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Time Series: Sunspots
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Time Series: Lynx
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Time Series: Air Passengers
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Time Series: European Stock Market Indices
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ARMA, VARMA, (M)CARMA

Versatile class of auto-regressive moving-average processes

Xn − ϕ1Xn−1 − . . .− ϕpXn−p = εn + θ1εn−1 + . . .+ θqεn−q

Extensions to
◮ multivariate models (Vector ARMA)
◮ continuous-time models (CARMA), e.g. various papers by

Brockwell, Lindner & Co.
Now multivariate CARMA.

Advantages:
◮ Modelling of dependent time series
◮ Allow handling of irregularly spaced data and missing observations

(thus suitable for high-frequency data).
◮ Allows consistent estimation and inference at different frequencies

Problem: Definition, Properties and Estimation
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Multivariate CARMA processes

R
m-valued Lévy process L satisfying E||L(1)||2 < ∞.

An R
d -valued second-order MCARMA(p,q) process solves

P(D)Y (t) = Q(D)DL(t), D ≡ d

dt
.

Auto-regressive polynomial

P(z) := 1zp + A1zp−1 . . .+ Ap ∈ Md(R[z ])

Moving-average polynomial

Q(z) := B0zq + B1zq−1 . . .+ Bq ∈ Md,m(R[z ])

In the univariate Gaussian case first considered by Doob (1944)
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Lévy processes

◮ Examples: Brownian motion, Poisson process, α-stable motions
(Lévy flights)

◮ The natural tractable class of stochastic processes including the
above examples

◮ Continuous time processes with stationary independent increments,
i.e. L(t1) − L(t0), L(t2) − L(t1), . . . , L(tn) − L(tn−1) are independent
for all 0 ≤ t0 < t1 < . . . < tn and identical in law for an equally
spaced grid, which are continuous in probability

◮ Characterised by the Lévy-Khintchine triplet:
◮ the drift γL

◮ the Brownian covariance matrix CL

◮ and the Lévy measure νL describing the jumps

◮ Can be represented as the sum of three independent components:
◮ a deterministic linear function
◮ a Brownian motion
◮ a “pure jump part”
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Why go beyond Brownian motion?

◮ Usage of non-Gaussian Lévy processes allows to reproduce certain
features of the data:

◮ Heavy tails (extreme events occur more frequently than under a
normal distribution)

◮ jumps (abrupt changes)
◮ positivity

◮ Models are to simplify reality. General Lévy processes may lead to
better linear models of (moderately) non-linear processes.
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Making sense of the differential equations: Spectral
representation of Lévy processes

Theorem (Marquardt and St. (2007))

Let L be a square integrable m-dimensional Lévy process with mean
E [L(1)] = 0 and variance E [L(1)L(1)∗] = ΣL. Then there exists a unique
m-dimensional random orthogonal measure ΦL with spectral measure FL

such that E [ΦL(∆)] = 0 for any bounded Borel set ∆, FL(dt) = ΣL

2π dt
and

L(t) =

∫ ∞

−∞

e iµt − 1

iµ
ΦL(dµ), t ∈ R.

=⇒ DL(t) =

∫ ∞

−∞

e iµt ΦL(dµ)
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Multivariate CARMA processes – Definition

Interpreting differentiation as linear filtering in the spectral domain, we
obtain “Y (t) = P(D)−1Q(D)DL(t)”:

Definition (Marquardt and St. (2007))

Let L be a square integrable m-dimensional Lévy-process with
E [L(1)] = 0 and associated random measure ΦL and p, q ∈ N0 with
p > q. Set

P(z) := Idzp + A1zp−1 + ...+ Ap, Q(z) := B0zq + B1zq−1 + ....+ Bq.

Assume Bq 6= 0 and N (P) := {z ∈ C : det(P(z)) = 0} ⊂ R\{0} + iR.
Then the stationary process Y defined as

Y (t) =

∫ ∞

−∞

e iµtP(iµ)−1Q(iµ) ΦL(dµ), t ∈ R

is called d-dimensional Lévy-driven MCARMA(p, q) process.
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An SDE representation

Theorem (Marquardt and St. (2007))

Let the Lévy process L and P,Q be as before. Define:

◮ βp−j = −
p−j−1∑

i=1

Aiβp−j−i + Bq−j , j = 0, 1, . . . , q,

β1 = . . . = βp−q−1 = 0

◮ β∗ =
(
β∗

1 , β
∗
2 , . . . , β

∗
p

)
and A =

(
0 Id(p−1)

−Ap −Ap−1 . . . −A1

)
.

