

# Levi-Civita and generalized Tanaka–Webster covariant derivatives for real hypersurfaces in complex two-plane Grassmannians

Imsoon Jeong · Hyunjin Lee · Young Jin Suh

Received: 8 July 2013 / Accepted: 25 January 2014 / Published online: 7 February 2014 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

**Abstract** It is known that submanifolds in Kaehler manifolds have many kinds of connections. Among them, we consider two connections, that is, Levi-Civita and Tanaka–Webster connections for real hypersurfaces in complex two-plane Grassmannians  $G_2(\mathbb{C}^{m+2})$ . When they are equal to each other, we give some characterizations in  $G_2(\mathbb{C}^{m+2})$ .

**Keywords** Real hypersurfaces, Complex two-plane Grassmannians, Hopf hypersurface,  $\mathfrak{D}^{\perp}$ -invariant hypersurface, Levi-Civita connection, Generalized Tanaka–Webster connection

Mathematics Subject Classification (2010) Primary: 53C40; Secondary: 53C15

# **1** Introduction

The study of real hypersurfaces in complex two-plane Grassmannians  $G_2(\mathbb{C}^{m+2})$  was initiated by Berndt and Suh [1]. Let us denote by  $G_2(\mathbb{C}^{m+2})$  the set of all complex twodimensional linear subspaces in  $\mathbb{C}^{m+2}$ . This set can be identified with the homogeneous space  $SU(m+2)/S(U(2) \times U(m))$ . From this, we know that  $G_2(\mathbb{C}^{m+2})$  becomes the unique compact, irreducible, Riemannian manifold being equipped with both a Kaehler structure J and a quaternionic Kaehler structure  $\mathfrak{J}$  not containing J. In other words,  $G_2(\mathbb{C}^{m+2})$  is the unique

I. Jeong  $\cdot$  H. Lee  $\cdot$  Y. J. Suh ( $\boxtimes$ )

This work was supported by Grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea. The first author by Grant Proj. No. NRF-2011-0013381, the second author by Grant Proj. No. NRF-2012-R1A1A3002031, and the third by Grant Proj. No. NRF-2012-R1A2A2A01043023.

Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea e-mail: yjsuh@knu.ac.kr

compact, irreducible, Kaehler, quaternionic Kaehler manifold which is not a hyper-Kaehler manifold [1,2].

For real hypersurfaces M in  $G_2(\mathbb{C}^{m+2})$ , we have the following two natural geometric conditions: the 1-dimensional distribution  $[\xi] = \text{Span}{\xi}$  and the 3-dimensional distribution  $\mathfrak{D}^{\perp} = \text{Span}{\xi_1, \xi_2, \xi_3}$  are invariant under the shape operator A of M. Here the almost contact structure vector field  $\xi$  defined by  $\xi = -JN$  is said to be a *Reeb* vector field, where N denotes a local unit normal vector field of M in  $G_2(\mathbb{C}^{m+2})$ . The *almost contact 3-structure* vector fields  $\xi_1, \xi_2, \xi_3$  spanning the 3-dimensional distribution  $\mathfrak{D}^{\perp}$  of M in  $G_2(\mathbb{C}^{m+2})$  are defined by  $\xi_{\nu} = -J_{\nu}N$  ( $\nu = 1, 2, 3$ ), where  $J_{\nu}$  denotes a canonical local basis of the quaternionic Kaehler structure  $\mathfrak{J}$  such that  $T_x M = \mathfrak{D} \oplus \mathfrak{D}^{\perp}, x \in M$ .

By using these two invariant conditions and the result in Alekseevskii [3], Berndt and Suh [1] proved the following:

**Theorem A** Let M be a connected real hypersurface in  $G_2(\mathbb{C}^{m+2})$ ,  $m \ge 3$ . Then both  $[\xi]$  and  $\mathfrak{D}^{\perp}$  are invariant under the shape operator of M if and only if

- (A) *M* is an open part of a tube around a totally geodesic  $G_2(\mathbb{C}^{m+1})$  in  $G_2(\mathbb{C}^{m+2})$ , or
- (B) *m* is even, say m = 2n, and *M* is an open part of a tube around a totally geodesic  $\mathbb{H}P^n$  in  $G_2(\mathbb{C}^{m+2})$ .

The Reeb vector field  $\xi$  is said to be *Hopf* if it is invariant under the shape operator *A*. The 1-dimensional foliation of *M* by the integral curves of the Reeb vector field  $\xi$  is said to be a *Hopf foliation* of *M*. We say that *M* is a *Hopf hypersurface* in  $G_2(\mathbb{C}^{m+2})$  if and only if the Hopf foliation of *M* is totally geodesic. By the almost contact metric structure  $(\phi, \xi, \eta, g)$  and the formula  $\nabla_X \xi = \phi A X$  for any  $X \in TM$  in Sect. 2, it can be easily checked that *M* is Hopf if and only if the Reeb vector field  $\xi$  is Hopf. We will give a brief review of  $(\phi, \xi, \eta, g)$  on *M* in Sect. 2.

