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In this paper, we present a comprehensive theory of generalized and weak generalized convolutions, illus-
trate it by a large number of examples, and discuss the related infinitely divisible distributions. We consider
Lévy and additive process with respect to generalized and weak generalized convolutions as certain Markov
processes, and then study stochastic integrals with respect to such processes. We introduce the representabil-
ity property of weak generalized convolutions. Under this property and the related weak summability, a
stochastic integral with respect to random measures related to such convolutions is constructed.
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1. Introduction

Motivated by the seminal work of Kingman [13], K. Urbanik introduced and developed the theory
of generalized convolutions in his fundamental papers [30,31,33,34]. Roughly speaking, a gener-
alized convolution is a binary associative operation � on probability measures such that the con-
volution of point-mass measures δx � δy can be a nondegenerate probability measure, while the
usual convolution gives δx+y . The study of weakly stable distributions, initiated by Kucharczak
and Urbanik (see [15,32]) and followed by a series of papers by Urbanik, Kucharczak, Panorska,
and Vol’kovich (see, e.g., [14,16,22,36–38]), provided a new and rich class of weak generalized
convolutions on R+ (called also B-generalized convolutions). Misiewicz, Oleszkiewicz and Ur-
banik [20] gave full characterization of weakly stable distributions with nontrivial discrete part
and proved some uniqueness properties of weakly stable distributions that will be used in this pa-
per. For additional information on generalized convolutions and weakly stable laws, see [5–10,
17–19,21,23].

In this paper, we present a comprehensive theory of generalized and weak generalized con-
volutions and discuss the related classes of infinitely divisible distributions. We construct Lévy
and additive processes with respect to such convolutions. Lévy process with respect to general-
ized convolutions form interesting subclasses of Markov processes, such as the class of Bessel
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processes in the case of Kingman’s convolution (see [29]), but in general, they are heavy tailed
Markov processes (see Remark 4.5). Then we construct stochastic integrals of deterministic func-
tions associated with such convolutions and the corresponding Lévy processes. We also introduce
the weak summability property of generalized convolutions. If a convolution admits the weak
summability, then the stochastic integration theory related to such convolutions becomes more
explicit and concrete.

This paper is organized as follows. In Section 2, we give definitions and properties of general-
ized and weak generalized convolutions that will be used throughout this work. We also provide
an extensive list of examples. In Section 3, we recall main results on infinite divisibility with
respect to generalized and weak generalized convolutions. This information is crucial for further
considerations. The main result of Section 4 states that under minimal assumptions on general-
ized convolutions an analog of processes with independent increments can be constructed. We
follow and extend an approach of N. Van Thu [28]. In Section 5, we consider stochastic inte-
gral processes with respect to generalized convolutions. Section 6 is devoted to the property of
weak generalized summation. In Section 7, we construct “independently scattered” random mea-
sures based on a weak generalized summation; these measures are used in Section 8 to construct
Lévy and additive processes. Finally, in Section 9 we define stochastic integrals of deterministic
functions with respect to such random measures and generalized convolutions.

Throughout this paper, the distribution of the random element X is denoted by L(X). If λ=
L(X) and a ∈ R, we denote the law of aX by Taλ. P(E) denotes the family of all probability
measures on the Borel σ -algebra B(E) of a Polish space E. For short, we write P(R)= P and
P(R+) = P+. The set of all symmetric probability measures on R is denoted by Ps . If λ ∈ P
and λ= L(θ), then |λ| ∈ P+ is defined by |λ| = L(|θ |). If μ= L(X) and λ= L(θ) are such that
X and θ are independent, then by μ ◦ λ we denote the distribution of Xθ .

2. Generalized convolutions

2.1. Urbanik’s generalized convolutions

Urbanik [30] introduced a generalized convolution as a binary, symmetric, associative and com-
mutative operation � on P+ having the following properties:

(i) λ � δ0 = λ for all λ ∈ P+;
(ii) (pλ1 + (1− p)λ2) � λ= p(λ1 � λ)+ (1− p)(λ2 � λ) for each p ∈ [0,1] and λ,λ1, λ2 ∈

P+;
(iii) Ta(λ1 � λ2)= (Taλ1) � (Taλ2) for all a ≥ 0 and λ1, λ2 ∈P+;
(iv) if λn → λ and νn → ν, then (λn�νn)→ (λ�ν), where→ denotes the weak convergence;
(v) there exists a sequence of positive numbers (cn) such that Tcnδ

�n
1 converges weakly to a

measure ν �= δ0 (here λ�n = λ� · · · � λ denotes the generalized convolution of n identical
measures λ).

The property (v) is important. It states that for the generalized convolution a kind of limit theorem
holds with a nontrivial limit measure. Another important property, which follows from (ii) and
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(iv), is that for every λ1, λ2 ∈P+ and a Borel set A⊂R+

λ1 � λ2(A)=
∫ ∞

0

∫ ∞

0
(δx � δy)(A)λ1(dx)λ2(dy) (2.1)

(see Lemma 2.7 for the proof of a related equality). In view of (2.1), in order to specify � we
only need to know δx � δy for all x, y. Actually, it is enough to know δz � δ1 for all z ∈ [0,1],
because δx � δy = Tx(δ1 � δy/x) for any x > y.

Examples

For details, see [1,3,8,13,16,30–36].

Example 2.0. The classical convolution ([30,35]) is evidently an example of generalized convo-
lution. It will be denoted as usual by ∗:

δa ∗ δb = δa+b.

