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Abstract We analyzed data on Ju/’hoansi hunter–gatherer
foraging patterns and found that their movements between
residence camps can be modeled as a Lévy flight. The step
lengths of their movements scale as a power law with an
exponent μ=1.97. Their wait times (residence times) at the
camps also scale as a power law (μ=1.45). A Lévy flight
with step lengths μ=2 is an optimal search pattern for
scarce, randomly located targets; thus, the Ju/’hoansi
foraging pattern may approach an optimal search in this
area of sparse plant and animal resources. These findings
affect the application of optimal foraging theory to humans
in anthropology and archaeology because they alter the way
in which search and travel times should be quantified.
These results may also carry implications for the study of
other patterns of human movement, such as demic diffusion
and migration.
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Introduction

In this paper we present evidence that human hunter–
gatherers employ foraging movement patterns that are
described by the statistics of Lévy flights rather than by
conventional Gaussian statistics. Human movement across
the landscape is not usually considered an anthropological
problem as such. For example, Green (1987, p. 273) observed
that how foragers move between resource patches has been
the subject of little quantitative work. Nevertheless, move-
ment patterns influence not only foraging itself, but also
cultural diffusion, demic diffusion, gene flow, and perhaps
migration into virgin territory. So the discovery of Lévy
flights in foraging patterns carries implications for various
theories in anthropology, including optimal foraging theory
as applied to hunter–gatherers and by extension for
archaeological models of human subsistence settlement
systems in prehistory. Moreover, it may help us understand
the processes of diffusion and migration. In this paper,
however, we focus our discussion on the implications for
optimal foraging theory in cultural ecology and archaeology.

Optimal foraging theory is not really a single theory, but
rather a diverse suite of formal models that are used to
understand foraging patterns of both animals and humans.
The approach usually taken is to analyze a quantitative
model of decisions made by foragers to see whether or how
they maximize some kind of “currency” (often some quantity
like the net amount of energy gained) under a set of specified
constraints. Most models fall into one of two categories: (1)
those that analyze diet choices, often called “prey models,”
and (2) those that examine when a forager should leave a
patch of resources, the so-called “patch” models (Stephens
and Krebs, 1986, pp. 5–6). The prey or diet model has
generally examined the proportions of different foods in the
diet or the likelihood of pursuing one prey versus another.
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In contrast, the patch models generally evaluate the time
spent in resource patches and the timing of the move to the
next resource patch after the presence of the forager has
depressed the availability of the resource in the patch.
Stephens and Krebs (1986, pp. 33–36) have also offered a
combined model that considers both prey choices and patch
residence times. All these models include travel times
between resource patches or prey search times as an
important variable and therefore should take into account
spatial patterns of foraging behavior. So as not to
oversimplify our discussion, we note that many different
specific foraging models have been developed that consider
the outcomes of varying assumptions or constraints.

Lévy Flights

Lévy flights, named after the French mathematician Paul
Lévy, are a class of random walks in which the step lengths
are drawn from a probability distribution with a power law
tail. These probability distributions are known as Lévy
distributions or stable distributions. The lengths, l, of the
steps or jumps of the walks are distributed as a power law,
P lð Þ ¼ l�m with 1 < m � 3 (Viswanathan et al., 1999).

Many different kinds of random walks have been
described and analyzed. Brownian motion is probably the
best known of all random walks. It is the special case of a
random walk for which the step lengths are distributed in
accordance with a Gaussian probability distribution, or
when μ≥3 (Viswanathan et al., 1999). Brownian motion
describes the random motion of particles in a colloid. In
contrast, in Lévy flights, as mentioned before, the step
lengths are distributed according to a power law. This
statistical difference gives Lévy flights a very distinctive
appearance, one in which the pattern can be described
subjectively by “clumps” of small steps separated by
dramatic jumps. The pattern contrasts visually with the
more homogenous patterns of Brownian motion (Bartumeus
et al., 2003, p. 12772).

Lévy flights are commonly used in physics to model a
variety of processes including diffusion. Whereas Brownian
motion and the resulting Gaussian statistics are normally
used to model the patterns of motion in regular diffusion,
Lévy flights create an enhanced kind of diffusion that is
referred to as “anomalous diffusion” or “superdiffusion.”

