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To improve the performance of the krill herd (KH) algorithm, in this paper, a Lévy-�ight krill herd (LKH) algorithm is proposed
for solving optimization tasks within limited computing time. �e improvement includes the addition of a new local Lévy-�ight
(LLF) operator during the process when updating krill in order to improve its eciency and reliability coping with global numerical
optimization problems. �e LLF operator encourages the exploitation and makes the krill individuals search the space carefully at
the end of the search. �e elitism scheme is also applied to keep the best krill during the process when updating the krill. Fourteen
standard benchmark functions are used to verify the e�ects of these improvements and it is illustrated that, in most cases, the
performance of this novel metaheuristic LKHmethod is superior to, or at least highly competitive with, the standard KH and other
population-based optimizationmethods. Especially, this newmethod can accelerate the global convergence speed to the true global
optimum while preserving the main feature of the basic KH.

1. Introduction

In current competitory world, human beings make an
attempt at extracting the maximum output or pro�t from a
restricted amount of usable resources. In the case of engi-
neering optimization, such as design optimization of tall
steel buildings [1], optimum design of gravity retaining walls
[2], water, geotechnical and transport engineering [3], and
structural optimization and design [4, 5], engineers would
attempt to design structures that satisfy all design require-
ments with the minimum possible cost. Most real-world
engineering optimization problems could be converted into
general global optimization problems.�erefore, the study of
global optimization is of vital importance for the engineer-
ing optimization. In this issue, many biological intelligent
techniques [6] as optimization tools have been developed
and applied to solve engineering optimization problems for
engineers. A general classi�cation way for these techniques is
considering the nature of the techniques, and optimization

techniques can be classi�ed as two main groups: classical
methods and modern intelligent algorithms. Classical meth-
ods such as hill climbing have a rigorous move and will
generate the same set of solutions if the iterations start with
the same initial starting point. On the other hand, modern
intelligent algorithms o�en generate di�erent solutions even
with the same initial value. However, in general, the �nal
solutions, though slightly di�erent, will converge to the same
optimal values within a given accuracy. �e emergence of
metaheuristic optimization algorithm as a blessing from the
arti�cial intelligence and mathematical theorem has opened
up a new facet to carry out the optimization of a function.
Recently, nature-inspired metaheuristic algorithms perform
powerfully and eciently in solving modern nonlinear
numerical global optimization problems. To some extent, all
metaheuristic algorithms make an attempt at relieving the
con�ict between diversi�cation/exploration/randomization
(global search) and intensi�cation/exploitation (local search)
[7, 8].
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Inspired by nature, these strongmetaheuristic algorithms
have been proposed to solve NP-hard tasks, such as UCAV
path planning [9, 10], test-sheet composition [11], and param-
eter estimation [12]. �ese kinds of metaheuristic methods
perform on a population of solutions and always �nd optimal
or suboptimal solutions. During the 1960s and 1970s, com-
puter scientists studied the possibility of formulating evolu-
tion as an optimizationmethod and eventually this generated
a subset of gradient free methods, namely, genetic algorithms
(GAs) [13, 14]. In the last two decades, a huge number of
techniques were developed on function optimization, such
as bat algorithm (BA) [15, 16], di�erential evolution (DE)
[17, 18], genetic programming (GP) [19], harmony search
(HS) [20, 21], particle swarm optimization (PSO) [22–24],
cuckoo search (CS) [25, 26], and, more recently, the krill
herd (KH) algorithm [27] that is based on imitating the krill
herding behavior in nature.

Firstly proposed by Gandomi and Alavi in 2012, inspired
by the herding behavior of krill individuals, KH algorithm
is a novel swarm intelligence method for optimizing pos-
sibly nondi�erentiable and nonlinear complex functions in
continuous space [27]. In KH, the time-dependent position
of the krill individuals involves three main components: (i)
movement led by other individuals, (ii) foraging motion,
and (iii) random physical di�usion. One of the notable
advantages of theKHalgorithm is that derivative information
is unnecessary, because it uses a random search instead of
a gradient search use in classical methods. Moreover, com-
paring with other population-based metaheuristic methods,
this new method needs few control variables, in principle
only a separate parameter Δt (time interval) to tune, which
makesKHeasy to implement,more robust and �ts for parallel
computation.

KH is an e�ective and powerful algorithm in exploration,
but at times it may trap into some local optima so that it
cannot implement global search well. For KH, the search
depends completely on random search, so there is no guar-
antee for a fast convergence. In order to improve KH in
optimization problems, a method has been proposed [28],
which introduces a more focused mutation strategy into KH
to add the diversity of population.

On the other hand, many researchers have centralized on
theories and applications of statistical techniques, especially
of Lévy distribution.And recently huge advances are acquired
in many �elds. One of these �elds is the applications of Lévy
�ight in optimization methods. Previously, Lévy �ights have
been used together with some metaheuristic optimization
methods such as �re�y algorithm [29], cuckoo search [30],
krill herd algorithm [31], and particle swarm optimization
[32].

