripts and 235 

packages for general-purpose programming languages such as R, Python, Perl, or Java. 

However, alternatives exist for the bioinformatics user that wants to apply such methods to 

their data in the absence of a solid computational background (Table 2). One of them is 

based on the Cytoscape environment, which also allows for installing third-party plugins. A 

specific app developed for correlation network analysis, the ExpressionCorrelation app 240 

(available at http://apps.cytoscape.org/apps/expressioncorrelation), presents a Pearson's 

correlation-based solution. Thus, a table of gene/protein/metabolites measurements is the 

input and Cytoscape can generate the gene and sample correlation network. This plugin has 

been applied to the construction of many networks, exemplified by an Anopheles gene co-

expression network (Shrinet et al., 2014), a correlation network from Aspergillus metabolites 245 

highlighting those significantly associated to anticancer and antitrypanosomal bioactivity 

(Tawfike et al., 2019), and co-expression networks from cancer datasets (Wang et al., 2016b; 

Zhang et al., 2016). Pearson's correlation statistic, however, presents several limitations as 

pointed out in the previous section. The Cyni toolbox app circumvents this difficulty by 

allowing calculation of rank-based correlations such as Spearman's and Kendall's, in addition 250 

to Pearson's coefficient (Guitart-Pla et al., 2015). Figure 3 shows a bacterial co-expression 

network constructed using Cyni. 

 

Another user-friendly solution is geWorkbench (Floratos et al., 2010). This tool is an open 

source Java desktop application that allows correlation using an ARACNe (mutual 255 

information-based) implementation (Margolin et al., 2006a), and is particularly suitable for 

finding regulatory networks from transcriptomic data. In addition, the workbench allows for 

parameter estimation and is fairly flexible for user customization. Its advantages over the 

Cytoscape ExpressionCorrelation app include the possibility of p-value threshold 

modification and correction, as well as bootstrap resampling. Thus, the program permits 260 

evaluating the statistical significance of the network and keep the more robust associations. 

However, the user-friendly advantage is not without its costs: the plugin is limited to the 

calculation of regular correlations (Pearson's and Spearman's) and mutual information. Also, 

the use of more robust correlation statistics, such as the biweight midcorrelation, still requires 

proficiency in programming languages/R packages, since so far there are no alternatives that 265 

incorporate this measure. 
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The construction of weighted networks using the soft-thresholding approach employed by 

WGCNA requires the execution of a multi-step pipeline implemented as an R package 

(Langfelder and Horvath, 2008), thus requiring programming skills to correctly adapt and 270 

parametrize the functions and the dataset itself. To circumvent this need, a webserver 

adaptation of the WGCNA method was recently published as webCEMiTool, allowing an 

user-friendly approach to disclose a weighted co-expression network, detect modules therein, 

and produce publication-quality visualizations (https://cemitool.sysbio.tools/) (Cardozo et al., 

2019). In this context, modules are considered as groups of genes with similar expression 275 

profiles, which tend to have related biological functions or be under the influence of the same 

transcriptional regulator, but a more ample discussion of modularity is presented in Section 

2.4. webCEMiTool also has a built-in method to automatically select the optimal value of β 

(the soft-thresholding parameter), which is described elsewhere (Russo et al., 2018) and, like 

the original WGCNA algorithm, it could also be used to disclose correlation networks from 280 

proteomics or metabolomics datasets. Pathway enrichment analysis can be run directly from 

the webCEMiTool application, as it interfaces with the Enrichr platform (Kuleshov et al., 

2016) which comprises over a hundred gene set libraries, thus facilitating the interpretation 

and extraction of knowledge from the inferred network. 

 285 

2.2. Gene regulatory networks permit an improved understanding of the cell's 

transcriptional circuitry 

Gene (transcriptional) regulatory networks, or GRNs, are models that aim at the elucidation 

of genetic information processing, aiding on the understanding of organism development. A 

GRN is based on the following elements: transcription factors (TFs), target genes, and their 290 

regulatory elements in the upstream region. TFs are identified using computational tools 

based on sequence homology and through motif conservation across transcription factor 

families. Each TF can act on the transcription of multiple genes. In the upstream region of 

each target gene, there exist elements/motifs that are recognized by the TF, and the gene is 

subsequently transcribed. When located upstream of a gene, these motifs are called cis-295 

elements. Identification of cis-elements can be performed by biological experiments, such as 

by chromatin immunoprecipitation (ChIP)-seq methodology (Lee et al., 2006), or 

computationally by alignment of known motifs or by the identification of novel motifs. The 

latter are called de novo approaches and employ mathematical structures such as hidden 

Markov models (HMM) (Bailey et al., 2009). Typically, after the identification or discovery 300 
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of new cis-elements, an enrichment analysis is performed using Fisher's exact test for 

identification of enriched motifs in the set of upstream regions from target genes. 

 

On the other hand, the prediction of TFs-target genes interactions can be performed using a 

reverse engineering-based strategy. The top-down approach is particularly suitable in this 305 

context and uses information from gene expression datasets to detect expression patterns and 

then induce a GRN (Hache et al., 2009; Hartemink, 2005). The first models used to infer 

GRNs were based on the Pearson correlation coefficient but failed to capture non-linear 

pattern dependencies (as previously addressed). Other approaches were subsequently 

developed and applied to disclose GRNs in a more robust way, and included regression 310 

(Huynh-Thu et al., 2010), mutual information (Margolin et al., 2006a), partial correlations 

(Wille et al., 2004), and variations of these (Luo et al., 2008; Meyer et al., 2008). Despite 

each method having its peculiarities, GRNs inferred by diverse techniques usually do not 

present large differences (de Matos Simoes et al., 2013), and bootstrap analysis could be used 

to infer more robust GRNs. Another difficulty is the existence of regulation patterns that 315 

occur in rare conditions and cannot be easily detected, requiring specific wet-lab experiments 

for this purpose. 

