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�e moth-�ame optimization (MFO) algorithm is a novel nature-inspired heuristic paradigm. �e main inspiration of this
algorithm is the navigation method of moths in nature called transverse orientation. Moths �y in night by maintaining a 	xed
angle with respect to the moon, a very e
ective mechanism for travelling in a straight line for long distances. However, these fancy
insects are trapped in a spiral path around arti	cial lights. Aiming at the phenomenon that MFO algorithm has slow convergence
and low precision, an improved version of MFO algorithm based on Lévy-�ight strategy, which is named as LMFO, is proposed.
Lévy-�ight can increase the diversity of the population against premature convergence and make the algorithm jump out of local
optimummore e
ectively.�is approach is helpful to obtain a better trade-o
 between exploration and exploitation ability ofMFO,
thus, which canmake LMFO faster andmore robust thanMFO. And a comparison with ABC, BA, GGSA, DA, PSOGSA, andMFO
on 19 unconstrained benchmark functions and 2 constrained engineering design problems is tested. �ese results demonstrate the
superior performance of LMFO.

1. Introduction

Optimization is a process of 	nding the best possible solu-
tion(s) for a given problem. In real world, many problems
can be viewed as optimization problems. Since the complex-
ity of problems increases, the need for new optimization
techniques becomes more evident than before. Over the
past several decades, some kinds of methods have been
proposed to solve optimization problems and have made
great progress. For example,mathematical optimization tech-
niques used to be the only tool for optimizing problems
before the proposal of heuristic optimization techniques.
However, these methods need to know the property of
optimization problem, such as continuity or di
erentiability.
In recent years, metaheuristic optimization algorithms have
become more and more popular in optimization techniques.
Some popular algorithms in this 	eld are Genetic Algo-
rithms (GA) [1, 2], Particle Swarm Optimization (PSO) [3],
Ant Colony Optimization (ACO) [4], Evolutionary Strategy
(ES) [5], Di
erential Evolution (DE) [6], and Evolutionary
Programming (EP) [7]. �e application of these algorithms

can be found in di
erent branches of science and industry
as well. Despite the merits of these optimizers, there is a
fundamental question here whether there is any optimizer
for solving all optimization problems. According to the No-
Free-Lunch (NFL) theorem [8] for optimization, researchers
are allowed to develop new algorithms solving optimization
problems more e
ectively. Some of the latest algorithms
are Arti	cial Bee Colony (ABC) algorithm [9], Bat Algo-
rithm (BA) [10], Cuckoo Search (CS) algorithm [11], Cuckoo
Optimization Algorithm (COA) [12], Gravitational Search
Algorithm (GSA) [13], Charged System Search (CSS) [14],
Fire�y Algorithm (FA) [15], and Ray Optimization (RO) [16],
and Dragon�y Algorithm (DA) [17].

Moth-�ame optimization (MFO) [18] algorithm is a new
metaheuristic optimization method through imitating the
navigation method of moths in nature called transverse
orientation. In this algorithm, moths and �ames are both
solutions. �e inventor of this algorithm, Seyedali Mirjalili,
proved that this algorithm is able to show very competitive
results compared with other state-of-the-art metaheuristic
optimization algorithms. However, the MFO algorithm has
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been in research stage so far, and convergence speed and cal-
culation accuracy of this algorithm can be further advanced.
To improve the performance of MFO, a Lévy-�ight moth-
�ame optimization (LMFO) algorithm is proposed.

We know that Lévy-�ight [11, 19] has a strong ability
of strengthening global search and overcoming the problem
of being trapped in local minima. In order to make use of
the good performance of Lévy-�ight, we propose a Lévy-
�ight moth-�ame optimization. MFO and Lévy-�ight have
complementary advantages, so the proposed algorithm can
lead to a faster and more robust method. �e proposed
algorithm is veri	ed on nineteen benchmark functions and
two engineering problems.

�e rest of the paper is organized as follows: Section 2
presents a brief introduction to MFO and Lévy-�ight. An
improved version of MFO algorithm, LMFO, is proposed
in Section 3. �e experimental results of test functions and
engineering design problem are showed in Sections 4 and 5,
respectively. Results and discussion are provided in Section 6.
Finally, Section 7 concludes the work.

2. Related Works

In this section, a background about themoth-�ame optimiza-
tion algorithm and Lévy-�ight will be provided brie�y.

2.1. MFO Algorithm. Moth-�ame optimization [18] algo-
rithm is a new metaheuristic optimization method, which is
proposed by Seyedali Mirjalili and based on the simulation of
the behavior of moths for their special navigationmethods in
night.�ey utilize a mechanism called transverse orientation
for navigation. In this method, a moth �ies by maintaining
a 	xed angle with respect to the moon, which is a very
e
ective mechanism for travelling long distance in a straight
path because the moon is far away from the moth. �is
mechanism guarantees that moths �y along straight line in
night. However, we usually observe that moths �y spirally
around the lights. In fact, moths are tricked by arti	cial lights
and show such behaviors. Since such light is extremely close
to the moon, hence, maintaining a similar angle to the light
source causes a spiral �y path of moths.

In theMFO algorithm, the set ofmoths is represented in a
matrix�. For all the moths, there is an array�� for storing
the corresponding 	tness values.�e second key components
in the algorithm are �ames. A matrix � similar to the moth
matrix is considered. For the �ames, it is also assumed that
there is an array �� for storing the corresponding 	tness
values.