Denote by G(t) = (G1(t)
∗, . . . ,Gp(t)

∗)∗ a p × d-dimensional process and
assume that N (P) := {z ∈ C : det(P(z)) = 0} ⊂ (−∞, 0) + iR. Then
dG(t) = AG(t)dt + βdL(t) has a unique stationary solution G given by

G(t) =

∫ t

−∞

eA(t−s)β L(ds), t ∈ R.
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An SDE representation

Theorem (continued)

It holds that

G1(t) =

∫ ∞

−∞

e iµtP(iµ)−1Q(iµ)ΦL(dµ) = Y (t), t ∈ R.

So the first d-components are the MCARMA process Y .

◮ An MCARMA process satisfying
N (P) := {z ∈ C : det(P(z)) = 0} ⊂ (−∞, 0) + iR is called causal.

◮ Causal stationary MCARMA processes can be defined via the above
state space representation (OU SDE) as soon as
E (max(ln(‖L1‖, 1)) < ∞.

◮ For regularly varying Lévy processes with finite mean one can again
give a spectral representation in terms of a random content which
allows to define also non-causal MCARMA processes with infinite
second moment (see Fuchs and St. (2013b)).
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Second order structure

Assume E (L(1)L(1)∗) = ΣL < ∞.

◮ MCARMA process Y :

Cov(Y (t + h),Y (t)) =

∞∫

−∞

e iµh

2π
P(iµ)−1Q(iµ)ΣLQ(iµ)∗(P(iµ)−1)∗ dµ,

h ∈ R.

◮ State Space Representation G :

Var(G(t)) =

∞∫

0

eAuβΣLβ∗eA∗udu

AVar(G(t)) + Var(G(t))A∗ = −βΣLβ∗

Cov(G(t + h),G(t)) = eAhVar(G(t)), h ≥ 0.
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Stationary distribution

If L has characteristic triplet (γ, σ, ν), then the stationary distribution of
the state space representation G of a causal MCARMA process is
infinitely divisible with characteristic triplet (γ∞

G , σ∞
G , ν∞

G ), where

• γ∞
G =

∫ ∞

0

eAsβγ ds +

∞∫

0

∫

Rd

eAsβx [I{‖eAs βx‖≤1} − I{‖x‖≤1}] ν(dx) ds,

• σ∞
G =

∫ ∞

0

eAsβ σβ∗eA∗s ds,

• ν∞
G (B) =

∫ ∞

0

∫

Rd

IB(e
Asβx) ν(dx) ds.

Projection on the first d coordinates gives the characteristic triplet of the
stationary distribution of Y .
The result extends to higher dimensional marginal distributions and a
similar result is possible for non-causal MCARMA processes.
(Essentially an application of results of Rajput and Rosinski (1989))
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Existence of Moments

For causal MCARMA processes the existence of moments is determined
by the driving Lévy process:

◮ If E (‖L(1)‖r ) < ∞ for some r ∈ R
+,

thenE (‖Y (t)‖r ),E (‖G(t)‖r ) < ∞.

◮ If β is injective, then E (‖G(t)‖r ) < ∞ =⇒ E (‖L(1)‖r ) < ∞.

◮ A slightly weaker result holds for exponential moments.
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Dependence structure

◮ Markov properties:
As a solution to a stochastic differential equation, the state space
representation G of a causal MCARMA process is a strong Markov
process.

◮ Mixing properties:
For a causal MCARMA process the state space representation G is
β-mixing and Y is strongly mixing, both with exponentially decaying
mixing coefficients.
In particular, G and Y are ergodic (G is also geometrically ergodic).

Every stationary MCARMA process is mixing (see Fuchs and St.
(2013a)).
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Sample path properties

◮ The sample paths of a (causal) MCARMA(p, q) process Y with
p > q + 1 are (p − q − 1)-times differentiable with

d i

dt i
Y (t) = Gi+1(t), i = 1, 2, . . . , p − q − 1.