Firstly presented here, an e�ective Lévy-�ight KH (LKH)
method is originally proposed in this paper, in order to
accelerate convergence speed, thus making the approach
more feasible for a wider range of real-world engineering
applications while keeping the desirable characteristics of the
original KH. In LKH, �rst of all, a standard KH algorithm
is implemented to shrink the search apace and select a good
candidate solution set. And then, for more precise modeling
of the krill behavior, a local Lévy-�ight (LLF) operator is

added to the algorithm.�is operator is applied to exploit the
limited promising area intensively to get better solutions so
as to improve its eciency and reliability for solving global
numerical optimization problems. �e proposed method is
evaluated on fourteen standard benchmark functions that
have ever been applied to verify optimization methods
in continuous optimization problems. Experimental results
show that the LKH performs more eciently and e�ectively
than basic KH, ABC, ACO, BA, CS, DE, ES, GA, HS, PBIL,
and PSO.

�e structure of this paper is organized as follows.
Section 2 gives a description of basic KH algorithm and Lévy
�ight in brief. Our proposed LKH method is described in
detail in Section 3. Subsequently, our method is evaluated
through fourteen benchmark functions in Section 4. In
addition, the LKH is also compared with ABC, ACO, BA, CS,
DE, ES, GA, HS, KH, PBIL, and PSO in that section. Finally,
Section 5 involves the conclusion and proposals for future
work.

2. Preliminary

At �rst, in this section, a background on the krill herd algo-
rithm and Lévy �ight will be provided in brief.

2.1. Krill Herd Algorithm. Krill herd (KH) [27] is a newmeta-
heuristic optimization method [4] for solving optimization
tasks, which is based on the simulation of the herding of the
krill swarms in response to particular biological and envi-
ronmental processes. �e time-dependent position of an
individual krill in 2D space is decided by three main actions
presented as follows:

(i) movement a�ected by other krill individuals,

(ii) foraging action,

(iii) random di�usion.

KH algorithm adopted the following Lagrangian model
in a d-dimensional decision space as in the following (1):

����� = �� + �� + ��, (1)

where ��, ��, and �� are the motion led by other krill
individuals, the foraging motion, and the physical di�usion
of the 	th krill individual, respectively.

In movement a�ected by other krill individuals, the
direction of motion, 
�, is approximately computed by the
target e�ect (target swarmdensity), local e�ect (a local swarm
density), and a repulsive e�ect (repulsive swarm density). For
a krill individual, this movement can be de�ned as

�new
� = �max
� + ���old

� , (2)

and �max is the maximum induced speed, �� is the inertia
weight of the motion induced in [0, 1], and �old

� is the last
motion induced.

�e foraging motion is estimated by the two main
components. One is the food location and the other one is
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the prior knowledge about the food location. For the 	th krill
individual, this motion can be approximately formulated as
follows:

�� = B�C� + ���old
� , (3)

where

C� = Cfood
� + Cbest

� , (4)

and B� is the foraging speed, �� is the inertia weight of the
foraging motion between 0 and 1, �old

� is the last foraging
motion.

�e random di�usion of the krill individuals can be con-
sidered to be a random process in essence. �is motion can
be described in terms of a maximum di�usion speed and a
random directional vector. It can be indicated as follows:

�� = �maxD, (5)

where �max is the maximum di�usion speed, and D is the
random directional vector and its arrays are random values
in [−1, 1].

Based on the three above-mentioned movements, using
di�erent parameters of the motion during the time, the
position vector of a krill individual during the interval � to� + Δ� is expressed by the following equation:

�� (� + Δ�) = �� (�) + Δ������ . (6)

It should be noted that Δ� is one of the most important
parameters and should be �ne-tuned in terms of the speci�c
real-world engineering optimization problem.�is is because
this parameter can be treated as a scale factor of the speed
vector. More details about the three main motions and KH
algorithm can be found in [27].

2.2. Lévy Flights. Usually, the hunt of food by animals takes
place in the form of random or quasi-random. �at is to say,
all animals feed in a walk path from one location to another
at random. However, the direction it selects relies only on a
mathematical model [33]. One of the remarkable models is
called Lévy �ights.

Lévy �ights are a class of random walk in which the steps
are determined in terms of the step lengths, and the jumps are
distributed according to a Lévy distribution. More recently,
Lévy �ights have subsequently been applied to improve and
optimize searching. In the case of CS, the random walking
steps of a cuckoo are determined by a Lévy �ight [34]:

��+1� = ��� + CE (F, G) ,
E (F, G) = GΓ (G) sin (�G/2)

�
1

F1+� , (F, F0 > 0) . (7)

Here, C > 0 is the step size scaling factor, which should
be related to the scales of the problem of interest.�e random
walk via Lévy �ight is more ecient in exploring the search
space as its step length ismuch longer in the long run. Some of
the new solutions should be generated by Lévy walk around
the best solution obtained so far; this will speed up the local
search.