Lévy flights are intimately related to fractals. Lévy
processes, not Gaussian ones, describe diffusion in fractal
objects (ben-Avraham and Havlin, 2000, pp. 33–61).
Because of the power law distribution of step lengths in a
Lévy flight, the resulting pattern is a fractal: it is scale
invariant and self-similar, characteristics that are diagnostic
of fractals (Mandelbrot, 1983; Shlesinger et al., 1993).

In recent years, biologists have discovered that Lévy
flights describe foraging patterns in a number of species of

animals and insects: ants, bumble bees, Drosophila mela-
nogaster (Cole, 1995), albatrosses (ben-Avraham and
Havlin, 2000, pp. 48–49; Viswanathan et al., 1996,
1999), jackals (Atkinson et al., 2002) and reindeer (Mårell
et al., 2002). Even zooplankton have been observed to
forage in Lévy flight patterns (Bartumeus et al., 2003:
12772). Recently, primate ethologists have observed non-
human primates foraging in patterns that obey Lévy
statistics (Boyer et al., 2004; Ramos-Fernández et al.,
2003). This latter research, which recorded the behavior of
Ateles geoffroyi (spider monkeys) in the Yucatán Peninsula,
is important both because of its focus on primates and
because Ateles forage in groups, which influences the
model and the results. Earlier studies had all focused on
lone foragers. Group foragers exhibit patterns of movement
that may imply that groups are more efficient than
individuals in locating food, an argument that has long
been offered as one explanation for the existence of social
groups of primates. The fission–fusion group dynamic
found in spider monkeys is also characteristic of the
primates most closely related to humans, the chimpanzees
(Pan spp.). Thus, these findings may carry implications for
the behavior of the common ancestor of Pan and the
hominid clade.

Optimal Searching

Viswanathan et al. (1999, 2000, 2002) have demonstrated
that Lévy flights are optimal search patterns for foragers
searching for scarce targets that are randomly placed and
can be visited any number of times. Optimal searches occur
specifically when the step lengths are distributed according
to a power law with an exponent of −2, that is, when P(l)=
l −2 (da Luz et al., 2001; Viswanathan et al., 2001). It has
been proposed that animal and insect foragers may perform
Lévy flights because the probability of returning to a
previously visited site is lower than for Brownian walks.
Consequently, the number of newly visited sites is higher
for Lévy flight searchers. Optimal foraging theory predicts,
or sometimes assumes, that foragers (human or animal) will
exhibit optimizing behavior, normally measured in terms of
maximizing the net return in energy for their investment of
effort in foraging. The study of foraging movement allows
us to evaluate one aspect of this idea, namely that foragers
minimize the energy expended in searching for food by
optimizing their search patterns.

The Ju/’Hoansi: Human Foragers

Here we present evidence that human foragers use Lévy
flights as search patterns as part of their subsistence
strategies, and furthermore that they indeed perform optimal
searches. We have analyzed data published by Yellen (1977)
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describing the movements of the Dobe Ju/’hoansi during
hunting and collecting trips made in 1968.

The Dobe Ju/’hoansi1 are—or were until their recent
resettlement—hunters and foragers living in and around the
Kalahari Desert in Botswana and Namibia. They speak a
“click” language of the Khoisan family. They have been
intensively studied with special attention to their subsis-
tence system and economy (Lee, 1979, 1993; Lee and
DeVore, 1976). In the traditional subsistence system of the
Ju/’hoansi men hunted and women gathered plant foods. In
the 1960s, when these observations were made, meat,
procured by men hunting, provided 30% of the overall
caloric intake. Plants provided the remaining 70% of
calories in the diet (Lee, 1993, p. 50). Men did perform
some gathering, raising their total contribution to the diet to
about 45%, but, interestingly, women never hunted (Lee,
1993, p. 56; Marshall, 1976, p. 96). A wide variety of game
was pursued and over 100 species of plants were
considered edible (Lee, 1993, p. 45). The most important
plant food by far was the mongongo or mangetti nut
(Ricinodendron rautanenii), a highly nutritious food which
is virtually a staple in the Ju/’hoansi diet.

The Dobe band of the Ju/’hoansi lived at the Dobe
waterhole (whence the name) during the winter–spring dry
season. Like other San groups, they spent the dry season at
a permanent water source. During and after the rains, the
social group broke up into smaller subgroups that moved
out into the hinterland and built short-term camps near
seasonal or temporary water sources. At each camp, the
people exploited the nearby food sources and, after
consuming most of the desirable nearby food, they moved
to another temporary camp. After some days or a few
weeks, they returned to Dobe for a few days or weeks
before setting out on another trip. The data analyzed here
consist of the locations of those rainy season camps that
were occupied by one small kin group from January 27 to
July 11, 1968 (Yellen, 1977). This kin group was composed
of two married men and their families. They made a total of
37 moves and occupied 28 different camps in the course of
their five trips from the Dobe waterhole (Yellen, 1977,
p. 59). In this article, we examine the statistical patterning
of these moves.