 

The study of gene regulation can take two main paths: i) GRN inference and ii) dynamic 

modeling, which can be performed either in isolation or in conjunction. We focused on 320 

methods that accomplish the first goal, while the latter can be attained using a diverse array 

of techniques that include Boolean formalism (logical models), Bayesian dynamic networks, 

and Ordinary Differential Equations (studied elsewhere, e.g., Kaderali and Radde 2008; Naldi 

et al. 2009; and Chai et al. 2014). The representation of inferred GRNs can be in the form of 

bipartite graphs which, in contrast to the simple graphs presented in the Introduction and in 325 

the construction of co-expression networks, have nodes of two types: TFs or target genes, and 

edges between them indicate a regulatory interaction (Table 1, Figure 4A). This type of 

representation is usually employed to GRNs originated from co-expression relationships 

because usually no a priori information is available about the type of regulation that the 

transcription factor exerts on the target genes. Logical models, on the other hand, incorporate 330 

prior information on gene activation and repression, and the modeling of these relationships 

permit the capturing of the global dynamic behavior of the regulatory network in a simple 

fashion. An example of such a network from the human GRN, available in TRRUST 

database, is shown in Figure 4B. 
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User-friendly tools for constructing gene regulatory networks 335 

As seen above, construction of GRNs is based on interaction inference between TFs and 

target genes, and on the identification of cis-elements in the upstream region of target genes. 

Next, we present user-friendly tools to perform both steps. Gene regulatory networks inferred 

based on gene expression patterns are considered of intermediate value because they require 

improvement and validation with biological experiments. Traditionally, the inference of 340 

GRNs has been performed with tools based on command-line or in the R programming 

language such as ARACNe (Margolin et al., 2006a), but current alternatives include more 

user-friendly approaches which are listed in Table 3. These include an ARACNe 

implementation in geWorkbench, which was listed previously in the correlation network 

section, and also available are the Cytoscape plugins CyGenexpi (Modrák and Vohradský, 345 

2018), CyNetworkBMA (Fronczuk et al., 2015), GRNCOP2 (Gallo et al., 2011), and 

iRegulon (Janky et al., 2014) (Table 3). 

 

The ARACNe package is based on mutual information index to establish interactions 

between a pair of genes, such as a TF and a target gene; moreover, this tool employs 350 

bootstrapping to generate a consensus and robust network (Margolin et al., 2006b). 

CyGenexpi is based on an ordinary differential equation (ODE) model applied on time series 

data that together with static binding (e.g., ChIP-seq) or information obtained from the 

literature allows inferring of gene regulatory modules in bacteria (Modrák and Vohradský, 

2018). CyNetworkBMA employs a Bayesian Model Averaging algorithm to infer GRNs with 355 

a user-friendly interface and executes network processing on top of R code, which accelerates 

the inference process by allowing parallel processing (Fronczuk et al., 2015). Additionally, 

CyNetworkBMA can compute some statistics for the network evaluation, including ROC 

(Receiver Operating Characteristic) and precision-recall curves. The package GRNCOP2 has 

an algorithm based on machine learning with a model-free combinatorial optimization to 360 

infer time-delayed gene regulatory networks from genome-wide time series datasets (Gallo et 

al., 2011). The GRNs inference from the iRegulon package is based on analysis of cis-

regulatory sequences from target genes and performs a genome-wide ranking-and-recovery 

strategy to detect enriched motifs related to TFs and their optimal sets of direct targets (Janky 

et al., 2014). 365 

 

Like other types of biological data, GRNs can be stored on public databases which can be 

queried by other scientists. In this context, databases that permit storing and downloading of 
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GRNs include TRRUST (Han et al., 2018), RegNetwork (Liu et al., 2015), ORegAnno 

(Lesurf et al., 2016), and rSNPBase (Guo and Wang, 2018) (Table 3). TRRUST 370 

(Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining) 

database contains information obtained by computational mining and curated TFs-target 

genes interactions, and about TFs cis-regulatory elements in human and mouse. RegNetwork 

contains information of genic regulations by TFs and microRNAs, also in human and mouse. 

Similarly, NetworkAnalyst is a webserver that offers an integrated environment to establish 375 

TF-target gene and miRNA-target gene interactions (with data sourced from TarBase and 

miRTarBase). It works by mapping significant genes (such as those found differentially 

expressed in an RNA-seq experiment) to the corresponding molecular interaction database, 

and the resulting network can be exported to a Cytoscape-friendly input format. ORegAnno 

contains information about regulatory regions, TF binding sites, RNA binding sites, 380 

regulatory variants, haplotypes, and other regulatory elements for 18 species. Finally, 

rSNPBase contain information about SNPs on regulatory networks facilitating genetic 

studies, especially QTL studies. 

 

In the context of cis-regulatory elements, this step of GRN inference can be performed either 385 

by ChIP-chip experimental approaches or using computational tools from the MEME suite 

(Bailey et al., 2009), which is a user-friendly web tool (Table 3). 

 

2.3. Protein-protein interaction networks provide an integrated view of the proteome's 

organization and interactions 390 

Proteins are intrinsically involved in every aspect of cellular bioprocesses. Simplistically, 

they do so by interacting with other proteins and other biocomponents and the resulting 

interactions may be strong or transient depending on the biological mechanisms at hand. 

Thus, the analysis of protein-protein interactions is a valuable way to study protein 

complexes, protein function annotation, and states of health and disease (Barabási et al., 395 

2011; Snider et al., 2015). 

 

To begin understanding the emergent characteristics of PPI one has to retrieve interaction 

data, which can be obtained from high-throughput techniques, interaction databases, or 

interaction prediction algorithms. The yeast two-hybrid (Y2H) experimental approach 400 

verifies the binary interactions between proteins by fusing them to separate Gal4 transcription 

factor DNA binding and activating domains (BD and AD, respectively). The principle of the 
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technique relies on the interaction of a protein fused to BD, called bait, to the protein fused to 

AD, called prey. If bait and prey proteins interact, so do BD and AD, restoring the 

transcription factor activity which is reported in the assay. The Y2H is scalable and can be 405 

used to test protein interaction of many proteins in parallel with some automatization (Fields 

and Song, 1989). 