Example 2.1. Symmetric generalized convolution ([30,35]) on P+ is defined by

δa ∗s δb = 1
2δ|a−b| + 1

2δa+b.

The name symmetric comes from the fact that this convolution can be easily extended to a gen-
eralized convolution on P taking values in the set of symmetric measures Ps :

δa ∗s δb = 1
4δa−b + 1

4δ−a+b + 1
4δ−a−b + 1

4δa+b.

Example 2.2. In a similar way another generalized convolution (called by Urbanik (α,1)-
convolution in [30,32]) can be defined for every α > 0 by means of

δa ∗s,α δb = 1
2δ|aα−bα |1/α + 1

2δ(aα+bα)1/α .

Example 2.3. For every p ∈ (0,∞], the formula

δa ∗p δb = δc, a, b ≥ 0, c= ∥∥(a, b)
∥∥

p
= (ap + bp

)1/p

defines a generalized convolution ∗p (p-stable convolution) on P+. For details, see [30,34].

Example 2.4. The Kendall convolution �α on P+, α > 0, is defined ([8]) by

δx �α δ1 = xαπ2α +
(
1− xα

)
δ1, x ∈ [0,1],

where π2α is a Pareto measure with density g2α(x)= 2αx−2α−11[1,∞)(x).
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Example 2.5. The Kingman convolution ⊗ωs on P+, s >− 1
2 , is defined in [13] by

δa ⊗ωs δb = L
(√

a2 + b2 + 2abθs

)
,

where θs is absolutely continuous with the density function

fs(x)= 
(s + 1)√
π
(s + 1/2)

(
1− x2)s−1/2

+ .

If n := 2(s+1) ∈N, n > 1, the variable θs can be interpreted as one dimensional projection of the
random vector U = (U1, . . . ,Un) having uniform distribution ωn on the unit sphere Sn−1 ⊂ Rn.
If n= 1 and s =− 1

2 , then θs has the discrete distribution 1
2δ−1 + 1

2δ1.

Example 2.6. ∞-convolution ([16,35]) is defined by

δa ©∨ δb = δmax{a,b}.

Example 2.7. A combination of Kingman convolution and (α,1) convolution, called by Urbanik
(α,β)-convolution in [30], for 0 < α <∞,0 < β <∞, is defined for a, b > 0 as

δa ⊗α,β δb = L
((

a2α + b2α + 2aαbαθ
)1/2α)

,

where θ = θ(β−2)/2 is a random variable with the density function

f(β−2)/2(x)= 
(β/2)√
π
((β − 1)/2)

(
1− x2)(β−3)/2

+ .

Example 2.8. A kind of generalization of Kendall convolution called the Kucharczak–Urbanik
convolution ([1]) was obtained by the following definition for α > 0 and s ∈ [0,1]

δs �α,n δ1(dx) = (1− sα
)n
+δ1(dx)

+ α(n+ 1)sα(n+1)

x2αn+1

n∑
k=1

(
n

k

)(
n

k − 1

)
(xα − sα)k−1(xα − 1)n−k+

sαk
dx.

Example 2.9. The Kucharczak convolution α , α ∈ (0,1), is defined in [35] by

δa α δb(dx)= aαbα sin(πα)(2x − a − b)

π(x − a − b)α(x − a)α(x − b)α
1((aα+bα)1/α,∞)(x)dx.

Example 2.10. The Vol’kovich convolution �1,β for 0 < β < 1
2 (see [36]) is given by

δa �1,β δb(dx)= 2a2βb2β

B(β, (1/2)− β)

[(
x2 − (a − b)2)

+
(
(a + b)2 − x2)

+
]−β−1/2 dx.
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Example 2.11. In [16] for α ∈ (0,1), the authors considered the following measure:

μ= (2− 2−α
) ∞∑

n=0

2−1−n(α+1)T2n(πα),

where πα is the Pareto distribution with the density αx−α−11[1,∞)(x). They proved that for every
pair a, b > 0 there exists a unique probability measure �(a, b) ∈ P+ fulfilling the equality

Ta(μ)©∨ Tb(μ)= μ ◦ �(a, b).

Setting δa∇αδb := �(a, b) they obtained a generalized convolution. In a similar way, many other
generalized convolutions can be constructed on the basis of known convolutions (see, e.g., [8]).

Example 2.12. We say that the distribution μ on Rn is 1-symmetric (sometimes the name 1-
pseudo-isotropic is used here) if the characteristic function of μ has the following form

μ̂(ξ)= ϕ
(‖ξ‖1

)
,

for some function ϕ, where ‖ξ‖1 = |ξ1| + · · · + |ξn|. This means that the random vector X is
1-symmetric (1-pseudo-isotropic) if for every ξ ∈Rn the following equation holds

〈ξ,X〉 =
n∑

k=1

ξkXk
d= ‖ξ‖1 ·X1.

In 1983, Cambanis, Keener and Simons [3] described the set of extreme points of the family of
1-symmetric distributions on Rn. They proved that the random vector X is 1-pseudo-isotropic
iff there exists a nonnegative random variable � such that

X d=
(

U1√
D1

, . . . ,
Un√
Dn

)
·�=:V ·�, (2.2)

where Un = (U1, . . . ,Un) has uniform distribution on the unit sphere in Rn, D = (D1, . . . ,Dn)

has Dirichlet distribution with parameters ( 1
2 , . . . , 1

2 ), Un, D and � are independent. This means
that the set of extreme points for the set of 1-pseudo-isotropic distributions on Rn is equal to{

TaL(V):a ≥ 0
}
.