To understand the meaning of these data, one must
appreciate the considerations that enter into the choice of
camp location. Generally speaking, in this hot and dry
climate water is the most important determinant of
settlement location, but the way in which it affects camp
location is not simple and absolute. For example, Marshall
(1976, pp. 75–76) recounts an occasion when a Ju/’hoan
band camped in a mongongo tree grove six miles from a

temporary waterhole. Every day for as long as the water
lasted they sent their boys on the 12-mi round trip to bring
water. In addition to water, many other factors enter into the
decision of where to make camp, including the presence of
plant food or game. The landscape and environment are
complex. The patchy distributions of plants and animals are
affected by geomorphology, soils, and rainfall patterns
(Yellen and Lee, 1976). It is not, therefore, surprising that
the locations of camps form a complex spatial pattern.
Mongongo nut groves, for example, are an important
influence on camp location. In the Dobe area, the groves
are only found on dune crests (Yellen, 1977, p. 21). The
dunes in turn are not randomly distributed; they form long,
east–west trending ridges from 8–80 km in length between
dry river courses (Yellen, 1977, pp. 18–20). Elsewhere in
the region, the mongongo groves form other kinds of
patches that closely correlate with geomorphology and soil
types (Lee, 1979, pp. 182–185). The essential point is that
camp location represents a decision about resource patch
location that is identical to the decisions analyzed by
optimal foraging theory patch models.

Ju/’hoan foraging has been studied using diet breadth
models (Belovsky, 1987, 1988; Hawkes and O’Connell,
1981, 1985). It can be argued, however, that the patch
model is equally if not more relevant to understanding their
foraging patterns because patch models generally consider
the problem of when a forager should decide to move to a
new patch after having depressed the resources available in
his present patch. This is precisely the decision that the Ju/
’hoansi make as they shift their camps, and therefore the
patch model is clearly relevant to understanding the
behavior that created our data set.

Materials and Methods

Our data come from Yellen’s 1977 book on the Dobe
Ju/’hoansi settlement patterns and camp structure. That
research was undertaken as part of the long-term Harvard
University !Kung Bushman ethnology and human ecology
project. The data we used were drawn from Table 3 (Yellen,
1977, p. 60) and Map 7 (note that Maps 5 and 7 were
accidentally switched by the printer although their captions
were not). Yellen (1977, pp. 61–63) discusses the strengths
and weaknesses of this data set, including the potential
influences of his anthropological team and of nearby Bantu
settlers. He concludes, nevertheless, that “[h]ad neither
Bantu nor anthropologists been there, I believe that the
basic pattern would have been the same but less time would
have been spent at the permanent waterhole.” This
statement leads us to believe we can rely upon the camp
location data but that the occupation times may be
somewhat less accurate.

1 The Ju/’hoansi have in the past been known by other names
including !Kung and Bushmen.
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We measured the distances between camps on Map 7 in
the order in which they were occupied, and we drew the
lengths of the camps’ occupations from Table 3. The
lengths of camp occupations are also given in Table 5, and
the analysis of those data yield results very similar to those
presented here. We analyzed the geographic distances
between camps in the order in which they were occupied
to see if they conformed to a power law distribution of step
lengths predicted by a Lévy flight. We also analyzed the
lengths of camp occupations to see if they conformed to a
power law distribution as they would if they were the wait
times at the turning points of a Lévy flight.

