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Background and Aims. Myocyte apoptosis plays a critical role in the development of doxorubicin- (DOX-) induced cardiotoxicity.
In addition to its cardiotonic effect, laboratory evidence indicates that levosimendan can inhibit apoptosis, but its role in
DOX-induced cardiac injury remains unclear. Therefore, the present study is aimed at exploring whether levosimendan could
attenuate DOX-induced cardiotoxicity. Methods. Levosimendan (1mg/kg) was administered to mice through oral gavage once
daily for 4 weeks, and the mice were also subjected to an intraperitoneal injection of DOX (5mg/kg) or saline, once a week for 4
weeks, to create a chronic model of DOX-induced cardiotoxicity. A morphological examination and biochemical analysis were
used to evaluate the effects of levosimendan. H9C2 cells were used to verify the protective role of levosimendan in vitro. And an
Akt inhibitor was utilized to verify the cardioprotection of levosimendan. Results. Levosimendan reduced the cardiac dysfunction
and attenuated the myocardial apoptosis induced by DOX in vivo and in vitro. Levosimendan also inhibited the activation of
phosphatase and tensin homolog (PTEN) and upregulated P-Akt expression both in vivo and in vitro. And inhibition of Akt
abolished the cardioprotection of levosimendan in vitro. Conclusion. Levosimendan may protect against DOX-induced
cardiotoxicity via modulation of the PTEN/Akt signaling pathway.

1. Introduction

In the past few decades, cancer mortality rates have declined,
and the side effects caused by anticancer chemotherapeutic
agents have become increasingly prominent. Doxorubicin
(DOX) is a broad-spectrum anthracycline antibiotic used to
treat solid and hematogenous malignancies [1–3]. The
cumulative and dose-dependent toxicity induced by DOX is
harmful to nontumor tissues, and in myocardial tissue,
DOX causes irreversible damage, which can lead to dilated
cardiomyopathy, greatly limiting its clinical application
[4, 5]. Many mechanisms underlying DOX-induced cardio-
toxicity have been discovered, including mitochondrial iron
accumulation and related redox reactions, the activation
of immunological reactions, histamine release, and DNA

damage, and emerging research indicates a crucial role for
apoptosis [6–8].

Levosimendan, a calcium sensitizer, is known as a
promising positive inotropic and vasodilatory agent used in
the treatment of acute heart failure and other circumstances
where an improvement in hemodynamics is required
[9–12]. Levosimendan may exert its protective effects
through the modulation of reactive oxygen species forma-
tion, adenosine triphosphate-sensitive potassium channel
activity, membrane potential, or the release of endothelial
nitric oxide synthase-dependent nitric oxide [13–15]. In
addition, previous studies have shown that levosimendan
protects against oxidative injury in animal models via inter-
ference with apoptotic signaling [16]. Numerous studies have
shown that Akt plays pivotal roles in protecting cardiac
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myocytes from damage by inhibiting apoptosis [16–18]. Akt,
also named protein kinase B, is a signaling nexus governing
cell growth, cell proliferation, and cell survival [18, 19].
Activation of Akt is regulated by upstream phosphatase
and tensin homolog (PTEN), which reduces the phosphory-
lation of Akt and blocks downstream signaling events regu-
lated by Akt [19–21]. Therefore, the aim of the current
study was to investigate the protective effect and the mecha-
nism of levosimendan in DOX-induced cardiotoxicity.

2. Materials and Methods

All animal experiments were performed in accordance with
the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health publication number: 85-23,
revised 1996) and approved by the Animal Care and Use
Committee of Renmin Hospital of Wuhan University.