3. Our Approach: LKH

In general, the standard KH algorithm is adept at exploring
the search space and locating the promising region of global
optimal value, but it is not relatively good at exploiting
solution. In order to improve the exploitation of KH, a new
distribution Lévy �ight performing local search, called local
Lévy-�ight (LLF) operator, is introduced to form a novel
Lévy-�ight krill herd (LKH) algorithm. In LKH, to begin
with, standard KH algorithm with high convergence speed
is used to shrink the search region to a more promising
area. And then, LLF operator with good exploitation ability
is applied to exploit the limited area intensively to get better
solutions. In this way, the strong exploration abilities of the
original KH and the exploitation abilities of the LLF operator
can be fully extracted. �e di�erence between LKH and KH
is that the LLF operator is used to perform local search and
�ne-tune the original KH generating a new solution for each
krill instead of random walks originally used in KH. As a
matter of fact, according to the �guration of LKH, the original
KH in LKH focuses on the exploration/diversi�cation at
the beginning of the search to evade trapping into local
optima in a multimodal landscape; while later LLF oper-
ator encourages the exploitation/intensi�cation and makes
the krill individuals search the space carefully at the end
of the search. �erefore, our proposed LKH method can
fully exploit the merits of di�erent search techniques and
overcome the lack of the exploitation of the KH and solve the
con�ict between exploration and exploitation e�ectively. �e
detailed explanation of our method is described as follows.

To start with, standard KH algorithm utilizes three main
actions to search the promising area in the solution space and
use these actions to guide the generation of the candidate
solutions for the next generation. It has been demonstrated
that [27] KH performs well in both convergence speed and
�nal accuracy on unimodal problems and many simple mul-
timodal problems. �erefore, in LKH, we employ the merit
of the fast convergence of KH to implement global search.
In addition, KH is able to shrink the search region towards
the promising area within a few generations. However, some-
times KH’s performance on complex multimodal problems
is unsatisfying; accordingly, another search technique with
good exploitation ability is crucial to exploit the limited area
carefully to get optimal solutions.

To improve the exploitation ability of the KH algorithm,
genetic reproduction mechanisms have been incorporated
into the standard KH algorithm. Gandomi and Alavi have
proved that the KH II (KH with crossover operator only)
performs the best among serials of KH methods [27]. In our
present work, we use a more focused local search technique,
local Lévy-�ight (LLF) operator, in the local search part
of the LKH algorithm, which can increase diversity of the
population in an attempt to avoid premature convergence and
exploit a small region in the later run phase to re�ne the �nal
solutions. �e main step of LLF operator used in the LKH
algorithm is presented in Algorithm 1.

Here, � ∈ [0, �max] and �max is the maximum of gen-
erations. � is the number of decision variables. NP is the
size of the parent population. A is max Lévy-�ight step size.
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Begin� = �/(�∧2); % Smaller step for local walk
NoSteps = ⌈� ∗ exprnd (2 ∗ �

max
)⌉;

Determine the next step size �� by performing Lévy �ight as shown in Section 2.2;O = ⌈NP ∗ rand⌉
for R = 1 to d do

if rand ≤ 0.5 % Random number to determine directionB�(R) = � × ��(R) + �NP−�+1(R)
elseB�(R) = � × ��(R) − �NP−�+1(R)
end if

end for j
Evaluate the o�spring B�
if B� is better than �� then�� = B�
end if

End.

Algorithm 1: Local Lévy-�ight (LLF) operator.

��(R) is the jth variable of the solution ��. B� is the o�spring.⌈�∗ exprnd(2 ∗ �max)⌉ is a random integer number between 1
and�∗exprnd(2∗�max) drawn from exponential distribution.
exprnd(2∗�max) returns an array of random numbers chosen
from the exponential distribution with mean parameter 2 ∗�max. Similarly, ⌈� ∗ rand⌉ is a random integer number
between 1 and d drawn from uniform distribution. And
rand is a random real number in interval (0, 1) drawn from
uniform distribution.

In addition, another important improvement is the addi-
tion of elitism strategy into the LKH. Clearly, KH has some
fundamental elitism. However, it can be further improved.
As with other population-based optimization algorithms, we
combine some sort of elitism so as to store the optimal
solutions in the population. Here, we use a more centralized
elitismon the best solutions, which can stop the best solutions
from being ruined by three motions and LLF operator in
LKH. In the main cycle of the LKH, to start with, the
KEEP best solutions are retained in a variable KEEPKRILL.
Generally speaking, theKEEP worst solutions are substituted
by the KEEP best solutions at the end of the every iteration.
�ere is a guarantee that this elitism strategy can make the
whole population not decline to the population with worse
�tness than the former. Note that we use an elitism strategy
to save the property of the krill that has the best �tness in
the LKH process, so even if three motions and LLF operator
corrupt their corresponding krill, we have retained it and can
recuperate to its preceding good status if needed.

Based on the above analyses, themain steps of Lévy-�ight
krill herd method can be simply presented in Algorithm 2.

4. Simulation Experiments

In this section, the performance of our proposed method
LKH is tested to global numerical optimization through a
series of experiments implemented in benchmark functions.

To allow an unprejudiced comparison of CPU time, all
the experiments were carried out on a PC with a Pentium IV

processor running at 2.0GHz, 512 MB of RAM, and a hard
drive of 160GB.Our executionwas compiled usingMATLAB
R2012b (8.0) running under Windows XP3. No commercial
KH or other optimization tools were used in our simulation
experiments.