A delicate issue in these calculations is the use of
histograms to measure the probability density functions
(PDFs) of the data sets. The PDF will tell us whether the
step lengths and wait times come from power law
distributions or from some other kind of distribution. The
PDFs can be determined from histograms of step lengths or
wait times, but the results will depend on the widths of the
bins used to construct the histograms. Narrow bins will be
good estimators of short distances or times, but poor
estimators of long ones, while the opposite will be true of
wide bins (that is, the latter will be good estimators of long
distances or times, but poor estimators of short times or

Table I This Table Lists the Distances Between Successive Camps in kilometers. They were scaled off Map 7 of Yellen’s (1977) monograph
using calipers. The distances were measured from the mid-points of the numerals on the map. When a particular camp number did not appear on
the map, we measured to the number of the first camp of the same name on the list. This camp number is given in the “Remarks” column. To
convert from millimeters on the printed map to geographic distance we used a scaling factor of 5/27

From camp To camp Measured distance (mm) Geographic distance (km) Remarks

1 2 94.3 17.46296296
2 3 14.7 2.722222222
3 4 14.7 2.722222222 Measured to no. 2
4 5 34.7 6.425925926
5 6 24.2 4.481481481
6 7 19.4 3.592592593
7 8 53.7 9.944444444 Measured to no. 1
8 9 44.8 8.296296296
9 10 26.7 4.944444444
10 11 28.9 5.351851852 Measured to no. 2
11 12 14.7 2.722222222 Measured to no. 3
12 13 18.8 3.481481481
13 14 10.9 2.018518519
14 15 10.9 2.018518519
15 16 9.3 1.722222222
16 17 16.8 3.111111111 Measured to no. 14
17 18 42.8 7.925925926
18 19 82.7 15.31481481 Measured to no. 1
19 20 25.7 4.759259259
20 21 67.1 12.42592593
21 22 16.6 3.074074074
22 23 22.8 4.222222222
23 24 68 12.59259259 Measured to no. 1
24 25 44.8 8.296296296 Measured to no. 9
25 26 26.1 4.833333333
26 27 27.8 5.148148148
27 28 12.1 2.240740741
28 29 14.6 2.703703704
29 30 70.9 13.12962963
30 31 28.4 5.259259259 Measured to no. 1
31 32 20.2 3.740740741
32 33 28.5 5.277777778
33 34 37.1 6.87037037
34 35 21.2 3.925925926
35 36 32.3 5.981481481
36 37 21.8 4.037037037
37 38 85 15.74074074 Measured to no. 1
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lengths). Therefore, to estimate the PDFs of the data sets we
used the “multihistogram” or “fractal” method developed
by Liebovitch et al. (1987, 1999, 2001). We computed
histograms of different bin sizes, evaluated the PDF from
each histogram, and then combined those values to form the
completed PDF (Liebovitch et al., 1999, pp. 3313–3314).
Compared to conventional methods, the fractal method
offers several important advantages. It uses the PDF
determined from each histogram rather than the histogram
itself. These PDFs can be combined into a single function
while the histograms themselves cannot. It generates more
points in the PDF function at scales that have more data so
that the functions used to fit the PDF are properly weighted
by the relative amount of data at different scales. Finally, it
is accurate and efficient, particularly when the number of
measurements is small (Liebovitch et al., 2001, pp. 362–363).

Results

The application of these numerical methods to the data sets
yielded the following results. The step lengths, that is,
distances between the Ju/’hoansi camps, are distributed as a
power law with an exponent of −1.9675 (r2=0.965; Fig. 1).
This is a clearly a power law relation, indicating that these
movements conform to a Lévy flight. Similarly, the wait
times (i.e., lengths of occupations of the camps) are
distributed as a power law with an exponent of −1.4503
(r2=0.828; Fig. 2). Note that, as mentioned earlier, the
occupation times may have been influenced by external
factors.

To determine whether the Lévy flights model was the
best description of our data, we also examined several other
plausible models. We feel that evaluating alternate hypoth-
eses is an appropriate means for identifying and supporting
the best choice among competing explanations (Johnson
and Omland, 2004). The falsification of alternative possi-
bilities reinforces and buttresses a scientific argument. The
choice of model, however, is not necessarily simple. The
number of possible models is a potentially infinite. How to
choose from among this sea of possibilities? We believe
that one should start from concepts with clear social
interpretations and implications, rather than beginning with
the quantitative possibilities. In other words, model selec-
tion should not be an exercise in curve fitting, followed by
an attempt to understand the social implications of the
curve that fits best. One should first conceptualize the social
model and then evaluate its quantitative implications.

Considering these ideas, we selected three alternatives to
the Lévy flight model, which implies a power law
distribution of step length. The alternative models were: a
normal distribution, a uniform distribution, and an expo-
nential distribution. We tested these models in two ways.