Let ϕ(‖ξ‖1) be the characteristic function of V, that is, ϕ(‖ξ‖1)= Eei〈ξ,V〉. Then the charac-
teristic function of aV+ bV′, where V′ is an independent copy of a V, is of the form

�
(‖ξ‖1

)= ϕ
(
a‖ξ‖1

)
ϕ
(
b‖ξ‖1

)
,

thus it also depends only on ‖ξ‖1. By (2.2), there exists a random variable �=�(a,b) indepen-
dent of V such that

aV+ bV′ d=V�.
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Now we obtain a generalized convolution ∇1 setting

δa∇1δb = L
(
�(a,b)

)
.

Unfortunately, an explicit formula for L(�(a, b)) is unknown.

Remark 2.1. By Schoenberg’s classical result (see [27]), we have that a random vector X on Rn

is 2-pseudo-isotropic (2-symmetric, rotationally invariant) iff X d=U
√

� for some nonnegative
variable � independent of U. This leads to the family of Kingman’s convolutions in special
cases n = 2(s + 1) ∈ N. The characterization (2.2) proven in [3] gives a general form for 1-
pseudo-isotropic and leads to the generalized convolution ∇1 . In both cases the distributions of
the extreme points of i -pseudo-isotropic measures, i = 1,2, that is, L(U) and L(V) are weakly
stable. A full characterization of α-symmetric distributions for α /∈ {1,2} is unknown. All we
know is that only α ≤ 2 can be considered here.

A pair (P+,�) is called a generalized convolution algebra. A continuous mapping h :P+ →R

is called a homomorphism of (P+,�) if

• ∀a ∈ [0,1] ∀λ1, λ2 ∈ P+ h(aλ1 + (1− a)λ2)= ah(λ1)+ (1− a)h(λ2),
• ∀λ1, λ2 ∈ P+ h(λ1 � λ2)= h(λ1)h(λ2).

Obviously, h(·) ≡ 0 and h(·) ≡ 1 are the trivial homomorphisms. A generalized convolution
algebra (P+,�) is said to be regular if it admits a nontrivial homomorphism.

Definition 2.2. We say that a nontrivial generalized convolution algebra (P+,�) admits a char-
acteristic function if there exists one-to-one correspondence λ↔�λ between probability mea-
sures λ ∈ P+ and real valued functions �λ on [0,∞) such that for λ, ν ∈P+

1. �pλ+qν = p�λ + q�ν for p,q ≥ 0, p+ q = 1;
2. �λ�ν =�λ ·�ν ;
3. �Taλ(t)=�λ(at);
4. the uniform convergence of �λn on every bounded interval is equivalent to the weak con-

vergence of λn.

The function �λ is called the characteristic function of the probability measure λ in the algebra
(P+,�) or �-generalized characteristic function of λ.

It can be shown (see [33]) that � is uniquely determined up to a scale parameter.
The �-generalized characteristic function in generalized convolution algebra plays the same

role as the classical Laplace or Fourier transform for convolutions defined by addition of inde-
pendent random elements. The following fact is crucial for further investigations, see [30] for the
proof.

Proposition 2.3. A nontrivial generalized convolution algebra (P+,�) admits a characteristic
function � if and only if it is regular. In this case

�λ(t)= h(Ttλ), t ≥ 0, λ ∈P+,
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where h is the nontrivial homomorphism of (P+,�). Moreover, the map λ �→�λ is an integral
transform:

�λ(t)=
∫ ∞

0
�(tx)λ(dx),

where �(t) := h(δt ). � is called the kernel of the �-generalized characteristic function �.

It can be shown that for each nontrivial homomorphism h on a regular algebra (P+,�) there
exists an open neighborhood of zero U such that

∀x ∈U \ {0}, 0 <
∣∣h(δx)

∣∣< 1.

This property implies that the �-generalized characteristic function �λ(·) of the measure λ ∈ P+
has a very useful property: if �λ(tn)= 1 for some tn ↘ 0, then λ= δ0. One can find more about
generalized convolutions in [8,12,15,16,30–34,36–38].

2.2. Weak generalized convolutions

Weak generalized convolutions were studied in [6,10,18–20,32,36]. They are derived from the
concept of weakly stable probability measures.

Definition 2.4. The distribution μ of a random vector X, taking values in a separable Banach
space E, is weakly stable if for every a, b ∈R there exists a random variable θ independent of X
such that

aX1 + bX2
d= θX, (∗)

where X1,X2 are independent copies of X and
d= denotes equality in distribution.

If the condition (∗) holds only for nonnegative constants a, b, then we say that X is R+-weakly
stable. It was shown in [20] that if a weakly stable measure μ has an atom, then either μ= δ0 or
μ= 1

2δa + 1
2δ−a for some a ∈ E. In both cases we shall call such measures trivial.

It was proved in [20] that the condition (∗) is equivalent to the following:

∀θ1, θ2 ∃θ θ1X1 + θ2X2
d= θX, (∗∗)

where θ1, θ2 are random variables such that θ1, θ2,X1,X2 are independent and θ is independent
of X. Then (∗∗) can be written in the language of distributions in the following way:

(μ ◦ λ1) ∗ (μ ◦ λ2)= μ ◦ λ,

where L(θi)= λi , i = 1,2, L(θ)= λ. If the measure μ is nonsymmetric, then λ is uniquely de-
termined from μ ◦λ, but when μ is symmetric, then only the measure |λ| = L(|θ |) (equivalently,
1
2 (λ+ T−1λ)) is uniquely determined (see [20]).