�eMFOalgorithm is a three-tuple that approximates the
global optimal of the optimization problems and de	ned as
follows:

MFO = (�, �, �) . (1)

� is a function that creates a random population of moths
and corresponding 	tness values. �e methodical model of
this function is as follows:

� : � 	→ {�,��} . (2)

�e � function, which is the main function, moves the
moths around the search space. �is function received the
matrix of� and returns its updated one eventually:

� : � 	→ �. (3)

�e � function returns true if the termination criterion is
satis	ed and false if the termination criterion is not satis	ed:

� : � 	→ {true, false} . (4)

With �, �, and �, the general framework of the MFO
algorithm is de	ned as follows:

� = �( );
while �(�) is equal to false

� = �(�);
end

A�er the initialization, the � function is iteratively run
until the � function returns true. For the sake of simulating
the behavior of moths mathematically, the position of each
moth is updated with respect to a �ame using the following
equation:

�� = � (��, ��) , (5)

where �� indicate the �th moth, �� indicates the �th �ame,
and � is the spiral function.

Any types of spiral can be utilized here subject to the
following conditions:

(1) Spiral’s initial point should start from the moth.

(2) Spiral’s 	nal point should be the position of the �ame.

(3) Fluctuation of the range of spiral should not exceed
the search space.

Considering these points, a logarithmic spiral is de	ned
for the MFO algorithm as follows:

� (��, ��) = �� ⋅ ��� ⋅ cos (2��) + ��, (6)

where �� indicates the distance of the �th moth for the �th
�ame, � is a constant for de	ning the shape of the logarithmic
spiral, and � is a random number in [−1, 1].� is calculated as follows:

�� = ������� −������� , (7)

where �� indicate the �th moth, �� indicates the �th �ame,
and�� indicates the distance of the �thmoth for the �th �ame.

Equation (6) describes the spiral �ying path of moths.
From this equation, the next position of a moth is de	ned
with respect to a �ame.�e � parameter in the spiral equation
de	nes how much the next position of the moth should be
close to the �ame (� = −1 is the closest position to the �ame,
while � = 1 shows the farthest).

A question thatmay rise here is that the position updating
in (6) only requires the moths to move towards a �ame, yet
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(1) Initialize the position of moths
(2) While (Iteration <= Max iteration)
(3) Update �ame no using (8)
(4) �� = FitnessFunction(�);
(5) if iteration = = 1
(6) � = sort(�);
(7) �� = sort(��);
(8) else
(9) � = sort(�� − 1,��);
(10) �� = sort(��−1,��);
(11) end
(12) for � = 1 : �
(13) for � = 1 : �
(14) Update � and �
(15) Calculate� using (7) with respect to the corresponding moth
(16) Update�(�, �) using (5) and (6) with respect to the corresponding moth
(17) end
(18) end

Algorithm 1: MFO algorithm.

it causes the MFO algorithm to be trapped in local optima
quickly. In order to prevent this, each moth is obliged to
update its position using only one of the �ames in (6).
Another concern here is that the position updating of moths
with respect to � di
erent locations in the search space may
degrade the exploitation of the best promising solutions. To
resolve this concern, an adaptive mechanism provided the
number of �ames. �e following formula is utilized in this
regard:

�ame no = round(� − � ∗ � − 1� ) , (8)

where � is the current number of iteration,� is the maximum
number of �ames, and � indicates the maximum number of
iterations.

�e gradual decrement in number of �ames balances
exploration and exploitation of the search space. A�er all,
the general steps of the � function can be described in
Algorithm 1.

As described in Algorithm 1, the � function is executed
until the � function returns true. A�er termination of the� function, the best moth is returned as the best obtained
approximation of the optimum.

Note that the Quicksort method is utilized in MFO and
the sort’s computational complexity is�(� log �) and�(�2) in
the best and worst case, respectively (where � is the number
of moths).

2.2. Lévy-Flight. Lévy-�ight was originally introduced by the
French mathematician in 1937 named Paul Lévy. Lévy-�ight
is a statistical description of motion that extends beyond
the more traditional Brownian motion discovered over one
hundred years earlier. A diverse range of both natural and
arti	cial phenomena are now being described in terms of
Lévy statistics [19].

Generally speaking, animals looking for food is ran-
dom, from one place to another place. A large number of

studies have shown that �ight behavior of many animals
and insects has demonstrated the typical characteristics of
randomness. However, the choice of the direction relies
only on a mathematical model [20], which is called Lévy-
�ight. For instance, many studies have shown that �ight
behavior of many animals and insects has revealed the typical
characteristics of Lévy-�ight [21–24]. According to [24], we
can know that fruit �ies or Drosophila melanogaster explore
their landscape utilizing a series of straight �ight paths
punctuated by a sudden 90∘ turn, resulting in a Lévy-�ight-
style 	tful scale-free pattern. Studies on human behavior
such as the Ju/’hoansi hunter-gatherer foraging patterns [21]
also show the typical feature of Lévy-�ight. Pavlyukevich has
used Lévy-�ight in his research to present and theoretically
justify a new stochastic algorithm for global optimization.
Even the light can be related to Lévy-�ight [20]. Subsequently,
Lévy-�ight have been applied to optimization and optimal
search, and preliminary results show its promising capability
[22, 25].

3. The Proposed LMFO Approach

In order to increase the diversity of population against pre-
mature convergence and accelerate the convergence speed,
this paper proposes an improved Lévy-�ight moth-�ame
optimization (LMFO) algorithm. Lévy-�ight has the promi-
nent properties to increase the diversity of population,
sequentially, which can make the algorithm e
ectively jump
out of the local optimum. In other words, this approach is
bene	cial to obtain a better trade-o
 between the exploration
and exploitation ability ofMFO. So, we let eachmoth perform
once Lévy-�ight using (9) a�er the position updating, which
is formulated as follows [11, 26]:

��+1� = ��� +  sign [rand − 0.5] ⊕ Levy (#) , (9)
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(1) Initialize the position of moths
(2) While (Iteration <= Max iteration)
(3) Update �ame no using (8)
(4) �� = FitnessFunction(�);
(5) if iteration == 1
(6) � = sort(�);
(7) �� = sort(��);
(8) else
(9) � = sort(�� − 1,��);
(10) �� = sort(��−1,��);
(11) end
(12) for � = 1 : �
(13) for � = 1 : �
(14) Update � and �
(15) Calculate� using (7) with respect to the corresponding moth
(16) Update�(�, �) using (5) and (6) with respect to the corresponding moth
(17) end
(18) for each search agent
(19) Update the position of the current search agent using Lévy-�ight
(20) end
(21) Iteration = Iteration + 1;
(22) end

