Levi-Civita and generalized Tanaka-Webster covariant derivatives for real hypersurfaces in complex two-plane Grassmannians

Imsoon Jeong • Hyunjin Lee • Young Jin Suh

Received: 8 July 2013 / Accepted: 25 January 2014 / Published online: 7 February 2014
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Abstract

It is known that submanifolds in Kaehler manifolds have many kinds of connections. Among them, we consider two connections, that is, Levi-Civita and Tanaka-Webster connections for real hypersurfaces in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$. When they are equal to each other, we give some characterizations in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Keywords Real hypersurfaces, Complex two-plane Grassmannians, Hopf hypersurface, \mathfrak{D}^{\perp}-invariant hypersurface, Levi-Civita connection, Generalized Tanaka-Webster connection

Mathematics Subject Classification (2010) Primary: 53C40; Secondary: 53C15

1 Introduction

The study of real hypersurfaces in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$ was initiated by Berndt and Suh [1]. Let us denote by $G_{2}\left(\mathbb{C}^{m+2}\right)$ the set of all complex twodimensional linear subspaces in \mathbb{C}^{m+2}. This set can be identified with the homogeneous space $S U(m+2) / S(U(2) \times U(m))$. From this, we know that $G_{2}\left(\mathbb{C}^{m+2}\right)$ becomes the unique compact, irreducible, Riemannian manifold being equipped with both a Kaehler structure J and a quaternionic Kaehler structure \mathfrak{J} not containing J. In other words, $G_{2}\left(\mathbb{C}^{m+2}\right)$ is the unique

[^0]compact, irreducible, Kaehler, quaternionic Kaehler manifold which is not a hyper-Kaehler manifold [1,2].

For real hypersurfaces M in $G_{2}\left(\mathbb{C}^{m+2}\right)$, we have the following two natural geometric conditions: the 1 -dimensional distribution $[\xi]=\operatorname{Span}\{\xi\}$ and the 3 -dimensional distribution $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ are invariant under the shape operator A of M. Here the almost contact structure vector field ξ defined by $\xi=-J N$ is said to be a Reeb vector field, where N denotes a local unit normal vector field of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$. The almost contact 3 -structure vector fields $\xi_{1}, \xi_{2}, \xi_{3}$ spanning the 3-dimensional distribution \mathfrak{D}^{\perp} of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ are defined by $\xi_{\nu}=-J_{v} N(\nu=1,2,3)$, where J_{v} denotes a canonical local basis of the quaternionic Kaehler structure \mathfrak{J} such that $T_{x} M=\mathfrak{D} \oplus \mathfrak{D}^{\perp}, x \in M$.

By using these two invariant conditions and the result in Alekseevskii [3], Berndt and Suh [1] proved the following:

Theorem A Let M be a connected real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then both $[\xi]$ and \mathfrak{D}^{\perp} are invariant under the shape operator of M if and only if
(A) M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, or
(B) m is even, say $m=2 n$, and M is an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

The Reeb vector field ξ is said to be Hopf if it is invariant under the shape operator A. The 1-dimensional foliation of M by the integral curves of the Reeb vector field ξ is said to be a Hopf foliation of M. We say that M is a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ if and only if the Hopf foliation of M is totally geodesic. By the almost contact metric structure (ϕ, ξ, η, g) and the formula $\nabla_{X} \xi=\phi A X$ for any $X \in T M$ in Sect. 2, it can be easily checked that M is Hopf if and only if the Reeb vector field ξ is Hopf. We will give a brief review of (ϕ, ξ, η, g) on M in Sect. 2.

On the other hand, when the distribution \mathfrak{D}^{\perp} of a hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is invariant under the shape operator, we say that M is a \mathfrak{D}^{\perp}-invariant hypersurface. Moreover, we say that the Reeb flow on M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is isometric, when the Reeb vector field ξ on M is Killing. This means that the metric tensor g is invariant under the Reeb flow of ξ on M.

In [4], Berndt and Suh gave some equivalent conditions of isometric Reeb flow. They gave a characterization of real hypersurfaces of Type (A) in Theorem A in terms of the Reeb flow on M as follows:

Theorem B Let M be a connected orientable real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then the Reeb flow on M is isometric if and only if M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

In the proof of our Main Theorems, we will use that the Reeb flow on M is isometric if and only if the shape operator A commutes with the structure tensor field ϕ, that is, $A \phi=\phi A$. Related to this commuting property, recently, the authors gave many characterizations of model spaces of Type (A) in $G_{2}\left(\mathbb{C}^{m+2}\right)$ mentioned in Theorems A and B (see [5,6]).