Having a weakly stable random vector X with distribution μ, we are able to define a weak
generalized convolution:
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Definition 2.5. Let μ ∈P(E) be a nontrivial weakly stable measure, and let λ1, λ2 ∈ P . If

(μ ◦ λ1) ∗ (μ ◦ λ2)= μ ◦ λ,

then the weak generalized convolution (also called μ-weak generalized convolution) of the mea-
sures λ1, λ2 with respect to the measure μ (notation λ1 ⊗μ λ2) is defined as follows

λ1 ⊗μ λ2 =
{

λ if μ is not symmetric;
|λ| if μ is symmetric.

Sometimes it is more convenient to define λ1 ⊗μ λ2 = 1
2 (λ+ T−1λ), when μ is symmetric. The

pair (P,⊗μ) is called a weak generalized convolution algebra.

The following lemma describes basic properties of weak generalized convolution.

Lemma 2.6. If the weakly stable measure μ ∈P(E) is not trivial, then for all λ,λ1, λ2, λ3 ∈P

(1) λ1 ⊗μ λ2 is uniquely determined;
(2) λ1 ⊗μ λ2 = λ2 ⊗μ λ1;
(3) (λ1 ⊗μ λ2)⊗μ λ3 = λ1 ⊗μ (λ2 ⊗μ λ3);
(4) λ⊗μ δ0 = λ (λ⊗μ δ0 = |λ| if μ is symmetric);
(5) (pλ1 + (1− p)λ2)⊗μ λ= p(λ1 ⊗μ λ)+ (1− p)(λ2 ⊗μ λ) for each p ∈ [0,1];
(6) Ta(λ1 ⊗μ λ2)= (Taλ1)⊗μ (Taλ2);
(7) if λn → λ and νn → ν, then λn ⊗μ νn → λ⊗μ ν.

Proof. Property (1) follows from Theorems 3 and 4 in [20]. Properties (2)–(6) are simple conse-
quences of the definition and the uniqueness property (1). To see (7) it is enough to notice that for
independent random sequences Y,Y1, Y2, . . . and Z,Z1,Z2, . . . the following implications hold

Yn
d→ Y, Zn

d→ Z ⇒
{

Yn ·Zn
d→ Y ·Z;

Yn +Zn
d→ Y +Z,

where
d→ denotes convergence of distributions, and then use the uniqueness (1). �

Lemma 2.7. If μ is not symmetric, then for every λ1, λ2 ∈P and A ∈ B(R) we have

λ1 ⊗μ λ2(A)=
∫
R2

(δx ⊗μ δy)(A)λ1(dx)λ2(dy). (2.3)

If μ is symmetric, then this equality holds with R replaced by R+ and λ1, λ2 ∈P+.

Proof. If λ1, λ2 have finite supports, λ1 = ∑m
i=1 piδxi

, λ2 = ∑n
j=1 qj δyj

, then by (2) and
(5), λ1 ⊗μ λ2 =∑i,j piqj δxi

⊗μ δyj
. Hence for a bounded continuous function f on R, we
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have ∫
R

f (z)(λ1 ⊗μ λ2)(dz) =
∑
i,j

piqj

∫
R

f (z)(δxi
⊗μ δyj

)(dz)

(2.4)

=
∫
R2

∫
R

f (z)(δx ⊗μ δy)(dz)λ1(dx)λ2(dy).

Let λ1, λ2 ∈ P be arbitrary. Choose λi,n ∈ P with finite supports such that λi,n → λi as n→∞,
i = 1,2. We have for any bounded continuous function f on R∫

R2

∫
R

f (z)(δx ⊗μ δy)(dz)λ1(dx)λ2(dy)

= lim
n→∞

∫
R2

∫
R

f (z)(δx ⊗μ δy)(dz)λ1,n(dx)λ2,n(dy)

= lim
n→∞

∫
R

f (z)(λ1,n ⊗μ λ2,n)(dz)=
∫
R

f (z)(λ1 ⊗μ λ2)(dz).

The first equality holds because the map (x, y) �→ ∫
f (z)(δx ⊗μ δy)(dz) is continuous by

(7) and bounded, the second one follows from (2.4), and the third uses (7). We have
shown ∫

R

f (z)(λ1 ⊗μ λ2)(dz)=
∫
R2

∫
R

f (z)(δx ⊗μ δy)(dz)λ1(dx)λ2(dy)

for any bounded continuous function f . By a standard monotone class argument, we deduce that
this equality holds for any f = 1A, A ∈ B(R), which gives (2.3). The proof in the symmetric
case of μ is similar. �

Notice that for a weak generalized convolution the condition (v) of the Urbanik definition of
generalized convolution does not have to be satisfied. In [6], we can find a wide description of
properties of the generalized convolutions on R without property (v). However it was shown in
[20] that if the measure μ has a finite weak moment of order ε > 0, then there exists a measure
λ such that μ ◦ λ is symmetric α-stable for some (and then for every) α ≤min{ε,2}. This means
that Tcnλ

⊗μn = λ for a properly chosen sequence (cn), and the property (v) holds if we replace
δ1 by λ.