Well-de�ned problem sets bene�t for testing the perfor-
mance of optimization algorithms proposed in this paper.
Based on numerical functions, benchmark functions can be
considered as objective functions to ful�ll such tests. In our
present study, fourteen di�erent benchmark functions are
applied to test our proposed metaheuristic LKH method.
�e formulation of these benchmark functions are given in
Table 1 and the properties of these benchmark functions
are presented in Table 2. More details of all the bench-
mark functions can be found in [35, 36]. We must point
out that, in [35], Yao et al. have used 23 benchmarks to
test optimization algorithms. However, for the other low-
dimensional benchmark functions (such as � = 2, 4, and 6),
all the methods perform almost identically with each other
[37], because these low-dimensional benchmarks are too
simple to clarify the performance di�erence among di�erent
methods.�erefore, in our present work, only fourteen high-
dimensional complex benchmarks are applied to verify our
proposed LKH algorithm.

4.1. General Performance of LKH. In order to explore the
merits of LKH, in this section, we compared its perfor-
mance on global numeric optimization problems with eleven
population-based optimization methods, which are ABC,
ACO, BA, CS, DE, ES, GA, HS, KH, PBIL, and PSO. ABC
(arti�cial bee colony) [38] is an intelligent optimization
algorithm based on the smart behavior of honey bee swarm.
ACO (ant colony optimization) [39] is a swarm intelligence
algorithm for solving optimization problems which is based
on the pheromone deposition of ants. BA (bat algorithm)
[16] is a new powerful metaheuristic optimization method
inspired by the echolocation behavior of bats with varying
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Begin
Step 1: Initialization. Set the generation counter � = 1; initialize the population S of NP

krill individuals randomly and each krill corresponds to a potential solution to
the given problem; set the foraging speed B�, the maximum di�usion speed�max, and the maximum induced speed �max; set max Lévy �ight step size �
and elitism parameter
KEEP: how many of the best krill to keep from one generation to the next.

Step 2: Fitness evaluation. Evaluate each krill individual according to its position.
Step 3: While the termination criteria is not satis�ed or t < MaxGeneration do

Sort the population/krill from best to worst.
Store the KEEP best krill as KEEPKRILL.
for 	 = 1 : NP (all krill) do

Perform the following motion calculation.
Motion induced by the presence of other individuals
Foraging motion
Physical di�usion

Update the krill individual position in the search space by (6).
Fine-tune ��+1 by performing LLF operator as shown in Algorithm 1.
Evaluate each krill individual according to its new position ��+1.

end for 	
Replace the KEEP worst krill with the KEEP best krill stored in KEEPKRILL.
Sort the population/krill from best to worst and �nd the current best.� = � + 1;

Step 4: end while
Step 5: Post-processing the results and visualization.

End.

Algorithm 2: Lévy-�ight krill herd algorithm.

pulse rates of emission and loudness. CS (cuckoo search)
[40] is ametaheuristic optimization algorithm inspired by the
obligate brood parasitism of some cuckoo species by laying
their eggs in the nests of other host birds. DE (di�erential
evolution) [17] is a simple but excellent optimization method
that uses the di�erence between two solutions to probabilisti-
cally adapt a third solution. AnES (evolutionary strategy) [41]
is an algorithm that generally distributes equal importance
to mutation and recombination and that allows two or more
parents to reproduce an o�spring. A GA (genetic algorithm)
[13] is a search heuristic that mimics the process of natural
evolution. HS (harmony search) [20] is a new metaheuristic
approach inspired by behavior of musician’ improvisation
process. PBIL (probability-based incremental learning) [42]
is a type of genetic algorithm where the genotype of an
entire population (probability vector) is evolved rather than
individual members. PSO (particle swarm optimization) [22]
is also a swarm intelligence algorithm which is based on
the swarm behavior of �sh and bird schooling in nature.
In addition, it should be noted that, in [27], Gandomi and
Alavi have proved that, comparing all the algorithms, the KH
II (KH with crossover operator) performed the best which
con�rms the robustness of the KH algorithm. �erefore, in
our work, we use KH II as a standard KH algorithm.

In our experiments, we will use the same parameters for
KH and LKH that are the foraging speed B� = 0.02, the
maximum di�usion speed �max = 0.005, the maximum
induced speed �max = 0.01, and max Lévy-�ight step size� = 1.0 (only for LKH). For ACO, DE, ES, GA, PBIL, and

PSO, we set the same parameters as [36, 43]. For ABC, the
number of colony size (employed bees and onlooker bees)
NP = 50, the number of food sources �UU��$V��O = NP/2,
andmaximum search times W	V	� = 100 (a food source which
could not be improved through “limit” trials is abandoned by
its employed bee). For BA, we set loudness L = 0.95, pulse
rate O = 0.5, and scaling factor X = 0.1; for CS, a discovery
rate Y� = 0.25. For HS, we set harmony memory accepting
rate = 0.75 and pitch adjusting rate = 0.7.