Algorithm 2: LMFO algorithm.

where ��� is the �th moth or solution vector �� at iteration�,  is a random parameter which conforms to a uniform
distribution, ⊕ is the dot product (entrywisemultiplications),
and rand is a random number in [0, 1]. It should be noted
here that sign[rand − 0.5] takes only three values 1, 0, and−1. And in (9) the combination of  sign[rand − 0.5] and
Lévy-�ight can make moth walk more random. �at is to
say, to get rid of local minima and improve global search
capability are ensured via this combination in the basicMFO.
Lévy-�ight are a kind of random walk in which the steps are
determined by the step lengths, and the jumps conform to a
Lévy distribution as follows [11, 27]:

Levy (#) ∼ & = �−1−�, (0 ≤ # ≤ 2) . (10)

Formula (11) is calculated as Lévy random numbers:

Levy (#) ∼ � × &
|]|1/� , (11)

where & and ] are both standard normal distributions, Γ is
a standard Gamma function, # = 1.5, and � is de	ned as
follows:

� = [ Γ (1 + #) × sin (� × #/2)
Γ (((1 + #) /2) × # × 2(�−1)/2)]

1/� . (12)

To sumup, global search ability of the proposed algorithm
is strengthened using random walk with Lévy-�ight to elim-
inate the weakness of MFO, its being trapped in local mini-
mum is prevented, and it is observed to give more successful
results particularly for unimodal andmultimodal benchmark
functions. Because of these features, the proposed algorithm

has potential to provide superior performance compared to
MFO. In following section, all kinds of benchmark functions
are hired to verify the e
ectiveness of the proposed algorithm.
�e main steps of Lévy-�ight moth-�ame optimization can
be simply presented in Algorithm 2.

4. Simulation Experiments

4.1. Simulation Platform. All the algorithms are tested in
MATLAB R2012a (7.14) and numerical experiment is set up
on Intel Core (TM) i5-4590 Processor, 3.30GHz, 4GB RAM,
running on Windows 7.

4.2. Benchmark Functions. It is common in this 	eld to
benchmark the performance of algorithm on a set of math-
ematical functions with known global optimal. �e same
process is followed, in which nineteen standard benchmark
functions are employed from the literature [27, 28] as test
beds for comparison. �ree groups of benchmark functions
with di
erent characteristics are selected to benchmark the
performance of the LMFO algorithm from di
erent perspec-
tives. As shown in Tables 1–3, these benchmark functions are
divided into three groups: unimodal functions, multimodal
functions, and 	xed-dimension multimodal functions. As
their names imply, unimodal functions are suitable for bench-
marking the exploitation and convergence of an algorithm
since they have one global optimum and no local optima.
In contrary, multimodal functions have more than one opti-
mum, which makes them more challenging than unimodal
functions. One of the optima is called global optimum, and
the rest are called local optima. An algorithm should avoid
all the local optima to approach and approximate the global
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Table 1: Unimodal benchmark functions.

Name Function Range Dim >
min

Sphere >1 (?) = �∑
�=1

?2� [−100, 100] 200 0

Schwefel’s 2.22 >2 (?) = �∑
�=1

����?����� +
�∏
�=1

����?����� [−10, 10] 200 0

Schwefel’s 1.2 >3 (?) = �∑
�=1

( �∑
�=1

?�)
2

[−100, 100] 200 0

Schwefel’s 2.21 >4 (?) = max
�

{����?����� , 1 ≤ � ≤ �} [−100, 100] 200 0

Rosenbrock >5 (?) = �−1∑
�=1

[100 (?�+1 − ?2� )2 + (?� − 1)2] [−30, 30] 200 0

Step >6 (?) = �∑
�=1

(⌊?� + 0.5⌋)2 [−100, 100] 200 0

Quartic >7 (?) = �∑
�=1

�?4� + random(0, 1) [−1.28, 1.28] 200 0

X.S.Yang-7 >8 (?) = �∑
�=1
J� �������?� − 1�

�������, J� ∈ ⋃[0, 1] [−5, 5] 200 0

optimum.�erefore, exploration and local optima avoidance
of algorithms can be benchmarked by multimodal functions.
�e mathematical formulation of the employed benchmark
functions is presented in Tables 1, 2, and 3, respectively.
In these three tables, Range represent the boundary of
the function’s search space, Dim denotes the dimension of
the function, and >min is the theoretical minimum of the
function.

Heuristic algorithms are stochastic optimization tech-
niques, and therefore they have to be run more than 10
times for generating meaningful statistical results. �e best
obtained solution in the last iteration is calculated as the
metrics of performance. �e same method is selected to
generate and report the results over 30 independent runs.
However, average and standard deviation only compare the
overall performance of algorithms.

To explore the performance of the proposed LMFO
algorithm, some of the recent and well-known algorithms
in the literature are chosen: ABC [9], BA [10], GGSA [29],
DA [17], PSOGSA [30], and MFO [18]. Note that 30 number
search agents and 1000 iterations are utilized for each of the
algorithms. It should be noted that selection of the number
of moths (or other candidate solutions in other algorithms)
should be done experimentally.

In this paper, Best, Mean, Worst, and Std represent the
optimal 	tness value, mean 	tness value, worst 	tness value,
and standard deviation, respectively. Experimental results are
listed in Tables 4, 5, and 6.�e best results are denoted in bold
type.