The weak generalized convolution is always regular with

�(t)= h(δt ) := μ̂(t)=
∫
R

eitxμ(dx),

see Proposition 2.3.
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Examples

Example 2.1a. Let θ be a random variable with distribution λ0 = 1
2δ1 + 1

2δ−1 and let θ ′ be its
independent copy. It is easy to check that for all a, b ≥ 0, a �= b

aθ + bθ ′ ≡ ∣∣aθ + bθ ′
∣∣ · aθ + bθ ′

|aθ + bθ ′| ,

where the two factors on the right are independent and

aθ + bθ ′

|aθ + bθ ′|
d= θ.

This shows that θ is weakly stable. Moreover, since

L
(∣∣aθ + bθ ′

∣∣)= 1
2δ|a−b| + 1

2δa+b,

we have that the symmetric generalized convolution is a weak generalized convolution and ∗s =
⊗λ0 .

Example 2.3a. Not for all p > 0, but for p ∈ (0,2] the convolution ∗p can be extended to a weak
generalized convolution on P taking values in P+ defined by γp-symmetric p-stable measure
which is weakly stable since

a
p + b
′
p ≡

∥∥(a, b)
∥∥

p

′′

p, where 
′′
p :=

a

‖(a, b)‖p


p + b

‖(a, b)‖p


p,

where 
p,
′
p are independent with the distribution γp . Evidently, the first equality holds every-

where and, by the basic properties of stable variables, 
′′
p also has the distribution γp .

Example 2.4a. Not for all α > 0, but for α ∈ (0,1] the Kendall convolution �α can be extended
to a weak generalized convolution on P taking values in Ps defined by the measure μα with the
characteristic function μ̂α(t)= (1− |t |α)+.

Example 2.5a. For 2(s + 1) ∈ N the Kingman convolution has the natural interpretation as a
weak generalized convolution with respect to the weakly stable uniform distribution on the unit
sphere S2s+1 ⊂R2(s+1). More precisely:

Let Un, n≥ 2, denotes the random vector with the uniform distribution ωn on the unit sphere
Sn−1 ⊂Rn. It is known that if U,U′ are independent copies of Un, then for each a, b ∈R, ab �= 0,
the random variables ∥∥aU+ bU′∥∥

2 and
aU+ bU′

‖aU+ bU′‖2

are independent and the second one has the distribution ωn. Since

aU+ bU′ ≡ ∥∥aU+ bU′∥∥
2

aU+ bU′

‖aU+ bU′‖2
a.e.
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this implies that ωn is weakly stable and it defines the weakly stable convolution ⊗ωn on P in
the following way

δa ⊗ωn δb = L
(∥∥aU+ bU′∥∥

2

)
.

For 2s =−1, we simply have

δa ⊗ω1 δb = 1
2δ|a−b| + 1

2δa+b,

which is ∗s convolution considered in Example 2.1.

Example 2.12a. By the result of Cambanis, Keener and Simons [3], the distribution of V is
weakly stable, and by our construction

∇1 =⊗L(V).

3. Infinite divisibility with respect to generalized convolutions

3.1. Infinite divisibility (decomposability) of measures on R+

It is natural to consider infinitely divisible measures with respect to generalized convolutions.
Following Urbanik [30], sometimes we will call such measures infinitely decomposable.

Definition 3.1. A measure λ ∈P+ is said to be infinitely divisible with respect to the generalized
convolution � (�-infinitely decomposable) in the algebra (P+,�) if for every n ∈ N there exists
a probability measure λn ∈ P+ such that λ= λ�nn .

The proof of the following proposition can be found in [30].

Proposition 3.2. Let λ ∈ P+ be �-infinitely divisible. There exists a collection of measures λ�r ,
r ≥ 0 such that

(i) λ�0 = δ0, λ�1 = λ;
(ii) λ�r � λ�s = λ�(r+s), r, s ≥ 0;

(iii) λ�rn → δ0 if rn ↘ 0.

Similarly as in the classical theory, one of the most important examples of �-infinitely divisible
distribution is given by

Exp�(aλ)
def= e−a

∞∑
k=0

ak

k! λ
�k,

where λ ∈P+ and a > 0. The measure Exp�(aλ) is called a generalized compound Poisson mea-
sure or �-compound Poisson measure. If λ= δ1, then it is called a generalized Poisson measure
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or �-Poisson measure. To see that Exp�(aλ) is infinitely divisible with respect to � it is sufficient
to observe that (

Exp�
(

a

n
λ

))�n
= Exp�(aλ).

Another important example of a �-infinitely divisible distribution gives the following:

Definition 3.3. Let λ ∈ P+. We say that λ is stable in the generalized convolution algebra
(P+,�) if the following condition holds:

∀a, b ≥ 0 ∃c ≥ 0 Taλ � Tbλ= Tcλ.

Remark 3.4. A measure λ is stable in the generalized convolution algebra (P+,�) (or simply
�-stable) if and only if there exists a sequence of positive numbers (cn) and η ∈P+ such that

Tcnη
�n → λ.

For details of the proof see Theorem 14 in [30].

In the formulation of the analog of the Lévy–Khintchine formula for a �-infinitely divisible
distribution we need the characteristic exponent κ(�) for the generalized convolution � defined
in the following theorem of Urbanik [34]:

Theorem 3.5. For every generalized convolution � on P+ there exists a constant κ(�) ∈ (0,∞]
such that for every p ∈ (0,κ(�)] there exists a measure σp ∈ P+ with the �-generalized charac-
teristic function

�σp(t)=
{

e−tp if p <∞;
1[0,1](t) if p =∞.

Moreover, the set of all �-stable measures coincides with the set{
Ta(σp):a > 0,0 < p ≤ κ(�)}.

In particular we have that

e−tκ =
∫ ∞

0
�(ts)σκ(ds).