On the other hand, Suh [7] gave a characterization of real hypersurfaces of Type (B) in $G_{2}\left(\mathbb{C}^{m+2}\right)$ in terms of the contact hypersurface. Moreover, as another characterization of one of Type (B) in $G_{2}\left(\mathbb{C}^{m+2}\right)$ related to the Reeb vector field ξ Lee and Suh [8] obtained the following:

Theorem C Let M be a connected orientable Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then the Reeb vector field ξ belongs to the distribution \mathfrak{D} if and only if M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, where $m=2 n$.

Usually, any submanifold in Kaehler manifolds has many kinds of connections. Among them, we consider two connections, namely, Levi-Civita and Tanaka-Webster connections for real hypersurfaces M in $G_{2}\left(\mathbb{C}^{m+2}\right)$. In fact, $G_{2}\left(\mathbb{C}^{m+2}\right)$ is a Riemannian symmetric space with Riemannian metric and Levi-Civita connection. Using the induced connection from the Levi-Civita connection, many geometers gave some characterizations for real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ related to the covariant derivative ∇ of the shape operator on M ($[9,10]$, etc). For real hypersurfaces in a Kaehler manifold, we consider a new affine connection $\widehat{\nabla}^{(k)}$ different from the Levi-Civita connection ∇, namely, the generalized Tanaka-Webster connection (in short, the g-Tanaka-Webster connection). It becomes a generalization of the well-known connection defined by Tanno [11]. Besides, it coincides with Tanaka-Webster connection if a real hypersurface in Kaehler manifolds satisfies $\phi A+A \phi=2 k \phi$ for a nonzero real number k. The Tanaka-Webster connection is defined as the canonical affine connection on a nondegenerate, pseudo-Hermitian CR-manifold [12-14]. Using the generalized Tanaka-Webster connection, $\widehat{\nabla}^{(k)}$ defined in such a way that

$$
\begin{equation*}
\widehat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y \tag{*}
\end{equation*}
$$

for any X, Y tangent to M, where ∇ denotes the Levi-Civita connection on M, A is the shape operator on M and k is a nonzero real number, the authors studied some characterizations of real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ ($[15,16]$, etc). The latter part of the generalized TanakaWebster connection $g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y$ is denoted by $F_{X} Y$. Here the operator F_{X} is a kind of (1,1)-type tensor and said to be the Tanaka-Webster operator.

On the other hand, there are many results for the classification problem of real hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ related to the structure Jacobi operator and Ricci tensor, for example, [17-24] and so on. Recently, Pérez and Suh [25] investigated the Levi-Civita and g-TanakaWebster covariant derivatives for the shape operator or the structure Jacobi operator of real hypersurfaces in complex projective space $\mathbb{C} P^{m}$. In particular, the authors [25] gave the result about the shape operator as follows:
Theorem D There exist no real hypersurfaces M in $\mathbb{C} P^{m}, m \geq 2$ such that $\nabla A=\widehat{\nabla}^{(k)} A$.
Motivated by Theorem D, in this paper, we study a real hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ whose Levi-Civita covariant derivative coincides with generalized Tanaka-Webster derivative for the shape operator of M, that is,

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=\left(\widehat{\nabla}_{X}^{(k)} A\right) Y \tag{C-1}
\end{equation*}
$$

for arbitrary tangent vector fields X and Y on M.
The condition ($\mathrm{C}-1$) has a geometric meaning such that the shape operator A commutes with the Tanaka-Webster operator F_{X}, that is, $A \cdot F_{X}=F_{X} \cdot A$. This meaning gives any eigenspaces of the shape operator A are invariant by the Tanaka-Webster operator F_{X}.

From such a point of view, in Sect. 3, we prove that a real hypersurface in Kaehler manifolds satisfying (C-1) must be Hopf. Then from this result, we assert the following:

Theorem 1 There does not exist any real hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, satisfying (C-1).

First, if we restrict $X=\xi$ in (C-1), then the following condition (C-2) along the Reeb vector field ξ becomes a generalized condition weaker than the condition ($\mathrm{C}-1$). This also has a geometric meaning that any eigenspaces of the shape operator A are invariant by the restricted Tanaka-Webster operator F_{ξ} in the direction of the Reeb vector field ξ. Thus, we assert the following:

Theorem 2 Let M be a Hopfhypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$. If M satisfies

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) Y=\left(\widehat{\nabla}_{\xi}^{(k)} A\right) Y \tag{C-2}
\end{equation*}
$$

for any tangent vector field Y on M, then M is locally congruent to a tube of radius r over a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

As a second, let us consider a distribution \mathfrak{D}^{\perp} spanned by $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. Accordingly, if we consider the condition (C-1) to the distribution \mathfrak{D}^{\perp}, the derivatives of the shape operator A of M along the distribution \mathfrak{D}^{\perp} becomes a condition more weaker than (C-1). Obviously, this has a geometric meaning that any eigenspaces of the shape operator A are invariant by the restricted Tanaka-Webster operator $F_{\xi_{v}}, v=1,2,3$, along the distribution \mathfrak{D}^{\perp}. Then we have the following:

Theorem 3 There does not exist a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$, satisfying

$$
\begin{equation*}
\left(\nabla_{\xi_{v}} A\right) Y=\left(\widehat{\nabla}_{\xi_{v}}^{(k)} A\right) Y, \quad v=1,2,3 \tag{C-3}
\end{equation*}
$$

for any tangent vector field Y on M.
Finally, we consider a distribution \mathfrak{D} which is an orthogonal complement of \mathfrak{D}^{\perp} in $T M$. Then by restricting the condition $(\mathrm{C}-1)$ to the distribution \mathfrak{D}, we get the following condition (C-4), which becomes another condition more weaker than (C-1). Using this geometric notion, we get:
Theorem 4 There does not exist a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$, with

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=\left(\widehat{\nabla}_{X}^{(k)} A\right) Y \tag{C-4}
\end{equation*}
$$

for all vector fields $X \in \mathfrak{D}$ and Y on M.
In this paper, we refer to $[1,2,4,26]$ for Riemannian geometric structures of $G_{2}\left(\mathbb{C}^{m+2}\right)$, and [11,13-16,27] for generalized Tanaka-Webster connection of real hypersurfaces in Kaehler manifolds.

2 Key Lemmas

Let M be a real hypersurface in Kaehler manifolds (\tilde{M}, \tilde{g}). The induced Riemannian metric on M is denoted by g. In addition, $\tilde{\nabla}$ and ∇ denote the Levi-Civita connections of \tilde{M} and M, respectively. Let N be a local unit normal vector field of M and A the shape operator of M with respect to N.

From the Kaehler structure J of \tilde{M}, we have a tensor field ϕ of type $(1,1)$ on M, given by

$$
g(\phi X, Y)=\tilde{g}(J X, Y)
$$

for all tangent vector fields X of M. Moreover, we obtain the unit tangent vector field ξ and the 1 -form η of M defined by

$$
\xi=-J N \text { and } \eta(X)=g(X, \xi)=\tilde{g}(J X, N)
$$

respectively. It implies that $\phi^{2} X=-X+\eta(X) \xi, \eta(\xi)=1, \phi \xi=0$ and

$$
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{X} \xi=\phi A X
$$

together with Gauss and Weingarten formulas. Thus, the Kaehler structure J of \tilde{M} induces an almost contact metric structure (ϕ, ξ, η, g) on M.

Now let us assume that a real hypersurface M in \tilde{M} satisfies

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=\left(\widehat{\nabla}_{X}^{(k)} A\right) Y \tag{C-1}
\end{equation*}
$$

for all tangent vector fields X and Y on M.
From the definition of the g-Tanaka-Webster connection $\left({ }^{*}\right)$, we have

$$
\begin{aligned}
\left(\widehat{\nabla}_{X}^{(k)} A\right) Y= & \widehat{\nabla}_{X}^{(k)}(A Y)-A\left(\widehat{\nabla}_{X}^{(k)} Y\right) \\
= & \left(\nabla_{X} A\right) Y+g(\phi A X, A Y) \xi-\eta(A Y) \phi A X-k \eta(X) \phi A Y \\
& -g(\phi A X, Y) A \xi+\eta(Y) A \phi A X+k \eta(X) A \phi Y .
\end{aligned}
$$

Therefore, the condition (C-1) can be written as

$$
\begin{align*}
& g(\phi A X, A Y) \xi-\eta(A Y) \phi A X-k \eta(X) \phi A Y \\
& \quad-g(\phi A X, Y) A \xi+\eta(Y) A \phi A X+k \eta(X) A \phi Y=0 \tag{2.1}
\end{align*}
$$

for all tangent vector fields X and Y on M.
In a situation like this, we prove
Lemma 2.1 Let M be a real hypersurface in a Kaehler manifold \tilde{M} with the condition (C-1). Then M becomes a Hopf hypersurface.

Proof The purpose of this lemma is to show that the structure vector field ξ is principal. In order to prove this, let us suppose that there is a point where the Reeb vector field ξ is not principal. Then there exists a neighborhood \mathfrak{U} of this point, on which we can define a unit vector field U orthogonal to ξ in such a way that

$$
\beta U=A \xi-g(A \xi, \xi) \xi=A \xi-\alpha \xi
$$

where β denotes the length of vector filed $A \xi-\alpha \xi$ and $\beta(x) \neq 0$ for any point x in \mathfrak{U}. Hereafter, unless otherwise stated, let us continue our discussion on this neighborhood \mathfrak{U}.