We set population size NP = 50 andmaximum generation
Maxgen = 50 for each method. We ran 100 Monte Carlo
simulations of each method on each benchmark function
to get representative performances. Tables 3 and 4 illustrate
the results of the simulations. Table 3 shows the average
minima found by each method, averaged over 100 Monte
Carlo runs. Table 4 shows the absolute best minima found by
eachmethod over 100MonteCarlo runs.�at is to say, Table 3
shows the average performance of eachmethod, while Table 4
shows the best performance of each method. �e best value
achieved for each test problem is marked in bold. Note that
the normalizations in the tables are based on di�erent scales,
so values cannot be compared between the two tables. Each of
the functions in this study has 20 independent variables (i.e.,� = 20).

From Table 3, we see that, on average, LKH is the most
e�ective at �nding objective function minimum on twelve of
the fourteen benchmarks (F01–F08, F10, and F12–F14). ABC
and GA are the secondmost e�ective, performing the best on
the benchmarks F11 and F09 when multiple runs are made,
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Table 2: Properties of benchmark functions, lb denotes lower bound, ub denotes upper bound, and opt denotes optimum point.

Number Function lb ub opt Continuity Modality

F01 Ackley −32.768 32.768 0 Continuous Multimodal

F02 Fletcher-Powell −� � 0 Continuous Multimodal

F03 Griewangk −600 600 0 Continuous Multimodal

F04 Penalty #1 −50 50 0 Continuous Multimodal

F05 Penalty #2 −50 50 0 Continuous Multimodal

F06 Quartic with noise −1.28 1.28 1 Continuous Multimodal

F07 Rastrigin −5.12 5.12 0 Continuous Multimodal

F08 Rosenbrock −2.048 2.048 0 Continuous Unimodal

F09 Schwefel 2.26 −512 512 0 Continuous Multimodal

F10 Schwefel 1.2 −100 100 0 Continuous Unimodal

F11 Schwefel 2.22 −10 10 0 Continuous Unimodal

F12 Schwefel 2.21 −100 100 0 Continuous Unimodal

F13 Sphere −5.12 5.12 0 Continuous Unimodal

F14 Step −5.12 5.12 0 Discontinuous Unimodal

Table 3: Mean normalized optimization results in fourteen benchmark functions. �e values shown are the minimum objective function
values found by each algorithm, averaged over 100 Monte Carlo simulations.

ABC ACO BA CS DE ES GA HS KH LKH PBIL PSO

F01 5.26 6.20 7.81 6.84 4.85 7.54 6.70 7.74 1.85 1.00 7.84 6.53

F02 2.63 10.01 14.42 6.82 3.80 9.77 4.25 9.42 3.67 1.00 9.02 8.27

F03 31.49 10.22 182.64 61.09 17.19 78.85 32.57 155.54 4.59 1.00 176.91 64.57

F04 8.5\5 3.3\7 4.5\7 2.6\6 1.1\5 1.9\7 2.7\5 2.9\7 9.2\3 1.00 4.3\7 2.5\6
F05 1.2\6 1.7\7 2.8\7 3.0\6 2.9\5 1.3\7 5.1\5 2.2\7 3.5\4 1.00 2.6\7 3.1\6
F06 3.4\5 3.3\5 5.5\6 7.6\5 1.2\5 4.1\6 3.3\5 3.8\6 3.8\4 1.00 4.6\6 8.8\5
F07 1.22 2.30 3.42 2.64 1.99 3.16 2.04 2.89 1.25 1.00 3.18 2.34

F08 15.83 85.99 89.29 25.57 13.40 110.42 23.00 75.23 5.34 1.00 90.29 26.64

F09 1.77 1.11 3.93 2.86 2.24 2.73 1.00 3.33 2.10 1.93 3.47 3.35

F10 51.56 43.79 123.64 29.15 68.30 72.56 48.30 66.46 33.17 1.00 75.49 51.20

F11 1.00 2.84 4.57 2.79 1.23 4.32 2.19 3.52 1.50 4.22 3.51 2.58

F12 14.65 9.13 15.73 11.05 11.98 14.52 12.31 14.91 2.46 1.00 15.61 12.52

F13 5.6\3 1.5\4 3.2\4 1.2\4 3.1\3 3.3\4 1.1\4 3.0\4 851.62 1.00 3.2\4 1.2\4
F14 205.78 95.69 1.1\3 427.88 103.81 700.63 227.85 1.0\3 29.20 1.00 1.2\3 411.03

Time 2.40 3.22 1.08 2.02 1.95 2.03 2.38 2.77 4.66 4.30 1.00 2.37

Total 1 0 0 0 0 0 1 0 0 12 0 0
∗�e values are normalized so that the minimum in each row is 1.00. �ese are not the absolute minima found by each algorithm, but the average minima
found by each algorithm.

respectively. Table 4 shows that LKH performs the best on
twelve of the fourteen benchmarks which are F01–F04, F06–
F08, and F10–F14. ACOandGA are the secondmost e�ective,
performing the best on the benchmarks F05 and F09 when
multiple runs are made, respectively.