Let γp+, p ∈ (0,1), be the completely skewed to the right stable measure γp+ ∼ Sp(σ,1,0)

with σp = 2p cos pπ
2 and the Laplace transform e−2ptp with the notation Sp(σ,β,μ) as in the

representation 1.1.6 in [25] and let γp+ be the distribution of θp . Since∫ ∞

0
e−tκs/2γp+(ds)= e−tpκ ,
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we see that for s < κ the measure σs = T21/κσκ ◦ L(θ
1/κ
p ) for p = s

κ
is absolutely continuous

with respect to the Lebesgue measure. In many cases also the measure σκ is absolutely continu-
ous with respect to the Lebesgue measure. We denote by fs the density function for the standard
s-stable measure with respect to the generalized convolution �.

It was proven (see Theorem 7 in [30]) by Urbanik that the characteristic exponent does not
depend on the choice of nontrivial homomorphism and consequently on the choice of the �-
generalized characteristic function.

The examples given below illustrate the material of this section. Examples 3.0 and 3.3 belong
to the classical theory of stable distributions. Formulas for densities in Examples 3.4 and 3.11
are new. Detailed calculations related to Examples 3.5–3.11 can mostly be found in [35]. The
formula for the generalized characteristic function in Example 3.12 is new.

Examples

Example 3.0. As a nontrivial homomorphism in the case of usual convolution on P+ we can
simply take h(λ) = ∫∞0 e−xλ(dx), that is, the kernel of the transform can be given by �(t) =
h(Tt δ1)= e−t1[0,∞)(t). Moreover κ(∗)= 1, σ1 = δ1 and σp = γp+. In particular, for p = 1

2 we
have σ = 1 and the density of γ1/2+ can be written in terms of elementary functions, namely

γ1/2+(dx)= 1√
2π

x−3/2 exp

{
− 1

2x

}
dx.

It has been shown in [39], that

T1/2γ1/3+(dx)= 1

3π
x−3/2K1/3

(√
4

27x

)
dx,

where K1/3 is the MacDonald function and

T1/2γ2/3+(dx)= 1

x
√

3π
W1/2,1/6

(
4

27x2

)
exp

{
− 2

27x2

}
dx,

where Wp,q is the Whittaker function.

Example 3.3. For the generalized convolution ∗p on P+ we have �(t)= e−tp , κ(∗p)= p and
σs = γ s

p
+ for s < p.

Example 3.4. For the generalized Kendall convolution �α on P+ we have �(t) = (1 − tα)+,
κ(�α)= α and for p ∈ (0, α]

fp(x)= px−p−1
(

1− p

α
+ p

α
x−p

)
e−x−p

1(0,∞)(x).

For the same convolution considered as an operation on Ps the functions � and fp shall be
symmetrized.
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Example 3.5. For the generalized Kingman convolution, we have

�(t)= 
(s + 1)

(
t

2

)s

Js(t),

where Jr is the Bessel function, κ(⊗ωs )= 2,

f1(x)= 
(s + 3/2)√
π
(s + 1)

xs1(0,∞)(x)

(1+ x)s+3/2
, f2(x)= 1(0,∞)(x)

2s+1
(s + 1)
xse−x/2,

and for 0 < p < 2

fp(x)= xs

2s+1
(s + 1)

∫ ∞

0
y−s−1 exp

{
− x

2y

}
γp/2+(dy).

Example 3.6. For the ∞-convolution

�(t)= 1[0,1](t)

and κ(©∨ )=∞, σ∞ = δ1 and

fp(x)= px−p−1 exp
{−x−p

}
1(0,∞)(x)

is the Weibull–Gnedenko distribution. It has been proven by Urbanik [34] that κ(�)=∞ if and
only if � =©∨ .

Example 3.9. For the Kucharczak convolution α , α ∈ (0,1),

�(t)= 
(α)−1
(α, t),

where 
(α, t) is the incomplete Gamma function, κ(α )= α and

σp

([0, x)
)= x1−α

∫ x

0
(x − y)α−1γp+(dy).

Example 3.10. For the Vol’kovich convolution with 0 < β < 1
2 we have

�(t)= 21−βtβ


(β)
Kβ(t),

where Kβ is the MacDonald function and κ(�1,β)= 2β .

Example 3.11. For the generalized convolution ∇α , α ∈ (0,1), under ∞ -convolution we have

�(t)= (1− 2(1+α)[log2 t] − (2− 2−α
)(

1− 2[log2 t])tα)1[0,1](t),
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where the square brackets denote the integer part and κ(∇α)= α. Moreover

σp

([0, x)
)= 21+α

21+α − 1

(
1+ p

αxp

)
e−x−p − 1

21+α − 1

(
1+ p2p

αxp

)
e−2px−p

.

Example 3.12. For the Cambanis, Keener and Simons convolution, we have

�(t)= EeitV1 = 
(n/2)√
π
((n− 1)/2)

∫ ∞

1
�n

(
ur2)u−n/2(u− 1)(n−3)/2 du,

where �n(r
2) is the characteristic function of the first coordinate of the vector Un and

κ(∇1) = 1. The measure σp , p ≤ 1, in this case is such that L(V) ◦ σp = γp , for γp being
the symmetric p-stable measure (abbreviation: SpS measure).

The following theorem (see Theorem 13 in [30]) gives the Lévy–Khintchine formula for
�-generalized characteristic function for a �-infinitely divisible distribution.