On the other hand, when the distribution  $\mathfrak{D}^{\perp}$  of a hypersurface M in  $G_2(\mathbb{C}^{m+2})$  is invariant under the shape operator, we say that M is a  $\mathfrak{D}^{\perp}$ -*invariant hypersurface*. Moreover, we say that the Reeb flow on M in  $G_2(\mathbb{C}^{m+2})$  is *isometric*, when the Reeb vector field  $\xi$  on M is Killing. This means that the metric tensor g is invariant under the Reeb flow of  $\xi$  on M.

In [4], Berndt and Suh gave some equivalent conditions of isometric Reeb flow. They gave a characterization of real hypersurfaces of Type (A) in Theorem A in terms of the Reeb flow on M as follows:

**Theorem B** Let M be a connected orientable real hypersurface in  $G_2(\mathbb{C}^{m+2})$ ,  $m \ge 3$ . Then the Reeb flow on M is isometric if and only if M is an open part of a tube around a totally geodesic  $G_2(\mathbb{C}^{m+1})$  in  $G_2(\mathbb{C}^{m+2})$ .

In the proof of our Main Theorems, we will use that the Reeb flow on M is isometric if and only if the shape operator A commutes with the structure tensor field  $\phi$ , that is,  $A\phi = \phi A$ . Related to this commuting property, recently, the authors gave many characterizations of model spaces of Type (A) in  $G_2(\mathbb{C}^{m+2})$  mentioned in Theorems A and B (see [5,6]).

On the other hand, Suh [7] gave a characterization of real hypersurfaces of Type (*B*) in  $G_2(\mathbb{C}^{m+2})$  in terms of the contact hypersurface. Moreover, as another characterization of one of Type (*B*) in  $G_2(\mathbb{C}^{m+2})$  related to the Reeb vector field  $\xi$  Lee and Suh [8] obtained the following:

**Theorem C** Let M be a connected orientable Hopf hypersurface in  $G_2(\mathbb{C}^{m+2})$ ,  $m \ge 3$ . Then the Reeb vector field  $\xi$  belongs to the distribution  $\mathfrak{D}$  if and only if M is locally congruent to an open part of a tube around a totally geodesic  $\mathbb{H}P^n$  in  $G_2(\mathbb{C}^{m+2})$ , where m = 2n. Usually, any submanifold in Kaehler manifolds has many kinds of connections. Among them, we consider two connections, namely, Levi-Civita and Tanaka–Webster connections for real hypersurfaces M in  $G_2(\mathbb{C}^{m+2})$ . In fact,  $G_2(\mathbb{C}^{m+2})$  is a Riemannian symmetric space with Riemannian metric and Levi-Civita connection. Using the induced connection from the Levi-Civita connection, many geometers gave some characterizations for real hypersurfaces in  $G_2(\mathbb{C}^{m+2})$  related to the covariant derivative  $\nabla$  of the shape operator on M ([9,10], etc). For real hypersurfaces in a Kaehler manifold, we consider a new affine connection  $\widehat{\nabla}^{(k)}$  different from the Levi-Civita connection  $\nabla$ , namely, the *generalized Tanaka–Webster connection* (in short, the *g-Tanaka–Webster connection*). It becomes a generalization of the well-known connection defined by Tanno [11]. Besides, it coincides with Tanaka–Webster connection if a real hypersurface in Kaehler manifolds satisfies  $\phi A + A\phi = 2k\phi$  for a nonzero real number k. The Tanaka–Webster connection is defined as the canonical affine connection on a nondegenerate, pseudo-Hermitian CR-manifold [12–14]. Using the generalized Tanaka–Webster connection,  $\widehat{\nabla}^{(k)}$  defined in such a way that

$$\widehat{\nabla}_X^{(k)} Y = \nabla_X Y + g(\phi A X, Y)\xi - \eta(Y)\phi A X - k\eta(X)\phi Y \tag{*}$$

for any *X*, *Y* tangent to *M*, where  $\nabla$  denotes the Levi-Civita connection on *M*, *A* is the shape operator on *M* and *k* is a nonzero real number, the authors studied some characterizations of real hypersurfaces in  $G_2(\mathbb{C}^{m+2})$  ([15,16], etc). The latter part of the generalized Tanaka–Webster connection  $g(\phi AX, Y)\xi - \eta(Y)\phi AX - k\eta(X)\phi Y$  is denoted by  $F_XY$ . Here the operator  $F_X$  is a kind of (1,1)-type tensor and said to be the *Tanaka–Webster operator*.

On the other hand, there are many results for the classification problem of real hypersurfaces in  $G_2(\mathbb{C}^{m+2})$  related to the structure Jacobi operator and Ricci tensor, for example, [17–24] and so on. Recently, Pérez and Suh [25] investigated the Levi-Civita and g-Tanaka– Webster covariant derivatives for the shape operator or the structure Jacobi operator of real hypersurfaces in complex projective space  $\mathbb{C}P^m$ . In particular, the authors [25] gave the result about the shape operator as follows:

# **Theorem D** There exist no real hypersurfaces M in $\mathbb{C}P^m$ , $m \ge 2$ such that $\nabla A = \widehat{\nabla}^{(k)}A$ .