First, we tested the exponential distribution of step lengths
(which seemed the most likely of the alternative possibil-
ities) by using the multihistogram method, so it would be
directly comparable to the Lévy flight test described above.
Then, we examined all three alternatives (including the
exponential distribution again) by examining the distribu-
tions of step lengths using One-sample Kolmogorov–
Smirnov tests in SPSS Release 12.0.

Normal Distribution

A normal distribution of step lengths is probably the most
common model of human movements across the landscape.
For example, Ammerman and Cavalli-Sforza’s (1979)
famous “wave of advance” model for the spread of
agriculture assumes a Gaussian distribution of steps. The
approach originated in Fisher’s (1937) model for the
diffusion of advantageous alleles across the landscape. This
model is effectively a stochastic one, which would arise in

Fig. 1 Power law distribution of distances between campsites,
exhibiting an exponent of 1.9675.
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the event of a spatially random distribution of campsites.
This kind of model is, of course, common for two reasons.
First, the existence of random effects in natural (or cultural)
processes such as these seems innately reasonable to some
investigators. Second, Gaussian statistics have traditionally

been used in modeling because they were mathematically
tractable. The Gaussian model of step lengths can, however,
be rejected as a model of the Ju/’hoansi data set because p<
0.05, as shown in Table II.

Uniform Distribution

To our knowledge, no one has hypothesized that humans
move about the landscape in a uniform spatial pattern, but it
is not an unreasonable possibility. If resources were
uniformly, or at least redundantly, distributed across the
landscape, then groups of foragers might move relatively
similar distances each time they shifted camp. In such a
case, the step lengths might be driven by external forces,
such as the locations of other social groups, rather than by
the distribution of resources. Other scenarios might also be
imagined that would lead to a relatively even pattern of
movements. Regardless of the possible reason, the Ju/’hoansi
step length data do not match well to a uniform dis-
tribution, as shown in Table III. The test statistic yields
p = 0.000, allowing us to reject the hypothesis.

Exponential Distribution

Exponential distributions arise for the length of a set of
walks when, at each step in a walk, there is a constant
probability that the walk will end. Sometimes the walk ends
after only a few steps, sometimes after many steps. Longer
walks are less likely because they must survive many more
equally likely terminations. It can be shown that if the
probability per unit length to terminate the walk remains
constant, that the distribution of lengths of many walks has
an exponential form. (See, for example, Liebovitch, et al.,
1987, where this is derived in terms of durations of time,
which are here analogous to the lengths of the walks.) This
model could represent human behavior. The band continues
a walk, at each moment deciding whether it has been
worthwhile and whether, with the same chance, it should be
continued or ended. We also wish to test an exponential

Fig. 2 Power law distribution of camp residence times, exhibiting an
exponent of 1.4503.

Table II One-sample Kolmogorov–Smirnov Test Comparing the
Ju/’hoansi Step Length Data to a Normal Distribution

Distance

N 37
Normal parametersa, b Mean 6.1762

Std. deviation 4.21463
Most extreme differences Absolute 0.226

Positive 0.226
Negative −0.145

Kolmogorov–Smirnov Z 1.376
Asymp. sig. (2-tailed) 0.045

a Test distribution is Normal.
b Calculated from data.

Table III One-sample Kolmogorov–Smirnov Test Comparing the
Ju/’hoansi Step Length Data to a Uniform Distribution

Distance

N 37
Uniform parametersa, b Minimum 1.72

Maximum 17.46
Most extreme differences Absolute 0.418

Positive 0.418
Negative −0.027

Kolmogorov–Smirnov Z 2.543
Asymp. sig. (2-tailed) 0.000

a Test distribution is Uniform.
b Calculated from data.
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function because Ju/’hoansi migration distances (in the
sense of the distance between the birthplaces of spouses
(see below)) seem to resemble an exponential distribution.
Interestingly, the step lengths of the Ju/’hoansi data do not
appear to match an exponential distribution well, as shown
by the Kolmogorov–Smirnov test statistic of p=0.018
(Table IV). We also tried to fit an exponential curve to the
step length data using the multihistogram method (Fig. 3).
The coefficient of determination (R2) for the exponential
distribution is 0.910, markedly lower than the same
coefficient for the power law (R2=0.965). This, of course,
suggests that the power law is a better fit to the data.

We conclude that the power law distribution of step
lengths, which implies a Lévy flight model of movement, is
the best fit to the data of the alternatives tested.

