
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

3-2005

Leveraging User-Session Data to Support Web Application Testing Leveraging User-Session Data to Support Web Application Testing

Sebastian Elbaum
University of Nebraska-Lincoln, selbaum@virginia.edu

Gregg Rothermel
University of Nebraska-Lincoln, gerother@ncsu.edu

Srikanth Karre
University of Nebraska-Lincoln

Marc Fisher II
University of Nebraska-Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

 Part of the Computer Sciences Commons

Elbaum, Sebastian; Rothermel, Gregg; Karre, Srikanth; and Fisher, Marc II, "Leveraging User-Session Data

to Support Web Application Testing" (2005). CSE Journal Articles. 20.

https://digitalcommons.unl.edu/csearticles/20

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csearticles/20?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages

Leveraging User-Session Data to
Support Web Application Testing
Sebastian Elbaum, Member, IEEE, Gregg Rothermel, Member, IEEE,

Srikanth Karre, and Marc Fisher II, Member, IEEE Computer Society

Abstract—Web applications are vital components of the global information infrastructure, and it is important to ensure their

dependability. Many techniques and tools for validating Web applications have been created, but few of these have addressed the

need to test Web application functionality and none have attempted to leverage data gathered in the operation of Web applications to

assist with testing. In this paper, we present several techniques for using user session data gathered as users operate Web

applications to help test those applications from a functional standpoint. We report results of an experiment comparing these new

techniques to existing white-box techniques for creating test cases for Web applications, assessing both the adequacy of the

generated test cases and their ability to detect faults on a point-of-sale Web application. Our results show that user session data can

be used to produce test suites more effective overall than those produced by the white-box techniques considered; however, the faults

detected by the two classes of techniques differ, suggesting that the techniques are complementary.

Index Terms—Software testing, test data generation, Web applications, empirical studies.

�

1 INTRODUCTION

WEB applications are one of the fastest growing classes

of software systems in use today. These applications

support a wide range of activities including business

functions such as product sale and distribution, scientific

activities such as information sharing and proposal review,

and medical activities such as expert-system-based diag-
noses. It is important that Web applications be dependable,

but recent reports indicate that in practice they often are

not. For example, one study of Web application integrity

found that 29 of 40 leading e-commerce sites [25] and 28 of

41 government sites [24] exhibited some type of failure

when exercised by a “first-time user.”1

Several tools for validating Web applications have been
created, but most of these focus on protocol conformance,
load testing, link checking, and various static analyses (we
discuss these further in Section 2). Such tools address
problems of availability, navigability, and performance
faced initially by deployed Web applications; however,
they do not directly assist in detecting the failures in
meeting functional requirements that have been found to
dominate in mature deployed Web applications [24]. To
date, tools that do support functional validation do so only
by supporting capture replay: the recording of tester input
sequences for use in regression testing.

Recently, a few more formal approaches for testing the

functional requirements of Web applications have been

proposed [8], [20], [30]. In essence, these are “white-box”

testing approaches, building system models from inspec-

tion of code and identifying test requirements from those

models. Early studies have shown that these approaches

can facilitate the construction of “adequate” (by some

criteria) test suites; however, the approaches can also be

costly due to the human effort required to generate test

cases that meet the identified test requirements.

The search for a generalizable and practical approach to

the functional testing of Web applications is complicated by

several characteristics of those applications. First, Web

application usage can change rapidly. For example, a Web

site can be caught by a search engine and suddenly receive

hundreds of thousands of hits per day rather than just

dozens [22]. In such cases, test suites designed with

particular usage profiles in mind may be inappropriate.

Second, Web applications typically undergo maintenance at

a faster rate than other systems; this maintenance often

consists of small incremental changes [16]. To accommodate

such changes cost-effectively, testing approaches should be

automatable and test suites should be adaptable. Finally,

Web applications typically involve complex, multitiered,

heterogeneous architectures including Web, application,

and database servers, and clients acting as interpreters.

Testing approaches must be able to handle the various

diverse components in these architectures. The foregoing

characteristics are not unique to Web applications, but they

are particularly prevalent, and their effects on testing are

particularly acute in this paradigm. Unfortunately,

although the recently proposed techniques [8], [20], [30]

partially address the third characteristic, the first two

characteristics have not yet been addressed.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005 187

. The authors are with the Department of Computer Science and
Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0115.
E-mail: {elbaum, grother, skarre, mfisher}@cse.unl.edu.

Manuscript received 28 Nov. 2003; revised 28 June 2004; accepted 7 Feb.
2005; published online 20 Apr. 2005.
Recommended for acceptance by A. Bertolino.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0194-1103.

1. For further information, seewww.keynote.com/solutions/performance
_indices/business_index/business_40.html and www.keynote.com/
solutions/performance_indices/government_index/government_40.html.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

In this paper, we propose a testing approach that
addresses these issues by using data captured during user
sessions to create test cases, potentially reducing the effort
involved when test engineers are required to generate test
cases. We describe three stand-alone variants of this
approach and two hybrid variants that combine the
approach with white-box functional testing techniques.
We report results of an empirical study comparing our
techniques with two implementations of the testing
approach proposed by Ricca and Tonella in [30]. Unlike
previous studies of Web application testing techniques,
however, our study assesses the fault detection effective-
ness of the approaches. Our results show that user session
data can be used to produce test suites more effective
overall than those produced by the white-box techniques
considered; however, the faults detected by the two classes
of techniques differ, suggesting that the techniques are
complementary.

In the next section, we describe the characteristics of the
class of Web applications that we are considering, and
review related work. Section 3 describes Ricca and Tonella’s
technique and presents our new approach and its variants.
Section 4 presents the design and results of our empirical
study. Section 5 discusses additional issues relevant to the
use of user-session data in testing Web applications, and
Section 6 summarizes and discusses future work.

2 BACKGROUND AND RELATED WORK

2.1 Web Applications

AWeb application can be differentiated from aWeb site based

on the “ability of a user to affect the state of the business

logic on the server” [7]. In other words, requests made to a

Web application go beyond navigational requests, includ-

ing some form of data that needs further decomposition and

analysis to be served. Fig. 1 shows how a simple Web

application operates. A user (client) sends a request through

a Web browser. The Web server responds by delivering

content to the client. This content generally takes the form

of some markup language (e.g., HTML) that is later

interpreted by the browser to render a Web page at the

user site. For example, if a request consists of just a URL

(Uniform Resource Locator—a Web site address), the server

may just fetch a static Web page.
Other requests are more complicated and require

additional infrastructure which leads to more complex
classes of Web applications [34]. For example, in an
e-commerce site, a request might include both a URL and
data provided by the user. Users provide data primarily
through forms consisting of input fields (textboxes, check-
boxes, selection lists) rendered in a Web page. This
information is translated into a set of name-value pairs
(input fields’ names and their values) and becomes part of
the request. Although the Web server receives this request,
further elements are needed to process it. First, a group of
scripts and perhaps an application server may parse the
request, query a database server to retrieve required
information, and then employ formatting scripts to generate
HTML code addressing the request. This newly generated
code, created at runtime based on a user’s input, is called a
dynamic Web page.

In this context, the application server, database, and

scripts collaborate to assemble a response that fits the

request. Although requests can be more complex in

practice, this example shows that there are multiple and

varied technical components behind the Web server. It is

also important to note that scripts such as those just

referred to are changed frequently [3], and the technol-

ogies supporting them change often, as evident in the

frequent appearance of new standards for Web protocols

for data exchange and processing (e.g., XML, XSL, SOAP,

and CCS [19]).