Motivated by Theorem D, in this paper, we study a real hypersurface M in  $G_2(\mathbb{C}^{m+2})$  whose Levi-Civita covariant derivative coincides with generalized Tanaka–Webster derivative for the shape operator of M, that is,

$$(\nabla_X A) Y = \left(\widehat{\nabla}_X^{(k)} A\right) Y \tag{C-1}$$

for arbitrary tangent vector fields X and Y on M.

The condition (C-1) has a geometric meaning such that the shape operator A commutes with the Tanaka–Webster operator  $F_X$ , that is,  $A \cdot F_X = F_X \cdot A$ . This meaning gives any eigenspaces of the shape operator A are invariant by the Tanaka–Webster operator  $F_X$ .

From such a point of view, in Sect. 3, we prove that a real hypersurface in Kaehler manifolds satisfying (C-1) must be Hopf. Then from this result, we assert the following:

**Theorem 1** There does not exist any real hypersurface in complex two-plane Grassmannians  $G_2(\mathbb{C}^{m+2})$ ,  $m \ge 3$ , satisfying (C-1).

First, if we restrict  $X = \xi$  in (C-1), then the following condition (C-2) along the Reeb vector field  $\xi$  becomes a generalized condition weaker than the condition (C-1). This also has a geometric meaning that any eigenspaces of the shape operator A are invariant by the restricted Tanaka–Webster operator  $F_{\xi}$  in the direction of the Reeb vector field  $\xi$ . Thus, we assert the following:

**Theorem 2** Let *M* be a Hopf hypersurface in complex two-plane Grassmannians  $G_2(\mathbb{C}^{m+2})$ ,  $m \ge 3$ . If *M* satisfies

$$\left(\nabla_{\xi}A\right)Y = \left(\widehat{\nabla}_{\xi}^{(k)}A\right)Y \tag{C-2}$$

for any tangent vector field Y on M, then M is locally congruent to a tube of radius r over a totally geodesic  $G_2(\mathbb{C}^{m+1})$  in  $G_2(\mathbb{C}^{m+2})$ .

As a second, let us consider a distribution  $\mathfrak{D}^{\perp}$  spanned by  $\{\xi_1, \xi_2, \xi_3\}$ . Accordingly, if we consider the condition (C-1) to the distribution  $\mathfrak{D}^{\perp}$ , the derivatives of the shape operator A of M along the distribution  $\mathfrak{D}^{\perp}$  becomes a condition more weaker than (C-1). Obviously, this has a geometric meaning that any eigenspaces of the shape operator A are invariant by the restricted Tanaka–Webster operator  $F_{\xi_{\nu}}$ ,  $\nu = 1, 2, 3$ , along the distribution  $\mathfrak{D}^{\perp}$ . Then we have the following:

**Theorem 3** There does not exist a Hopf hypersurface in  $G_2(\mathbb{C}^{m+2})$ ,  $m \ge 3$ , satisfying

$$\left(\nabla_{\xi_{\nu}}A\right)Y = \left(\widehat{\nabla}_{\xi_{\nu}}^{(k)}A\right)Y, \quad \nu = 1, 2, 3 \tag{C-3}$$

for any tangent vector field Y on M.

Finally, we consider a distribution  $\mathfrak{D}$  which is an orthogonal complement of  $\mathfrak{D}^{\perp}$  in *TM*. Then by restricting the condition (C-1) to the distribution  $\mathfrak{D}$ , we get the following condition (C-4), which becomes another condition more weaker than (C-1). Using this geometric notion, we get:

**Theorem 4** There does not exist a Hopf hypersurface in  $G_2(\mathbb{C}^{m+2})$ ,  $m \ge 3$ , with

$$(\nabla_X A) Y = \left(\widehat{\nabla}_X^{(k)} A\right) Y \tag{C-4}$$

for all vector fields  $X \in \mathfrak{D}$  and Y on M.

In this paper, we refer to [1,2,4,26] for Riemannian geometric structures of  $G_2(\mathbb{C}^{m+2})$ , and [11,13-16,27] for generalized Tanaka–Webster connection of real hypersurfaces in Kaehler manifolds.

#### 2 Key Lemmas

Let M be a real hypersurface in Kaehler manifolds  $(\tilde{M}, \tilde{g})$ . The induced Riemannian metric on M is denoted by g. In addition,  $\tilde{\nabla}$  and  $\nabla$  denote the Levi-Civita connections of  $\tilde{M}$  and M, respectively. Let N be a local unit normal vector field of M and A the shape operator of M with respect to N.

From the Kaehler structure J of  $\tilde{M}$ , we have a tensor field  $\phi$  of type (1,1) on M, given by

$$g(\phi X, Y) = \tilde{g}(JX, Y)$$

for all tangent vector fields X of M. Moreover, we obtain the unit tangent vector field  $\xi$  and the 1-form  $\eta$  of M defined by

$$\xi = -JN$$
 and  $\eta(X) = g(X, \xi) = \tilde{g}(JX, N)$ ,

respectively. It implies that  $\phi^2 X = -X + \eta(X)\xi$ ,  $\eta(\xi) = 1$ ,  $\phi \xi = 0$  and

$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi, \ \nabla_X \xi = \phi AX,$$

together with Gauss and Weingarten formulas. Thus, the Kaehler structure J of  $\tilde{M}$  induces an almost contact metric structure  $(\phi, \xi, \eta, g)$  on M.