Theorem 3.6. Let (P+,�) be a regular generalized convolution algebra. A function � :R+ →R

is a �-generalized characteristic function of a �-infinitely divisible measure iff it has the following
representation

�(t)= exp

{
−Atκ(�) +

∫ ∞

0

�(tx)− 1

υ(x)
m(dx)

}
,

where m is a finite Borel measure on [0,∞),

υ(x)=
{

1−�(x) if 0≤ x ≤ x0,

1−�(x0) if x ≥ x0

and x0 > 0 is such that �(x) < 1 whenever 0 < x ≤ x0.

3.2. Weak infinite divisibility

It is known that if a weakly stable measure μ is symmetric and such that
∫
E
|〈ξ,x〉|εμ(dx) <∞

for some ε > 0 and all continuous linear functionals ξ ∈ E∗, then the weak generalized con-
volution ⊗μ is a generalized convolution in the Urbanik sense (i.e., ⊗μ has property (v)), see
[10]. Consequently, the infinite divisibility with respect to such convolutions on P+ was al-
ready described in the previous subsection. Adding the information about weakly stable mea-
sures μ, that generate such convolutions, will make this description more detailed and con-
crete.

Definition 3.7. Let μ ∈P(E) be a weakly stable measure. We say that the measure λ is μ-weakly
infinitely divisible if for every n ∈N there exists a probability measure λn such that

λ= λ
⊗μn
n ≡ λn

n

def= λn ⊗μ · · · ⊗μ λn, (n-times),
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where (for the uniqueness) λ,λn ∈ P+ if μ is R+-weakly stable or if μ is symmetric, and λ,λn ∈
P if μ is weakly stable nonsymmetric.

Notice that if λ is μ-weakly infinitely divisible, then μ◦λ is infinitely divisible in the classical
sense. This information can be of some help in investigations, however we shall remember that
the opposite implication does not hold. There are measures λ and weakly stable measures μ

such that μ ◦ λ is infinitely divisible and λ is not μ-weakly infinitely divisible. Counterexamples
are known even for μ symmetric Gaussian and symmetric stable measures μ (see Example 2 in
[10]). Special properties of infinitely divisible sub-stable distributions are discussed in [17,25,
26].

It was proven in [10] that for every nontrivial weakly stable measure μ and μ-weakly infinitely
divisible measure λ there exists a family of measures {λr : r ≥ 0} such that

(1) λ0 = δ0, λ1 = λ;
(2) λr ⊗μ λs = λr+s , r, s ≥ 0;
(3) λr → δ0 if r → 0.

The μ-weak compound Poisson measure for the μ-weak generalized convolution is defined
exactly in the same way (see [10]) as the compound Poisson measure for generalized convolu-
tion:

Exp⊗μ
(aλ)

def= e−a

∞∑
k=0

ak

k! λ
⊗μk,

where λ ∈ P and a > 0. Sometimes this measure is called μ-weak generalized exponent of
the measure aλ. If λ = δ1, then it is called a μ-weak Poisson measure. In the case of μ-weak
generalized convolution the following additional interesting property holds:

μ ◦ Exp⊗μ
(aλ)= exp

(
a(μ ◦ λ)

)
,

that is, every μ-weak compound Poisson measure is a factor of some compound Poisson
measure. In some cases, we get the explicit formulas for the generalized Poisson distribu-
tion.

Examples

Example 3.3a. Let μ = γp , p ∈ (0,2] be symmetric p-stable distribution on R with the char-
acteristic function e−A|r|p , A > 0. Then the μ-weak Poisson measure is purely discrete with the
distribution

Exp⊗μ
(cδ1)= e−c

∞∑
k=0

ck

k! δk1/p .

To see this, it is enough to notice that if X1, . . . ,Xk are independent random variables with

distribution γp , then X1 + · · · +Xk
d= k1/pX1, thus

δ
⊗γp k

1 = δk1/p .
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Example 3.4as . Consider the Kendall weak generalized convolution �α on Ps with respect to
the weakly stable measure μα with the characteristic function μ̂α(t)= (1− |t |α)+, α ∈ (0,1]. It
was shown in [9] that (

1− |t |α)k+ = ∫
R

(
1− |ts|α)+λk(ds),

where λ0 = 1
2δ1 + 1

2δ−1 and for k ≥ 1 we have

λk(ds)= αk(k − 1)

2

(
1− |s|−α

)k−2|s|−(2α+1)1(1,∞)

(|s|)ds.

This means that δ
�αk
1 = λk for k ≥ 1, thus μα ◦λk = μ∗k

α , and the μα-weak generalized exponent
of cδ1 can be calculated as

Exp�α
(cδ1)(ds) = e−cδ0(ds)+ e−ccλ0(ds)

+ e−c

∞∑
k=2

ck

k!
αk(k − 1)

2

(
1− |s|−α

)k−2|s|−(2α+1)1(1,∞)

(|s|)ds

= e−c(δ0 + cλ0)(ds)+ αc2

2|s|(2α+1)
e−c|s|−α

1(1,∞)

(|s|)ds.

Example 3.4a+. Consider the same Kendall weak generalized convolution as an operator on
P+. Then, similarly as before for Ps case, we obtain that exp(cμα)= μα ◦ Exp�α

(cδ1), where

Exp�α
(cδ1)(du)= e−cδ0(du)+ ce−cδ1(du)+ c2α

u2α+1
e−cu−α

1(1,∞)(u)du.