2.2 Related Work on Validating Web Applications

The testing of Web applications has been led by industry,
where work has been oriented toward validation of

188 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

Fig. 1. Sequence diagram of a Web application.

nonfunctional requirements. Techniques proposed to date
range from markup text language validators and link
checkers to various load testing and performance measure-
ment tools.2 The variety and quantity of tools for testing
functional requirements of Web applications is much more
limited [8]. The most common class of functional testing
tools provide infrastructure to support the capture and
replay of specific usage scenarios [11], [15], [28]. Test
engineers execute such usage scenarios, and the tools record
events and translate them into scripts that can be replayed
later for functional and regression testing. Another class of
functional testing tools generates test cases by combining
Web site path exploration algorithms with tester-provided
inputs [3], [26]. A prototype framework integrating these
features is presented in [35]. Also, Lee and Offut present an
approach for testing the data exchange process in Web
applications using XML [18].

Recently, three more formal techniques have been

proposed to facilitate testing of functional requirements in

Web applications. These techniques employ forms of

model-based testing, but can be classified as “white-box”

since they rely on information gathered from the Web

application code to generate the models on which they base

their testing. Liu et al. [20] propose WebTestModel, which

treats each Web application component as an object and

generates test cases based on data flow between objects.

Ricca and Tonella [30] propose a model based on the

Unified Modeling Language (UML) to enable Web applica-

tion evolution analysis and test case generation. Di Lucca

et al. [8] propose a similar model that considers both unit

testing of individual Web pages and integration testing of

collaboration between pages and provides specific strate-

gies for testing client and server pages. In essence, these

techniques extend traditional path-based test generation

and control or data flow adequacy assessment to the Web

application domain; the second and third also build on

popular UML modeling capabilities.

The effectiveness of the foregoing techniques has been

evaluated only in terms of ability to achieve coverage

adequacy; in our search of the literature, we find no reports

on studies assessing the effectiveness of the techniques in

terms of ability to reveal faults.
In [31], we presented an alternative technique for

testing Web applications based on user scenarios. In this
paper, we proceed beyond that work in several ways.
Where [31] considered two basic techniques and one
hybrid, this article adds a more powerful basic technique
and a new hybrid technique following a different
approach. This article provides extended interpretation
of the empirical results obtained in studying the proposed
techniques, including analyses of the effectiveness of the
techniques, analysis of results for individual faults, and
analysis of the impact of the techniques on perceived
reliability. This article also includes extended analysis of
three issues of particular importance to the cost-effective-
ness of Web application testing techniques—the effects of

application state and nondeterministic execution, and the

management of an ever growing test suite—and presents

empirical results obtained through studying some ap-

proaches for addressing these issues.

3 WEB-APPLICATION TESTING TECHNIQUES

In this section, we provide details about the techniques that

we investigate. Section 3.1 describes our implementations of

Ricca and Tonella’s [30] white-box testing approach.

Section 3.2 describes three techniques for testing functional

requirements of Web applications based on user session

data. Section 3.3 presents two approaches that integrate the

white-box and user-session approaches.

3.1 Ricca and Tonella’s Approach

Conceptually, Ricca and Tonella’s [30] approach creates a

model in which nodes represent Web objects (Web pages,

forms, frames), and edges represent relationships among

those objects (include, submit, split, link). For example,

Fig. 2 displays a section of the model representing an

application for online book purchasing, following the

representation used in [30]. The model has one entry node

(BookDetail) and two exit nodes (BookDetail and Shop-

pingCart). The BookDetail node is dynamically generated in

response to a request to browse a particular book. When

rendered by the browser, this page contains information

about the book and (through edges e1 and e4) two forms:

one to add the book to the shopping cart and one to rate the

book. Both forms collect user input. If the rating form is

submitted (e5), a new BookDetail page is generated with an

updated rating. If a valid book quantity is submitted (e2),

the shopping cart is updated and a corresponding dyna-

mically generated page is sent to the browser. Otherwise,

BookDetail is sent again (e3).
To generate test requirements and cases, a path expres-

sion to match the graph is generated following a procedure

suggested by Beizer [2]. The path expression corresponding

to the example in Fig. 2 is

ðe1e3þ e4e5Þ � ðe1e2þ e1e3þ e4e5Þ;

where “�” indicates zero or more occurrences of the

immediately preceding edge(s) and “þ” indicates an

alternative. The path expression is then used to generate

test requirements by identifying the set of linearly inde-

pendent paths3 that comprise it, and applying heuristics to

minimize the number of requirements generated. The

preceding path expression for Fig. 2, for example, could

yield the following test requirements: e1e3, e1e2, and e4e5.

A test engineer then creates test cases to cover these

requirements; here, test cases are sequences of Web pages to

be visited together with their corresponding name-value

pairs. We consider two implementations of this approach.

ELBAUM ET AL.: LEVERAGING USER-SESSION DATA TO SUPPORT WEB APPLICATION TESTING 189

2. For a comprehensive list of tools, see http://www.softwareqatest.
com/qatWeb1.html, and for a discussion of Web application testing
problems from an industry perspective see [13], [29].

3. A linearly independent path is a path, through a graph, that includes
at least one edge that has not been traversed previously (in a given set of
paths under construction) and a set of linearly independent paths together
ensures that each edge in the graph has been included in at least one test
case [27].

3.1.1 WB-1: Complete Test Requirements with Ad Hoc

Selection of Inputs

Our first white-box technique attempts to match the
methodology presented in [30]. We generate test require-
ments from path expressions following the procedure just
outlined, but we make the following assumptions about the
process where [30] omits details: 1) we test only linearly
independent paths, 2) we exercise forms that are included
in multiple Web pages, but perform the same functionality
independent of context (e.g, provide search capability) from
only one source, and 3) we ignore circular links represent-
ing edges to the same page (included just to facilitate
navigation within a page). After test requirements are
generated from path expressions, we fill in the relevant
forms so that the test cases can be executed.

3.1.2 WB-2: Complete Test Requirements with

Formalized Selection of Inputs

Our second white-box implementation relaxes some of the
assumptions established for WB-1 and incorporates a more
elaborate approach for input value selection. In contrast to
WB-1, WB-2 uses boundary values as inputs, and utilizes a
strategy for combining inputs inspired by the “each
condition/all conditions” strategy [4]. The test suite that
results consists of a set of test cases in which for each form,
each input variable is considered in isolation (all the other
variables are set to the empty string), plus one test case in
which all variables have values assigned. For the test cases
that consider just one variable, the values are selected based
on the boundary conditions for such variables. For the test
case that includes all variables at once, one random
combination of values is selected. The objective behind this
strategy is to add formalism to the process of inputting data
into the forms, as recommended in one of the examples in
[30] and presented in [8].

3.2 User-Session-Based Techniques

One limiting factor in the use of white box Web application
testing techniques such as Ricca and Tonella’s is the cost of
finding inputs that exercise the system as desired. The
selection of such inputs is complex and must be accom-
plished manually [30]. User-session-based techniques can
help with this problem by transparently collecting user
interactions (clients’ requests) in the form of URLs and
name-value pairs, and then applying strategies to these to
generate test cases.

Because normal Web application operation consists of

receiving and processing requests and because a Web

application runs in just one environment which the

organization performing the testing controls, the collection

of client request information can be accomplished easily.

For example, with minimal configuration changes, the

Apache Web server can log all received get-requests [1]. A

slightly more powerful but less transparent alternative that

can capture all name-value pairs involves adding snippets

of javascript to the delivered Webpages so that all requests

invoke a server-side logging script. Utilizing Java servlet

filters is yet another alternative that enables the dynamic

interception of requests and responses at the server side.

Given a particular collection mechanism, user-session-

based techniques require little additional infrastructure to

collect the required data, limiting the impact on Web

application performance. Another advantage of collecting

just the requests is that at that higher abstraction level, some

of the complexities introduced by heterogeneous Web

application architectures are hidden. This lessens the

dependencies of user-session-based techniques on changes

in Web application components.
Given a set of URL and name-value pairs collected from

user sessions, there are many techniques by which test cases

190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

Fig. 2. Simplified model for an e-commerce application.

could be generated. One family of techniques reuses user
session data directly. In this context, the simplest technique
involves sequentially replaying individual user sessions. A
second technique involves replaying a mixture of interac-
tions from several users. A third technique involves mixing
regular user requests with requests that are likely to be
problematic (e.g., navigating backward and forward while
submitting a form). We consider each of these techniques in
our empirical study. Other issues and approaches for Web
application testing involving indirect use of user session
data, incorporation of Web application state in testing,
nondeterminism in Web applications, and test suite
management are explored in Section 5.