Due to the stochastic nature of the algorithms, statistical
tests should be conducted to con	rm the signi	cance of
the results [31]. �e averages and standard deviation only
compare the overall performance of the algorithms, while
a statistical test considers each run’s results and proves that
the results are statistically signi	cant. In order to determine
whether the results of LMFO di
er from the best results of

ABC, BA, GGSA, DA, PSOGSA, and MFO in a statistical
method, a nonparametric test which is known as Wilcoxon’s
rank-sum test [32, 33] is performed at 5% signi	cance level.
Tables 7, 8, and 9 report the M values produced byWilcoxon’s
test for the pairwise comparison of the best value of six
groups. Such groups are formed by ABC versus LMFO,
BA versus LMFO, GGSA versus LMFO, DA versus MFO,
PSOGSA versus LMFO, and MFO versus LMFO. In general,M values < 0.05 can be considered as su�cient evidence
against the null hypothesis. With the statistical test, we can
make sure that the results are not generated by chance. �e
nonparametric Wilcoxon statistical test is conducted and the
calculated M values are reported as metrics of signi	cance as
well. Experimental results of M values rank-sum test are listed
in Tables 7, 8, and 9.

4.3. Unimodal Benchmark Functions. �e unimodal bench-
marks functions have only one globalminimumand there are
no local minima for them.�erefore, these kinds of functions
are very suitable for benchmarking the convergence capabil-
ity of algorithms. According to the results of Table 4, LMFO is
able to provide very competitive results. As can be seen from
this table, LMFO outperforms all other algorithms in >1∼>8.
�erefore, the proposed algorithm has high performance to
	nd the global minimum of unimodal benchmark functions.
According to theM values of>1∼>8 in Table 7, LMFO achieves
signi	cant improvement in all the unimodal benchmark
functions compared to other algorithms. Hence, this proves
that LMFO has better performance than other algorithms in
forging for global optimum solution of unimodal benchmark
functions.

Figures 1–8 illustrate the averaged convergence curves
of all algorithms disposing unimodal benchmark functions
over 30 independent runs. It can be noted here that all
the convergence curves in the following subsections are
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Table 4: Results of unimodal benchmark functions.

Benchmark function Result
Algorithm

ABC BA GGSA DA PSOGSA MFO LMFO

>1 (� = 200)
Best 19896.78 365717.3 16278.78 1513.435 34835.45 140219.4 1.2921E − 234

Worst 36049.23 456284 24262.84 52511.62 142227.4 240000.7 3.3309E − 183

Mean 26677.04 414807.8 19224.04 24716.82 94735.12 185588.4 1.1103E − 184

Std 4640.383 20515.24 1852.355 11046.55 25051.92 24177.67 0

>2 (� = 200)
Best 108.0735 1.83E + 84 149.7263 26.27986 637.56 420.5512 8.5E − 129

Worst 186.4672 3.9E + 99 189.8577 255.79923 8.06E + 40 722.4955 7.3E − 99

Mean 140.2811 1.45E + 98 165.8829 137.88594 2.69E + 39 560.1173 2.4E − 100

Std 14.5252 7.06E + 98 9.599018 56.674292 1.47E + 40 61.66749 1.3E − 99

>3 (� = 200)
Best 582404 823783.5 160277.3 69110.62 344077.3 462517.7 1.6E − 215

Worst 920006.2 4617625 1020727 906356.8 891332.5 1094366 6.4E − 167

Mean 757278.3 1572330 434895.9 342508.6 541491.3 772538.3 3.3E − 168

Std 72837.78 837152.1 190865.2 203490.9 142131.3 170946.5 0

>4 (� = 200)
Best 94.265 87.48997 20.44273 27.0486 76.25401 95.26014 6.1E − 117

Worst 97.40102 92.12282 31.30115 59.69617 98.74303 98.15999 6.18E − 82

Mean 95.8655 90.09865 27.12328 41.97914 95.69831 97.03653 2.06E − 83

Std 0.778229 1.330154 2.551274 7.80909 5.90858 0.687621 1.13E − 82

>5 (� = 200)
Best 16111660 88328339 2399953 4717141 2565682 3.61E + 08 196.9121

Worst 94041761 1.59E + 08 5103632 47976603 4.82E + 08 8.92E + 08 198.6685

Mean 41344878 1.33E + 08 3740872 18257995 1.35E + 08 6.14E + 08 198.2609

Std 17567952 18028179 643192.1 10933433 1.24E + 08 1.41E + 08 0.459128

>6 (� = 200)
Best 17165.43 384155.3 14899 4422.437 33665.58 136678.5 39.65709

Worst 30743.79 453905.5 24873 63473.4 109123.6 228511.5 42.92694

Mean 23922.99 417903 19220.47 24167.16 76561.32 180669.8 41.49763

Std 3074.406 17001.78 2314.721 12441.1 19018.55 24671.19 0.632867

>7 (� = 200)
Best 51.88092 0.400252 6.492429 9.23801 11.89278 1181.991 2.3E − 06

Worst 299.2207 0.744656 14.77883 181.7351 71.66514 2686.255 0.000427

Mean 157.1676 0.551746 9.090199 52.06488 19.83666 1908.788 8.56E − 05

Std 58.73575 0.072809 1.742479 39.34587 10.47516 360.7708 0.000108

>8 (� = 200)
Best 181.8735 172.1645 28.45978 14.59629 130.6204 168.6843 1.62807

Worst 198.3101 200.1905 40.21054 80.16251 169.9275 202.2427 1.840634

Mean 190.2888 188.036 33.67195 43.38706 153.398 187.9161 1.752264

Std 4.168661 6.867959 2.232835 13.6498 10.91374 7.601635 0.06096

also averaged curves. As may be seen from these curves,
LMFO has the fastest convergence speed in all algorithms.
From Table 4 and Figures 20–27, the LMFO’s Std is much
smaller than other algorithms. �ese show that LMFO has
a strong sense of stability and robust comparing from other
algorithms.