2.1. Reagents. DOX was purchased from Haizheng Pfizer
Pharmaceutical Co., Ltd. Levosimendan was obtained from
Orion Corporation, Espoo, Finland. The following primary
antibodies were purchased from Cell Signaling Technology
(Boston, MA, USA): Bcl-2-associated X protein (BAX;
1 : 1000), c-caspase-3 (1 : 1000), PTEN (1 : 1000), P-Akt
(1 : 1000), T-Akt (1 : 1000), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, 1 : 1000), and B-cell lymphoma-2
(Bcl-2) (1 : 1000) was purchased from Abcam. Akt inhibitor
(Akt i) was purchased from Sigma-Aldrich (St. Louis,
MO, USA). A goat anti-rabbit secondary antibody was pur-
chased from LI-COR Biosciences (Lincoln, USA). The BCA
protein assay kit was obtained from Dōjindo Laboratories
(Kumamoto, Japan).

2.2. Animals and Treatments. All animal care and experi-
mental procedures were approved by the Animal Care and
Use Committee of Renmin Hospital of Wuhan University,
which is guided by the Guidelines for the Care and Use of
Laboratory Animals published by the United States National
Institutes of Health (NIH Publication, revised 2011). All the
animal treatments and subsequent analysis were performed
in a blind fashion for all groups. Male C57BL/6 mice (8 weeks
old; body weight: 25:5 ± 2 g) were purchased from the Insti-
tute of Laboratory Animal Science, Chinese Academy of
Medical Sciences (Beijing, China). The mice were allowed
free access to food and water under a 12h light-dark cycle
with controlled temperature (20–25°C) and humidity
(50 ± 5%) in the Cardiovascular Research Institute of Wuhan
University (Wuhan, China). A total of 40 male C57BL/6 mice
were randomly divided into four groups: control group
(CON, n = 10), control+levosimendan group (CON+L,
n = 10), doxorubicin group (DOX, n = 10), and doxorubi-
cin+levosimendan group (DOX+L, n = 10). The mice were
injected intraperitoneally with DOX (5mg/kg, once a week;
the total cumulative dose was 20mg/kg) or the same dose
of saline for 4 weeks. Meanwhile, levosimendan (1mg/kg)
or the same volume of saline was administered through oral
gavage once daily for 4 weeks. At the endpoint of the treat-
ment, all the mice were anesthetized using 1.5% isoflurane
and euthanized by cervical dislocation. The mouse hearts

were dissected and weighed to assess heart weight/tibial
length (HW/TL) and then snap-frozen in liquid nitrogen
for further analysis.

2.3. Echocardiography and Hemodynamics. After the mice
were anesthetized using isoflurane (1.5%), echocardiography
was performed using aMyLab 30CV ultrasound (Esaote SpA,
Genoa, Italy) with a 10MHz linear array ultrasound
transducer. The left ventricle (LV) end-systolic diameter
(LVESD), LV end-diastolic dimension (LVEDD), LV ejec-
tion fraction (EF), and LV fractional shortening (FS) were
measured along the short axis of the left ventricle at the level
of the papillary muscles.

Hemodynamic variables were analyzed using a Millar
catheter transducer (SPR-839; Millar Instruments, Houston,
TX). The maximal rate of pressure development (dp/dtmax)
and the minimal rate of pressure decay (dp/dtmin) were
processed using PVAN data analysis software (Millar, Inc.
Houston, TX, USA). All surgeries and analyses were
performed in a blinded manner.

2.4. Morphological Analysis. The removed hearts were fixed
in 10% formalin overnight. The hearts were transversely sec-
tioned into 5μm slices. Then, the slices were stained using
hematoxylin and eosin (HE). The cross-sectional area
(CSA) of the cardiomyocytes was examined based on
HE-stained sections using a quantitative digital image
analysis system (Image-Pro Plus 6.0). More than 100 myo-
cytes in the LV were outlined in each group.