The key questions to be addressed for user-session-based
approaches involve whether they can in fact be cost-
effective, and what cost-benefits trade-offs exist between
different approaches. To address these questions, in this
work, we study three specific user-session-based techni-
ques: 1) a technique that directly reuses entire sessions, 2) a
technique that replays a mixture of sessions, and 3) a
technique that replays sessions with some targeted mod-
ifications.

We now present these techniques. In the following, let
U ¼ fu1; u2; . . .umg be a set of user sessions, with ui

consisting of n requests r1; r2; . . . rn, where each ri consists
of url½name� value� � . For simplicity, we define a user
session as beginning when a request from a new IP address
reaches the server and ending when the user leaves the Web
site or the session times out.4

3.2.1 US-1: Direct Reuse of User Sessions

Our simplest technique, US-1, transforms each ui 2 U into a
test case by formatting each of its associated requests, r1 to
rn, into an http request that can be sent to a Web server. The
resulting test suite contains m test cases, one for each user
session.

In a sense, US-1 is analogous to a constrained version of a
capturereplay tool (e.g., Rational Robot [28]) in which we
capture just the URL and name-value pairs that occur
throughout a session. In contrast to approaches that capture
user events at the client site, however, which can become
complicated as the number of users grow, our approach
captures just the URL and name-value pairs that are the
result of a sequence of the user’s events at the server site.
This lessens privacy problems caused by the more intensive
instrumentation used by some capture-replay tools.

3.2.2 US-2: Combining Different User-Sessions

US-2 generates new user sessions based on the pool of
collected data, creating test cases that contain requests
belonging to different users. US-2 is meant to expose error
conditions caused when conflicting data is provided by
different users. US-2 generates test cases as follows:

. select an unused session ua from U ;

. copy requests r1 through ri from ua, where i is a
random number greater than 1 but smaller than n,
into the test case;

. randomly select session ub from U , where b 6¼ a, and
search for any rj in ub with the same URL as ri;

. if an rj with the same URL as ri is not found in ub,
select another session ub; if there is not a viable ub,
then reuse ua directly as a test case (as in US-1);

. if an rj with the same URL as ri is found in ub, then
add all the requests following rj from ub into the test
case after ri;

. mark ua “used,” and repeat the process until no
more unused sessions are available in U .

3.2.3 US-3: Reusing User Sessions with Form

Modifications

Our third technique, US-3, builds on the first technique by
replaying modified user sessions. The modifications focus on
the input forms through which the users can alter Web
application behavior. To maintain tester’s effort to a
minimum, we favored an automatic and inexpensive
mechanism to modify forms’ inputs. This mechanism
performs random deletion of characters in the string values
associated with the name-value pairs, generating variations
on the users’ inputs that may lead to the exploration of new
scenarios (e.g., changing one character in a login or
password sequence leads to the incorrect login scenario).
The test cases are generated as follows:

. select an unused session ua from U ;

. randomly select an unused request ri from ua; if
there are no more unused ri in ua, then reuse ua
directly as a test case (as in US-1);

. if ri does not contain at least one name-value pair,
mark ri as used and repeat previous step;

. if ri has one or more name-value pairs, then modify
the name-value pairs:

- create one test case for each name-value pair by
deleting a random character in the value string,

- create one test case by modifying the values of
all the pairs at once by deleting a random
character in each value string;

. mark ua “used” and repeat the process until no more
unused sessions are available in U .

3.3 Integrating User Session and White Box
Techniques

The foregoing techniques are strictly user-session-based. It
seems possible that hybrid techniques that combine user-
session-based approaches with structured white-box Web
application testing techniques might be cost-effective, by
potentially reducing the human effort needed to select
inputs to cover white-box requirements while also incor-
porating representative user behavior. We thus also
consider two hybrid techniques. In the following, let Q ¼
fq1; q2; . . . ; qog be a set of testing requirements identified by
the technique WB-2.

3.3.1 HYB-1: Partially Satisfying Testing Requirements

with User-Session Data

The HYB-1 approach attempts to match equivalent user-
session sequences with the testing requirements in Q.
Although there is no guarantee that a set of collected inputs

ELBAUM ET AL.: LEVERAGING USER-SESSION DATA TO SUPPORT WEB APPLICATION TESTING 191

4. Web applications such as the one employed in our study utilize more
advanced mechanisms to track user sessions, such as the incorporation of
cookies into the flowing html.

will cover all testing requirements, HYB-1 attempts to

reduce the tester’s input generation efforts by using the

collected user inputs to cover as many testing requirements

as possible, as follows:

. select an unused testing requirement qi from Q;

. translate qi into a URL sequence urlSeqqi ;

. identify sessions umatch in U that contain urlSeqqi . If
no sessions are identified, mark qi used and return to
step 1;

. from each umatch, extract the name-value pairs for
sequences of requests matching urlSeqqi ;

. complete urlSeqqi with collected sequences of name-
value pairs to transform qi into a set of executable
test cases;

. mark qi used and repeat the process until no more
unused requirements are available in Q.

3.3.2 HYB-2: Satisfying Testing Requirements with

User-Session Data and Tester Input

HYB-2 enhances HYB-1 by complementing user-session

data with tester input suggestions geared toward achieving

coverage of all testing requirements. The first two steps of

the process, selection and translation, are identical to the

first two steps used by HYB-1. In the third step, however,

each testing requirement qi for which no relevant user

session data is found is placed on a list of unsatisfied

requirements. After the rest of the test case generation

process is performed, unsatisfied requirements are pro-

vided to the tester for completion.

4 EMPIRICAL STUDY

To investigate user-session-based and hybrid techniques,

we performed a controlled experiment in which we applied

the techniques to a Web application, together with the

white-box techniques, with the aim of answering the

following research questions:

RQ1. How effective are the techniques? This question

concerns the performance of the WB, US, and HYB

techniques, in terms of the coverage and fault-detection

they provide.

RQ2. Does technique appropriateness vary with fault type?

This question concerns the degree of similarity between

the techniques in terms of the fault detection capabilities

they provide.

RQ3. What relationship exists between the number of user

sessions and the effectiveness of the test suites

generated based on those sessions’ interactions? This

question concerns the possibility of manipulating the

cost-benefits of user-session-based test suites through

session selection.

4.1 Variables and Metrics

Our independent variable is testing technique; Table 1

summarizes the techniques considered.
We measured two dependent variables:

. Coverage: percentage of functions (subroutines)
and basic blocks (single entry, single-exit sequence
of instructions) covered in the code responsible for
generating the Web pages and accessing the
database.

. Fault detection effectiveness: percentage of faults
detected by the testing technique. (Section 4.2.2
provides further details on the faults utilized in the
experiment).

4.2 Experiment Setting

4.2.1 E-Commerce Site

As an experiment setting we used the free and open-

source online bookstore available at gotocode.com. The

online bookstore’s functionalities can be divided into two

groups: customer activities and administration activities. In

this study, we focus on functionalities that are accessible to

the customer rather than to the administrator because the

user data we collected was aimed at customer activities.

Fig. 3 provides a screenshot of the application. Using this

Web application, customers can search, browse, register,

operate a shopping cart, and purchase books online in a

manner similar to that used in other similar popular sites

on the Web. Customer functionality is implemented

through Perl scripts and modules to handle data and

dynamic generation of HTML pages, Mysql to manage

database accesses, a database structure composed of seven

tables tracking books, transactions, and other data objects,

and Javascript and cookies to provide identification and

personalization functionality. The application code that

provides the customer functionality through the generation

of dynamic pages consists of nine Perl files and three Perl

modules that include 67 functions (called subroutines or

sub in the Perl programming language) and 399 blocks.