 

Along with Y2H, the affinity precipitation coupled to mass spectrometry (AP-MS) yields 

high-throughput interaction data. Affinity purification methods use the specificity of 410 

antibody-epitope interaction to co-purify tightly interacting proteins (Bauer and Kuster, 

2003). Coupling the purification phase to an identification step using MS provides means to 

massively generate interaction data. More PPI data can be retrieved from primary databases 

that store interaction information from experimental data or computational methods for 

interaction prediction that may involve protein sequence comparison, interologs comparison, 415 

protein surface docking, or evolutionary information using co-mutation profiles (Liu et al., 

2008; Schoenrock et al., 2017; Wiles et al., 2010). 

 

The nodes in a PPI network are proteins, and an edge is formed between a protein pair when 

there is evidence of interaction between them (Table 1). Interaction evidence may be 420 

accompanied by a score or by the qualification of that evidence, which can be set as an edge 

attribute to weight the support for that interaction. Usually, scores are calculated to assess the 

confidence in the interaction, i.e., whether the interaction is confirmed by experimental 

and/or computational methods. The edges in a PPI network are usually undirected, but 

depending on the specific objective of the reconstruction it could also be set as a directed 425 

network (Vinayagam et al., 2011, 2016). 

 

User-friendly tools for constructing protein-protein interaction networks 

Many online resources of PPI data are available from different experimental or computational 

methods and for diverse organisms in varying conditions. The webpage Pathguide1 presents a 430 

comprehensive list of metabolic pathways and molecular interaction resources available 

online and indicating if the resources are free to access, whether they follow a systems 

biology standard for information description and if they are still available. On the protein-

protein interaction section of Pathguide there are 320 listed databases, from which 246 are 

still online and accessible. On Table 4 we have listed some general protein-protein database 435 

resources. The databases listed are either free or available through academic licensing, with 
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the exception of STRING, which is free to use online, but in order to download the whole 

database a license must be purchased. The databases are classified as primary, when they 

gather experimental or literature-based knowledge, or secondary when they gather predicted 

protein interactions or reflect only a portion of the information available from primary 440 

databases (usually performing secondary analyses therein). The DIP database (Salwinski et 

al., 2004; Xenarios et al., 2000) has experimental interaction information that is curated 

automatically and manually giving the data high accuracy. STRING, which was briefly 

presented in the Introduction, is a database that provides experimental and/or predicted 

protein interaction data for over 5,000 organisms. From those listed in Table 4 it is the only 445 

database that needs a license purchase in order to have full access to offline data, while online 

use of the database is free. The IntAct database (Hermjakob et al., 2004; Kerrien et al., 2012) 

is open-source and maintained by the European Bioinformatics Institute (EBI), gathering 

experimental protein-protein and protein-compound interaction data. With both protein and 

genetic interaction data from experimental studies, BIOGRID is a freely available primary 450 

database (Chatr-Aryamontri et al., 2017; Stark et al., 2006). It is an excellent source of 

curated experimental data for many model organisms and especially valuable for budding and 

fission yeasts. The MINT database (Chatr-Aryamontri et al., 2008) provides interaction data 

derived from the literature and is freely accessible. The I2D database (Brown and Jurisica, 

2005, 2007) is available online and provides data for human protein-protein interactions 455 

which it imported from primary databases. It can also derive protein-protein interaction data 

for other model organisms if they can be mapped to human data. The Center for Cancer 

Systems Biology provides a primary interaction database named CCSB Interactome Database 

(http://interactome.dfci.harvard.edu/). The CCSB Interactome Database has experimental 

binary interaction data for model organisms which can be downloaded and searched freely. 460 

APID is a secondary database (Alonso-López et al., 2019) which gathers information from 

many primary databases, including the Protein Data Bank where protein structures are 

defined with interacting proteins. As an online web-tool, APID provides the possibility to 

select interaction properties and interactive mapping of the functional environment of 

proteins. HuRI, a derivation of the CCSB Interactome Database, is a database with binary 465 

protein-protein interactions for the human proteome and has three proteome scale protein-

protein network reconstructions for the human genome available. Finally, the IID (Kotlyar et 

al., 2016) database provides tissue-specific interaction data for model organisms and human, 

harboring both experimental and predicted interactions. 

 470 

Provisional



15 
 

To analyze interaction data, as for the other two previously discussed network approaches, 

programmable and GUI options are available. For more advanced users with a programming 

background, tools such as iGraph and NetworkX allow for automation and processing of 

large-scale datasets (Csardi and Nepusz, 2006; Hagberg et al., 2013), but user-friendly 

alternatives also exist, which are compiled in Table 5. The first step towards constructing a 475 

protein interaction network (PIN) is to get interaction data for proteins of interest. This can be 

done either by experimentation, as briefly described earlier, and/or by retrieving interaction 

data from the primary and secondary interaction databases described earlier. Interaction data 

can be directly downloaded or indirectly retrieved using programs or plugins, as is the case 

for Cytoscape. On the Interaction database category in Table 5 we list Cytoscape apps that 480 

can be used to interrogate and retrieve interaction data from various databases. Bisogenet 

searches for molecular interaction data from an in-house database, SysBiomics, which 

integrates data from other interaction databases such as DIP, BIOGRID, BIND, MINT and 

IntAct. The searches can be filtered to narrow the interaction space, and protein annotations 

are retrieved from NCBI, Uniprot, KEGG, and GO. The Bisogenet app also includes PIN 485 

analysis tools. CyPath2 searches for interaction data from the Pathway Commons integrated 

BioPAX pathway database. PSICQUIC is a built-in feature of Cytoscape that harbors over 10 

million binary interactions from 22 active data providers. The list of active providers of 

interaction data for PSICQUIC can be seen at the PSICQUIC Registry page2. StringApp 

imports protein-protein interaction data from STRING with a user provided protein list (or 490 

gene, compound, or disease list). Once imported, a matching network of interactions is 

disclosed, and functional enrichment analysis can be subsequently performed. The previously 

cited NetworkAnalyst is an online tool for multi-omics analysis, also allowing PPI 

visualization and analysis. It can take a network in standard format, render visualizations and 

perform network analysis, also receiving a gene list as input to construct an interaction 495 

network. Another online option is PINA (Protein Interaction Network Analysis platform), 

which generates PINs from a single protein, a list of proteins, a list of protein pairs or two 

lists of proteins. Networks generated by PINA can be modified with custom data or with 

different information from other public interaction databases. Lastly, DeDal is a Cytoscape 

app that embeds data information into the layout of the network, which can facilitate the user 500 

in data interpretation (Table 5). 