Taking $X=Y=\xi$ in (2.1), we get $\beta(\alpha+k) \phi U=\beta A \phi U$. Since $\beta \neq 0$, it follows that

$$
\begin{equation*}
A \phi U=(\alpha+k) \phi U . \tag{2.2}
\end{equation*}
$$

Moreover, putting $X=Y=U$ in (2.1), we have $-\beta \phi A U=0$. It implies that

$$
\begin{equation*}
A U=\beta \xi, \tag{2.3}
\end{equation*}
$$

together with $\beta \neq 0$ and $\phi^{2} A U=-A U+\eta(A U) \xi=-A U+\beta \xi$.
Replacing Y by U in (2.1), we have

$$
\begin{equation*}
-\beta \phi A X-g(\phi A X, U) A \xi+k \eta(X) A \phi U=0 \tag{2.4}
\end{equation*}
$$

for any tangent vector field X on M. Substituting $X=\xi$ in the above equation, we get

$$
\left(-\beta^{2}+k(\alpha+k)\right) \phi U=0
$$

together with $\phi A \xi=\beta \phi U$ and (2.2). Taking the inner product with ϕU, it turns to

$$
\begin{equation*}
\alpha+k=\frac{\beta^{2}}{k} \tag{2.5}
\end{equation*}
$$

because k is nonzero real number from the definition of g -Tanaka-Webster connection on real hypersurfaces in Kaehler manifolds.

On the other hand, putting $X=\phi U$ in (2.4), we get

$$
\begin{equation*}
2 \beta(\alpha+k) U+\alpha(\alpha+k) \xi=0 \tag{2.6}
\end{equation*}
$$

from (2.2) and $\phi^{2} U=-U$. Taking the inner product with ξ, we obtain $\alpha(\alpha+k)=0$. By (2.5), this equation is written as $\frac{\alpha \beta^{2}}{k}=0$. Since $k \neq 0$ and $\beta \neq 0$, we have $\alpha=0$. Moreover, taking the inner product of (2.6) with U, we have $\beta(\alpha+k)=0$. It follows that $\beta=0$, together with $\alpha=0$ and $k \neq 0$, which gives a contradiction. This is, the set \mathfrak{U} should be empty. Thus, there does not exist such an open neighborhood \mathfrak{U} in M, which means that the structure vector field ξ is principle. Hence, M must be Hopf under our assumption.

By means of Lemma 2.1, the condition (C-1) implies

$$
\begin{align*}
& g(\phi A X, A Y) \xi-\alpha \eta(Y) \phi A X-k \eta(X) \phi A Y \\
& \quad-\alpha g(\phi A X, Y) \xi+\eta(Y) A \phi A X+k \eta(X) A \phi Y=0 \tag{2.7}
\end{align*}
$$

for all tangent vector fields X and Y on M. Moreover, putting $Y=\xi$ in the above equation, we obtain $A \phi A X=\alpha \phi A X$ for any tangent vector field X on M. From this, the Eq. (2.7) is reduced to

$$
k \eta(X)(A \phi-\phi A) Y=0
$$

for all tangent vector fields X and Y on M. By the definition of generalized Tanaka-Webster connection for real hypersurfaces in a Kaehler manifold, it follows that

$$
\eta(X)(A \phi-\phi A) Y=0
$$

for all tangent vector fields X and Y on M.
Summing up above discussions, we assert the following
Lemma 2.2 Let M be a real hypersurface in a Kaehler manifold \tilde{M} with the condition (C-1). Then we have

$$
\begin{gather*}
A \phi A X=\alpha \phi A X, \tag{2.8}\\
\eta(X)(A \phi-\phi A) Y=0 \tag{2.9}
\end{gather*}
$$

for all tangent vector fields X, Y on M.

3 Proof of Theorem 1

From now on, we will prove Theorem 1 in the introduction by using the above two Lemmas which are induced from our condition (C-1).

In fact, since M is a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with the property (C-1), M becomes a Hopf hypersurface (Lemma 2.1). From this, we have

$$
\begin{equation*}
\eta(X)(A \phi-\phi A) Y=0 \tag{3.1}
\end{equation*}
$$

because k is a nonzero constant (Lemma 2.2).
Putting $X=\xi$ in (3.1), it follows that $A \phi-\phi A=0$. On the other hand, Berndt and Suh [4] gave a characterization of real hypersurfaces of Type (A) in $G_{2}\left(\mathbb{C}^{m+2}\right)$ when the shape operator A of M commutes with the structure tensor ϕ of M. By virtue of this result, we assert that if M is a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying (C-1), then M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Let us check that whether the model space M_{A} of Type (A) satisfies the condition (C-1). In order to do this, let us assume that the shape operator A of M_{A} satisfies the condition (C-1). According to Proposition 3 given in [1], the Eq. (2.8) implies

$$
\begin{equation*}
\beta(\beta-\alpha)=0 \tag{3.2}
\end{equation*}
$$

if $X=\xi_{2}$. But it does not hold, because $\beta(\beta-\alpha)=2$ where $\alpha=\sqrt{8} \cot (2 \sqrt{2} r)$ and $\beta=\sqrt{2} \cot (\sqrt{2} r), r \in(0, \pi / 2 \sqrt{2})$. It completes the proof of Theorem 1 .