The application also includes a directory containing

192 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

TABLE 1
Web Application Testing Techniques

images (e.g., logos, book covers). An Apache Web Server
hosts the application.

We populated the database with information on

100 books (e.g., title, authors, short description, category,

price, rating). We adapted the look of the site so that the

registration procedure was expedited and logins were

minimized, which made the navigation process similar to

that used on commercial sites. Finally, to capture the data

required by user-session techniques, we modified the Perl

scripts that generated Web pages and we added a server-

side request-data logging daemon. The script modification

consisted in the incorporation of Javascript event handlers

(e.g., onClick, onLoad, onUnload) in the Web page source.

When these handlers were triggered by user request activity

at the client-side, we proceeded to record the request data

(e.g., time stamp, IP, userId, sessionId, http request)

through the logging daemon. (Section 4.3 discusses addi-

tional instrumentation required for experimentation and

assessment.)

4.2.2 Fault Seeding

We wished to evaluate the performance of Web testing
techniques with respect to the detection of faults. Faults
were not available with our subject application; thus, to
obtain them, we followed a fault seeding procedure similar

to one defined and employed in previous studies of testing
techniques [10], [14], [39]. We recruited two graduate
students of computer science, each with at least two years
of programming experience, and instructed them to insert
faults that were as realistic as possible based on their
experience. To direct their efforts, we provided a tool that
randomly selected an approximate location in which to seed
a fault. We also provided the following list of fault types to
consider (adapted from the fault classification in [23]):

. Scripting faults. This includes faults associated
with variables, such as definitions, deletions, or
changes in values, and faults associated with control
flow, such as addition of new blocks, redefinitions
of execution conditions, removal of blocks, changes
in execution order, and addition or removal of
function calls.

. Forms faults. This includes addition, deletion, or
modification of a forms’ name or predefined values
for a name. In our target site, such faults were
seeded in the sections of the scripts that dynamically
generated the html code.

. Database query faults. This consists of the mod-
ification of a query expression, which could affect
type of operation, table to access, fields within a
table, or search key or record values.

ELBAUM ET AL.: LEVERAGING USER-SESSION DATA TO SUPPORT WEB APPLICATION TESTING 193

Fig. 3. Screenshot of e-commerce site used in our experiment.

The graduate students assigned to the task seeded a total
of 50 potential faults. Nine of these potential faults were
discarded: four were in unused sections of code and five
had no impact on the behavior of the application (e.g., the
value of a variable was changed after its last usage). Thus,
41 faults were retained for use in experimentation.

4.2.3 Test Suite Creation

We used the techniques described in Section 3 to create test
suites. One of the authors led the development of test cases
for the WB techniques, spending approximately 75 hours
creating and refining the representation model of the Web
application and identifying the inputs needed to meet the
adequacy criteria. (To avoid a potential source of bias, this
activity was completed prior to any examination of the
particular faults that had been inserted into the application.)

User-session-based and hybrid techniques require user
session data; thus, to create them, we needed to obtain a
pool of users and encourage them to use the e-bookstore in
a manner typical of users of this type of site. Users navigate
such sites to browse and perhaps purchase books if their
content and price are appropriate for their needs and
budget. We wished to provide the context and incentive for
users to interact with our application under similar
circumstances.

We assembled a list of candidate study participants
containing students from the Department of Computer
Science and Engineering at the University of Nebraska-
Lincoln. We emailed participation requirements and
incentives to these candidates and 73 chose to participate;
these participants had an average age of 24, and 94
percent had online buying experience. We asked these
participants to complete three tasks. First, they completed
an online form providing demographic data. Second, they
selected two computer science courses, based on descrip-
tions of four courses that we provided. Finally, they used
the e-bookstore site to select the most appropriate book(s)
for the courses they had selected. For this final step, we
made the e-commerce site available to the participants for
two weeks. For the first and last steps, we asked the
participants to employ the Microsoft Explorer browser to
avoid potential compatibility problems which were not
the target of this study.

To select books, participants needed to search and
browse until they found those books that they considered
most appropriate. We provided no definition of “appro-
priateness,” so that it meant different things to different
participants, which we hoped would lead to a variety of
activities. However, we did inform the participants of an
incentive so that they would take the task completion
seriously: On completion of the experiment, the five
participants who selected the most appropriate books for
the courses would each receive a 10 dollar gift certificate.

Further directions specified that, if more than five partici-
pants selected the most appropriate books, the amount
spent would be evaluated, and ties would be broken by
considering the time spent on the Web site. Again, the
objective was to recreate the conditions that motivate user
behavior on similar Web applications.

Data from the user sessions was logged, with 99 total
sessions obtained. Fourteen of these sessions could not be
used because, despite instructions, participants accessed the
Web site using browsers other than those required. We used
the 85 remaining sessions to construct user-session-based
test suites of the seven varieties listed in Table 1. Table 2
characterizes the test suites thus created, along with the
white-box test suites, in terms of numbers of test cases and
total numbers of requests contained in the suite. The WB
test suites are much smaller than US or HYB test suites, but
this is as expected.

4.3 Data Collection and Technique Assessment

To enable data collection and technique assessment we
developed the infrastructure depicted in Fig. 4. User
requests and responses are collected as well as a snapshot
of the database at the end of each transaction. Once the user
data has been collected, the test case generation and
assessment process begins. To support the US and HYB
techniques, user sessions are extracted from the collected
data; then, these sessions are processed as indicated in
Sections 3.2 and 3.3 to generate test suites. Note that, unlike
the process for generating WB suites, the process for
generating US suites does not require a test engineer’s
input if such infrastructure is available, while HYB
techniques do require some degree of engineer effort in
the integration of the testing approaches.

Given the test suites created by the foregoing process, we
executed each on the original Web application with no
faults seeded, saving output and database state, thus
treating this version as our test oracle. The test suite
execution was emulated through the automatic transforma-
tion of each test case into a series of http requests sent
directly to the Web application (no browser was involved in
this process). To measure function and block coverage, we
instrumented the application, using snippets of additional
Perl code, so that each time a function or block was
executed, a counter associated with that function or block
would be incremented. We then re-executed the suites to
measure coverage. Finally, to evaluate the fault-detection
effectiveness of our test suites, we activated each of the
seeded faults individually and executed each test case,
comparing relevant outputs to determine whether that test
case revealed that fault.

4.4 Results

We now present the result of our study, considering each of
our research questions in turn.

194 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

TABLE 2
Test Suite Characterization

4.4.1 RQ1: On Coverage and Fault-Detection

Effectiveness

Table 3 presents the fault-detection effectiveness results

measured for the test suites generated by each technique

considered. For each technique, the table presents block

coverage, function coverage, and faults detected in absolute

values and percentages for the test suite of that type.

Overall, the test suites generated by each technique covered

over 64 percent of the blocks and 96 percent of the functions

in the Web application and detected between 54 percent

and 63 percent of the seeded faults.
WB-2 provided the greatest code coverage with 76 per-

cent and 99 percent of the blocks and functions covered,

respectively. US-3 was second best, covering 72 percent of

the blocks and 97 percent of the functions. The remaining

techniques achieved at most 66 percent and 97 percent

coverage of blocks and functions, respectively. To our

surprise, US-1 provided greater coverage than US-2,

suggesting that either the procedure we used to combine

sessions is inadequate or combining sessions is not

advantageous.

US-3 provided the greatest fault detection capabilities

with 63 percent of the faults detected, followed by WB-2

with 58 percent of the faults detected. Further analysis

revealed that, even though WB-2 exercised 90 percent of the

faulty statements (the most of all techniques), it exposed

only 24 faults which indicates that either exercising those

faults did not corrupt the application data state or it did not

propagate to an output to become detectable. The other

techniques detected fewer than 57 percent of the faults, and

the WB-1 technique provided the least fault detection. The

ELBAUM ET AL.: LEVERAGING USER-SESSION DATA TO SUPPORT WEB APPLICATION TESTING 195

Fig. 4. Experiment infrastructure support.