 

For PPI network analysis, besides the previously described online resources, Cytoscape apps 

can be used. Apps with the PPI-Network tag (Table 5) can be applied to study the resulting 
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network. CyNetSVM, specifically geared towards identification of cancer biomarkers, takes 505 

as input PINs and applies artificial intelligence techniques with gene expression data to aid in 

the prediction of clinical outcome. CytoGEDEVO is a Cytoscape app that is capable of 

aligning networks, especially PINs, which can be used to study the evolution and 

conservation of proteins interactions. A different approach on comparison of PPIs is used by 

the online application INTERSPIA (INTER-Species Protein Interaction Analysis), which is 510 

freely available. INSTERSPIA can identify interacting proteins in a user-specified list and 

disclose similar interaction patterns across multiple species. PE-measure, another Cytoscape 

app, can be used to confirm protein interactions in a network based on its structure, also 

helping users to identify spurious interactions. Further analysis in PPI networks can be 

achieved using other tools in Cytoscape. PEPPER, for instance, identifies protein complexes 515 

or pathways that are highly condensed using a gene set list as input, helping to integrate 

information such as protein connections with proteins on the gene set list that are involved in 

a particular phenotype change, e.g., disease, by finding functional modules. PINBPA is 

another app that aids in module discovery and is especially suited to integrate GWAS data 

into protein-protein networks, which can help identify enriched sub-networks and prioritize 520 

relevant genes. In Section 2.4 we return to the identification of modules in networks in 

general using algorithms that rely only on the network topology. Finally, PathLinker, a 

Cytoscape app, can infer signaling networks from protein-protein interaction networks by 

computing short paths in a PIN between receptor proteins, as source nodes, and target 

proteins, as transcription factors. 525 

 

2.4. A primer on network analysis and visualization 

Once a network of interest is attained, downstream analyses are warranted to extract relevant 

information and gain knowledge from the reconstruction. These analyses can be broadly 

divided into knowledge extraction and visualization steps. There are many methods to 530 

evaluate a network and leverage knowledge to help guide interpretation, and usually begins 

by exploring local and global interactions within the network. Metrics such as modularity, 

degree distribution, and other centrality measures are commonly applied to assist in the 

identification of important or influential nodes in a network (Barabási, 2016; Freeman, 1978; 

Jeong et al., 2001) (see Box 1). Cytoscape has the built-in plugin NetworkAnalyzer (Assenov 535 

et al., 2008) that computes many centrality metrics, and these can be extended by the 

Centiscape plugin, which implements ten centrality indexes (Scardoni et al., 2009). Gephi 

also provides built-in methods to calculate betweenness, eigenvector, and closeness centrality 
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measures, while bridging centrality can be calculated via a third-party plug-in (Bastian et al., 

2009). Different centrality methods will usually arrive at distinct rankings of important nodes, 540 

which is not unexpected since in order to establish importance each method takes into 

account different aspects of the data. Betweenness centrality, for instance, emphasizes the 

importance of a node by considering its contribution in allowing information to pass from one 

part of the network to the other (thus, a global measure of centrality), while degree centrality 

simply counts the number of connections between a node and its direct neighbors (thus, a 545 

local measure of centrality). For some applications, a combination of centrality metrics may 

be more appropriate, as has been suggested for metabolic network analysis (Rio et al., 2009). 

In Box 1 we present a comparison between selected centrality measures using a toy network, 

but an exhaustive evaluation is out of the scope of the current work, and efforts have been 

made to categorize and describe the various centrality indexes, such as the CentiServer online 550 

resource (http://www.centiserver.org) (Jalili et al., 2015), which harbors 232 measures of 

centrality in its last 2017 update, allowing users to input a network and calculate 55 

centralities indexes in an interactive web-based application. The use of centrality measures in 

biological networks dates back to 2001, when Jeong et al. (2001) postulated the 'centrality-

lethality rule' using a yeast protein interaction network, and found that the most highly 555 

connected proteins in the fungi's cellular network were those more important for its survival, 

establishing a connection between centrality (a graph-theoretical concept) and essentiality (a 

biological concept). 

 

Biological networks usually display internal structures that can be identified as subnetworks 560 

in modularity analysis (Blondel et al., 2008), which present as densely connected regions, and 

the disclosed modules can be visually inspected by applying, for instance, the qgraph 

approach (Epskamp et al., 2012) (Figure 2D). Modularity (or 𝑄) is used as a metric for 

defining the partitioning of a network and increases its value with increasing network 

community structure (Newman, 2006). The maximum modularity for a network is 𝑄 = 1, but 565 

in practice values for networks with strong community structure are typically in the range of 

0.3-0.7 (Newman and Girvan, 2004). Many module detection techniques have been 

developed in the recent years and broadly divide into clustering, decomposition, and 

biclustering methods, which have been subject of recent reviews (Rahiminejad et al., 2019; 