Discussion

First, of primary importance is the fact that the pattern of
camp movement comprises a Lévy flight. The movements
are not distributed in a Gaussian or exponential mode, as
might be expected, but as a power function. When
migration and diffusion are modeled, researchers typically
assume a Gaussian distribution of migration distances, for
example in the well-known “wave of advance” model
(Ammerman and Cavalli-Sforza, 1979, p. 280; Wijsman
and Cavalli-Sforza, 1984). Several aspects of this model
have been questioned (Anthony, 1990, pp. 901–902). Lévy
flight movements may help explain rapid, long-distance
migrations that advance through processes such as leap-
frogging (Anthony, 1990). Lévy flights can produce faster
long-distance migration than Brownian motion because the
latter will have few long jumps and many medium-length
jumps, whereas the former will produce some surprisingly
long leaps.

The assumption of a Gaussian distribution of migration
distances is also undermined by some real migration data.
For example, migration distances often seem to be modeled

by an exponential relation (Wijsman and Cavalli-Sforza,
1984). Interestingly, Ju/’hoansi migration distances do seem
to follow an exponential distribution (Harpending, 1976).
“Migration distance” among these highly mobile people
is defined as the distance between the birthplaces of
spouses, not the pattern of band movement around the
land. As Fig. 4 illustrates, the Ju/’hoansi migration data
(Harpending, 1976) fit a single negative exponential
function quite well (R2=0.97). In the simplest terms, this
tells us that the probability of two individuals marrying
declines exponentially with the distance between their
birthplaces. Of course, marriage patterns are influenced by
the network of kin relations among the Ju/’hoansi,
including factors such as rules of exogamy and marriage
preferences. So the migration distance data must relate to
the Lévy flight foraging model in an indirect and complex
way that is difficult to specify based on the available data.

Second, we find it extremely interesting that the power
law exponent of the step distances is very close to −2.
Recall that an exponent of −2 implies a maximally efficient

Table IV One-sample Kolmogorov–Smirnov Test Comparing the
Ju/’hoansi Step Length Data to an Exponential Distribution

Distance

N 37
Exponential parametera, b Mean 6.1762
Most extreme differences Absolute 0.252

Positive 0.072
Negative −0.252

Kolmogorov–Smirnov Z 1.531
Asymp. sig. (2-tailed) 0.018

a Test Distribution is Exponential.
b Calculated from data.

Fig. 3 The distribution of distances between campsites fit to an
exponential distribution.
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search for randomly placed, scare targets that can be
revisited (Viswanathan et al., 1999, 2000). We were
surprised to find this because, notwithstanding the exten-
sive theorizing about optimality in human behavior,
concrete empirical cases of optimizing behavior in the
literature are scarce (Salmon, 1989). The case discussed
here may be an instance of optimizing behavior. We hasten
to add, however, that we do not interpret this finding to
imply that Ju/’hoansi are automatons whose behavior has
been programmed by natural selection. The only reasonable
interpretation is that the Ju/’hoansi achieved an optimal
search pattern while behaving rationally in adapting to a
spatially complex and unpredictable environment. Indeed,
the Ju/’hoansi know where the waterholes, mongongo
groves, and salt licks are in their territory, and they place
their camps accordingly. Thus, the Ju/’hoansi Lévy flight
exponent may well reflect the spatial distribution of
resources as well as their decision-making processes.

Third, we believe that the conclusions drawn here should
influence the application of optimal foraging theory to
hunter–gatherer studies. In optimal foraging models, search
times or travel times are essential elements in the basic
equations (Charnov, 1976, p. 131; Charnov and Orians,
1973; cf. MacArthur and Pianka, 1966).2 Both prey and
patch models derive from Holling’s disk equation. This
equation assumes a linear relationship between search time

and the number of prey/patch encounters (Stephens and
Charnov, 1982; Stephens and Krebs, 1986, pp. 14–15). The
power law function of the travel distances documented here
clearly violates that assumption of linearity.

The nonlinearity inherent in Lévy flights presents other
challenges for conventional optimal foraging models. For
example, the prey and patch models commonly assume that
prey or patch encounters are distributed as a Poisson
process (Stephens and Krebs, 1986, pp. 19, 28). This
cannot be true if the Ju/’hoansi are foraging in a Lévy flight
pattern because it is so strongly nonlinear in space and time
that it cannot be reconciled with a Poisson process.