TABLE 3
Summary Data on Coverage and Fault-Detection Effectiveness

HYB techniques also failed to provide gains, performing

similar to the basic US-1 technique.
It is worth observing that, although the difference in

fault-detection effectiveness between the best US and WB
techniques was only 2 percent, the results obtained from the
US techniques were based on a small pool of user sessions,
and might be expected to become more effective (subject to
bounding effects) as additional sessions are collected.

4.4.2 RQ2: On Technique Appropriateness

To better understand the differences between techniques,
we also analyzed results for differences and commonalities.
Table 4 presents a detailed comparison of the most
powerful white box and user-session-based techniques,
WB-2 and US-3. The first row of the table lists the blocks
covered, functions covered, and faults detected in common
by the techniques. The second and third rows present the
same information focusing on blocks, functions, or faults
uniquely associated with one technique and not the other.
The fourth row shows the result of using both techniques.

The table shows that the blocks covered by WB-2 and

US-3 are not identical: 32 blocks were covered only by

WB-2, while 14 others were covered only by US-3. Also, two

of the faults found by WB-2 were not found by US-3, and

four faults were found only by US-3. Similar differences

occurred with the other techniques. This data supports the

claim that the approaches we considered perform differ-

ently in terms of coverage and fault detection. Further,

despite the unimpressive performance of the HYB techni-

ques that we implemented, the last row of Table 4 shows

that, when test cases from both techniques (representing

both approaches) are combined, the resulting coverage and

fault detection capabilities are better than those observed

for either technique singly.

Further analysis revealed that there are some faults that

user-session-based approaches rarely captured. These faults

involve particular name-value pairs that cannot be gener-

ated using the forms available through the Web pages. For

example, when supplying a book evaluation through the

application, five levels (from one to five stars) are available

through the Web site. The only way to construct a request

with evaluation values outside that range is to generate the

request outside the rendered page. This scenario is not

likely to originate with regular users of the application, but

it could occur if the site were detected by a search robot that

performs that type of request. It is likely that this type of

request would need to be generated by design instead of by

user activity. In addition, although we could not identify a

certain type of fault that WB techniques were likely to miss,

we observed that strategies such as that followed by WB-2

helped lessen the impact of tester input choices on the

effectiveness of WB techniques.
Analyzing the potential exposure of a fault by a user

provides another perspective on the differences between
these approaches—a perspective that reflects the software’s
reliability as perceived by the client. By design, user-
session-based techniques are more likely to detect faults
that are, were, or might be exposed by users in the course of
their normal operations. User-session-based techniques are
more representative of the type of inputs the Web
application will receive when deployed because they
actually constitute real inputs. In contrast, WB approaches
are independent of potential user behavior, generating test
cases based exclusively on a coverage adequacy criterion.

To further investigate this conjecture, we ranked the

faults in our application based on the number of sessions in

which they were exposed (we employed the sessions from

US-1 to approximate the behavior observed during the

clients’ sessions). Then, we determined how many of those

faults were exposed by the white box testing techniques.

Table 5 shows the results. As the table shows, the faults that

occurred most frequently (ranked 1-5) were exposed in over

98 percent of the sessions, impacting users most of the time.

White box techniques exposed all five of these faults. The

next few tiers in the table show, however, that the

correlation between white box technique fault exposure

and fault frequency was somewhat variable, and both WB

techniques missed one or two faults that impacted

81 percent of the user sessions and two or three that

impacted a third of the sessions. This variability and

potential impact reflects the lack of connection between

the test cases generated by white box techniques and the

way in which the software was really employed by users.

4.4.3 RQ3: On Numbers of User Sessions versus

Test Suite Effectiveness

A detailed analysis of our data revealed that certain

techniques could have performed better given some

196 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

TABLE 4
Detailed Comparison of WB-2 and US-3

TABLE 5
Fault-Detection Effectiveness of WB Techniques across Fault Frequency Classes

adjustments. For example, WB-2 could have discovered one

more fault if the “each condition/all condition” strategy

used to combine inputs was replaced by a more powerful

strategy such as “all variants,” which would require the

execution of all potential combinations of designated values

(in our case valid string and empty string) for the variables

in a form [4]. Still, such an approach would imply

significant additional human participation and potentially

lead to scalability problems.
US-1, on the other hand, could have detected five

additional faults, increasing its fault detection effectiveness
to 68 percent (better than any other technique) if the users
had exercised specific additional functionality. Two of these
additional faults were not discovered by WB-2 and required
a special combination of input values to be exposed. For
example, one fault could have been exposed if a user had
attempted to access the shopping cart prior to completing
the registration procedure. The three other faults that could
have been discovered by US-1 and that were captured by
WB-2 required erroneous inputs that did not appear in the
collected user sessions. For example, the registration
procedure required a password and a confirmation for that
password. A fault was exposed when these inputs did not
match. WB-2 detected that fault but US-1 did not because no
user session exhibited that behavior.

In this study, the effectiveness of user-session-based
techniques improved as the number of collected sessions
increased. Fig. 5 shows the relationship between the
number of user sessions collected for and employed by
US-1, and its effectiveness under the various metrics
considered. The x-axis presents the individual sessions
from 1 to 85 (corresponding one to one with the test cases
generated by US-1), the bars represent the US-1 test case
value for the corresponding y-axis variable, and the line

represents the cumulative count of unique faults exposed or

blocks and functions covered, as additional sessions

exercised the application.
The figure shows that test cases generated from user

sessions varied in terms of coverage and fault exposure

and that the cumulative increases in the dependent

variables were slower over time. Within the ranges

observed, a positive trend in the cumulative counts

suggests that user-session-based techniques might continue

to improve as additional sessions (and potentially addi-

tional user behaviors) are collected; however, this trend

would likely also be tempered by the costs of collecting

and analyzing additional data and as the number of

detectable faults remaining in the system is reduced. Of

course, with testing techniques generally, fault-detection

effectiveness is expected to increase with increases in

testing activity; however, where user-session-based techni-

ques are concerned, these effectiveness gains can poten-

tially be achieved at somewhat less cost due to the

reduction in tester participation required by those techni-

ques. The costs of experimentation, however, constrained

our ability to collect further sessions and data needed to

investigate the relative trade-offs; further studies on

commercial sites with thousands of sessions per day would

provide the opportunity to further analyze such trends.

4.5 Threats to Validity

This study, like any other, has some limitations. In this

section, we identify the primary limitations that could have

influenced the results and we explain how we tried to

control unwanted sources of variation. Some of these

limitations are unavoidable consequences of the decision

ELBAUM ET AL.: LEVERAGING USER-SESSION DATA TO SUPPORT WEB APPLICATION TESTING 197

Fig. 5. Relationship between number of user sessions collected and effectiveness of US-1.

to use controlled experimentation; however, the advantage

of control is additional certainty regarding causality.
First, we required an infrastructure with which to

reproduce a Web application that resembled as closely as
possible those found in the real world. To control for
potential threats caused by the lack of representativeness of
the Web application, we carefully adapted an existing
e-commerce application, populating its database and con-
figuring the site shipping and personalization attributes. In
spite of this effort, the resulting Web site included just a
subset of the technologies used in the field, and our results
can be claimed to generalize only to Web applications using
similar technologies. Additional Web applications must be
studied to overcome these threats to external validity.

Second, our user-session-based techniques employ user
interactions collected from users interacting with our e-
commerce site. User navigation and buying patterns were
not our focus, but we wished to reproduce the activities
users might perform in this type of site. The instructions for
participants included a task and an incentive to make the
experience more realistic for a set of potential customers,
but are still just an approximation of reality and threaten
external validity because of representativeness and internal
validity because they could have constituted a nuisance
variable that affected the results. Similarly, the input
selection that drives the WB techniques is influenced by
the testers’s ability and intuition for input selection. We
limited the impact of this threat by providing a common
strategy for all testers to use in selecting input values.