Saelens et al., 2018). Another use of this approach is to infer biological functions using the 570 

guilty-by-association principle, where the role of an uncharacterized gene (or protein) can be 

predicted by considering the broad functions of the genes with which it clusters in a 
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modularity analysis. As an example, groups of co-expressed genes have a greater chance of 

being functionally coupled, either by participating in a common biological pathway or by a 

shared regulatory mechanism, such as an upstream regulator. In this way, novel hypotheses 575 

about gene function are generated which can be subsequently explored using as basis a co-

expression network. This strategy has successfully led to the identification of novel 

schizophrenia risk genes, where a co-expression gene set enriched for protein-coding genes 

associated with the disease was disclosed (Pergola et al., 2017). As was the case for centrality 

metrics, both Gephi and Cytoscape offer modules to perform clustering analysis, and a 580 

Cytoscape example is shown in Figure 5. Gephi implements natively the Louvain algorithm, 

that finds modules by exploring the idea of increasing the network modularity in two phases: 

first, local modularity gains when neighboring nodes are included in the same cluster in an 

iterative fashion, which leads to local modularity maxima; second, by considering the 

disclosed modules from the first phase as communities and aggregating these communities 585 

iteratively (forming meta-communities) until attaining a new modularity maximum which 

cannot be increased further (Blondel et al., 2008). The efficiency of this algorithm allows its 

application to very large networks on the order of millions of nodes, one of the reasons why it 

has gained widespread adoption, with almost 9,000 citations (Blondel et al., 2008), including 

its application to disclose modules related to hepatic dysfunction (Soltis et al., 2017) and 590 

cancer (Ajorloo et al., 2017). Other clustering methods available in Gephi through third-party 

plugins are the Leiden (Traag et al., 2019) and the Girvan-Newman algorithms (Girvan and 

Newman, 2002). Girvan-Newman works by sequentially removing edges from the network 

until reaching a maximum modularity, and the nodes that remain connected in the resulting 

network represent the communities. It has been applied to a wealth of problems 595 

(accumulating over 11,000 citations), including to the successful recovery of communities of 

taxonomically-related organisms using protein sequence data as input (Andrade et al., 2011), 

but has the drawback of scaling cubically with the number of nodes in its worst case scenario, 

which limits its use to networks having not more than a few thousand nodes (Girvan and 

Newman, 2002; Rahiminejad et al., 2019). The Leiden method appeared more recently and 600 

claims to improve the quality of the disclosed modules compared to Louvain's method, as 

well as address some of its shortcomings (Traag et al., 2019). Other clustering methods are 

available through Cytoscape packages such as clusterMaker (Morris et al., 2011) and 

CytoCluster (Li et al., 2017b), with the latter implementing six clustering methods including 

OH-PIN. In contrast to the previous algorithms that only detect modules containing non-605 
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overlapping elements, OH-PIN discloses overlapping clusters typical of many biological 

networks, such as enzymes that catalyze reactions across multiple pathways. 

 

Once a network is constructed and analyzed from a topological standpoint using the previous 

approaches, several layout algorithms can be employed to generate visualizations of the 610 

network. While different visualization strategies do not alter the connectivity patterns 

between nodes, they aid during the identification of influential nodes and communities, while 

also allowing the organization of the network according to specific properties it may present, 

such as an underlying node hierarchy. Many layout algorithms are constrained by network 

size and can perform poorly (consuming extensive memory and CPU) when applied to the 615 

ordering of very large networks. Both Gephi (Bastian et al., 2009) and Cytoscape (Shannon et 

al., 2003) have a plethora of built-in visualization algorithms. In order to arrive at a suitable 

and pleasant network visualization a number of trial-and-error is involved, not only by 

qualitatively selecting layout algorithms (which can be coupled in sequence), but also by 

experimenting with different parameterizations schemes. Force-based algorithms are widely 620 

used to arrange networks and follow the general rule that linked nodes attract each other and 

non-linked nodes are mutually repelled, with inspiration from mechanical forces such as 

tension and compression acting through a spring, temperature gradients, or even 

electromagnetic forces. These methods rely only on the topology of the graph in order to 

arrange the nodes. Consequently, networks laid out according to force-directed strategies 625 

usually present similar edge lengths which have a low number of crossings, resulting in an 

aesthetically pleasing visualization. In Cytoscape, force-directed-based algorithms include the 

compound spring embedder and prefuse force-directed spring layout, while Gephi 

implements ForceAtlas2, Fruchterman-Reingold, Yifan-Hu, and OpenOrd. OpenOrd is 

particularly suitable for large graphs, scaling well for networks over 1 million nodes, and can 630 

be followed by the Yifan-Hu layout in order to produce appealing visualizations in such large 

networks (Pavlopoulos et al., 2017). Both Gephi and Cytoscape can expand their repertoire of 

layout methods using third-party plugins, such as the proprietary yFiles plugin for Cytoscape 

which offers nine options for network layout, many of which are multi-purpose such as the 

force-directed organic (which works well for large graphs) and orthogonal layouts (best 635 

applicable to medium-sized networks, routing edges orthogonally), as well as the hierarchic 

(useful for portraying precedence relationships) and circular layouts (producing star and ring 

topologies that are useful for visualization of regulatory relationships). 
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3. Networks, networks everywhere: health and disease from a global standpoint 640 

Networks are now widely employed to help make sense of high-throughput omics data. 

Figure 6 shows that usage of the networks methods that were covered in this Review are on 

the rise in the scientific literature. Particularly in the last 5 years, there has been a steep 

increase in their adoption, especially for co-expression networks, which can be partly due to 

the falling of sequencing costs, but also to the recent availability of some of the more user-645 

friendly tools that were put available and reviewed herein. 

 

Integrative approaches are particularly suitable for the study of diseases, as they are hardly 

the effect of single perturbations. These networks allow the identification of associations 

between the measured components as well as identifying communities (or modules) that 650 

could mediate a link between normal and diseased states, including regulatory interactions. 