Moreover, the computational times of the twelve opti-
mization methods were alike. We collected the average
computational time of the optimization methods as applied
to the 14 benchmarks considered in this section. �e results
are given in Table 3. From Table 3, PBIL was the quickest
optimizationmethod, and LKHwas the eleventh fastest of the
twelve algorithms. �is is because that the evaluation of step
size by Lévy �ight is too time consuming. However, we must
point out that in the vast majority of real-world engineering

applications, it is the �tness function evaluation that is by far
the most expensive part of a population-based optimization
algorithm.

In addition, in order to further prove the superiority of the
proposed LKHmethod, convergence plots of ABC, ACO, BA,
CS, DE, ES, GA, HS, KH, LKH, PBIL, and PSO are illustrated
in Figures 1–14 which mean the process of optimization. �e
values shown in Figures 1–14 are the average objective func-
tion optimum obtained from 100 Monte Carlo simulations,
which are the true objective function value, not normalized.
Most importantly, note that the best global solutions of the
benchmarks (F04, F05, F11, and F14) are illustrated in the
form of the semilogarithmic convergence plots. KH is short
for KH II in the legends of the �gures.
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Table 4: Best normalized optimization results in fourteen benchmark functions. �e values shown are the minimum objective function
values found by each algorithm.

ABC ACO BA CS DE ES GA HS KH LKH PBIL PSO

F01 39.13 51.65 64.63 54.80 39.31 66.38 35.21 74.39 6.59 1.00 73.39 56.78

F02 13.81 52.37 68.76 37.85 18.34 52.09 5.64 41.98 16.07 1.00 36.30 40.23

F03 13.52 6.71 91.05 37.41 14.32 53.67 5.95 121.61 1.78 1.00 84.88 46.62

F04 309.00 1.26 3.0\8 9.9\6 7.7\4 4.6\8 282.60 5.5\8 645.76 1.00 1.2\9 1.2\7
F05 2.2\5 1.00 1.7\8 1.8\7 1.9\6 2.0\8 2.1\4 2.0\8 7.3\4 2.70 3.1\8 2.8\7
F06 1.2\6 4.9\6 6.1\7 7.6\6 3.9\6 1.8\8 3.1\6 1.2\8 1.3\6 1.00 1.8\8 2.4\7
F07 2.00 4.53 6.30 4.95 3.68 6.28 3.21 4.75 1.98 1.00 5.90 4.90

F08 10.40 70.89 54.16 15.03 12.74 109.61 17.46 58.83 5.56 1.00 70.98 19.22

F09 4.60 2.18 9.10 6.98 6.28 7.80 1.00 10.10 4.83 4.53 10.01 8.14

F10 560.93 236.20 703.61 265.75 929.67 893.67 280.77 553.77 265.62 1.00 1.1\3 495.02

F11 20.01 32.33 75.00 44.09 29.25 83.22 31.79 88.27 23.70 1.00 86.51 54.41

F12 39.39 18.51 45.36 28.77 34.87 48.27 23.82 48.37 4.08 1.00 45.44 36.44

F13 1.0\4 3.8\4 6.7\4 2.1\4 7.9\3 9.0\4 1.0\4 1.0\5 1.5\3 1.00 7.8\4 3.5\4
F14 595.00 470.00 6.5\3 1.7\3 633.50 4.5\3 592.00 5.8\3 113.00 1.00 7.0\3 1.8\3
Total 0 1 0 0 0 0 1 0 0 12 0 0
∗�e values are normalized so that the minimum in each row is 1.00. �ese are the absolute best minima found by each algorithm.
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Figure 1: Comparison of the performance of the di�erent methods
for the F01 Ackley function.

Figure 1 shows the results obtained for the twelvemethods
when the F01 Ackley function is applied. From Figure 1,
clearly, we can draw the conclusion that LKH is signi�cantly
superior to all the other algorithms during the process of
optimization. For other algorithms, although slower, KH II
eventually �nds the global minimum close to LKH, while
ABC, ACO, BA, CS, DE, ES, GA, HS, PBIL, and PSO fail to
search the global minimum within the limited generations.
Here, all the algorithms show the almost same starting
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Figure 2: Comparison of the performance of the di�erent methods
for the F02 Fletcher-Powell function.

point; however, LKH outperforms them with fast and stable
convergence rate.

Figure 2 illustrates the optimization results for F02
Fletcher-Powell function. In this multimodal benchmark
problem, it is clear that LKH outperforms all other methods
during the whole progress of optimization. Other algorithms
do not manage to succeed in this benchmark function within
maximum number of generations. At last, ABC and KH II
converge to the value that is signi�cantly inferior to LKH’s.
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Figure 3: Comparison of the performance of the di�erent methods
for the F03 Griewank function.

Figure 3 shows the optimization results for F03 Griewank
function. From Figure 3, we can see that the �gure shows
that there is a little di�erence between the performance
of LKH and KH II. However, from Table 3 and Figure 3,
we can conclude that, LKH performs better than KH II
in this multimodal function. �rough carefully looking at
Figure 6, ACO has a fast convergence initially towards the
knownminimum, as the procedure proceeds LKH gets closer
and closer to the minimum, while ACO comes into being
premature and traps into the local minimum.