2.5. Western Blotting and Quantitative Real-Time PCR. Total
protein was extracted from the frozen heart tissues or H9C2
cells using RIPA agent (Invitrogen, Carlsbad, CA, USA).
Then, the Pierce BCA Protein Assay Kit (23227, Thermo
Scientific, MIT, USA) was used to measure the concentra-
tion of total protein. The proteins were separated through
10% dodecyl sulfate, sodium salt-polyacrylamide gel electro-
phoresis (SDS-PAGE) and then transferred to polyvinylidene
fluoride (PVDF) membranes (cat. number IPFL00010; EMD
Millipore, Billerica, MA, USA), and primary antibodies were
incubated with the blot at 4°C overnight. After reaction with
secondary antibodies at 37°C for 1 h, the blots were scanned
and analyzed using a two-color infrared imaging system
(Odyssey, LICOR Biosciences, NE, USA). Total RNA was
isolated using TRIzol and reverse-transcribed to cDNA. A
LightCycler 480 SYBR Green Master Mix (cat. number
04896866001; Roche) was used to quantify amplification.
The mRNA data were normalized to GAPDH.

2.6. Cell Culture. H9C2 cells were obtained from the Cell
Bank of the Chinese Academy of Science (Shanghai, China)
and were cultured in Dulbecco’s modified Eagle’s medium
(DMEM, GIBCO, C11995), containing 10% fetal bovine
serum (GIBCO, 15140). H9C2 cells were seeded in six-well
culture plates or on glass slides and incubated in 5% CO2

and 95% air at 37°C. The medium was exchanged for
serum-free DMEM 48h later, to starve the cells for 12h. Sub-
sequently, the cells were pretreated using levosimendan
(10μmol/mL) or phosphate buffer saline (PBS) for 2 h, and
then, DOX (1μmol/L) was added into the medium in the

2 BioMed Research International



presence or absence of levosimendan for 24 h. Proteins or
mRNA were then harvested. Meanwhile, H9C2 cells were
pretreated with AKT i (1μmol/L) for 30min, as we previ-
ously described [22].

2.7. Terminal Deoxynucleotidyl Transferase-Mediated Nick
End Labeling (TUNEL) Staining. Briefly, terminal deoxynu-
cleotidyl transferase-mediated nick end labeling (TUNEL)
staining was performed using a commercial kit (Millipore,
Billerica, MA, USA) in accordance with the manufacturer’s
instructions. The nuclei of the cardiac myocytes were stained
using 4′,6-diamidino-2-phenylindole (DAPI). Subsequently,
slices of paraffin-embedded tissue or cells were observed and

images were captured using an Olympus DX51 fluorescence
microscope (Olympus, Japan).

2.8. Statistical Analysis. All data are presented as the
mean ± SD. A one-way analysis of variance followed by
Tukey’s post hoc test was used to analyze differences among
groups. P < 0:05 was considered to indicate statistical
significance.

3. Results

3.1. Levosimendan Improved Cardiac Function in Mice
Undergoing DOX Treatment. After 4 weeks, all 40 mice
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Figure 1: Levosimendan improved cardiac function in mice during DOX treatment. (a) Representative echocardiographic images of each
group, including the CON, CON+L, DOX, and DOX+L groups (LVDs: left ventricular internal dimension systole; LVDd: left ventricular
internal dimension diastole; IVS: interventricular septal thickness; PW: posterior wall). (b) Left ventricular ejection fraction (EF) of mice
with or without treatment with levosimendan 4 weeks after injection of DOX or saline. (c) Fractional shortening (FS) in each group of
mice. (d) Hemodynamic analysis of mice including dp/dt max and dp/dt min. ∗P < 0:05, vs. the CON group; #P < 0:05, vs. the DOX group.
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survived. To determine the effect of levosimendan on cardiac
dysfunction, the wall thickness, chamber diameter, and LV
function were measured. As shown in Figure 1(a), the
wall thickness of the DOX group was thinner and the
LVEDD was larger than that of the CON and CON+L
groups, and these changes were reversed slightly in the
DOX+L group, although these differences were not signif-
icant (Figure 1(a)). Echocardiography and hemodynamic