Now let us assume that a real hypersurface M in  $\tilde{M}$  satisfies

$$(\nabla_X A) Y = \left(\widehat{\nabla}_X^{(k)} A\right) Y \tag{C-1}$$

for all tangent vector fields X and Y on M.

From the definition of the g-Tanaka-Webster connection (\*), we have

$$\begin{split} (\widehat{\nabla}_X^{(k)} A)Y &= \widehat{\nabla}_X^{(k)} (AY) - A(\widehat{\nabla}_X^{(k)} Y) \\ &= (\nabla_X A)Y + g(\phi AX, AY)\xi - \eta(AY)\phi AX - k\eta(X)\phi AY \\ &- g(\phi AX, Y)A\xi + \eta(Y)A\phi AX + k\eta(X)A\phi Y. \end{split}$$

Therefore, the condition (C-1) can be written as

$$g(\phi AX, AY)\xi - \eta(AY)\phi AX - k\eta(X)\phi AY -g(\phi AX, Y)A\xi + \eta(Y)A\phi AX + k\eta(X)A\phi Y = 0$$
(2.1)

for all tangent vector fields X and Y on M.

In a situation like this, we prove

**Lemma 2.1** Let M be a real hypersurface in a Kaehler manifold  $\tilde{M}$  with the condition (C-1). Then M becomes a Hopf hypersurface.

*Proof* The purpose of this lemma is to show that the structure vector field  $\xi$  is principal. In order to prove this, let us suppose that there is a point where the Reeb vector field  $\xi$  is not principal. Then there exists a neighborhood  $\mathfrak{U}$  of this point, on which we can define a unit vector field U orthogonal to  $\xi$  in such a way that

$$\beta U = A\xi - g(A\xi,\xi)\xi = A\xi - \alpha\xi$$

where  $\beta$  denotes the length of vector filed  $A\xi - \alpha\xi$  and  $\beta(x) \neq 0$  for any point x in  $\mathfrak{U}$ . Hereafter, unless otherwise stated, let us continue our discussion on this neighborhood  $\mathfrak{U}$ .

Taking  $X = Y = \xi$  in (2.1), we get  $\beta(\alpha + k)\phi U = \beta A\phi U$ . Since  $\beta \neq 0$ , it follows that

$$A\phi U = (\alpha + k)\phi U. \tag{2.2}$$

Moreover, putting X = Y = U in (2.1), we have  $-\beta \phi AU = 0$ . It implies that

$$AU = \beta \xi, \tag{2.3}$$

together with  $\beta \neq 0$  and  $\phi^2 AU = -AU + \eta(AU)\xi = -AU + \beta\xi$ .

Replacing *Y* by *U* in (2.1), we have

$$-\beta\phi AX - g(\phi AX, U)A\xi + k\eta(X)A\phi U = 0$$
(2.4)

for any tangent vector field X on M. Substituting  $X = \xi$  in the above equation, we get

$$(-\beta^2 + k(\alpha + k))\phi U = 0$$

together with  $\phi A \xi = \beta \phi U$  and (2.2). Taking the inner product with  $\phi U$ , it turns to

$$\alpha + k = \frac{\beta^2}{k} \tag{2.5}$$

because k is nonzero real number from the definition of g-Tanaka–Webster connection on real hypersurfaces in Kaehler manifolds.

Deringer

On the other hand, putting  $X = \phi U$  in (2.4), we get

$$2\beta(\alpha+k)U + \alpha(\alpha+k)\xi = 0 \tag{2.6}$$

from (2.2) and  $\phi^2 U = -U$ . Taking the inner product with  $\xi$ , we obtain  $\alpha(\alpha + k) = 0$ . By (2.5), this equation is written as  $\frac{\alpha\beta^2}{k} = 0$ . Since  $k \neq 0$  and  $\beta \neq 0$ , we have  $\alpha = 0$ . Moreover, taking the inner product of (2.6) with U, we have  $\beta(\alpha + k) = 0$ . It follows that  $\beta = 0$ , together with  $\alpha = 0$  and  $k \neq 0$ , which gives a contradiction. This is, the set  $\mathfrak{U}$  should be empty. Thus, there does not exist such an open neighborhood  $\mathfrak{U}$  in M, which means that the structure vector field  $\xi$  is principle. Hence, M must be Hopf under our assumption.

By means of Lemma 2.1, the condition (C-1) implies

$$g(\phi AX, AY)\xi - \alpha \eta(Y)\phi AX - k\eta(X)\phi AY -\alpha g(\phi AX, Y)\xi + \eta(Y)A\phi AX + k\eta(X)A\phi Y = 0$$
(2.7)

for all tangent vector fields X and Y on M. Moreover, putting  $Y = \xi$  in the above equation, we obtain  $A\phi AX = \alpha \phi AX$  for any tangent vector field X on M. From this, the Eq. (2.7) is reduced to

$$k\eta(X)(A\phi - \phi A)Y = 0$$

for all tangent vector fields X and Y on M. By the definition of generalized Tanaka–Webster connection for real hypersurfaces in a Kaehler manifold, it follows that

$$\eta(X)(A\phi - \phi A)Y = 0$$

for all tangent vector fields X and Y on M.