(To be precise the p − q − 1-th derivative has to be understood in
the sense of a unique càdlàg “density” in the case of jumps. Its
p − q − 1-th derivative exists only a.e.)

◮ If p = q + 1, then ∆Y (t) = β1∆L(t) = B0∆L(t).

◮ If the driving Lévy process L is a Brownian motion, then the sample
paths of Y are continuous and (p − q − 1)-times continuously
differentiable, provided p > q + 1.
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One dimensional Gaussian OU
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One dimensional NIG OU
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Two dimensional OU process with zero correlation
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Two dimensional OU process with strong positive
correlation
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Two dimensional OU process with strong negative
correlation

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

15

Time

M
C

A
R

M
A

 p
ro

c
e

s
s
 Y



Page 25 Lévy-driven CARMA Processes | September 29th, 2015 | Robert Stelzer

Two dimensional NIG OU process with strong positive
correlation
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NIG-driven CARMA(1,0)
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NIG-driven CARMA(2,0)
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Multivariate CARMA processes

Stationary solution to continuous-time state space model

state equation dX(t) =AX(t)dt + βdL(t)

observation equation Y (t) = [1, 0, . . . , 0]X(t),

A =




0 1 0 . . . 0

0 0 1
. . .

.

.

.

.

.

.
. . .

. . . 0

0 . . . . . . 0 1
−Ap −Ap−1 . . . . . . −A1




,

β =
[

βT
1 · · · βT

p

]T
, βp−j = −I[0:q](j)

[
p−j−1∑

i=1

Ai βp−j−i + Bq−j

]

We only consider stationary causal MCARMA processes,i.e.
σ(A) ⊂ (−∞, 0) + iR.
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State space models

General N-dimensional continuous-time state space model:

state equation dX(t) =AX(t)dt + BdL(t)

observation equation Y (t) =CX(t),

A ∈ M−
N (R), B ∈ MN,m(R), C ∈ Md,N(R).

X satisfies

X(t) = eA(t−s)X(s) +

∫ t

s

eA(t−u)BdL(u).

MCARMA(P,Q) ⇔ C(zIN − A)−1B = P(z)−1Q(z)

Such P,Q exist for any state space model. (see Schlemm and St.
(2012a))
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Definition of the sampled process

We observe the process Y at discrete, equally spaced times

Y (h)
n := Y (nh), n ∈ Z, h > 0.
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5
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State-space representation of Y (h)

The sampled process Y (h) satisfies the discrete-time state space model

X (h)
n =eAhX

(h)
n−1 + Zn,

Y (h)
n =CX (h)

n ,

where the i.i.d. sequence (Zn)n∈Z is given by

Zn =

∫ nh

(n−1)h

eA(nh−u)BdL(u).
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VARMA structure of Y (h)

Assume the eigenvalues λ1, . . . , λn of A are distinct. We define the
polynomial

ϕ(z) =

N∏

ν=1

[
1 − e−λν hz

]
∈ C[z ].

Theorem

There exists a stable monic polynomial Θ ∈ Md(C[z ]) of degree at most
N − 1 such that

ϕ(B)Y (h)
n = Θ(B)ε(h)

n , BjY (h)
n = Y

(h)
n−j ,

holds with ε(h) being white noise.
⇒ Y (h) is a weak VARMA(N,N − 1) process.
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Idea for the Estimation

◮ Use a Quasi-Maximum-Likelihood-Approach

◮ But: There is neither a precise asymptotic theory for the QML
estimators for the relevant state space nor the relevant VARMA
processes

◮ Thus: Develop a general theory for QML estimation of strongly
mixing state space models

◮ QML estimation theory for multivariate CARMA processes is
obtained as a special case

◮ Actually: MCARMA processes are parametrised via a state space
form, because this leads to feasible identifiability conditions
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Parametrisation

There is some parameter set Θ ⊂ R
r , and for each ϑ ∈ Θ one is given

matrices Aϑ, Bϑ and Cϑ of matching dimensions, as well as a Lévy
process Lϑ.