Third, we needed to seed faults in the application so that
we could evaluate the testing techniques. Although
naturally occurring faults are preferred, obtaining a Web
application with a large number of known faults was not
feasible. As a consequence, we opted for a fault seeding
process similar to those commonly used in previous
research to measure testing techniques’ fault-detection
effectiveness. The risk of seeding faults that are not
representative of the faults found in Web applications is
still a threat to external validity. For example, we did not
simulate the existence of faults on the client side (e.g.,
javascript faults). In a related internal threat to validity,
during the fault detection effectiveness measurement phase
of the experiment, each fault was activated individually.
Although this constitutes the simplest of fault-detection
scenarios (e.g., multiple faults present simultaneously can
lead to more complex scenarios that include fault masking),
given that this is the first study that quantifies fault
detection effectiveness we felt that this limitation was
acceptable.

Fourth, the metric set that we used does not consider all
possible important metrics. For example, we did not
consider any cost measure that would allow us analyze
the cost-effectiveness of the introduced approaches, e.g.,
factoring in human costs associated with testing. Further
studies are needed to determine under what circumstances
each testing approach is appropriate from a cost-benefit
perspective. Still, for the aspects of effectiveness that we
intended to capture, we did employ reasonable constructs
that have been utilized before in several similar empirical
contexts.

Finally, we modified existing instrumentation tools and
developed others to capture user interactions and to
transform those interactions into test cases. For the WB
techniques, we made some assumptions when the specifi-
cation of Ricca and Tonella’s approach was unclear. The
implementation and assumptions we made are a threat to
internal validity. We reduced that threat by inspecting the
tools and performing multiple runs when possible.

5 ADDITIONAL CONSIDERATIONS FOR WEB

APPLICATION TESTING

5.1 Web Application State

When a specific user request is made to a Web application,
the outcome of that request may depend on factors not
completely captured in the URL and name-value pairs
alone; for example, an airline reservation request may
function differently at different times depending on the
pool of available seats. Further, the ability to execute
subsequent test cases may depend on the system state
achieved by preceding test cases. If the initial system state is
known and can be instantiated, the simple approach of
replaying user sessions in their entirety is not affected by
application state. The use of more complex approaches such
as intermixed or parallel replay, however, might often be
affected by state. In such cases, one approach for employing
user-session data is to periodically take snapshots of the
state values (or a subset of those values) that potentially
affect Web application response. (This approach is similar
to an approach suggested for testing database applications
[6], an area of research that has close ties to the issues
involved in testing Web application state.) Associating such
snapshots with specific requests or sequences of requests
increases the likelihood of being able to reproduce portions
of user sessions at the cost of resources and infrastructure.

A second alternative is to ignore state when generating
test cases. The resulting test cases may not precisely
reproduce the user activity on which they are based, but
they may still usefully distribute testing effort relative to
one aspect of the users’ operational profile (the aspect
captured by the operation) in a manner not achieved by
white-box testing.

From this second perspective, the process of using user
session data to generate test cases is related to the notion
of partitioning the input domain of an application under
test in the hopes of being able to effectively sample from
the resulting partitions [38]. In this context, the potential
usefulness of user-session-based testing techniques, like
the potential usefulness of white-box testing techniques,
need not rest solely on being able to exactly reproduce a
particular user session. Rather, that usefulness resides in
the fact that user session data can be used to provide
effective partitioning heuristics, together with input data
that can be transformed into test cases related to the
resulting partitions.

To consider the possible effects of application state on
the empirical results reported in Section 4, we repeated the
experiments described in that section using versions of each
of our US and HYB techniques that save and utilize state. In
these versions of our techniques, we saved the initial and

198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

terminal program states captured in snapshots of the
application’s database; we then executed the techniques
from appropriate initial states and compared both applica-
tion output and final states to detect whether fault detection
had occurred.

The results of this effort revealed no difference in fault

detection between techniques that considered state infor-

mation and those that did not. We found this surprising

because we can easily manufacture user session scenarios

under which a state characterization would allow detection

of faulty program behavior in our Web application. For

example, had there been a fault in updating the book

inventory after a sale, using a database snapshot that

captures database state after a purchase allows detection of

that fault, where just observing the response to the user

request would not show any difference. Clearly, the

existence of a fault that affects Web application state is a

necessary condition for state information to add value to

our user-session-based techniques. It is also important to

note that, even in the presence of such a fault, it would be

necessary for the collected sessions to include the scenario

in which the user exercised the Web application in such a

way that the fault would be exposed.

5.2 Nondeterminism in Web Applications

In a nondeterministic software system, identical sets of
inputs can generate different outputs exercising different
sequences of events or code components. Such uncertainty
can make the testing process more difficult and expensive.

In Web applications, we find at least two sources of

nondeterminism. First, multiple users can navigate through

sequences of pages, arbitrarily interleaving their requests.

The order in which these requests are made can affect the

Web application behavior. For example, if multiple users

attempt to place a reservation for a hotel room, then the

order in which those reservations are placed could

determine which user gets which room. Second, separate

processes or threads are often spawned to handle client

requests. These processes often access shared resources

generating further nondeterminism. For example, in the

environment supported by ColdFusion [21], certain types of

processes can share machine, application, client, and even

session data.

A wide variety of approaches for testing traditional,

nondeterministic software systems have been proposed

(e.g., [5], [17], [32], [33], [36], [40]). A fundamental notion

behind this work is that two overall classes of testing

approaches are possible: those that sample over nondeter-

ministic runs and those that attempt to create specific

deterministic runs. In the terminology of [5], where the goal

is to exercise synchronization events (SYN-sequences), the

first class of solutions are called “multiple execution” or

“nondeterministic” and involve executing the program

repeatedly over the same inputs in the hope of exercising

a reasonable percentage of the possible synchronization

events. A complementary strategy can also instrument the

program with random waits to increase the probability that

different executions will exercise different SYN-sequences.

However, neither case can guarantee that even a reasonable

subset of the SYN-sequences is exercised. The second class

of solutions utilizes deterministic replay of a chosen set of

SYN-sequences. This approach requires specific tool sup-

port and its effectiveness is dependent on the tester’s

selection of SYN-sequences. Analogous approaches apply

to testing focusing on other structural adequacy criteria.

Both of these overall classes of approaches could be

applied to the testing of Web applications. One simple user-

session-based test generation method that considers non-

determinism for Web applications could interleave requests

from different user sessions; such interleaving could be

performed in a multiple execution fashion, or using

deterministic replay. This method would support testing

for nondeterministic behavior with relatively minor exten-

sions to the methods introduced in Section 3.2. For example,

client requests for a book order could be randomly or

deterministically shuffled to exercise several scenarios (e.g.,

interleave requests from client A before the purchase,

during the credit card transaction, and before the inventory

is updated due to client B transaction). Still, these

interleaved requests are sequential, failing to fully address

simultaneously running processes accessing shared data-

bases or data structures. To test multiple simultaneously

executing Web application processes, we need to be able to

deterministically execute SYN-sequences or other coverage

targets employing capture and replay tools. Investigation of

such an approach is a possible avenue for future work.

5.3 Managing Evolving Test Suites

The increasing numbers of user sessions that can be

gathered for Web applications over time empowers user-

session-based testing techniques, but it also poses chal-

lenges for test suite maintenance and forces increased

generation of oracle values. The test suite maintenance

problem is caused by somewhat “equivalent” user sessions

leading to redundant test cases, and ultimately, to test suites

whose execution is not cost-effective. The oracle problem

[37] appears when a tester needs to determine what the

expected output is in response to a request, and to

effectively compare results to expected results.

One approach that may help reduce the costs of

maintaining test suites and examining testing results

relative to large sets of user sessions involves using existing

techniques to reduce test suite size while maintaining

coverage by removing redundant test cases from the test

suite. To evaluate the effectiveness of this approach, we

applied it to the user session data gathered in our study.