Summing up above discussions, we assert the following

**Lemma 2.2** Let M be a real hypersurface in a Kaehler manifold  $\tilde{M}$  with the condition (C-1). Then we have

$$A\phi AX = \alpha \phi AX, \tag{2.8}$$

$$\eta(X)(A\phi - \phi A)Y = 0 \tag{2.9}$$

for all tangent vector fields X, Y on M.

## 3 Proof of Theorem 1

From now on, we will prove Theorem 1 in the introduction by using the above two Lemmas which are induced from our condition (C-1).

In fact, since *M* is a real hypersurface in  $G_2(\mathbb{C}^{m+2})$  with the property (C-1), *M* becomes a Hopf hypersurface (Lemma 2.1). From this, we have

$$\eta(X)(A\phi - \phi A)Y = 0, \tag{3.1}$$

because k is a nonzero constant (Lemma 2.2).

Putting  $X = \xi$  in (3.1), it follows that  $A\phi - \phi A = 0$ . On the other hand, Berndt and Suh [4] gave a characterization of real hypersurfaces of Type (A) in  $G_2(\mathbb{C}^{m+2})$  when the shape operator A of M commutes with the structure tensor  $\phi$  of M. By virtue of this result, we assert that if M is a real hypersurface in  $G_2(\mathbb{C}^{m+2})$  satisfying (C-1), then M is locally congruent to an open part of a tube around a totally geodesic  $G_2(\mathbb{C}^{m+1})$  in  $G_2(\mathbb{C}^{m+2})$ . Let us check that whether the model space  $M_A$  of Type (A) satisfies the condition (C-1). In order to do this, let us assume that the shape operator A of  $M_A$  satisfies the condition (C-1). According to Proposition 3 given in [1], the Eq. (2.8) implies

$$\beta(\beta - \alpha) = 0 \tag{3.2}$$

if  $X = \xi_2$ . But it does not hold, because  $\beta(\beta - \alpha) = 2$  where  $\alpha = \sqrt{8}\cot(2\sqrt{2}r)$  and  $\beta = \sqrt{2}\cot(\sqrt{2}r), r \in (0, \pi/2\sqrt{2})$ . It completes the proof of Theorem 1.

### 4 Proofs of Theorems 2 and 3

In this section, we investigate Hopf hypersurfaces in  $G_2(\mathbb{C}^{m+2})$  satisfying the property (C-2) and (C-3) which are weaker than (C-1), respectively. On the other hand,  $G_2(\mathbb{C}^{m+2})$  is equipped with both a Kaehler and a quaternionic Kaehler structure. By applying these two structures to the normal vector field N of M in  $G_2(\mathbb{C}^{m+2})$ , we get 1- and 3-dimensional distributions on M. For the sake of convenience, we denote  $[\xi] = \text{Span}\{\xi\}$  or  $\mathfrak{D}^{\perp} = \text{Span}\{\xi_1, \xi_2, \xi_3\}$ , respectively. For these two distributions, we define a new distribution  $\mathfrak{F}$  given by  $\mathfrak{F} = [\xi] \cup \mathfrak{D}^{\perp}$ . If we restrict  $X \in \mathfrak{F}$  in (C-1), then it becomes a new weaker condition for (C-1). Accordingly, we also consider this case.

First, we assume that M is a Hopf hypersurface in  $G_2(\mathbb{C}^{m+2})$  satisfying

$$(\nabla_{\xi}A)Y = (\widehat{\nabla}_{\xi}^{(k)}A)Y \tag{C-2}$$

for any vector field  $Y \in TM$ .

Under our assumptions, this condition means that the structure tensor field  $\phi$  commutes with the shape operator A of M. In fact, putting  $X = \xi$  in (2.1), it follows that for any tangent vector field Y on M

$$\phi AY - A\phi Y = 0,$$

because *M* is Hopf and *k* is a nonzero real number. By Theorem B, we assert our Theorem 2 in the introduction.  $\Box$ 

Next, we observe the following condition of covariant derivatives with respect to the Levi-Civita and g-Tanaka–Webster connections for shape operator A on Hopf hypersurfaces M in  $G_2(\mathbb{C}^{m+2})$  given by

$$(\nabla_{\xi_{\nu}}A)Y = (\widehat{\nabla}_{\xi_{\nu}}^{(k)}A)Y, \quad \nu = 1, 2, 3$$
 (C-3)

for any tangent vector field Y on M.

According to (2.1), the condition (C-3) is equal to

$$g(\phi A\xi_{\nu}, AY)\xi - \alpha\eta(Y)\phi A\xi_{\nu} - k\eta(\xi_{\nu})\phi AY -\alpha g(\phi A\xi_{\nu}, Y)\xi + \eta(Y)A\phi A\xi_{\nu} + k\eta(\xi_{\nu})A\phi Y = 0$$
(4.1)

where Y is any tangent vector field on M and v = 1, 2, 3.