X (h)
n =eAϑhX

(h)
n−1 + Zn,

Y (h)
n =CϑX (h)

n ,

with

Zn =

∫ nh

(n−1)h

eAϑ(nh−u)BϑdLϑ(u).
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Assumptions I

Assumption (C1)

For each ϑ ∈ Θ, it holds that ELϑ = 0m, that E ‖Lϑ(1)‖2
is finite, and

that the covariance matrix ΣL
ϑ = ELϑ(1)Lϑ(1)T is non-singular.

Assumption (C2)

For each ϑ ∈ Θ, the eigenvalues of Aϑ have strictly negative real parts.

Assumption (C3)

For all ϑ ∈ Θ, the triplet (Aϑ,Bϑ,Cϑ) is minimal with McMillan degree
N.
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Assumptions II

Assumption (C4)

The collection of output processes K (Θ) := (Y ϑ,ϑ ∈ Θ) corresponding
to the state space models (Aϑ,Bϑ,Cϑ,Lϑ) is identifiable from the
spectral density.

Assumption (C5)

For all ϑ ∈ Θ, the spectrum of Aϑ is a subset of
{z ∈ C : −π/h < Im z < π/h}.
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The QML estimator

ϑ̂
L,(h)

=argminϑ∈ΘL̂
(h)(ϑ, yL,(h)),

L̂
(h)(ϑ, yL,(h)) =

L∑

n=1

[
d log 2π + log det V

(h)
ϑ + ε̂

(h)
ϑ,nV

(h),−1

ϑ ε̂
(h)
ϑ,n

]
,

where ε̂
(h)
ϑ are the pseudo-innovations of the observed process

Y (h) = Y
(h)
ϑ0

, which are computed from the sample

yL,(h) = (Y
(h)
1 , . . . ,Y

(h)
L ) using the Kalman filter and V

(h)
ϑ are their

(pseudo-)covariances.



Page 38 Lévy-driven CARMA Processes | September 29th, 2015 | Robert Stelzer

Further Assumptions I

Assumption (C6)

The parameter space Θ is a compact subset of Rr .

Assumption (C7)

The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, and ϑ 7→ ΣL
ϑ are continuous.

Moreover, for each ϑ ∈ Θ, the matrix Cϑ has full rank.

Assumption (C8)

The true parameter value ϑ0 is an element of the interior of Θ.
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Further Assumptions II

Assumption (C9)

The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, and ϑ 7→ ΣL
ϑ are three times

continuously differentiable.

Assumption (C10)

There exists a positive number δ such that E ‖Lϑ0
(1)‖4+δ

< ∞.

Assumption (C11)

There exists a positive index j0 such that the
[
(j0 + 2)d2

]
× r matrix

∇ϑ

( [
1j0+1 ⊗ K

(h),T

ϑ
⊗ Cϑ

][ (
vece

1N h
)T (

vece
Aϑh

)T
· · ·

(
vece

A
j0
ϑ

h

)T
]T

vecVϑ

)

ϑ=ϑ0

has rank r .
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QML - Asymptotic results

Theorem (Schlemm and St. (2012b))

yL,(h) = (Y
(h)
ϑ0.1

, . . . ,Y
(h)
ϑ0.L

) be a sample of length L from the discretely
observed output process corresponding to the parameter value ϑ0 ∈ Θ.

Under (C1)-(C7) the QML estimator ϑ̂
L,(h)

= argminϑ∈ΘL̂ (ϑ, yL,(h)) is
strongly consistent, i. e.

ϑ̂
L,(h) a. s.−−−→

L→∞
ϑ0. (1)

If, moreover, (C8)-(C11) hold, then ϑ̂
L,(h)

is asymptotically normally

distributed, i. e.
√

L
(

ϑ̂
L,(h) − ϑ0

)
d−−−→

L→∞
N (0,Ξ), where the asymptotic

covariance matrix Ξ = J−1IJ−1 is given by

I = lim
L→∞

L−1
Var

(
∇ϑL

(
ϑ0, y

L
))
, J = lim

L→∞
L−1∇2

ϑL
(
ϑ0, y

L
)
.
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QML - Order Selection

Fasen and Kimmig (2015) have extended the results to order selection.
They have among other results shown that using the QML estimators
with the BIC gives consistent estimators.
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Echelon state space parametrisations