measurements demonstrated that DOX reduced cardiac sys-
tolic heart function, as demonstrated by decreased LVEF,
LVFS, dp/dtmax, and dp/dtmin in DOX-treated mice. How-
ever, compared with the DOX group, the DOX+L group
exhibited attenuated cardiac dysfunction, which was reflected
by an improvement in LVEF, LVFS, dp/dtmax, and dp/dtmin
(Figures 1(b)–1(d)). However, there was no difference in car-
diac function between the CON and the CON+L groups.
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Figure 2: Levosimendan ameliorated the myocardial damage induced by DOX. (a) HE staining and representative images in mice. Scale bar:
50μm. (b) Statistical analysis of cross-sectional area (CSA, n = 100+ cells per experimental group). (c) The ratio of heart weight and tibia
length (HW/TL) in each group. (d) Real-time PCR for the mRNA expression of cardiac injury-associated genes from the myocardium in
each group, including ANP and BNP (normalized to GAPDH). ∗P < 0:05, vs. the CON group; #P < 0:05, vs. the DOX group.
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3.2. Levosimendan Ameliorated the Myocardial Injury
Induced by DOX. To observe the effect of levosimendan on
the myocardial injury caused by DOX treatment, HE staining
and real-time PCR were performed. The results of HE staining
indicated that the reduced CSA of myocardial cells following
DOX injection was restrained by levosimendan (Figures 2(a)
and 2(b)). In addition, levosimendan could attenuate the body

weight loss induced by DOX treatment. DOX injection
resulted in a decreased HW/TL, yet levosimendan could
improve HW/TL (Figure 2(c)). Moreover, as determined
through PCR, indexes of cardiac injury, including the mRNA
expression of atrial natriuretic peptide (ANP) and brain natri-
uretic peptide (BNP), were increased in the DOX group and
were mitigated in the DOX+L group (Figure 2(d)).
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Figure 3: Levosimendan exhibited an antiapoptosis effect in DOX-treated mice. (a, b) Terminal deoxynucleotidyl transferase-mediated nick
end labeling (TUNEL) assay for apoptosis in heart tissues and quantitation of the TUNEL ratio in the indicated group. Scale bar: 50μm. (c, d)
Representative western blots of BAX, Bcl-2, and c-caspase-3, and quantitative analysis for BAX/Bcl-2 and c-caspase-3/GAPDH ratio. ∗P <

0:05, vs. the CON group; #P < 0:05, vs. the DOX group.
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3.3. Levosimendan Exhibited an Antiapoptotic Effect in
DOX-Treated Mice. To investigate the effects of levosimen-
dan on myocardial apoptosis after DOX stimulation, TUNEL
staining was performed. As shown in Figures 3(a) and 3(b),
DOX injection resulted in a noteworthy increase in myocar-
dial apoptosis, which was indicated by the increased number
of TUNEL-positive cells, and levosimendan significantly
restrained the apoptosis caused by DOX. Few TUNEL-
positive cells were detected in the CON group and the
CON+L group. We then measured the expression levels of
apoptosis markers including BAX, Bcl-2, and c-caspase-3.
We found that the injection of DOX resulted in increased
proapoptotic BAX and c-caspase-3 and reduced antiapop-
totic Bcl-2 expression compared with no DOX injection.
Levosimendan treatment could reverse these alterations
(Figures 3(c) and 3(d)). The expression of BAX, Bcl-2,
and c-caspase-3 in the myocardium was not significantly
altered in the CON and CON+L groups.

3.4. Levosimendan Inhibited Myocardial PTEN/Akt Signaling
In Vivo. To examine the underlying mechanism of levosi-
mendan, the PTEN/Akt signaling pathway was examined
through western blotting. The results showed that DOX
injection remarkably upregulated the expression of PTEN
as well as significantly downregulating P-Akt expression.
However, levosimendan appeared to reduce the level of
PTEN and ameliorated the expression of P-Akt (Figure 4).
These results suggest that levosimendan might protect
against DOX-induced cardiotoxicity via inhibition of the
PTEN/Akt pathway.