Applications of correlation networks include hub genes identification in several diseases such 

as cancer (Oh et al., 2015), chronic fatigue syndrome (Presson et al., 2008), diabetes (Keller 

et al., 2008), and in the multivariate disease autism (Voineagu et al., 2011). The use of 

networks in the context of the neglected tropical disease leishmaniasis was also recently 655 

reviewed (Veras et al., 2018). Also performed were the stratification of breast cancer 

subtypes using human plasma metabolomics (Fan et al., 2016), the study of extracellular 

proteins in serum to disclose information on human disease states (Emilsson et al., 2018), and 

the evaluation of coordinated expression patterns in different brain regions in Alzheimer's 

disease (Wang et al., 2016a). These many studies revealed important pathways and networks 660 

of interconnected bioelements that associate with health and disease phenotypes. Co-

expression and correlation networks were also used to understanding the immune response of 

humans to vaccination, disclosing vaccine-induced transcriptional signatures that correlated 

to protection (Li et al., 2017c; Nakaya et al., 2015), and have also been derived from multi-

omics data to the understanding and tackling of disease complications from diabetes-665 

tuberculosis comorbidity, where a correlation network constructed from whole-blood gene 

expression and plasma cytokine measurements was obtained (Prada-Medina et al., 2017). 

 

Finally, disease-disease association uses the information of disease-modules in order to 

identify common nodes (proteins, genes, metabolites) between diseases which can help 670 

pinpoint disease comorbidity or predisposition between conditions. This approach can 

potentially accelerate drug design since drugs that target interactions that are common 

between conditions could have a better treatment impact (Barabási et al., 2011). These 
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methods were widely employed to construct disease-disease and gene-disease networks 

(Dong et al., 2018; Li et al., 2017a; Liu et al., 2018; Serão et al., 2011; Wiredja et al., 2017; 675 

Zhang et al., 2018). 

 

While co-expression and protein-protein interaction networks are tightly related, they are 

both under the control of regulatory elements, thus the importance of GRNs. Environmental 

stimuli, pathogen exposure and other disease statuses can trigger a myriad of responses in a 680 

cell, including the cascade signals that are recognized by transcription factors, which in 

response modulate gene expression. Due to the specificity of GRNs for the conditions of 

interest, there are multiple GRNs that were generated from specific conditions, such as 

tissues, environments, pathologies, and the combination of these factors (Emmert-Streib et 

al., 2014; Guan et al., 2012). This availability of networks from specific conditions can be 685 

used to support other studies with similar conditions or used to improve GRNs for other 

species. In this context, GRNs can be used in health as maps and biomarkers to characterize 

genetic perturbations associated to rare hereditary variants such as SNPs in the regulatory 

region of a disease-related gene of interest (Guo and Wang, 2018). 

 690 

4. Conclusions 

A variety of tools are available to support the construction of biological networks from omics 

data. Although user-friendliness is usually not a top priority for developers, it can be readily 

attained with the help of excellent frameworks such as Cytoscape, for which a multitude of 

plugins are available that permits greatly expanding the capacities of the software beyond its 695 

original scope. Also, webserver versions of hitherto command-line only software are 

increasingly being published. We expect that user empowerment through the breaking of 

barriers imposed by programming language requirements will allow further adoption of 

network strategies and accelerate the extraction of knowledge and insights from biological 

data. 700 

 

Box 1 - Key concepts applied to biological networks 

Biological networks are composed of nodes that can represent different bioentities and have 

different biological importance for a given network. Regardless of the network size, shared 

commonalities exist between different biological networks, which allow their comparison. 
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The concepts below describe some characteristics of biological networks and different 

metrics for topological evaluation of nodes, allowing for prioritization of important 

elements in the network. 

  

Scale-free. A network is considered scale-free when its degree distribution follows a power 

law. Thus, it is characterized by the presence of many small-degree nodes together with a 

few highly connected nodes (or hubs), forming an inhomogeneous network. Many 

biological networks exhibit the scale-free property, including protein interaction and gene 

co-expression networks. 

Small-world. When networks exhibit a low number of node intermediates separating any 

two nodes in the network (ie., low average distance), it is considered a small-world 

network. 

Modularity. Biological networks tend to form modules, or clusters of highly connected 

nodes (Figure box A). Modularity takes values between -1 and 1 and reflects the link 

density within a module as compared to links between modules. In biological networks, 

nodes with similar functions have a bias to form functional modules.  

Hubs. The most highly linked nodes in a network are called hub nodes, which play an 

important role in defining network scale-freeness. The term is also used to refer to nodes 

that display high centrality as measured using a relevant metric (see below). 

Shortest (or geodesic) path. A shortest path is the minimum series of edges that should be 

traversed to connect two nodes in a network. In a weighted graph, it is the path lending to 

the minimum sum of edge weights between a node pair. 

  

Node centrality metrics 

Each component of a network presents topological characteristics that can be translated into 

biological knowledge and help establish the identification of relevant nodes: 

Node degree. Refers to the number of nodes directly connected to a specific node, and is 

obtained by counting the number of interactions that a specific node has with other nodes in 

the network (Figure box B). When the network is directed, this is separated into out-degree 

(the number of outgoing links from a node) and in-degree (the number of ingoing links in a 

node). The higher is the degree of a node, the higher will be the probability that it is a hub. 

Nodes with high degree centrality have more influence on the structure and functionality of 

a network than nodes with a low degree. 
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Betweenness centrality. Measures the importance of a node to the connection of different 

parts of a network (Figure box C). The betweenness centrality for a node is the proportion, 

among all shortest paths, of those that use the given node as intermediate. Nodes with these 

characteristics are usually referred as bottlenecks and can also be considered hubs. 

Closeness centrality. Measures how close a node is to all the other nodes in the network 

(Figure box D). It is calculated by the reciprocal sum of all shortest paths to all other nodes 

of the network. The higher the closeness centrality for a node, the closer is the relationship 

with the remaining nodes in the network. 
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Topological properties of a toy network. The modular aspect of the network is apparent in 

A, with two modules (or partitions) shown. The size of the nodes in B-D are proportional 

to, respectively, the node degree, betweenness centrality, and closeness centrality. 

 

 

 

 705 
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Footnotes 

1http://www.pathguide.org; the webpage is maintained by Dr. Gary Bader at the University of 

Toronto. 