◮ Integer N > 0 (McMillan degree)

◮ Non-negative structure indices ν = (ν1, . . . , νd) satisfying
∑
νi = N

Canonical parametrisation

ψν : Rq(ν) ⊃ Θ ∋ ϑ 7→ (Aϑ,Bϑ,Cϑ,Lϑ), Aϑ ∈ MN(R)

◮ Every MCARMA process is obtained for some ν.
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Examples of canonical parametrisations

ν = (1, 1) (Ornstein-Uhlenbeck type process), 7 parameters:

Aϑ =

[
ϑ1 ϑ2
ϑ3 ϑ4

]
, Bϑ =

[
ϑ1 ϑ2
ϑ3 ϑ4

]
, Cϑ =

[
1 0

0 1

]

ν = (1, 2), 10 parameters (CARMA (2,1)):

Aϑ =

[
ϑ1 ϑ2 0

0 0 1

ϑ3 ϑ4 ϑ5

]
, Bϑ =

[
ϑ1 ϑ2
ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

]
, Cϑ =

[
1 0 0

0 1 0

]

ν = (2, 1), 11 parameters (CARMA (2,1)):

Aϑ =

[
0 1 1

ϑ1 ϑ2 ϑ3
ϑ4 ϑ5 ϑ6

]
, Bϑ =

[
ϑ7 ϑ8

ϑ1 + ϑ2ϑ7 ϑ3 + ϑ2ϑ8
ϑ4 + ϑ5ϑ7 ϑ6 + ϑ5ϑ8

]
, Cϑ =

[
1 0 0

0 0 1

]

ν = (2, 2), 15 parameters (CARMA (2,1)):
. . . . . .
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Simulation Study I

Bivariate NIG-driven MCARMA process

X(t) =

[
ϑ1 ϑ2 0

0 0 1

ϑ3 ϑ4 ϑ5

]
X(t)dt +

[
ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

]
dL(t),

Y (t) =

[
1 0 0

0 1 0

]
X(t), vechΣL = (ϑ8, ϑ9, ϑ10).

L(1)
d
= µ + V∆β + V 1/2N

where

◮ V ∼ IG(δ/κ, δ2),

◮ N ∼ N (0,∆).

◮ Pure jump

◮ Skewed

◮ Semi-heavy tailed
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Simulation Study II

One realization of a bivariate NIG-driven MCARMA process
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Simulation Study III

QML estimates for a bivariate NIG-driven MCARMA

◮ Time horizon [0, 2000] ◮ 350 replicates
◮ Observed at integer times

para. sample mean bias sample std. dev. est. std. dev.

ϑ1 -1.0001 0.0001 0.0354 0.0381
ϑ2 -2.0078 0.0078 0.0479 0.0539
ϑ3 1.0051 -0.0051 0.1276 0.1321
ϑ4 -2.0068 0.0068 0.1009 0.1202
ϑ5 -2.9988 -0.0012 0.1587 0.1820
ϑ6 1.0255 -0.0255 0.1285 0.1382
ϑ7 2.0023 -0.0023 0.0987 0.1061
ϑ8 0.4723 -0.0028 0.0457 0.0517
ϑ9 -0.1654 0.0032 0.0306 0.0346
ϑ10 0.3732 0.0024 0.0286 0.0378
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Application to corporate bond yields I

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
4

6

8

10

12

14

16

18

Year

Y
ie

ld
 [
%

]

Weekly yields for Moody’s seasoned Aaa and Baa corporate bonds

 

 
Aaa bonds
Baa bonds



Page 48 Lévy-driven CARMA Processes | September 29th, 2015 | Robert Stelzer

Application to corporate bond yields II

Data show unit roots but no cointegration
Weekly log-yields after differencing and devolatilization using a moving
window of width 52 (corresponding to one year)
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Application to corporate bond yields III

QMLE estimates of the parameters of an MCARMAα,β model for weekly
yields of Moody’s seasoned corporate bonds

(α, β) (1, 1) (1, 2) (2, 1) (2, 2)