4.4.Multimodal Benchmark Functions. In contrast to the uni-
modal benchmark functions, multimodal benchmark func-
tions have many local minima with the number increasing

exponentially with dimension. �is makes them suitable for
benchmarking the exploration ability of an algorithm. So, the
	nal results are more important because these benchmark
functions can re�ect the ability of the algorithm to escape
from poor local optima and obtain the global optimum. �e
statistical results of the algorithms onmultimodal benchmark
functions are presented in Table 5. As the results of Best,
Worst, Mean, and Std values show, LMFO is also able to
provide very competitive results on the multimodal bench-
mark functions.�ese results show that the LMFO algorithm
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Table 5: Results of multimodal benchmark functions.

Benchmark function Result
Algorithm

ABC BA GGSA DA PSOGSA MFO LMFO

>9 (� = 200)
Best 575.1608 1363.369 1563.422 730.92416 922.1832 1769.441 0

Worst 709.019 1810.465 1867.616 1890.9545 1476.272 2125.69 0

Mean 653.9316 1630.768 1752.838 1367.3899 1231.578 1951.426 0

Std 36.46425 100.7203 81.02372 280.04565 117.1903 79.01827 0

>10 (� = 200)
Best 12.54258 19.20527 10.52907 8.666612 19.23309 19.92131 8.88E − 16

Worst 14.8045 19.9564 11.89042 14.75436 19.96677 20.01897 8.88E − 16

Mean 13.82113 19.73614 11.21024 11.88909 19.69719 19.95433 8.88E − 16

Std 0.554162 0.260154 0.383654 1.453704 0.31107 0.019396 0

>11 (� = 200)
Best 142.2548 4290.404 137.6285 61.43179 654.9388 1229.64 0

Worst 316.036 5283.435 221.9276 600.151 1631.547 2048.454 0

Mean 225.3103 4997.492 171.5404 224.0744 1251.695 1543.04 0

Std 51.75854 184.8135 16.55978 104.4042 204.6207 197.6001 0

>12 (� = 200)
Best 7393398 3.86E + 08 28.17774 1662.384 7043398 7.03E + 08 8.88E − 16

Worst 1.67E + 08 6.85E + 08 77685.77 23172033 2.05E + 09 1.92E + 09 8.88E − 16

Mean 58731093 5.59E + 08 11043.76 2516012 7.28E + 08 1.3E + 09 8.88E − 16

Std 37177591 81914079 20355.03 4641204 5.15E + 08 3.01E + 08 0

>13 (� = 200)
Best 19464968 1.25E + 09 646700.5 2620391 26666517 1.68E + 09 19.4713

Worst 3.4E + 08 2.09E + 09 3319003 1.83E + 08 2.47E + 09 4.04E + 09 19.79025

Mean 1.53E + 08 1.72E + 09 1684844 27183053 9.73E + 08 2.62E + 09 19.62771

Std 82296565 1.89E + 08 724732.9 34759974 7.07E + 08 5.46E + 08 0.072549

>14 (� = 200)
Best 47.28706 90.66079 103.3283 15.38694 58.10706 129.0595 1.1E − 125

Worst 62.0743 168.7346 139.0044 197.7987 107.5327 216.9578 1.1E − 103

Mean 53.55967 119.4603 118.7804 116.3619 80.96392 171.3074 3.9E − 105

Std 3.438082 19.18661 8.52589 43.5411 12.93695 23.18654 2E − 104

>15 (� = 200)
Best 5373.354 4315.808 461.6698 1142.924 4411.244 5741.417 5E − 168

Worst 6101.204 10167.76 3585.345 4914.844 9429.568 11241.25 2.6E − 117

Mean 5810.789 5283 1327.234 3451.42 6873.222 8566.525 8.6E − 119

Std 207.7704 1065.437 640.8766 1139.356 1451.294 1527.992 4.7E − 118

Table 6: Results of 	xed-dimension multimodal benchmark functions.

Benchmark function Result
Algorithm

ABC BA GGSA DA PSOGSA MFO LMFO

>16 (� = 2)
Best 3.000547 3 3 3 3 3 3

Worst 3.052848 84.00001 30 3.179715 84 3 3.000357

Mean 3.015989 15.6 7.144215 3.018584 8.4 3 3.000061

Std 0.015909 25.30177 9.250619 0.049376 20.55036 1.83E − 15 7.19E − 05

>17 (� = 2)
Best −1 −1 −1 −1 −1 −1 −1
Worst −0.98844 −0.36913 −0.93625 −0.78575 −0.93625 −0.93625 −1
Mean −0.99731 −0.71344 −0.949 −0.94932 −0.9915 −0.96175 −1
Std 0.003196 0.175563 0.025938 0.053641 0.022043 0.031767 0

>18 (� = 2)
Best −0.99909 −0.99028 −1 −1 −1 −1 −1
Worst −0.98981 −0.54822 −0.99028 −0.92181 −0.99028 −0.99028 −1
Mean −0.99095 −0.71504 −0.99286 −0.98153 −0.99093 −0.99061 −1
Std 0.002023 0.126856 0.004349 0.02047 0.002465 0.001774 0

>19 (� = 2)
Best −1 −1 −1 −1 −1 −1 −1
Worst −0.99991 −8.1E − 05 −8.1E − 05 −0.95227 −1 −1 −0.99918
Mean −0.99999 −0.80002 −0.92221 −0.99656 −1 −1 −0.99973
Std 2.03E − 05 0.406805 0.257944 0.010494 0 0 0.000229
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Table 7: Results of M-values rank-sum test on unimodal benchmark functions.

>1 >2 >3 >4 >5 >6 >7 >8
ABC versus LMFO 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

BA versus LMFO 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

GGSA versus LMFO 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

DA versus LMFO 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

PSOGSA versus LMFO 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

MFO versus LMFO 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

Table 8: Results of M-values rank-sum test on multimodal benchmark functions.