3.5. Levosimendan Suppressed DOX-Induced Cardiotoxicity
via the PTEN/Akt Pathway In Vitro. To verify the protective
effect of levosimendan in DOX-induced cardiotoxicity and
its molecular mechanism in vitro, cell experiments were per-
formed. As shown in Figure 5(a), many TUNEL-positive cells
were observed in H9C2 cells in the DOX group; in contrast,
in the DOX+L group, TUNEL-positive cells were much less
abundant (Figure 5(a)). In addition, western blot analyses
revealed that the expression of proapoptotic BAX and
c-caspase-3 was increased while that of antiapoptotic
Bcl-2 was decreased in the DOX group compared with the
CON group. Levosimendan could reverse these changes
(Figure 5(c)). Levosimendan could also ameliorate DOX-
induced cardiomyocyte injury, which was reflected by a
decrease in ANP and BNP compared with the DOX group
(Figure 5(b)). Furthermore, the PTEN/Akt signaling
pathway, a key mechanism regulating the progression of cell
growth and apoptosis, was inhibited by levosimendan
in vitro.

3.6. Inhibition of Akt Abolished the Protective Effect of
Levosimendan. To investigate the PTEN/Akt signaling path-
way in levosimendan-mediated protective effect during
DOX, we pretreated H9C2 cells with the Akt inhibitor.
As is shown in Figure 6(a), Akt inhibitor administration
significantly decreased the expression of Akt in H9C2
cells. Then, we detected the cardiomyocyte injury and apo-
ptosis. Expectedly, levosimendan evidently blocked H9C2
injury attributed by DOX; however, coadministration with
Akt i eliminated the optimistic effect of levosimendan
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(Figure 6(b)). Additionally, the analyses of TUNEL indi-
cated that levosimendan alleviated the apoptosis induced
by DOX, nevertheless, Akt i removed the function of levo-

simendan (Figure 6(c)). These data suggested that Akt
inhibition abolished the cardioprotection of levosimendan
during DOX.
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Figure 5: Levosimendan suppressed DOX-induced cardiotoxicity via the PTEN/Akt pathway in vitro. (a) TUNEL staining for apoptosis in
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4. Discussion

In the current study, we demonstrated that levosimendan
could attenuate DOX-induced cardiotoxicity by significantly
protecting cardiac function and reducing myocardial injury
and apoptosis in vivo and in vitro. Furthermore, we dem-
onstrated that these protective effects were mediated by
the inhibition of PTEN and the subsequent activation of
Akt, both in vivo and in vitro. Herein, the current study
provided a novel approach for the treatment of DOX-
induced cardiotoxicity.

Apoptosis has been shown to be one of the key processes
in DOX-induced cardiac injury [4, 8, 23, 24]. We observed
few apoptotic cells in the CON and CON+L groups, but more

apoptotic cells in the DOX group. Apoptosis, characterized
by the orderly death of cells, was controlled by correlative
genes, and apoptosis can be induced by many stimuli such
as hypoxia, inflammation, and related drugs [23, 25]. Apo-
ptosis is an active process that enables adaptation to external
factors rather than a passive process, and excessive apoptosis
is unfavorable. There are two relatively clear apoptotic path-
ways: the external pathway involves cleavage of the initiator
procaspase-8 into the active caspase-8, thereby causing a
series of apoptosis cascades once the Fas ligand binds to the
Fas receptor on the cell surface [22, 26, 27]; and the endoge-
nous pathway is strictly regulated by proteins from the Bcl-2
family and targets mitochondria, maintaining the competi-
tion between antiapoptotic Bcl-2-like survival factors and
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Figure 6: Inhibition of Akt abolished the protective effect of levosimendan in vitro. (a) Western blotting and quantitative analysis of Akt in
H9C2 cells. (b) Real-time PCR for the mRNA expression of cardiac injury-associated genes in H9C2 cells in each group, including ANP and
BNP (normalized to GAPDH). (c) TUNEL staining for apoptosis in H9C2 cells and quantitative analysis of the TUNEL ratio in each group.
Scale bar: 50 μm. ∗P < 0:05, vs. the CON group; #P < 0:05, vs. the DOX group; $P < 0:05, vs. the DOX+L group.
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proapoptotic BAX-like death factors [22, 27, 28]. BAX and
Bcl-2 belong to the family of Bcl-2 proteins. If BAX
expression is increased, a homodimer of BAX/BAX is
produced which promotes apoptosis; otherwise, a hetero-
dimer or homodimer of Bcl-2/Bcl-2 is generated to
inhabit apoptosis. The ratio of those two factors determines
whether apoptosis occurs, as well as the severity of apopto-
sis. Furthermore, as the cytokines involved in the regulation
of apoptosis, caspases are core participators in the activa-
tion of apoptotic cascades [16, 27, 28]. The concentration
of active caspase-3 is closely associated with the rate of apo-
ptosis. The current study showed that the expression of
BAX and active caspase-3 proteins in the DOX group was
upregulated dramatically both in vivo and in vitro and that
the Bcl-2/BAX ratio decreased significantly. In addition, the
expression of BAX and c-caspase-3 in the CON+L group
was decreased.