Putting  $Y = \xi$  in (4.1), we have that

$$A\phi A\xi_{\nu} = \alpha \phi A\xi_{\nu}, \quad \nu = 1, 2, 3. \tag{4.2}$$

From this, (4.1) can be written as

$$\eta(\xi_{\nu})(A\phi - \phi A)Y = 0$$

for any vector field  $Y \in TM$  and v = 1, 2, 3.

By virtue of this equation, we have the following two cases:

Deringer

- **Case 1**  $\eta(\xi_{\nu}) = 0$ ,  $\nu = 1, 2, 3$  and
- Case 2  $A\phi = \phi A$ .

First, we consider the case  $\eta(\xi_{\nu}) = 0$  for any  $\nu = 1, 2, 3$ . It means that the Reeb vector field  $\xi$  belongs to the distribution  $\mathfrak{D}$ . By Theorem C, it implies that *M* is of Type (*B*) in Theorem A given in the introduction.

On the other hand, due to Berndt and Suh's classification [1], all the principal curvatures on a model space of Type (B) are given as follows:  $\alpha = -2 \tan(2r)$ ,  $\beta = 2 \cot(2r)$ ,  $\gamma = 0$ ,  $\lambda = \cot(r)$  and  $\mu = -\tan(r)$  for some  $r \in (0, \pi/4)$ . Since  $\gamma = 0$ , we get

$$\left( \widehat{\nabla}_{\xi_{\nu}}^{(k)} A \right) \xi - (\nabla_{\xi_{\nu}} A) \xi = A \phi A \xi_{\nu} - \alpha \phi A \xi_{\nu} = -\alpha \beta \phi \xi_{\nu}$$

for  $\nu = 1, 2, 3$ . In fact, since  $\alpha = -2 \tan(2r)$ ,  $\beta = 2 \cot(2r)$  for some  $r \in (0, \pi/4)$ , the constant  $\alpha\beta$  must be nonzero. It means that the model space of Type (*B*) does not satisfy our condition (C-3).

Next we consider the remain case that the structure tensor  $\phi$  commutes with the shape operator A of M. By virtue of Theorem B, we see that M must be a real hypersurface of Type (A) in  $G_2(\mathbb{C}^{m+2})$ .

From now on, let us check the converse problem, that is, whether a model space  $M_A$  of Type (A) satisfies the condition (C-3) or not. In fact, we suppose that  $M_A$  has the condition (C-3), that is,  $M_A$  satisfies (4.2). For  $\nu = 2$ , it becomes  $\beta(\beta - \alpha) = 0$ . In the proof of Theorem 1, we get  $\beta(\beta - \alpha) = 2$ , because  $\alpha = \sqrt{8} \cot(2\sqrt{2}r)$  and  $\beta = \sqrt{2} \cot\sqrt{2}r$  where  $r \in (0, \pi/2\sqrt{2})$ . Hence, we assert that  $M_A$  does not satisfy the condition (C-3).

Summing up these subcases, we give a complete proof of Theorem 3.

As mentioned above, the distribution  $\mathfrak{F}$  is defined by  $\mathfrak{F} = [\xi] \cup \mathfrak{D}^{\perp}$ . From the structure of  $\mathfrak{F}$  and the proofs of Theorems 2 and 3, we naturally obtain

**Corollary 4.1** There does not exist a Hopf hypersurface in complex two-plane Grassmannians  $G_2(\mathbb{C}^{m+2})$ ,  $m \ge 3$ , with

$$(\nabla_X A) Y = \left(\widehat{\nabla}_X^{(k)} A\right) Y$$

for any  $X \in \mathfrak{F}$  and  $Y \in TM$ .

### 5 Proof of Theorem 4

In this section, we observe the condition

$$(\nabla_X A) Y = \left(\widehat{\nabla}_X^{(k)} A\right) Y \tag{C-4}$$

for all tangent vector fields  $X \in \mathfrak{D}$  and  $Y \in TM$ . Putting  $Y = \xi$  in (2.1) and using the assumption that *M* is Hopf, we obtain

$$A\phi AX = \alpha \phi AX \tag{5.1}$$

for any tangent vector field  $X \in \mathfrak{D}$ . Thus, the condition (C-4) is equal to

$$\eta(X)(A\phi - \phi A)Y = 0 \tag{5.2}$$

for any  $X \in \mathfrak{D}$  and  $Y \in TM$ . From this, we have the following two cases:

• Case 1  $A\phi = \phi A$  and

• Case 2  $\eta(X) = 0$  for any  $X \in \mathfrak{D}$ .

For the first case  $A\phi = \phi A$ , we know that *M* becomes a model space of Type (*A*) by Theorem B in the introduction.

Now let us consider the remaining case  $\eta(X) = 0$  for any  $X \in \mathfrak{D}$ . It means that the Reeb vector field  $\xi$  belongs to the distribution  $\mathfrak{D}^{\perp}$ . Thus, without loss of generality we may put  $\xi = \xi_1$ . Under these assumptions, we now prove that M becomes to be a  $\mathfrak{D}^{\perp}$ -invariant hypersurface, that is,  $g(A\mathfrak{D}, \mathfrak{D}^{\perp}) = 0$ .