4 Proofs of Theorems 2 and 3

In this section, we investigate Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying the property (C-2) and (C-3) which are weaker than (C-1), respectively. On the other hand, $G_{2}\left(\mathbb{C}^{m+2}\right)$ is equipped with both a Kaehler and a quaternionic Kaehler structure. By applying these two structures to the normal vector field N of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$, we get 1- and 3-dimensional distributions on M. For the sake of convenience, we denote $[\xi]=\operatorname{Span}\{\xi\}$ or $\mathfrak{D}^{\perp}=$ $\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$, respectively. For these two distributions, we define a new distribution \mathfrak{F} given by $\mathfrak{F}=[\xi] \cup \mathfrak{D}^{\perp}$. If we restrict $X \in \mathfrak{F}$ in (C-1), then it becomes a new weaker condition for (C-1). Accordingly, we also consider this case.

First, we assume that M is a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) Y=\left(\widehat{\nabla}_{\xi}^{(k)} A\right) Y \tag{C-2}
\end{equation*}
$$

for any vector field $Y \in T M$.
Under our assumptions, this condition means that the structure tensor field ϕ commutes with the shape operator A of M. In fact, putting $X=\xi$ in (2.1), it follows that for any tangent vector field Y on M

$$
\phi A Y-A \phi Y=0,
$$

because M is Hopf and k is a nonzero real number. By Theorem B, we assert our Theorem 2 in the introduction.

Next, we observe the following condition of covariant derivatives with respect to the LeviCivita and g-Tanaka-Webster connections for shape operator A on Hopf hypersurfaces M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ given by

$$
\begin{equation*}
\left(\nabla_{\xi_{v}} A\right) Y=\left(\widehat{\nabla}_{\xi_{v}}^{(k)} A\right) Y, \quad v=1,2,3 \tag{C-3}
\end{equation*}
$$

for any tangent vector field Y on M.
According to (2.1), the condition (C-3) is equal to

$$
\begin{align*}
& g\left(\phi A \xi_{v}, A Y\right) \xi-\alpha \eta(Y) \phi A \xi_{v}-k \eta\left(\xi_{v}\right) \phi A Y \\
& \quad-\alpha g\left(\phi A \xi_{v}, Y\right) \xi+\eta(Y) A \phi A \xi_{v}+k \eta\left(\xi_{v}\right) A \phi Y=0 \tag{4.1}
\end{align*}
$$

where Y is any tangent vector field on M and $v=1,2,3$.
Putting $Y=\xi$ in (4.1), we have that

$$
\begin{equation*}
A \phi A \xi_{v}=\alpha \phi A \xi_{v}, \quad v=1,2,3 . \tag{4.2}
\end{equation*}
$$

From this, (4.1) can be written as

$$
\eta\left(\xi_{\nu}\right)(A \phi-\phi A) Y=0
$$

for any vector field $Y \in T M$ and $v=1,2,3$.
By virtue of this equation, we have the following two cases:

- Case $1 \eta\left(\xi_{v}\right)=0, \quad v=1,2,3$ and
- Case $2 A \phi=\phi A$.

First, we consider the case $\eta\left(\xi_{v}\right)=0$ for any $v=1,2,3$. It means that the Reeb vector field ξ belongs to the distribution \mathfrak{D}. By Theorem C, it implies that M is of Type (B) in Theorem A given in the introduction.

On the other hand, due to Berndt and Suh's classification [1], all the principal curvatures on a model space of Type (B) are given as follows: $\alpha=-2 \tan (2 r), \beta=2 \cot (2 r), \gamma=0$, $\lambda=\cot (r)$ and $\mu=-\tan (r)$ for some $r \in(0, \pi / 4)$. Since $\gamma=0$, we get

$$
\begin{aligned}
\left(\widehat{\nabla}_{\xi_{v}}^{(k)} A\right) \xi-\left(\nabla_{\xi_{v}} A\right) \xi & =A \phi A \xi_{v}-\alpha \phi A \xi_{v} \\
& =-\alpha \beta \phi \xi_{v}
\end{aligned}
$$

for $v=1,2,3$. In fact, since $\alpha=-2 \tan (2 r), \beta=2 \cot (2 r)$ for some $r \in(0, \pi / 4)$, the constant $\alpha \beta$ must be nonzero. It means that the model space of Type (B) does not satisfy our condition (C-3).