DOX activates PTEN, thereby modulating the activity
downstream of the PI3K/Akt pathway [27]. PTEN mutation
is the most common mutation in tumor suppressor genes
which may negatively regulate cell function [29–31]. It has
been universally acknowledged that the most important role
of PTEN is to regulate growth and development, including
cell growth, adhesion, migration, invasion, and apoptosis,
and it also serves as the key regulator of pathogenesis in
a variety of cardiovascular diseases (CVD), probably via
the PI3K/Akt signaling pathway [32–36]. Multiple physical
and chemical stimuli can activate PI3K and thereby
phosphorylate-Akt (p-Akt), which subsequently functions
as a key factor in downstream effectors [37, 38]. Activated
Akt may exert its antiapoptotic effect through the regulation
of caspase-3. Caspase-3 is a vital effector of cell apoptosis,
existing as a precursor under normal conditions, and it is
activated during apoptosis. Procaspase-3 can be activated
through cleavage, and activated caspase-3 is the most impor-
tant terminal cleavage enzyme in apoptosis [39–41]. Early
investigations suggested that the activation of Akt could
effectively inhibit cardiomyocyte apoptosis and reduce the
extent of myocardial injury. In the current study, we have
shown that the PTEN/Akt pathway was activated in DOX-
induced apoptosis.

Regarding levosimendan, previously reported experi-
mental results have indicated that it could increase the sensi-
tivity between Ca2+ and myofilaments by combining with
myocardial troponin C to strengthen myocardial contraction
without increasing the intracellular Ca2+ concentration and
oxygen consumption in the myocardium [13, 16, 27]. Simul-
taneously, its vasodilatory and anti-ischemic effects might be
mediated by the opening of adenosine triphosphate-
sensitive potassium channels in vascular smooth muscle cells.
Moreover, levosimendan may protect various organs, includ-
ing the heart, kidney, lung, and liver, from apoptotic cell
death, probably through themodulation of membrane poten-
tial, reactive oxygen species formation, and adenosine
triphosphate-sensitive potassium channel activity, thereby
regulating mitochondrial function [42–44]. Recently, it has
been reported that levosimendan can significantly inhibit
interleukin-1β-induced apoptosis in adult rat cardiac fibro-
blasts. This cytoprotective effect of levosimendan was sug-

gested to be caused by the activation of Akt and the
inhibition of inducible nitric oxide synthase (iNOS) expres-
sion and subsequentNOproduction [16]. In addition, a recent
experiment showed that levosimendan pretreatment was
associated with attenuated myocardial apoptosis and there-
fore partially reverses coronary microembolization-induced
myocardial dysfunction in swine. The study also revealed that
the potential mechanisms underlying the protective effects
of levosimendan in coronary microembolization-induced
cardiac dysfunction might involve the regulation of Akt [27].

In conclusion, the data in the current study demonstrate
that levosimendan relieves DOX-induced myocardial injury
and improves cardiac function. These protective effects
involve regulation of the PTEN/Akt signaling pathway,
which leads to reduced apoptosis. And levosimendan therapy
targeting the PTEN/Akt pathway may be a promising thera-
peutic approach to treat chemotherapeutic agent-induced
cardiotoxicity.
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