ϑ̂i σ(ϑi ) ϑ̂i σ(ϑi ) ϑ̂i σ(ϑi ) ϑ̂i σ(ϑi )

ϑ̂1 -1.1326 0.1349 -1.1538 0.1401 -1.3776 0.0320 -0.0010 0.0336

ϑ̂2 0.2054 0.1171 0.2307 0.1008 -2.4033 0.0197 -1.1601 0.5964

ϑ̂3 0.3316 0.1206 -0.2528 0.1716 0.0228 0.0050 -0.0098 0.0268

ϑ̂4 -1.0935 0.1065 -0.0362 0.0472 -4.9948 0.1096 0.1829 0.7429

ϑ̂5 2.4105 0.2324 -1.2516 0.1286 -4.6276 0.1538 1.4646 0.3931

ϑ̂6 2.2483 0.2061 -2.5747 0.4595 -0.0153 0.0108 1.3662 0.4039

ϑ̂7 2.7055 0.2116 1.6345 0.2940 -1.2442 0.0391 -0.7438 0.2387

ϑ̂8 2.8552 0.1966 0.2573 0.0492 -1.7563 0.7209

ϑ̂9 3.5702 0.2151 2.4302 0.1370 -2.6936 0.6694

ϑ̂10 4.9076 0.3888 2.9784 0.2766 1.7369 0.5381

ϑ̂11 4.1571 0.5043 -3.6136 3.0265

ϑ̂12 2.8483 2.5122

ϑ̂13 4.4848 0.3327

ϑ̂14 5.5079 0.1803

ϑ̂15 7.0218 1.4357

−2 log Lϑ(y) 9,893.8 9,850.4 9,853.0 9,840.7
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Application to corporate bond yields IV

Empirical autocorrelations compared to those of the estimated models
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Recovery of the driving Lévy process

Minimum-phase assumption:

◮ dim Lt ≤ dim Y t ,

◮ Bq, BT
q B0 full rank,

◮ det B∼1
q Q(z) 6= 0, ∀z ∈ R+ + iR.

Proposition (Brockwell and Schlemm (2013))

Let Y be an L-driven MCARMA(p,q) process. If dim Lt ≤ dim Y t , and a
minimum-phase assumption is satisfied, then there exist matrices M1,ν ,
M2, M3, and B, such that

Lt =

p−q−1∑

ν=0

M1,νDνY t + M2

∫ t

−∞

eB(t−s)EqY sds + M3

∫ t

0

Y sds.



Page 52 Lévy-driven CARMA Processes | September 29th, 2015 | Robert Stelzer

Recovery of the driving Lévy process

◮ Only discrete-time observations available: Y 0,Y h,Y 2h, . . . ,Y N , for
some h > 0

◮ Approximate derivatives by forward differences

◮ Cut off and approximate integrals by trapezoidal numerical
integration scheme

◮ Obtain estimates

(
∆̂L

(h)

1 , . . . , ∆̂L
(h)

N

)
of Lévy increments

∆Ln = Ln − Ln−1

Proposition (Brockwell and Schlemm (2013))

If E
(

‖L1‖k
)
< ∞, then E

(∥∥∥∥∆̂L
(h)

n − ∆Ln

∥∥∥∥
κ)

≤ Ch1/2, for

κ = 1, . . . , k.
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Generalized method of moments

◮ (Pϑ)ϑ∈Θ parametric family of probability distributions on R
m

◮ XN = (X1,X2, . . . ,XN) i. i. d. sample from Pϑ0
of length N

◮ Moment function g : Rm × Θ → R
q satisfying

E (g (X1, ϑ)) = 0 ⇔ ϑ = ϑ0

◮ Symmetric positive definite q × q matrix WN

The sample analogue of the identifiability condition defines the GMM
estimator

ϑ̂N = argminϑ∈Θ

∥∥∥∥∥
1

N

N∑

n=1

g (Xn, ϑ)

∥∥∥∥∥
WN

.