Next we consider the remain case that the structure tensor ϕ commutes with the shape operator A of M. By virtue of Theorem B, we see that M must be a real hypersurface of Type (A) in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

From now on, let us check the converse problem, that is, whether a model space M_{A} of Type (A) satisfies the condition (C-3) or not. In fact, we suppose that M_{A} has the condition (C-3), that is, M_{A} satisfies (4.2). For $v=2$, it becomes $\beta(\beta-\alpha)=0$. In the proof of Theorem 1, we get $\beta(\beta-\alpha)=2$, because $\alpha=\sqrt{8} \cot (2 \sqrt{2} r)$ and $\beta=\sqrt{2} \cot \sqrt{2} r$ where $r \in(0, \pi / 2 \sqrt{2})$. Hence, we assert that M_{A} does not satisfy the condition (C-3).

Summing up these subcases, we give a complete proof of Theorem 3.
As mentioned above, the distribution \mathfrak{F} is defined by $\mathfrak{F}=[\xi] \cup \mathfrak{D}^{\perp}$. From the structure of \mathfrak{F} and the proofs of Theorems 2 and 3 , we naturally obtain

Corollary 4.1 There does not exist a Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, with

$$
\left(\nabla_{X} A\right) Y=\left(\widehat{\nabla}_{X}^{(k)} A\right) Y
$$

for any $X \in \mathfrak{F}$ and $Y \in T M$.

5 Proof of Theorem 4

In this section, we observe the condition

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=\left(\widehat{\nabla}_{X}^{(k)} A\right) Y \tag{C-4}
\end{equation*}
$$

for all tangent vector fields $X \in \mathfrak{D}$ and $Y \in T M$. Putting $Y=\xi$ in (2.1) and using the assumption that M is Hopf, we obtain

$$
\begin{equation*}
A \phi A X=\alpha \phi A X \tag{5.1}
\end{equation*}
$$

for any tangent vector field $X \in \mathfrak{D}$. Thus, the condition (C-4) is equal to

$$
\begin{equation*}
\eta(X)(A \phi-\phi A) Y=0 \tag{5.2}
\end{equation*}
$$

for any $X \in \mathfrak{D}$ and $Y \in T M$. From this, we have the following two cases:

- Case $1 A \phi=\phi A$ and
- Case $2 \eta(X)=0$ for any $X \in \mathfrak{D}$.

For the first case $A \phi=\phi A$, we know that M becomes a model space of Type (A) by Theorem B in the introduction.

Now let us consider the remaining case $\eta(X)=0$ for any $X \in \mathfrak{D}$. It means that the Reeb vector field ξ belongs to the distribution \mathfrak{D}^{\perp}. Thus, without loss of generality we may put $\xi=\xi_{1}$. Under these assumptions, we now prove that M becomes to be a \mathfrak{D}^{\perp}-invariant hypersurface, that is, $g\left(A \mathfrak{D}, \mathfrak{D}^{\perp}\right)=0$.

Since M is Hopf, we have the following formula given by Berndt and Suh [4]:

$$
\begin{array}{r}
2 A \phi A X=\alpha A \phi X+\alpha \phi A X+2 \phi X+2 \sum_{v=1}^{3}\left\{\eta_{v}(X) \phi \xi_{v}+\eta_{v}(\phi X) \xi_{v}\right. \\
\left.+\eta_{v}(\xi) \phi_{v} X-2 \eta(X) \eta_{v}(\xi) \phi \xi_{v}-2 \eta_{v}(\phi X) \eta_{v}(\xi) \xi\right\}
\end{array}
$$

for any tangent vector field X on M. It can be written as

$$
\begin{equation*}
2 A \phi A X=\alpha A \phi X+\alpha \phi A X+2 \phi X+2 \phi_{1} X \tag{5.3}
\end{equation*}
$$

for any $X \in \mathfrak{D}$ and $\xi=\xi_{1}$. Substituting (5.1) into (5.3), we get

$$
\begin{equation*}
\alpha(A \phi-\phi A) X=-2\left(\phi X+\phi_{1} X\right) \tag{5.4}
\end{equation*}
$$

for any $X \in \mathfrak{D}$.
Let $\left\{e_{1}, e_{2}, \cdots, e_{4 m-4}, e_{4 m-3}=\xi, e_{4 m-2}=\xi_{2}, e_{4 m-1}=\xi_{3}\right\}$ be an orthonormal basis for $T_{x} M, x \in M$. Then for any tangent vector field Y on M it follows that

$$
\begin{aligned}
\alpha(A \phi-\phi A) Y & =\sum_{i=1}^{4 m-1} g\left(\alpha(A \phi-\phi A) Y, e_{i}\right) e_{i} \\
& =\sum_{i=1}^{4 m-4} g\left(\alpha(A \phi-\phi A) Y, e_{i}\right) e_{i}+\sum_{v=1}^{3} g\left(\alpha(A \phi-\phi A) Y, \xi_{v}\right) \xi_{v} \\
& =\sum_{i=1}^{4 m-4} g\left(\alpha(A \phi-\phi A) e_{i}, Y\right) e_{i}+\sum_{v=1}^{3} g\left(\alpha(A \phi-\phi A) Y, \xi_{v}\right) \xi_{v}
\end{aligned}
$$