We considered two reduction mechanisms. The first

mechanism adapts the test suite reduction technique of

Harrold et al. [12] and applies it offline to the test cases

generated by US-1. The basic idea behind this technique is

to attempt to select (heuristically) the smallest possible

subset of the test suite that maintains the coverage achieved

by the entire test suite. When applied to the test cases

generated with US-1 at a functional coverage level, this

technique reduced test suite size by 98 percent at the cost of

missing three faults detected that would have been detected

by the unreduced test suite (20 were detected). When

ELBAUM ET AL.: LEVERAGING USER-SESSION DATA TO SUPPORT WEB APPLICATION TESTING 199

applied to these test cases at a level of page-to-page

transition coverage, this technique reduced test suite size

by 79 percent at the cost of missing two faults. Finally, when

applied to these test cases at a level of block coverage, this

technique reduced test suite size by 93 percent at the cost of

missing only one fault.

A second mechanism for reducing test execution and

auditing costs is based on cluster analysis, a method for

finding groups in a population of objects. We used cluster

analysis to define groups of test cases that had similar

coverage patterns, using a hierarchical agglomerative

approach and euclidian distance as our measure of

similarity (following a procedure similar to the one

employed by Dickinson et al. [9]). A reduced test suite

was then generated by randomly selecting one test case

from each cluster. As expected, a smaller number of clusters

provided greater test reduction at a cost of fault detection

effectiveness. For example, when defining just four clusters

the test suite size was reduced by 98 percent, missing three

more faults than the US-1 approach. On the other hand,

when the number of clusters was the same as the number of

US-1 test cases, then there was no reduction and the results

are equivalent to running US-1 test cases.
These results suggest that applying reduction and

clustering to user-session techniques could be helpful for
handling the large number of requests that could be
gathered from commercial e-commerce sites. As defined,
however, the reduction and clustering techniques we
considered function only on complete data sets. New
techniques will need to be developed to incrementally
handle the collection and processing of data as it arrives.
We conjecture that certain adaptations could make the
existing approaches work incrementally. For example, the
clustering approach could be modified such that, once the
clusters are established, new sessions are considered only if
they do not fit in an existing cluster. Still, this conjecture
must be validated with further studies of scalability and
performance.

6 CONCLUSION

We have presented a new approach for testing Web

applications and several techniques for implementing that

approach. These new techniques differ from existing

techniques in that they leverage captured user behavior to

generate test cases. We have presented the results of a

controlled experiment that suggest that this approach’s

effectiveness may be complementary to that of more formal

white box testing approaches.
The user-session-based testing techniques that we have

presented have several additional potential advantages
over other techniques. First, because these techniques
utilize user requests as a basis for generating test cases,
they are less dependent on the complex and fast changing
technology underlying Web applications, which is one of
the major limitations of white-box approaches designed to
work with a subset of the available protocols. Second, the
level of human effort involved in capturing URL and name-
value pairs is relatively small as these are already processed

by Web applications. This is not the case with testing
approaches that require a high degree of participation by
test engineers. Third, in user-session-based approaches,
each user is a potential provider of test data. This implies
the potential for an economy of scale in which additional
users provide additional inputs for use in test generation.
The potential power of the techniques resides in the number
and representativeness of the URL and name-value pairs
collected, and the possibility of their use in generating more
powerful test suites. Finally, unlike traditional capture and
replay approaches, user-session-based techniques automa-
tically capture authentic user interactions for use in
deriving test cases, as opposed to interactions created by
testers, that may not represent real field usage.

We do not suggest, however, that Web application

testing should rely solely on user session data; the abilities

of other techniques to reveal other types of faults should

also be leveraged, particularly prior to the collection of user-

session data. User-session-based techniques, however, can

then be applied either in a system’s beta testing phase to

generate a baseline test suite based on interactions with

friendly customers, or during subsequent maintenance to

enhance a test suite that was originally generated by a more

traditional method. The approach could also help test

engineers monitor and improve test suite quality as the Web

application evolves and as the application’s usage proceeds

beyond the bounds anticipated in earlier releases and

earlier testing.

Our results suggest several directions for future work.

First, the combination of traditional testing techniques and

user-session data seems to possess a potential that we have

not been able to fully exploit. Newmethods might be able to

successfully integrate these approaches. In addition, more

complex techniques that consider other factors affecting the

approach, such as the influences of state and nondetermin-

ism, must be explored. We have suggested approaches that

can be taken to accommodate these factors, but additional

study is needed.

Second, the analysis of user-session techniques suggests

that using a large number of captured user sessions

involves trade-offs. Additional sessions may provide addi-

tional fault detection power, but a larger number of sessions

also implies more test preparation and execution time.

Techniques for filtering sessions, such as the reduction and

clustering techniques we have suggested and obtained

initial data on, will need to be further investigated.

Third, the applicability of the user-session test generation

approach will certainly be affected by the efficiency of the

data collection process. We need to be able to characterize

the costs of US techniques and compare these with the costs

of more traditional techniques. Further studies are also

needed to determine under what types of loads user-

session-based approaches may be cost-effective. Given the

observed asymptotic improvement in fault detection as the

number of user sessions increase, studies will need to

consider whether the approach should be applied to all or

just a subset of the user-sessions.
Finally, we believe that there are many applications for

user-session data that have not been fully explored in the

200 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

domain of Web applications. For example, a recent report
by the Business Internet Group of San Francisco [25] states:

“The fact is that Web applications can never truly be tested
to accommodate the scope of operational variables and user
behaviors that a dynamic Web application encounters in
production.”

This statement is likely correct, but our results also suggest
that user-session data could be used to at least partly
address this problem, allowing engineers to assess the
appropriateness of an existing test suite in the face of
shifting operational profiles, and prioritize their validation
activities based on the behavior exhibited by deployed
applications. Through such approaches, we hope to be able
to harness the power of user-session data to improve the
reliability of this important class of software applications.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation Information Technology Research program
under Awards CCR-0080898 and CCF-0347518 to Univer-
sity of Nebraska, Lincoln, and CCR-0080900 to Oregon State
University. The e-commerce application was obtained from
gotocode.com. M. Hardojo and K. Le assisted in the fault
seeding process. The authors especially thank the users who
participated in the study and the reviewers of the paper for
their helpful comments. Portions of this paper have been
previously presented in [31].

REFERENCES

[1] Apache-Organization, Apache http server version 2.0 documenta-
tion, http://httpd.apache.org/docs-2.0/, 2004.

[2] B. Beizer, Software Testing Techniques. New York: Van Nostrand
Reinhold, 1990.

[3] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb: Automatically
Testing Dynamic Web Sites,” Proc. 11th Int’l WWW Conf., May
2002.

[4] R. Binder, Testing Object-Oriented Systems. Addison Wesley, 2000.
[5] R. Carver and K. Tai, “Deterministic Execution Testing of

Concurrent Ada Programs,” Proc. Conf. Tri-Ada, pp. 528-544, Jan.
1989.

[6] D. Chays, S. Dan, P. Frankl, F. Vokolos, and E. Weyuker, “A
Framework for Testing Database Applications,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 147-157, Aug. 2000.

[7] J. Conallen, Building Web Applications with UML. Addison-Wesley,
2000.

[8] G. DiLucca, A. Fasolino, F. Faralli, and U. Carlini, “Testing Web
Applications,” Proc. Int’l Conf. Software Maintenance, pp. 310-319,
Nov. 2002.

[9] W. Dickinson, D. Leon, and A. Podgurski, “Finding Failures by
Cluster Analysis of Execution Profiles,” Proc. Int’l Conf. Software
Eng., pp. 339-348, May 2001.

[10] S. Elbaum, A.G. Malishevsky, and G. Rothermel, “Test Case
Prioritization: A Family of Empirical Studies,” IEEE Trans.
Software Eng., vol. 28, no. 2, pp. 159-182, Feb. 2002.