Travel times figure prominently in patch models
(Charnov, 1976; Kelly, 1995, pp. 90–110; Smith, 1991, pp. 245–
285), which, as we observed earlier, are directly relevant to
understanding Ju/’hoansi camp movements. The model
examines how patches are chosen and at what point a
forager should leave an exploited patch for a fresh one. This
model is clearly relevant to understanding Ju/’hoansi
foraging behavior in the Kalahari given (1) the scarce and
patchy distribution of food in the Ju/’hoansi environment;
(2) the tendency for the Ju/’hoansi to camp in or at resource
patches; and (3) the propensity for the Ju/’hoansi to “eat
out” (substantially exploit) an area before moving on to a
fresh patch. The generic patch model predicts that a forager
will leave a patch when the marginal rate of gain declines to
the point at which it equals the long-term average rate of
energy intake in the habitat (Stephens and Krebs, 1986,
p. 29). In the basic and common formulation of the model,
the average travel time between patches is taken to be the
inverse of the patch encounter rate. Thus, when the
encounter rate is maximized, time is minimized, and in

Fig. 4 Statistical distribution of
Ju/’hoansi migration distances
of spouses showing a fit to an
exponential function.

2 Travel and search times seem to be proportional to distance in the
Ju/’hoansi case. Lee (1979, p. 193) reports that the Ju/’hoansi travel
4–5 km/h with a load, and we know of no ethnographic evidence
indicating that this rate varies nonlinearly with distance.
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fact some models have explicitly examined time minimiza-
tion as a model goal (e.g., Abrams, 1984). So, average
search time is a key variable in the calculation of most
models. In the case of a Lévy flight, however, there is no
average travel time between patches. The mean simply does
not exist because power laws do not have stable means
(Liebovitch, 1998, pp. 74–105; Liebovitch and Scheurle,
2000; Liebovitch and Todorov, 1996; Liebovitch et al.,
1999). This tells us that the standard formulation of the
patch model cannot be accurately calculated for a forager
who forages using a Lévy flight pattern. We do not assert
that this “disproves” optimal foraging theory, but we do
believe that optimal foraging models that analyze human
behavior should employ more realistic assumptions about
forager behavior.

How might models of human optimal foraging take into
account these kinds of assumptions? A number of existing
models do take into account Lévy flights of foragers (e.g.,
Bartumeus et al., 2005). For example, da Luz et al. (2001)
define foraging efficiency as the ratio of total energy gained
in visited sites to the total distance traveled by the forager.
They then show, relying in part on the theoretical work and
simulations performed by Viswanathan et al. (1999), that
foragers performing Lévy flights maximize their foraging
efficiency when their Lévy flight exponent μ=2. Difficul-
ties remain, however, in applying this model to humans.
Since the model is designed to apply to animal or insect
searching, it assumes little or no learning or memory,
assumptions which are clearly not true in the case of human
foragers. Since the Ju/’hoansi do know their environment
well, their movement patterns are unlikely to be analogous
to a random search. This leads us to consider the other
possible cause of their Lévy flights: a fractal distribution of
resources. Fractals are closely related to Lévy flights
because the turning points of a Lévy flight form a fractal
pattern of points. The mathematical relationship between
them is simple. The exponent of the Lévy flight, μ, relates
to the fractal dimension of the pattern by FD ¼ m� 1.
Viswanathan et al. (1999, p. 914) examined the Lévy flight
model for a fractal distribution of resources and found it
consistent with their model. There is a modest literature
describing fractal models of foraging (e.g., Hoddle, 2003;
Russell et al., 1992) that examine foraging in a fractal
environment.

Fourth, and last, because the turning points of a Lévy
flight form a fractal pattern we can predict that the spatial
distribution of camps will form a fractal pattern. This fact is
of primary importance to archaeologists because they, more
than anyone else, quantitatively study hunter–gatherer
settlement patterns. Archaeologists not only conduct sur-
veys to find hunter–gatherer archaeological sites, but they
are also concerned with sampling the landscape to locate
these sites and with analyzing their spatial distributions.

Summary

We analyzed published data on Ju/’hoansi settlement
patterns and showed that the shifting of their rainy season
foraging camps formed a Lévy flight pattern. This finding is
consistent with recent observations for a variety of other
foraging species. Startlingly, the exponent of the step
lengths of the Lévy flight implies that their search pattern
is highly efficient, and approaches maximal efficiency. This
discovery carries significant implications for optimal forag-
ing theory as applied to hunter–gatherers and for archaeo-
logical studies of hunter–gatherer settlement patterns.
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