Since *M* is Hopf, we have the following formula given by Berndt and Suh [4]:

$$2A\phi AX = \alpha A\phi X + \alpha \phi AX + 2\phi X + 2\sum_{\nu=1}^{3} \left\{ \eta_{\nu}(X)\phi\xi_{\nu} + \eta_{\nu}(\phi X)\xi_{\nu} + \eta_{\nu}(\xi)\phi_{\nu}X - 2\eta(X)\eta_{\nu}(\xi)\phi\xi_{\nu} - 2\eta_{\nu}(\phi X)\eta_{\nu}(\xi)\xi \right\}$$

for any tangent vector field X on M. It can be written as

$$2A\phi AX = \alpha A\phi X + \alpha \phi AX + 2\phi X + 2\phi_1 X \tag{5.3}$$

for any  $X \in \mathfrak{D}$  and  $\xi = \xi_1$ . Substituting (5.1) into (5.3), we get

$$\alpha(A\phi - \phi A)X = -2(\phi X + \phi_1 X) \tag{5.4}$$

for any  $X \in \mathfrak{D}$ .

Let  $\{e_1, e_2, \dots, e_{4m-4}, e_{4m-3} = \xi, e_{4m-2} = \xi_2, e_{4m-1} = \xi_3\}$  be an orthonormal basis for  $T_x M, x \in M$ . Then for any tangent vector field Y on M it follows that

$$\begin{aligned} \alpha(A\phi - \phi A)Y &= \sum_{i=1}^{4m-1} g(\alpha(A\phi - \phi A)Y, e_i)e_i \\ &= \sum_{i=1}^{4m-4} g(\alpha(A\phi - \phi A)Y, e_i)e_i + \sum_{\nu=1}^3 g(\alpha(A\phi - \phi A)Y, \xi_{\nu})\xi_{\nu} \\ &= \sum_{i=1}^{4m-4} g(\alpha(A\phi - \phi A)e_i, Y)e_i + \sum_{\nu=1}^3 g(\alpha(A\phi - \phi A)Y, \xi_{\nu})\xi_{\nu}. \end{aligned}$$

Putting  $Y = e_k \in \mathfrak{D}$  ( $k = 1, 2, \dots, 4m - 4$ ), this equation can be changed

$$\alpha(A\phi-\phi A)e_k=\sum_{i=1}^{4m-4}g(\alpha(A\phi-\phi A)e_i,e_k)e_i+\sum_{\nu=1}^3g(\alpha(A\phi-\phi A)e_k,\xi_\nu)\xi_\nu.$$

Deringer

From (5.4), it follows that

$$\begin{aligned} -2(\phi e_k + \phi_1 e_k) &= \alpha(A\phi - \phi A)e_k \\ &= \sum_{i=1}^{4m-4} g(\alpha(A\phi - \phi A)e_i, e_k)e_i + \sum_{\nu=1}^3 g(\alpha(A\phi - \phi A)e_k, \xi_\nu)\xi_\nu \\ &= \sum_{i=1}^{4m-4} g(-2(\phi e_i + \phi_1 e_i), e_k)e_i + \sum_{\nu=1}^3 g(-2(\phi e_k + \phi_1 e_k), \xi_\nu)\xi_\nu \\ &= -2\sum_{i=1}^{4m-4} g(\phi e_i, e_k)e_i - 2\sum_{i=1}^{4m-4} g(\phi_1 e_i, e_k)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^{4m-4} g(\phi_1 e_k, e_i)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi e_k, \xi_\nu)\xi_\nu \\ &+ 2\sum_{i=1}^{4m-4} g(\phi_1 e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, \xi_\nu)\xi_\nu \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, \xi_\nu)\xi_\nu \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^3 g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^{4m-4} g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^{4m-4} g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^{4m-4} g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^{4m-4} g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^{4m-4} g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i)e_i + 2\sum_{\nu=1}^{4m-4} g(\phi_1 e_k, e_i)e_i \\ &= 2(\sum_{i=1}^{4m-4} g(\phi e_k, e_i$$

where in the fourth and sixth equalities, we have used  $g(\phi e_k, \xi_v) = g(\phi_1 e_k, \xi_v) = 0$  for any  $v \pmod{3}$  and nonzero real number k. Thus, we get

$$\phi X = -\phi_1 X \tag{5.5}$$

for any tangent vector field  $X \in \mathfrak{D}$ . Differentiating this equation covariantly in the direction of *Y*, we have

$$g(AX, Y) = 0$$

for all tangent vector fields  $X \in \mathfrak{D}$  and  $Y \in TM$ , where we have used the formulas about the covariant derivative of structure tensors  $\phi$  and  $\phi_{\nu}$  ( $\nu = 1, 2, 3$ ). It implies that M must be a  $\mathfrak{D}^{\perp}$ -invariant hypersurface, if we restrict to  $Y \in \mathfrak{D}^{\perp}$ . Accordingly, for this case we can assert that M is locally congruent to model spaces of Type (A) by virtue of Theorem A in the introduction.