[11] Empirix, “Web Testing Solutions,” http://www.empirix.com/
Empirix/Web+Test+Monitoring/Testing+Solutions/, 2004.

[12] M. Harrold, R. Gupta, and M. Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Trans. Software Eng.
and Methodology, vol. 2, no. 3, pp. 270-285, July 1993.

[13] E. Hieatt and R. Mee, “Going Faster: Testing the Web Applica-
tion,” IEEE Software, pp. 60-65, Mar. 2002.

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
on the Effectiveness of Dataflow- and Controlflow-Based Test
Adequacy Criteria,” Proc. Int’l Conf. Software Eng., pp. 191-200,
May 1994.

[15] Software Research, Inc., “eValid,” http://www.soft.com/eValid/,
2004.

[16] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz, “Experiences in
Engineering Flexible Web Services,” IEEE MultiMedia, vol. 8, no. 1,
pp. 58-65, Jan. 2001.

[17] P. Koppol and K. Tai, “An Incremental Approach to Structural
Testing of Concurrent Software,” Proc. Int’l Symp. Software Testing
and Analysis, pp. 14-23, Jan. 1996.

[18] S. Lee and J. Offutt, “Generating Test Cases for XML-Based Web
Component Interactions Using Mutation Analysis,” Proc. 12th
IEEE Int’l Symp. Software Reliability Eng., pp. 200-209, Nov. 2001.

[19] T. Lee, “World Wide Web Consortium,” http://www.w3.org/,
2004.

[20] C. Liu, D. Kung, P. Hsia, and C. Hsu, “Structural Testing of Web
Applications,” Proc. 11th IEEE Int’l Symp. Software Reliability Eng.,
pp. 84-96, Oct. 2000.

[21] “Developing ColdFusion MX Applications,” Macromedia, Inc.,
2003, http://www.macromedia.com/.

[22] S. Manley and M. Seltzer, “Web Facts and Fantasy,” Proc. 1997
Usenix Symp. Internet Technologies and Systems, 1997.

[23] A. Nikora and J. Munson, “Software Evolution and the Fault
Process,” Proc. 23rd Ann. Software Eng. Workshop, 1998.

[24] Business Internet Group of San Francisco, “The BIG-SF Report on
Government Web Application Integrity,”http://www.tealeaf.
com/downloads/news/analyst_report/BIG-SF_Report_Gov_
2003-05.pdf, 2004.

[25] Business Internet Group of San Francisco, “The Black Friday
Report on Web Application Integrity,” http://www.tealeaf.com/
downloads/news/analyst_report/BIG-SF_BlackFridayReport.
pdf, 2004.

[26] Parasoft, “WebKing,” http://www.parasoft.com/jsp/products,
2004.

[27] R. Pressman, Software Engineering A Practitioner’s Approach. fifth
ed. McGraw-Hill, 2001.

[28] Rational-Corporation, “Rational Testing Robot,” http://www.
rational.com/products/robot/, 2004.

[29] Testing a Website: Best practices, http://www.reveregroup.com,
2004.

[30] F. Ricca and P. Tonella, “Analysis and Testing of Web Applica-
tions,” Proc. Int’l Conf. Software Eng., pp. 25-34, May 2001.

[31] S. Elbaum, S. Karre, and G. Rothermel, “Improving Web
Application Testing with User Session Data,” Proc. Int’l Conf.
Software Eng., pp. 49-59, May 2003.

[32] K.C. Tai and R.H. Carver, “A Specification-Based Methodology
for Testing Concurrent Programs,” Proc. Fifth European Software
Eng. Conf., pp. 154-172, Sept. 1995.

[33] R. Taylor, D. Levine, and C. Kelly, “Structural Testing of
Concurrent Programs,” IEEE Trans. Software Eng., vol. 18, no. 3,
pp. 206-215, 1992.

[34] S. Tilley and H. Shihong, “Evaluating the Reverse Engineering
Capabilities of Web Tools for Understanding Site Content and
Structure: A Case Study,” Proc. Int’l Conf. Software Eng., pp. 514-
523, May 2001.

[35] J. Tzay, J. Huang, F. Wang, and W.C. Chu, “Constructing an
Object-Oriented Architecture for Web Application Testing,” J.
Information Science and Eng., vol. 18, no. 1, pp. 59-84, Jan. 2002.

[36] S. Weiss, “A Formal Framework for Studying Concurrent
Program Testing,” Proc. Fourth Symp. Software Testing, Analysis,
and Verification, pp. 106-113, July 1988.

[37] E.J. Weyuker, “On Testing Nontestable Programs,” The Computing
J., vol. 15, no. 4, pp. 465-470, 1982.

[38] E.J. Weyuker and B. Jeng, “Analyzing Partition Testing Strate-
gies,” IEEE Trans. Software Eng., vol. 17, no. 7, pp. 703-711, July
1991.

[39] W. Wong, J. Horgan, S. London, and A. Mathur, “Effect of Test Set
Minimization on Fault Detection Effectiveness,” Proc. 17th Int’l
Conf. Software Eng., pp. 41-50, Apr. 1995.

[40] R. Yang and C. Chung, “Path Analysis Testing of Concurrent
Programs,” Information and Software Technology, vol. 34, no. 1,
pp. 43-56, 1992.

ELBAUM ET AL.: LEVERAGING USER-SESSION DATA TO SUPPORT WEB APPLICATION TESTING 201

Sebastian Elbaum received the PhD and MS
degrees in computer science from the University
of Idaho and a degree in systems engineering
from the Universidad Catolica de Cordoba,
Argentina. He is an assistant professor in the
Department of Computer Science and Engineer-
ing at the University of Nebraska, Lincoln. He is
a coeditor for the International Software Tech-
nology Journal, and a member of the editorial
board of the Software Quality Journal. He has

served on the program committees for the International Conference on
Software Engineering, International Symposium on Testing and Analy-
sis, International Symposium on Software Reliability Engineering,
International Conference on Software Maintenance, and the Interna-
tional Symposium on Empirical Software Engineering. His research
interests include software testing, analysis, and maintenance with an
empirical focus. He is a member of the IEEE and ACM.

Gregg Rothermel received the PhD degree in
computer science from Clemson University, the
MS degree in computer science from SUNY
Albany, and the BA degree in philosophy from
Reed College. He is currently a professor and
Jensen Chair of Software Engineering in the
Department of Computer Science and Engineer-
ing at University of Nebraska-Lincoln. His
research interests include software engineering
and program analysis, with emphases on the

application of program analysis techniques to problems in software
maintenance and testing, and on empirical studies. Previous positions
include vice president of quality assurance and quality control at Palette
Systems, Incorporated. He is an associate editor in chief for IEEE
Transactions on Software Engineering, program cochair for ICSE 2007,
program chair for ISSTA 2004, and the chair of the steering committee
for the International Conference on Software Maintenance. He is a
member of the editorial boards for the Empirical Software Engineering
Journal and the Software Quality Journal. He has served as a member
of program committees for the IEEE International Conference on
Software Engineering, the ACM International Symposium on Founda-
tions of Software Engineering, the ACM International Symposium on
Software Testing and Analysis, and the IEEE International Conference
on Software Maintenance. He is a member of the IEEE and ACM.

Srikanth Karre received the MS degree in
computer science at the University of Nebraska
-Lincoln. He received the BE degree from
Chaitanya Bharathi Institute of Technology,
India. His research interests include software
testing and Web application development.

Marc Fisher II is a PhD student and research
assistant in the Department of Computer
Science and Engineering at the University of
Nebraska-Lincoln. He received the MS and BS
degrees in computer science from Oregon State
University. His research interests include end-
user software engineering, software testing, and
program analysis. He is a member of the IEEE
Computer Society, ACM, and ACM SIGSOFT.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

	Leveraging User-Session Data to Support Web Application Testing
	

	tmp.1248973994.pdf.YiXeU