2Available at 

<http://www.ebi.ac.uk/Tools/webservices/psicquic/registry/registry?action=STATUS>. 710 
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Figure Legends 

 

Figure 1 

A roadmap to network concepts covered in this review. Three simple six-node graphs are 1110 

shown in the upper panel. These graphs can be undirected (A), directed (B) or weighted 

directed (C). In the latter, the thickness of edges reflects the weights of the interactions. 

Various omics datasets can be analyzed using the language of networks, which are discussed 

in the following sections (D). (E) Once a network is attained, further analyses are warranted, 

such as disclosing modules or communities and calculating topological metrics such as node 1115 

degree and betweenness centrality (BC), covered in Section 2.4. The size of a node is 

proportional to its degree, while the color reflects the community structure in this illustrative 

example where two modules are disclosed. For selected nodes, interpretations of node BC 

and degree are presented. 

 1120 

Figure 2 

Different views on assessing correlations. (A) Classic scatter plot with correlation curve 

(straight black line). (B) Correlation matrix plot, designed with the corrplot package (Wei 

and Simko, 2017). (C) Circular layout correlation network, designed with Gephi (Bastian et 

al., 2009). (D) Complex correlation network with modularity coloring, designed with qgraph 1125 

package (Epskamp et al., 2012). 

 

Figure 3 

A correlation network constructed using Cytoscape 3.2. The network was built using a 

bacterial expression dataset, and nodes represent annotated genes, with edges connecting 1130 

nodes if they pass a correlation threshold calculated using Spearman's rank correlation in the 

Cyni Toolbox. In the picture a pop-up menu with the calculated network metrics (using the 

NetworkAnalyzer plugin in Cytoscape) is shown. Besides the network zoom, the program 

also shows the whole network in the lower-right screen, as a miniature. 

 1135 

Figure 4 

Different ways to represent gene regulatory networks. (A) Toy networks exemplifying 

bipartite and logical (Boolean) graphs. (B) A real example of the human gene regulatory 

network extracted from TRRUST database, and its graphical representation as a bipartite and 

a logical networks. 1140 
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Figure 5 

Typical network analyses performed using Cytoscape. A network of yeast protein interaction 

data is presented (A), with node size scaled with betweenness centrality, which help in 

straightforward identification of important nodes in this network. Nodes are colored 1145 

according to its membership to a community as determined using the Girvan-Newman fast 

greedy algorithm implementation in the clusterMaker plugin (Morris et al., 2011). Colors for 

each community were chosen automatically using a color-generating function and a discrete 

mapping, with modules numbered sequentially in the left column shown in B, and colors (in 

RGB and hex formats) on the right. Properties of nodes are shown below in C, including 1150 

some centrality measures. These can be downloaded in-whole as a table for downstream 

analyses. The network is arranged according to a force-directed layout algorithm. 

 

Figure 6 

Network methods on the rise. Searches in PubMed (http://ncbi.nlm.nih.gov/pubmed) were 1155 

performed to identify the all-time use of co-expression networks (query: "co-expression 

network" OR "coexpression network"), gene regulatory networks (GRN; query: "gene 

regulatory network"), and protein-protein interaction networks (PPI; query: "protein-protein 

interaction network"). Data for 2019 is partial (up to March) and are displayed as open points. 
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Tables 1170 

 

Table 1 - Biological interpretation of nodes, edges, and edge weights for the omics-derived 

networks under study. 

Type of 

network 

Graph 

representati

on 

Edge 

directionalit

y 

Biological interpretation of 

nodes edges edge weights 

Correlation 

network 

Simple graph Undirected Genes, proteins, 

or metabolites 

Correlation (co-

expression) 

between a pair of 

biological entities, 

which is 

calculated from a 

measure of 

abundance, such 

as gene expression 

or metabolite 

concentration 

The strength of 

correlation (co-

expression) between 

the pair of nodes 

Gene regulatory 

network 

Simple or 

bipartite 

graphs 

Usually 

directed 

Genes in the 

simple graph; 

transcription 

factors and target-

genes in the 

bipartite graph 

A regulatory 

relationship  

The degree of the 

regulatory 

relationship 

Protein-protein 

interaction 

network 

Simple graph Usually 

undirected 

Proteins The direct contact 

(physical binding) 

between proteins, 

but can represent 

indirect 

(functional) 

interactions 

between the 

peptides 

Usually unweighted, 

but can be valued to 

represent the support 

(confidence) for a 

given interaction 
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Table 2 - User-friendly computational tools for inferring correlation networks. 

Tool Description Platform Reference/URL 

Cyni toolbox (Cytoscape) Performs several correlation analyses and 

includes other networks inference 

algorithms. 

Multi http://apps.cytoscape.org

/apps/cynitoolbox; 

(Guitart-Pla et al., 2015) 

Expression Correlation app 

(Cytoscape) 

Performs Pearson correlation analysis 

and network inference. 

Multi http://apps.cytoscape.org

/apps/expressioncorrelati

on 
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ARACNe/Mutual Information 

(geWorkbench) 

Creates a network based on Mutual 

Information. 

Multi http://wiki.c2b2.columbi

a.edu/workbench/index.

php/Home; (Floratos et 

al., 2010) 

webCEMiTool Performs comprehensive modular 

analyses in a fully automated manner, 

generating co-expression networks based 

on the WGCNA method. 

Webserver https://cemitool.sysbio.t

ools/; (Cardozo et al., 

2019) 

 

 

Table 3 - User-friendly computational tools for inferring gene regulatory networks. 