Figure 4 shows the results for F04 Penalty #1 function.
From Figure 4, clearly, LKH outperforms all other methods
during the whole progress of optimization in thismultimodal
function. Eventually, KH II performs the second best at
�nding the global minimum. Although slower later, DE
performs the third best at �nding the global minimum.

Figure 5 shows the performance achieved for F05 Penalty
#2 function. For this multimodal function, similar to the F04
Penalty #2 function as shown in Figure 4, LKH is signi�cantly
superior to all the other algorithms during the process of
optimization. Here, KH II shows a stable convergence rate
in the whole optimization process and eventually it performs
the second best at �nding the global minimum that is
signi�cantly superior to the other algorithms.

Figure 6 shows the results achieved for the twelve meth-
ods when using the F06 Quartic (with noise) function. For
this case, the �gure shows that there is a little di�erence
among the performance of DE, GA, KH II, and LKH. From
Table 3 and Figure 6, we can conclude that LKH performs the
best in thismultimodal function. KH II, DE, andGAperform
as well and have ranks of 2, 3, and 4, respectively. �rough
carefully looking at Figure 6, PSO has a fast convergence
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Figure 4: Comparison of the performance of the di�erent methods
for the F04 Penalty #1 function.
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Figure 5: Comparison of the performance of the di�erent methods
for the F05 Penalty #2 function.

initially towards the known minimum; as the procedure
proceeds, LKH gets closer and closer to the minimum, while
PSO comes into being premature and traps into the local
minimum.

Figure 7 shows the optimization results for the F07
Rastrigin function. In this multimodal benchmark problem,
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Figure 6: Comparison of the performance of the di�erent methods
for the F06 Quartic (with noise) function.
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Figure 7: Comparison of the performance of the di�erent methods
for the F07 Rastrigin function.

it is obvious that LKH outperforms all other methods during
the whole progress of optimization. For other algorithms, the
�gure shows that there is little di�erence between the per-
formance of ABC and KH II. From Table 3 and Figure 7, we
can conclude that, KH II performs slightly better than ABC
in this multimodal function. In addition, other algorithms do
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Figure 8: Comparison of the performance of the di�erent methods
for the F08 Rosenbrock function.

notmanage to succeed in this benchmark functionwithin the
maximum number of generations.

Figure 8 shows the results for F08 Rosenbrock function.
From Figure 8, we can conclude that LKH performs the
best in this unimodal function. In addition, KH II, DE,
and ACO perform very well and have ranks of 2, 3, and 4,
respectively. �rough carefully looking at Figure 8, PSO has
a fast convergence initially towards the known minimum;
however, it is outperformed by LKH a�er 10 generations.
For other algorithms, they do not manage to succeed in
this benchmark function within the maximum number of
generations.

Figure 9 shows the equivalent results for the F09 Schwefel
2.26 function. From Figure 9, clearly, GA is signi�cantly
superior to other algorithms including LKH during the
process of optimization, while ACO and ABC perform the
second and the third best in this multimodal benchmark
function, respectively. Unfortunately, LKH only performs the
fourth in this multimodal benchmark function.

Figure 10 shows the results for F10 Schwefel 1.2 function.
For this case, LKH, CS, KH II, and ACOperform the best and
have ranks of 1, 2, 3, and 4, respectively. Looking carefully at
Figure 7, LKH has the fastest and stable convergence rate at
�nding the globalminimumand signi�cantly outperforms all
other approaches.

Figure 11 shows the results for F11 Schwefel 2.22 function.
From Figure 11, similar to the F09 Schwefel 2.26 function
as shown in Figure 9, it is clear that ABC is signi�cantly
superior to other algorithms including LKH during the
process of optimization. For other algorithms, DE and KH
II perform very well and have ranks of 2 and 3, respectively.
Unfortunately, LKH only performs the tenth best in this
unimodal benchmark function among the twelve methods.
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Figure 9: Comparison of the performance of the di�erent methods
for the F09 Schwefel 2.26 function.
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Figure 10: Comparison of the performance of the di�erentmethods
for the F10 Schwefel 1.2 function.

Figure 12 shows the results for F12 Schwefel 2.21 function.
Very clearly, LKH has the fastest convergence rate at �nding
the global minimum and signi�cantly outperforms all other
methods. For other algorithms, KH II and ACO that are only
inferior to LKH perform very well and have ranks of 2 and 3,
respectively.
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Figure 11: Comparison of the performance of the di�erent methods
for the F11 Schwefel 2.22 function.
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Figure 12: Comparison of the performance of the di�erentmethods
for the F12 Schwefel 2.21 function.

Figure 13 shows the results for F13 Sphere function. From
Figure 13, LKH shows the fastest convergence rate at �nding
the global minimum and signi�cantly outperforms all other
methods. In addition, KH II, DE, andACOperform very well
and have ranks of 2, 3, and 4, respectively.