Summing up these cases, we consequently know that any Hopf hypersurface M in  $G_2(\mathbb{C}^{m+2})$  satisfying the condition (C-4) is of Type (A).

Now it remains only to show that whether a real hypersurface  $M_A$  of Type (A) satisfies the condition (C-4) or not. To check this, let us assume that  $M_A$  has the condition  $(\nabla_X A)Y = (\widehat{\nabla}_X^{(k)}A)Y$  for any  $X \in \mathfrak{D}$  and  $Y \in TM_A$ . It is equivalent that

$$A\phi AX = \alpha \phi AX,\tag{5.6}$$

for  $X \in \mathfrak{D}$  as observed in this section.

From the structure of the tangent vector space  $T_x M_A$  for a model space of Type (A) at any point x on  $M_A$ , we see that the distribution  $\mathfrak{D}$  is composed with two eigenspaces  $T_\lambda$  and  $T_{\mu}$ . In addition, since the eigenspace  $T_{\lambda}$  is given by  $T_{\lambda} = \{X \mid X \perp \mathbb{H}\xi, JX = J_1X\}$  where  $\mathbb{H}\xi$  denotes quaternionic span of  $\xi$ , we see that  $\phi X \in T_{\lambda}$  for any  $X \in T_{\lambda}$ . Using these facts, the Eq. (5.6) is reformed as

$$(\lambda^2 - \alpha \lambda)\phi X = 0$$

for any  $X \in T_{\lambda} \subset \mathfrak{D}$ . From this, we get  $\lambda^2 - \alpha \lambda = 0$ .

On the other hand, from Proposition 3 in [1], we know that

$$\lambda^2 - \alpha \lambda = 2$$

where  $\lambda = -\sqrt{2} \tan(\sqrt{2}r)$  and  $\alpha = 2\sqrt{2} \cot(2\sqrt{2}r)$  for some  $r \in (0, \pi/2\sqrt{2})$ . This makes a contradiction, and therefore, we have Theorem 4 in the introduction.

### References

- Berndt, J., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127, 1–14 (1999)
- 2. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley, New York (1969)
- 3. Alekseevskii, D.V.: Compact quaternion spaces. Funct. Anal. Appl. 2, 106-114 (1968)
- Berndt, J., Suh, Y.J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians. Monatsh. Math. 137, 87–98 (2002)
- Jeong, I., Suh, Y.J.: Real hypersurfaces of Type A in complex two-plane Grassmannians related to commuting shape operator. Forum Math. 25, 179–192 (2013)
- Lee, H., Kim, S., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition. Czechoslov. Math. J. 62(137), 849–861 (2012)
- Suh, Y.J.: Real hypersurfaces of Type *B* in complex two-plane Grassmannians. Monatsh. Math. 147(4), 375–355 (2006)
- Lee, H., Suh, Y.J.: Real hypersurfaces of type *B* in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47(3), 551–561 (2010)
- Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator. Bull. Aust. Math. Soc. 68, 493–502 (2003)
- Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator II. J. Korean Math. Soc. 41(3), 535–565 (2004)
- Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314(1), 349– 379 (1989)
- 12. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Birkhäuser, Boston (2002)
- Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. (N.S.) 2(1), 131–190 (1976)
- 14. Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Diff. Geom. 13, 25–41 (1978)
- Jeong, I., Lee, H., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel shape operator. Kodai Math. J. 34(3), 352–366 (2011)
- Jeong, I., Lee, H., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster D<sup>⊥</sup>-parallel shape operator. Int. J. Geom. Methods Mod. Phys. 9(4), 1250032 (20 p) (2012)
- Jeong, I., Machado, C.J.G., Pérez, J.D., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with D<sup>⊥</sup>-parallel structure Jacobi operator. Int. J. Math. 22, 655–673 (2011)
- Jeong, I., Pérez, J.D., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator. Acta Math. Hung. 122, 173–186 (2009)
- Machado, C.J.G., Pérez, J.D.: Real hypersurfaces in complex two-plane Grassmannians some of whose Jacobi operators are ξ-invariant. International J. Math. 23(3), 1250002 (12 pp) (2012)
- Machado, C.J.G., Pérez, J.D., Jeong, I., Suh, Y.J.: D-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians. Ann. Mat. Pura Appl. (2014) (in press)
- Pérez, J.D., Suh, Y.J.: The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. 44(1), 211–235 (2007)
- Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. R. Soc. Edinb. Sect. A 142, 1309–1324 (2012)

- Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor. J. Geom. Phys. 64, 1–11 (2013)
- Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J. Math. Pures Appl. 100, 16–33 (2013)
- Pérez, J.D., Suh, Y.J.: On g-Tanaka-Webster and covariant derivatives of a real hypersurfaces in a complex projective space (submitted)
- Berndt, J.: Riemannian geometry of complex two-plane Grassmannian. Rend. Semin. Mat. Univ. Politec. Torino 55, 19–83 (1997)
- Kon, M.: Real hypersurfaces in complex space forms and the generalized Tanaka-Webster connection. In: Suh, Y.J., Berndt, J., Choi, Y.S. (eds.) Proceedings of the 13th International Workshop on Differential Geometry and Related Fields, pp. 145–159 (2010)