>9 >10 >11 >12 >13 >14 >15
ABC versus LMFO 1.21E − 12 1.21E − 12 1.21E − 12 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

BA versus LMFO 1.21E − 12 1.21E − 12 1.21E − 12 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

GGSA versus LMFO 1.21E − 12 1.21E − 12 1.21E − 12 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

DA versus LMFO 1.21E − 12 1.21E − 12 1.21E − 12 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

PSOGSA versus LMFO 1.21E − 12 1.21E − 12 1.21E − 12 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

MFO versus LMFO 1.21E − 12 1.21E − 12 1.21E − 12 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

Table 9: Results of M-values rank-sum test on 	xed-dimension
multimodal benchmark functions.

>16 >17 >18 >19
ABC versus LMFO 3.02E − 11 1.21E − 12 1.21E − 12 5.07E − 10

BA versus LMFO 7.29E − 03 1.21E − 12 1.21E − 12 6.77E − 05

GGSA versus LMFO 7.70E − 02 8.81E − 10 5.13E − 11 2.48E − 08

DA versus LMFO 5.19E − 02 4.56E − 10 1.45E − 11 2.96E − 06

PSOGSA versus
LMFO

7.91E − 09 4.18E − 02 7.15E − 13 1.21E − 12

MFO versus LMFO 2.56E − 11 6.89E − 07 1.17E − 13 1.21E − 12

has merit in terms of exploration. According to the M values
of >9∼>15 reported in Table 8, LMFO achieves signi	cant
improvement on 200-D compared to other algorithms.When
comparing LMFO and other algorithms, we can conclude
that LMFO is signi	cantly performing better with six groups
of comparison algorithms. �e M values of >9∼>15 reported
in Table 8 are less than 0.05, which is strong evidence against
null hypothesis. Hence, this evidence demonstrates that the
results of LMFO are statistically signi	cant not occurring by
coincidence.

Seen from Table 5 and Figures 9–15, the convergence
rate of LMFO on the multimodal benchmark functions in
majority cases is better than other algorithms. On the basis
of Table 5, and Figures 9–15, we can draw a conclusion that
the LMFO is able to avoid local minima in multimodal
benchmark functions with a good convergence speed. From
Table 5 and Figures 28–37, the LMFO’s Std is much smaller
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Figure 1: �e convergence curves for >1.

than other algorithms. �ese show that LMFO has a strong
sense of stability and robust comparing from other algo-
rithms.
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4.5. Fixed-Dimension Multimodal Benchmark Functions. For
	xed-dimensionmultimodal benchmark functions with only
a few localminima, the dimensions of themultimodal bench-
mark functions are also small. Under such circumstances, it
is di�cult to judge the performance of individual algorithm.
�e major di
erence compared with multimodal functions
is that 	xed-dimension multimodal functions appear to be
simpler because of their low dimensions and a smaller
number of local minima. In this experiment, the results
of Best, Worst, Mean, and Std values of 	xed-dimension
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Figure 5: �e convergence curves for >5.

multimodal benchmark functions are summarized inTable 6.
For all 	xed-dimension multimodal functions, LMFO can
give the best solution in terms of Best. As Table 6 shows, the
LMFO algorithm provides the best results on two of 	xed-
dimension multimodal benchmark functions.�e results are
followed by the MFO, PSOGSA, and ABC algorithms. In
addition, the M values of Wilcoxon’s rank-sum in Table 9
show that the result of LMFO in >16 is not signi	cantly
better than DA andGGSA algorithms (5% signi	cance level),
but it is signi	cantly di
erent compared with ABC, MFO,
PSOGSA, and BA. In the remaining functions (>17, >18, and
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>19), however, the results of LMFO are signi	cantly better
than other algorithms. So, it can be concluded that the results
of LMFO in these benchmark functions are better than ABC,
BA, GGSA, DA, PSOGSA, and MFO.

In addition, the convergence rate of LMFO on the 	xed-
dimension benchmark functions with 2-dim can be shown
in Figures 16–19. As can be seen from these 	gures, it can
be claimed that LMFO has the faster convergence rate on
functions >17 and >18. From Figures 35–38, we can 	nd that
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all of the algorithms have a strong sense of stability except BA
on 	xed-dimension functions.

Overall, the results from Tables 4–6, Tables 7–9, Figures
1–19, and Figures 20–38 show that the proposed method is
e
ective in not only optimizing unimodal and multimodal
functions but also optimizing 	xed-dimension multimodal
functions.

Since constraints are one of the major challenges in
solving real problems and themain objective of designing the
LMFO algorithm is to solve real problems, two constrained
real engineering problems are employed in the next section



Mathematical Problems in Engineering 13

0 200 400 600 800 1000
0

5

10

15

20

25

Iteration

A
ve

ra
ge

 �
tn

es
s 

va
lu

e

f10

ABC

BA

GGSA

DA

PSOGSA

MFO

LMFO

Figure 10: �e convergence curves for >10.

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

Iteration

A
ve

ra
ge

 �
tn

es
s 

va
lu

e

f11

ABC

BA

GGSA

DA

PSOGSA

MFO

LMFO

Figure 11: �e convergence curves for >11.

to further investigate the performance of the MFO algorithm
and provide a comprehensive study.

5. LMFO for Engineering
Optimization Problems

In this section, a set of two engineering problems (welded
beam design and speed reducer design) is solved so as to
further testify the performance of the proposed algorithm.
�ere are some inequality constraints in real problems, so
the LMFO algorithm should be capable of dealing with them
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during optimization. Several methods have been applied to
handle constraints in the literature: penalty function, special
operators, repaired algorithms, separation of objectives and
constraints, and hybrid methods [34]. In this paper, penalty
method is employed to handle the constraints of welded beam
and speed reducer.

5.1. Welded Beam Design. �e objective is to evaluate the
optimal fabrication cost of a welded beam as shown in
Figure 39 [35]. �e constraints of the beam are shear stress
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(f), bending stress in the beam (g), buckling load on the bar
(��), end de�ection of the beam (h), and side constraints.