Figure 14 shows the results for F14 Step function. Clearly,
LKH shows the fastest convergence rate at �nding the
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Figure 13: Comparison of the performance of the di�erent methods
for the F13 Sphere function.
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Figure 14: Comparison of the performance of the di�erentmethods
for the F14 Step function.

global minimum and signi�cantly outperforms all other
approaches. �ough slow, KH II performs the second best at
�nding the global minimum that is only inferior to the LKH.

From the above analyses about Figures 1–14, we can
come to a conclusion that our proposed hybridmetaheuristic
LKH algorithm signi�cantly outperforms the other eleven

algorithms. In general, KH II is only inferior to LKH and
performs the second best among twelvemethods. ABC,ACO,
DE, and GA perform the third best only inferior to the
LKH and KH II; ABC and GA especially perform better
than LKH on benchmark functions F11 and F09, respectively.
Furthermore, the illustration of benchmarks F04, F05, F06,
F08, and F10 shows that PSO has a faster convergence rate
initially, while later, it converges slower and slower to the true
objective function value.

4.2. Discussion. For all of the standard benchmark functions
considered in this section, the LKHmethod has been demon-
strated to perform better than, or at least highly competitive
with, the standard KH and other eleven acclaimed state-
of-the-art population-based methods. �e advantages of
LKH involve performing simply and easily and have few
parameters to regulate. �e work here proves the LKH to be
robust, powerful, and e�ective over all types of benchmark
functions.

Benchmark evaluating is a good way for testing the
performance of the metaheuristic methods, but it is also
not �awless and has some limitations. First, we did not do
much work painstakingly to carefully regulate the optimiza-
tion methods in this section. In general, di�erent tuning
parameter values in the optimization methods might lead
to signi�cant di�erences in their performance. Second, real-
world optimization problems may have little of a relationship
to benchmark functions. �ird, benchmark tests may arrive
at fully di�erent conclusions if the grading criteria or problem
setup changes. In our present work, we looked into the
mean and best values obtained with some population size
and a�er some number of iterations. However, we might
reach di�erent conclusions if, for example, we change the
population size, or look at howmany population size it needs
to reach a certain function value, or if we change the iteration.
Despite these caveats, the benchmark results represented here
are prospective for LKH and show that this novel method
might be capable of �nding a niche among the plethora of
population-based optimization methods.

Note that running time is a bottleneck to the implemen-
tation of many population-based optimization algorithms.
If an algorithm converges too slowly, it will be impractical
and infeasible, since it would take too long to search an
optimal or suboptimal solution. LKH seems not to require
an unreasonable amount of computational time; of the twelve
comparative optimization methods used in this paper, LKH
was the eleventh fastest. How to speed up the LKH’s conver-
gence is worthy of further study.

In our study, 14 benchmark functions have been applied
to evaluate the performance of our LKH method; we will
test our proposed method on more optimization problems,
such as the high-dimensional (d ≥ 20) CEC 2010 test suit
[44] and the real-world engineering problems. Moreover,
we will compare LKH with other optimization algorithms.
In addition, we only consider the unconstrained function
optimization in this study. Our future work consists of adding
the other techniques into LKH for constrained optimization
problems, such as constrained real-parameter optimization
CEC 2010 test suit [45].
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5. Conclusion and Future Work

Due to the limited performance of KH on complex problems,
LLF operator has been introduced into the standard KH
to develop a novel Lévy-�ight krill herd (LKH) algorithm
for optimization problems. In LKH, at �rst, original KH
algorithm is applied to shrink the search region to a more
promising area. �erea�er, LLF operator is implemented
as a critical complement to perform the local search to
exploit the limited area intensively to get better solutions. In
principle, KH takes full advantage of the three motions in the
population and has experimentally demonstrated very good
performance on themultimodal problems. In a rugged region
of the �tness landscape, KH may fail to proceed to better
solutions [27]. �en, LLF operator is adaptively launched to
reboost the search. �e LKH makes an attempt at taking
merits of the KH and Lévy �ight in order to avoid all krill
getting trapped in inferior local optimal regions. �e LKH
enables the krill to havemore diverse exemplars to learn from
as the krill are updated each generation and also form new
krill to search in a larger search space. With both techniques
combined, LKHcan balance exploration and exploitation and
e�ectively solve complex multimodal problems.

Furthermore, this new method can speed up the global
convergence rate without losing the strong robustness of the
basic KH. From the analysis of the experimental results, we
can see that the Lévy-�ight KH clearly improves the reliability
of the global optimality and they also enhance the quality of
the solutions. Based on the results of the twelve methods on
the test problems, we can conclude that LKH signi�cantly
improves the performances of the KH on most multimodal
and unimodal problems. In addition, LKH is simple and
implements easily.

In the �eld of numerical optimization, there are consider-
able issues that deserve further study, and somemore ecient
optimizationmethods should be developed depending on the
analysis of speci�c engineering problem.Our futureworkwill
focus on the two issues. On the one hand, we would apply our
proposed LKH method to solve real-world civil engineering
optimization problems [46], and, obviously, LKH can be
a promising method for these optimization problems. On
the other hand, we would develop more new metaheuristic
methods to solve optimization problems more eciently and
e�ectively.
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