Putting $Y=e_{k} \in \mathfrak{D}(k=1,2, \cdots, 4 m-4)$, this equation can be changed

$$
\alpha(A \phi-\phi A) e_{k}=\sum_{i=1}^{4 m-4} g\left(\alpha(A \phi-\phi A) e_{i}, e_{k}\right) e_{i}+\sum_{\nu=1}^{3} g\left(\alpha(A \phi-\phi A) e_{k}, \xi_{v}\right) \xi_{v} .
$$

From (5.4), it follows that

$$
\begin{aligned}
-2\left(\phi e_{k}+\phi_{1} e_{k}\right)= & \alpha(A \phi-\phi A) e_{k} \\
= & \sum_{i=1}^{4 m-4} g\left(\alpha(A \phi-\phi A) e_{i}, e_{k}\right) e_{i}+\sum_{v=1}^{3} g\left(\alpha(A \phi-\phi A) e_{k}, \xi_{v}\right) \xi_{v} \\
= & \sum_{i=1}^{4 m-4} g\left(-2\left(\phi e_{i}+\phi_{1} e_{i}\right), e_{k}\right) e_{i}+\sum_{v=1}^{3} g\left(-2\left(\phi e_{k}+\phi_{1} e_{k}\right), \xi_{v}\right) \xi_{v} \\
= & -2 \sum_{i=1}^{4 m-4} g\left(\phi e_{i}, e_{k}\right) e_{i}-2 \sum_{i=1}^{4 m-4} g\left(\phi_{1} e_{i}, e_{k}\right) e_{i} \\
= & 2 \sum_{i=1}^{4 m-4} g\left(\phi e_{k}, e_{i}\right) e_{i}+2 \sum_{i=1}^{4 m-4} g\left(\phi_{1} e_{k}, e_{i}\right) e_{i} \\
= & 2 \sum_{i=1}^{4 m-4} g\left(\phi e_{k}, e_{i}\right) e_{i}+2 \sum_{v=1}^{3} g\left(\phi e_{k}, \xi_{v}\right) \xi_{v} \\
& +2 \sum_{i=1}^{4 m-4} g\left(\phi_{1} e_{k}, e_{i}\right) e_{i}+2 \sum_{v=1}^{3} g\left(\phi_{1} e_{k}, \xi_{v}\right) \xi_{v} \\
= & 2 \sum_{i=1}^{4 m-1} g\left(\phi e_{k}, e_{i}\right) e_{i}+2 \sum_{i=1}^{4 m-1} g\left(\phi_{1} e_{k}, e_{i}\right) e_{i} \\
= & 2 \phi e_{k}+2 \phi_{1} e_{k}
\end{aligned}
$$

where in the fourth and sixth equalities, we have used $g\left(\phi e_{k}, \xi_{v}\right)=g\left(\phi_{1} e_{k}, \xi_{v}\right)=0$ for any $v(\bmod 3)$ and nonzero real number k. Thus, we get

$$
\begin{equation*}
\phi X=-\phi_{1} X \tag{5.5}
\end{equation*}
$$

for any tangent vector field $X \in \mathfrak{D}$. Differentiating this equation covariantly in the direction of Y, we have

$$
g(A X, Y)=0
$$

for all tangent vector fields $X \in \mathfrak{D}$ and $Y \in T M$, where we have used the formulas about the covariant derivative of structure tensors ϕ and $\phi_{v}(v=1,2,3)$. It implies that M must be a \mathfrak{D}^{\perp}-invariant hypersurface, if we restrict to $Y \in \mathfrak{D}^{\perp}$. Accordingly, for this case we can assert that M is locally congruent to model spaces of Type (A) by virtue of Theorem A in the introduction.

Summing up these cases, we consequently know that any Hopf hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfying the condition (C-4) is of Type (A).

Now it remains only to show that whether a real hypersurface M_{A} of Type (A) satisfies the condition (C-4) or not. To check this, let us assume that M_{A} has the condition $\left(\nabla_{X} A\right) Y=$ $\left(\widehat{\nabla}_{X}^{(k)} A\right) Y$ for any $X \in \mathfrak{D}$ and $Y \in T M_{A}$. It is equivalent that

$$
\begin{equation*}
A \phi A X=\alpha \phi A X \tag{5.6}
\end{equation*}
$$

for $X \in \mathfrak{D}$ as observed in this section.
From the structure of the tangent vector space $T_{x} M_{A}$ for a model space of Type (A) at any point x on M_{A}, we see that the distribution \mathfrak{D} is composed with two eigenspaces T_{λ} and
T_{μ}. In addition, since the eigenspace T_{λ} is given by $T_{\lambda}=\left\{X \mid X \perp \mathbb{H} \xi, J X=J_{1} X\right\}$ where $\mathbb{H} \xi$ denotes quaternionic span of ξ, we see that $\phi X \in T_{\lambda}$ for any $X \in T_{\lambda}$. Using these facts, the Eq. (5.6) is reformed as