�is problem has four variables that are thickness of weld
(ℎ), length of attached part of bar (�), the height of the bar
(�), and thickness of the bar (�), respectively. �is problem is
formulated as follows:

Consider ?⃗ = [?1, ?2, ?3, ?4] = [ℎ, �, �, �] ,
Minimize > (?⃗)

= 1.10471?21?2

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Iteration

A
ve

ra
ge

 �
tn

es
s 

va
lu

e

f16

ABC

BA

GGSA

DA

PSOGSA

MFO

LMFO
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+ 0.04811?3?4 (14.0 + ?2) ,
Subject to k1 (?⃗) = f (?⃗) − fmax ≤ 0,

k2 (?⃗) = l (?⃗) − lmax ≤ 0,
k3 (?⃗) = h (?⃗) − hmax ≤ 0,
k4 (?⃗) = ?1 − ?4 ≤ 0,
k5 (?⃗) = � − �� (?⃗) ≤ 0,
k6 (?⃗) = 0.125 − ?1 ≤ 0,
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Figure 29: Standard deviation for >10.
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Figure 30: Standard deviation for >11.
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Figure 31: Standard deviation for >12.
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Figure 32: Standard deviation for >13.
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Figure 34: Standard deviation for >15.
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Figure 35: Standard deviation for >16.
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Figure 36: Standard deviation for >17.

Where f (?⃗) = √(f)2 + 2ff ?22n + (f)2,
f = �√2?1?2 ,
f = �no ,
� = �(p + ?22 ) ,

n = √?224 + (?1 + ?32 )2,
o = 2{√2?1?2 [?224 + (?1 + ?32 )2]} ,
l (?⃗) = 6�p?4?23 ,
h (?⃗) = 6�p3q?23?4
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Figure 37: Standard deviation for >18.
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Figure 38: Standard deviation for >19.

�� (?⃗)
= 4.013q√?23?64/36p2 (1 − ?32p√ q4r) ,
� = 6000��,
p = 14 in.,
hmax = 0.25 in.,
q = 30 × 16 psi,
r = 12 × 106 psi,
fmax = 13600 psi,
lmax = 30000 psi.

(13)

Mirjalili tried to solve this problem using MFO [18]
and GGSA [29, 36]. Coello Coello [37] and Deb [38, 39]
employed GA, whereas Lee and Geem [40] used HS to solve
this problem. Richardson’s randommethod, simplexmethod,
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Table 10: Comparison results of the welded beam design problem.

Algorithm
Optimum variables

Optimal costs � � t
LMFO 0.2020 3.3575 9.0938 0.2061 1.7165

MFO [18] 0.2057 3.4703 9.0364 0.2057 1.72452

GGSA [29, 36] 0.215917 3.314955 8.896195 0.215917 1.770829

GA (Coello Coello) [37] N/A N/A N/A N/A 1.8245

GA (Deb) [38] N/A N/A N/A N/A 2.3800

GA (Deb) [39] 0.2489 6.1730 8.1789 0.2533 2.4331

HS (Lee and Geem) [40] 0.2442 6.2231 8.2915 0.2443 2.3807

Random [41] 0.4575 4.7313 5.0853 0.6600 4.1185

Simplex [41] 0.2792 5.6256 7.7512 0.2796 2.5307

David [41] 0.2434 6.2552 8.2915 0.2444 2.3841

APPROX [41] 0.2444 6.2189 8.2915 0.2444 2.3815
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Figure 39: Structure of welded beam design.
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Figure 40: Structure of speed reducer design.

Davidon-Fletcher-Powell, and Gri�th and Stewart’s succes-
sive linear approximation are the mathematical approaches
that have been adopted by Ragsdell and Philips [41] for this
problem. �e comparison results of the welded beam design
problem are shown in Table 10.

�e results of Table 10 show that the LMFO algorithm
is able to 	nd the best optimal design compared to other
algorithms. �e results of LMFO are closely followed by the
MFO and GGSA algorithms.

5.2. Speed Reducer Design. �e objective function of this
problem is to minimize the total weight of the speed reducer
as illustrated in Figure 40 [42]. �e variables ?1∼?7 denote
the face width (�), module of teeth (\), number of teeth in
the pinion (u), length of the 	rst sha� between bearings (�1),
length of the second sha� between bearings (�2), the diameter

of 	rst (�1), and second sha�s (�2), respectively. �e mathe-
matical formulation of this problem can be summarized as
follows:

Minimize > (?⃗)
= 0.7854?1?22 (3.3333?23 + 14.9334?3 − 43.0934)

− 1.508?1 (?26 + ?27) + 7.4777 (?36 + ?37)
+ 0.7854 (?4?26 + ?5?27)

Subject to k1 (?⃗) = 27?1?22?3 − 1 ≤ 0,
k2 (?⃗) = 397.5?1?22?23 − 1 ≤ 0,
k3 (?⃗) = 1.93?34?2?46?3 − 1 ≤ 0,
k4 (?⃗) = 1.93?35?2?57?3 − 1 ≤ 0,

k5 (?⃗) = [(745?4/?2?3)2 + 16.9 × 106]1/2
110?36 − 1 ≤ 0,

k6 (?⃗) = [(745?5/?2?3)2 + 157.5 × 106]1/2
85?37 − 1

≤ 0,
k7 (?⃗) = ?2?340 − 1 ≤ 0,
k8 (?⃗) = 5?2?1 − 1 ≤ 0,
k9 (?⃗) = ?112?2 − 1 ≤ 0,
k10 (?⃗) = 1.5?6 + 1.9?4 − 1 ≤ 0,
k11 (?⃗) = 1.1?6 + 1.7?5 − 1 ≤ 0,

where 2.6 ≤ ?1 ≤ 3.6,
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Table 11: Comparison results of the speed reducer design problem.