Special cases:
◮ Maximum likelihood:

Pϑ ∼ pϑ(·), g(X , ϑ) = ∇ϑ log pϑ(X )
◮ Least squares for characteristic functions:

Pϑ i. d. ∼ ψϑ, g(X , ϑ) =

[
ℜ

(
ei〈uk ,X〉 − eψϑ(uk )

)

ℑ
(
ei〈uk ,X〉 − eψϑ(uk )

)
]

k=1,...,q/2
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Generalized method of moments with noisy data

◮ Perturbed sample XN,(h) = (X1 + ε
(h)
1 , . . . ,XN + ε

(h)
N ):

ϑ̂N,(h) = argminϑ∈Θ

∥∥∥∥∥
1

N

N∑

n=1

g
(

Xn + ε(h)n , ϑ
)∥∥∥∥∥

WN,h

Theorem (Brockwell and Schlemm (2013))

In addition to standard smoothness and moment conditions assume that
there exists a rate function β : R+ → R+ satisfying β(h) → 0 as h → 0,
such that

sup
n

E
(∥∥∥g

(
Xn + ε(h)n , ϑ0

)
− g(Xn, ϑ0)

∥∥∥
)
= O (β(h)), as h → 0.

If h = hN is chosen dependent on N such that N1/2β(hN) → 0 as
N → ∞, then

N1/2
(
ϑ̂N,(hN ) − ϑ0

)
d−→ N (0,Σ).
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GMM estimation for reconstructed Lévy increments

Setup:

◮ Parametric family of Lévy processes (Lϑ)ϑ∈Θ

◮ Moment function g : Rm × Θ → R
q satisfying

Eg(∆Lϑ0,1, ϑ) = 0 ⇔ ϑ = ϑ0

◮ Lϑ0
-driven MCARMA process Y

Procedure:

◮ Discrete observations Y 0,Y h, . . . ,Y N

◮ Sample of approximate increments

(
∆̂L

(h)

1 , . . . , ∆̂L
(h)

N

)

◮ GMM estimation as

ˆ̂ϑN,(h) = argminϑ∈Θ

∥∥∥∥∥
1

N

N∑

n=1

g

(
∆̂L

(h)

n , ϑ

)∥∥∥∥∥
WN,h
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GMM estimation for reconstructed Lévy increments

Theorem (Brockwell and Schlemm (2013))

Under standard smoothness assumptions on g, and moment conditions
on Lϑ0,1, the rate function can be taken as β : h 7→ h1/2. That is, if

h = hN such that NhN → 0 as N → ∞, then the estimator ˆ̂ϑN,(hN ) is
consistent and asymptotically normally distributed with .
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Example: Influence of the sampling frequency

CARMA(3,1):

dX t =




0 1 0
0 0 1

− 1
2

− 3
2

−2


 X tdt +




0
0
1


 dΓ2,1

t

Y t =
[

1 1 0
]

X t

◮ Parametric family (Γb,a)(b,a)∈R
2
+

◮ g(x , b, a) = ∇(b,a) log f b,a(x)
[ML]

◮ time grid (0, h, 2h, . . . , 200)

◮ h ∈
{0.5, 0.1, 0.05, . . . , 0.001, 0.0005}

◮ 500 independent realizations
0.8 1 1.2 1.4 1.6 1.8 2 2.2

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

b

a
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Example continued – Asymptotic normality

◮ Empirical distribution of
(

b̂200,(0.001), â200,(0.001)
)

◮ 500 independent realizations

1.4 1.6 1.8 2 2.2 2.4 2.6

0.8

0.9

1

1.1

1.2

1.3

b

a
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Other questions

◮ Prediction (see Brockwell and Lindner (2015))
◮ Extremal behaviour under regularly varying Lévy processes (Moser

and St. (2011, 2013)
◮ Estimation for very heavily tailed/stable MCARMA processes (see

Fasen and Fuchs (2013a,b))
◮ Other methods to reconstruct the driving Lévy process (e.g.

Ferrazzano and Fuchs (2013))
◮ Cointegration (works by Vicky Fasen and coauthors)
◮ Other estimation techniques (efficient estimators?)
◮ Different sampling schemes (for (Poisson) random sampling results

of e.g. Lii and Masry (1992, 1994) can be applied; high frequency
limit for deterministic irregular grids started to be considered in
Fechner and St. (2015))

◮ Use in various applications
◮ ...
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