$$
\left(\lambda^{2}-\alpha \lambda\right) \phi X=0
$$

for any $X \in T_{\lambda} \subset \mathfrak{D}$. From this, we get $\lambda^{2}-\alpha \lambda=0$.
On the other hand, from Proposition 3 in [1], we know that

$$
\lambda^{2}-\alpha \lambda=2
$$

where $\lambda=-\sqrt{2} \tan (\sqrt{2} r)$ and $\alpha=2 \sqrt{2} \cot (2 \sqrt{2} r)$ for some $r \in(0, \pi / 2 \sqrt{2})$. This makes a contradiction, and therefore, we have Theorem 4 in the introduction.

References

1. Berndt, J., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127, 1-14 (1999)
2. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley, New York (1969)
3. Alekseevskii, D.V.: Compact quaternion spaces. Funct. Anal. Appl. 2, 106-114 (1968)
4. Berndt, J., Suh, Y.J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians. Monatsh. Math. 137, 87-98 (2002)
5. Jeong, I., Suh, Y.J.: Real hypersurfaces of Type A in complex two-plane Grassmannians related to commuting shape operator. Forum Math. 25, 179-192 (2013)
6. Lee, H., Kim, S., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition. Czechoslov. Math. J. 62(137), 849-861 (2012)
7. Suh, Y.J.: Real hypersurfaces of Type B in complex two-plane Grassmannians. Monatsh. Math. 147(4), 375-355 (2006)
8. Lee, H., Suh, Y.J.: Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47(3), 551-561 (2010)
9. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator. Bull. Aust. Math. Soc. 68, 493-502 (2003)
10. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator II. J. Korean Math. Soc. 41(3), 535-565 (2004)
11. Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314(1), 349379 (1989)
12. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Birkhäuser, Boston (2002)
13. Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. (N.S.) 2(1), 131-190 (1976)
14. Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Diff. Geom. 13, 25-41 (1978)
15. Jeong, I., Lee, H., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel shape operator. Kodai Math. J. 34(3), 352-366 (2011)
16. Jeong, I., Lee, H., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster \mathfrak{D}^{\perp}-parallel shape operator. Int. J. Geom. Methods Mod. Phys. 9(4), 1250032 (20 p) (2012)
17. Jeong, I., Machado, C.J.G., Pérez, J.D., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with \mathfrak{D}^{\perp}-parallel structure Jacobi operator. Int. J. Math. 22, 655-673 (2011)
18. Jeong, I., Pérez, J.D., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator. Acta Math. Hung. 122, 173-186 (2009)
19. Machado, C.J.G., Pérez, J.D.: Real hypersurfaces in complex two-plane Grassmannians some of whose Jacobi operators are ξ-invariant. International J. Math. 23(3), 1250002 (12 pp) (2012)
20. Machado, C.J.G., Pérez, J.D., Jeong, I., Suh, Y.J.: \mathfrak{D}-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians. Ann. Mat. Pura Appl. (2014) (in press)
21. Pérez, J.D., Suh, Y.J.: The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. 44(1), 211-235 (2007)
22. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. R. Soc. Edinb. Sect. A 142, 1309-1324 (2012)
23. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor. J. Geom. Phys. 64, 1-11 (2013)
24. Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J. Math. Pures Appl. 100, 16-33 (2013)
25. Pérez, J.D., Suh, Y.J.: On g-Tanaka-Webster and covariant derivatives of a real hypersurfaces in a complex projective space (submitted)
26. Berndt, J.: Riemannian geometry of complex two-plane Grassmannian. Rend. Semin. Mat. Univ. Politec. Torino 55, 19-83 (1997)
27. Kon, M.: Real hypersurfaces in complex space forms and the generalized Tanaka-Webster connection. In: Suh, Y.J., Berndt, J., Choi, Y.S. (eds.) Proceedings of the 13th International Workshop on Differential Geometry and Related Fields, pp. 145-159 (2010)

[^0]: This work was supported by Grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea. The first author by Grant Proj. No. NRF-2011-0013381, the second author by Grant Proj. No. NRF-2012-R1A1A3002031, and the third by Grant Proj. No. NRF-2012-R1A2A2A01043023.
 I. Jeong • H. Lee • Y. J. Suh (\boxtimes)

 Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea
 e-mail: yjsuh@knu.ac.kr
 I. Jeong
 e-mail: imsoon.jeong@gmail.com
 H. Lee
 e-mail: lhjibis@hanmail.net