Algorithm
Optimal values for variables

Optimum weight� (?1) \ (?2) u (?3) �1 (?4) �2 (?5) �1 (?6) �2 (?7)
LMFO 3.50411 0.7 17 7.3 7.33342 3.37164 5.28916 2994.656

Akhtar et al. [43] 3.506122 0.700006 17 7.549126 7.85933 3.365576 5.289773 3008.08

Mezura-Montes et al. [44] 3.506163 0.700831 17 7.460181 7.962143 3.3629 5.3090 3025.005

CS [11, 45] 3.5015 0.7 17 7.6050 7.8181 3.3520 5.2875 3000.981

HCPS [46] 3.5 0.7 17 7.3 7.71532 3.350215 5.286654 2994.47107

SCA [47] 3.5 0.7 17 7.327602 7.715321 3.350267 5.286655 2994.744241

(& + v) ES [5, 48] 3.499999 0.699999 17 7.3 7.8 3.350215 5.286683 2996.348094

ABC [9, 49] 3.499999 0.7 17 7.3 7.8 3.350215 5.287800 2997.058412

0.7 ≤ ?2 ≤ 0.8,
17 ≤ ?3 ≤ 28,
7.3 ≤ ?4 ≤ 8.3,
7.3 ≤ ?5 ≤ 8.3,
2.9 ≤ ?6 ≤ 3.9,
5.0 ≤ ?7 ≤ 5.5.

(14)

�is problem has also been popular among researchers
and optimized in many studies.�e heuristic algorithms that
have been employed to optimize this problem are Akhtar et
al. [43], Mezura-Montes et al. [44], CS [11, 45], HCPS [46],
SCA [47], (& + v) ES [5, 48], and ABC [9, 49]. �e results of
this problem are provided in Table 11. According to this table,
the LMFO and HCPS algorithms can 	nd a design with the
minimum weight for this problem.

6. Results and Discussion

In this paper, an improved version of MFO algorithm based
on Lévy-�ight strategy, which is named as LMFO, is pro-
posed. In order to benchmark the performance of LMFO,
nineteen unconstrained benchmark functions and two con-
strained engineering design problems were conducted.

According to the values of Best,Worst,Mean, and Std andM values in Section 4, the LMFO algorithm signi	cantly out-
performs others in terms of numerical optimization. �ere
are several reasons of why LMFO algorithm did perform well
on most of the test cases. First, Lévy-�ight strategy: Lévy-
�ight can increase the diversity of the population and make
the algorithm jump out of local optimum more e
ectively.
�is approach is helpful to make LMFO faster and more
robust than MFO. Second, update mechanism of moths: in
this mechanism, moths are required to update their positions
with respect to the best recent feasible �ames. �erefore,
this approach promotes exploration of promising feasible
regions and is the main reason of the superiority of the
LMFO algorithm. �ird, Quicksort method is utilized in
LMFO algorithm.�ese are the reasons why LMFOperforms
better than other algorithms at the end of the results section.
Another 	nding in the results is the poor performance of
ABC, BA, and DA. �ese three algorithms belong to the

class of swarm-based algorithms. In contrary to evolutionary
algorithms, there is no mechanism for signi	cant abrupt
movements in the search space and this is likely to be the
reason for the poor performance of ABC, BA, and DA.

As we can see in Section 4, the LMFO has been demon-
strated to perform better than or highly competitive with
the other algorithms. �e advantages of LMFO involve
performing simply and have few parameters to regulate. �e
work here proves the LMFO to be robust, powerful, and
e
ective over all types of benchmark functions. Benchmark
evaluating is a good way for testing the performance of the
metaheuristic algorithms, but it also has some limitations.
For example, di
erent tuning parameter values in the opti-
mization methods might lead to signi	cant di
erences in
their performance. Also, benchmark test may arrive at fully
di
erent conclusions if the termination criterion changes. If
we change the population size or the number of iterations, we
might draw a di
erent conclusion.

In Section 5, the results show that MFO outperforms
other algorithms in themajority of real case studies. Since the
search space of these problems is unknown, these results are
strong evidences for the applicability of LMFO in solving real
problems. Due to the constrained nature of the case studies,
in addition, it can be stated that the LMFO algorithm is able
to optimize search spaces with infeasible regions as well. �is
is due to the update mechanism of moths, in which they are
required to update their positions with respect to the best
recent feasible �ames. �erefore, this approach is the main
reason of the superiority of the LMFO algorithm.

In our study, nineteen benchmark functions have been
applied to evaluate the performance of LMFO. We also
test our proposed method on the real-world engineering
problems. Moreover, we will compare LMFO with other
optimization algorithms.

7. Conclusion and Future Works

Due to the limited performance of MFO, Lévy-�ight strategy
has been introduced into the standard MFO to develop
a novel Lévy-�ight moth-�ame optimization algorithm for
optimization problems. As shown in Section 4, LMFO is very
e�cient with an almost exponential convergence rate and
the results were compared to a wide range of algorithms for
veri	cation. �is observation is based on the comparison of
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LMFOwith other algorithms to solve optimization problems.
�e proposed algorithm proved its superior performance
on nineteen benchmark functions in terms of enhanced
convergence speed and modi	ed avoidance of local minima.
�is paper also identi	ed and discussed the reasons for
poor performances of other algorithms. It was observed that
the swarm-based algorithms su
er from low exploration,
whereas the LMFO does not.

Furthermore, this paper also considers solving two classi-
cal engineering problems by using the LMFO algorithm.�e
high level of exploration and exploitation of this algorithm
were the motivations for this study. �e comparative results
in Section 5 show that the LMFO algorithm has high perfor-
mance on challenging constrained problems with unknown
spaces. In this work, the LMFO makes an attempt at taking
merits of the MFO and Lévy-�ight in order to avoid local
optimal.With both techniques combined, LMFO can balance
exploration and exploitation and e
ectively solve complex
problems and real-world engineering problems.

For future works, two research directions can be rec-
ommended. Firstly, we are going to apply the LMFO to
solve more real-world engineering problems. Secondly, it is
recommended to develop binary and multiobjective versions
of the MFO algorithm.
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