Tool Description Platform Type of data Reference/URL 

Expression Promoter 

ARACNe Creates a network based 

on Mutual Information 

Multi ✓   http://apps.cytoscape.org

/apps/aracne; (Floratos 

et al., 2010) 

CyGenexpi A toolset for identifying 

regulons and validating 

gene regulatory networks 

using time-course 

expression data 

Multi ✓   https://apps.cytoscape.or

g/apps/cygenexpi; 

(Modrák and Vohradský, 

2018) 

CyNetworkBMA Infers gene regulatory 

networks from expression 

measurements using 

Bayesian Model 

Averaging 

Multi ✓   https://apps.cytoscape.or

g/apps/cynetworkbma; 

(Fronczuk et al., 2015) 

GRNCOP2 Model-free combinatorial 

optimization algorithm to 

infer time-delayed gene 

regulatory networks from 

genome-wide time series 

datasets 

Multi ✓   https://apps.cytoscape.or

g/apps/grncop2; (Gallo et 

al., 2011) 

iRegulon Allows identification of 

regulons using motif and 

track discovery in an 

existing network 

Multi   ✓ https://apps.cytoscape.or

g/apps/iregulon; (Janky 

et al., 2014) 

NetworkAnalyst Allows establishing TF-

target genes and miRNAs-

target genes associations. 

Webserver ✓  http://www.networkanal

yst.ca; (Zhou et al., 

2019) 

TRRUST TFs and target genes 

interactions, and TFs cis-

regulatory elements 

Webserver ✓ ✓ https://www.grnpedia.or

g/trrust/Network_search_

form.php; (Han et al., 

2018) 
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RegNetwork Genic regulations by TFs 

and microRNAs 

Webserver ✓   http://www.regnetworkw

eb.org/search.jsp; (Liu et 

al., 2015) 

ORegAnno Regulatory regions, 

transcription factor 

binding sites, etc. 

Webserver   ✓ http://www.oreganno.org

/; (Lesurf et al., 2016) 

rSNPBase 

  

Harbors curated 

information on regulatory 

SNPs 

Webserver   ✓ http://rsnp.psych.ac.cn/; 

(Guo and Wang, 2018) 

MEME Sequence analysis tools 

for motifs discovery 

Webserver   ✓ http://meme-suite.org/ 

(Bailey et al., 2009) 
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Table 4 - On-line resources for acquiring protein interaction information. 

Abbreviation Name URL Availability 
Data 

Source 

DIP 
Database of 

Interacting Proteins 
http://dip.doe-mbi.ucla.edu/dip/Main.cgi 

Academic 

license 
Primary 

STRING 

Search Tool for the 

Retrieval of 

Interacting 

Genes/Proteins 

http://string-db.org/ 
License 

purchase 
Secondary 

IntAct 
IntAct Molecular 

Interaction Database 
http://www.ebi.ac.uk/intact Free Primary 

BioGRID 

Biological General 

Repository for 

Interaction Datasets 

http://www.thebiogrid.org/ Free Primary 

MINT 
Molecular 

Interaction Database 
http://mint.bio.uniroma2.it/ Free Primary 

I2D 
Interologous 

Interaction Database 
http://ophid.utoronto.ca/ 

Academic 

license 
Secondary 

CCSB 

Center for Cancer 

Systems Biology 

Interactome 

Database 

http://interactome.dfci.harvard.edu/ Free Primary 

APID 

Agile Protein 

Interactomes 

DataServer 

http://apid.dep.usal.es/ Free Secondary 

HuRI 

The Human 

Reference Protein 

Interactome 

Mapping Project 

http://interactome.baderlab.org/ 
Academic 

license 
Primary 

IID 

Integrated 

Interactions 

Database 

http://iid.ophid.utoronto.ca/iid/Search_By_Pr

oteins/ 

Academic 

license 
Primary 
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Table 5 - User-friendly computational tools for inferring and analyzing protein interaction 1185 

networks. 

Tool Description Category Reference/URL 

Bisogenet 

Retrieves interactions associated with input 

IDs. Sophisticated UI gives links to GO, 

KEGG, etc. 

Interaction database (Martin et al., 2010) 

CyNetSVM 

Developed for identification of cancer 

biomarkers using machine learning 

approaches. 

PPI-network (Shi et al., 2017) 

CyPath2 
Pathway Commons (BioPAX L3 database) 

web service GUI client app. 
Interaction database 

http://apps.cytoscape.org/

apps/cypath2 

CytoGEDEVO 
Pairwise global alignment of PPI or other 

networks. 
PPI-network (Malek et al., 2016) 

CytoMOBAS 
Identifies and analyses disease associated 

and highly connected subnetworks. 

Disease-disease 

association 

PPI-network 

https://apps.cytoscape.or

g/apps/cytomobas 

DeDal 

Applies data dimensionality reduction 

methods for designing insightful network 

visualizations. 

PPI-network (Czerwinska et al., 2015) 

INTERSPIA 
Free online resource for protein interaction 

comparison between species 
Not a Cytoscape app (Kwon et al., 2018) 

NetworkAnalyst 
Free online resource for network 

construction and analysis 
Not a Cytoscape app (Zhou et al., 2019) 

PathLinker 

Reconstructs the interactions in a signaling 

pathway of interest from the receptors and 

TFs in a pathway, and can be broadly used 

to compute and analyze a network of 

protein interactions.  

PPI-network (Gil et al., 2017) 

PEmeasure 

Compute links weights and assess the 

reliability of the links in a network 

including PPI. 

PPI-network (Zaki et al., 2013) 

PEPPER 

Find meaningful pathways / complexes 

connecting a protein set members within a 

PPI-network using multi-objective 

optimization. 

Functional module 

detection 

(Winterhalter et al., 

2014) 

PINA 

Free online resource capable of PIN 

construction, filtering, analysis, 

visualization and management. 

Not a Cytoscape app 
(Cowley et al., 2012; Wu 

et al., 2009) 

PINBPA 
Protein-interaction-network-based Pathway 

Analysis. 

Random walk with 

restart algorithm 
(Wang et al., 2015) 

PSICQUIC PSICQUIC Web Service Client for Interaction database (Aranda et al., 2011) 
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Universal Client importing interactions from public 

databases. 

stringApp 
Import and augment Cytoscape networks 

from STRING. 

Gene-disease 

association; 

PPI-network 

(Doncheva et al., 2019) 
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