Example 3.5a. For the technical reasons we consider here the special case of the Kingman weak
generalized convolution⊗ω3 :Ps →Ps . Since the generalized convolutions defined by ω3 and by
its one-dimensional projection ω3,1 are the same and ω3,1(du)= 1

2 1[−1,1](u)du, the calculations
are simpler than in the general case.

For any c > 0 we need to calculate λ= Exp⊗ω3,1
( 1

2cδ1 + 1
2cδ−1) because in Ps the role of δ1

is played by the measure λ0 = 1
2δ1 + 1

2δ−1. Since ω̂3,1(r)= sin r
r

and ω3,1 ◦ λ= exp(cω3,1) then

ω̂3,1 ◦ λ(r)= e−c(1−sin r/r).

On the other hand, we can write

ω̂3,1 ◦ λ(r)=
∫
R

λ̂(rs)ω3,1(ds)=
∫ 1

−1

1

2
λ̂(rs)ds = 1

2r

∫ r

−r

λ̂(s)ds.

Thus, ∫ r

−r

λ̂(s)ds = 2re−c(1−sin r/r).
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From the last equation it follows that

λ̂(r)= d

dr

(
re−c(1−sin r/r)

)= e−c(1−sin r/r)

(
1− c

sin r

r
+ c cos r

)
.

This implies that

Exp⊗ω3,1
(cλ0)= exp(cω3,1) ∗ (δ0 − cω3,1 + cλ0).

These examples show that the μ-weak Poisson measure does not need to be discrete, although
it is a linear combination of μ-weak generalized convolutions of the Dirac measure δ1.

Definition 3.8. Let μ ∈ P be a nontrivial weakly stable measure. A measure λ ∈ P \ {δ0} is
μ-weakly stable if there exists a sequence of positive numbers (cn) and a measure ν ∈ P such
that

Tcnν
⊗μn → λ.

We denote by S(μ) the set of all μ-weakly stable measures. Let

Sp(μ)= {λ ∈ P \ {δ0}:Taλ⊗μ Tbλ= Tgp(a,b)λ
}
,

where gp(a, b) = (|a|p + |b|p)1/p . Measures λ in Sp(μ) will be referred to as μ-weakly p-
stable. For every symmetric weakly stable measure μ there exists a parameter κ = κ(μ) called
the characteristic exponent, such that

κ(μ)= sup
{
p ∈ (0,2]:Sp(μ) �=∅

}
.

In our convention the supremum over the empty set equals zero. The parameter κ is related to the
symmetric p-stable measure γp in the usual sense. Note that κ(μ) ≤ 2 for every weakly stable
measure μ while the corresponding characteristic exponent κ(�) of the Urbanik type generalized
convolution � can take any value from the positive half-line including infinity. It was proven in
[10] that κ(μ) has the following characterization.

Theorem 3.9. For every weakly stable distribution μ and M(μ)= {μ ◦ λ:λ ∈P} we have

κ(μ) = sup

{
p ∈ [0,2]:

∫
R

|x|pμ(dx) <∞
}

= sup
{
p ∈ [0,2]:γp ∈M(μ)

}
.

The next theorem gives us the analogue of the Lévy–Khintchine representation for infinitely
divisible distributions in the sense of weak generalized convolution on Ps . Here R0 =R \ {0}.

Theorem 3.10. Assume that μ is a nontrivial symmetric weakly stable measure on R with ⊗μ

acting on Ps and κ(μ) > 0. A measure λ ∈Ps is μ-weakly infinitely divisible if and only if there
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exists A ≥ 0 and a symmetric σ -finite measure ν on R0 such that ν([−a, a]c) < ∞ for each
a > 0, ∫ ∞

0
μ
([−s, s]c)ν(ds) <∞

and ∫
R

eitx(μ ◦ λ)(dx)= exp

{
−A|t |κ(μ) −

∫
R0

(
1− μ̂(ts)

)
ν(ds)

}
.

For details of the proof see [10]. The parameter A and the measure ν we call the scale param-
eter and μ-weak generalized Lévy measure respectively. Bellow we present some examples of
μ-weakly stable distributions. Since we consider symmetric measures, it is enough to restrict the
corresponding spectral measure ν to the positive half-line.

Examples

Example 3.4b. Consider the Kendall weak generalized convolution �α , α ∈ (0,1], on P+ de-
fined by the measure μα ∈ Ps with the characteristic function μ̂α(t)= (1− |t |α)+ and the char-
acteristic exponent κ(μα) = α. We know (for details see, e.g., [10]) that for every p ≤ α there
exists a probability measure να,p ∈ P+ such that γp = μα ◦ να,p . The density of να,p (which is
μα-weakly p-stable) for p < α is given by

gα,p(s)= pα−1((α − p)s−p−1 + ps−2p−1)e−s−p

1(0,∞)(s).

In the same paper [10] it was shown that

exp
{−|t |p}= exp

{
−
∫ ∞

0

(
1− (1− |ts|α)+)p(α − p)

αsp+1
ds

}
.

Thus the Lévy measure for symmetric p-stable measure with the characteristic function
exp{−|t |p} can be written as μα ◦ λp , where λp(ds) = p(α − p)α−1s−p−11(0,∞)(s)ds. For
p = α such a measure λα does not exist, but we have that

exp
{−|t |α}= lim

p↗α
exp

{
−
∫ ∞

0

(
1− μ̂α(ts)

)p(α − p)

αsp+1
ds

}
.

Example 3.5b. Consider the weakly stable Kingman distributions

ωs,1(dx)= 
(s + 1)√
π
(s + 1/2)

(
1− x2)s−1/21(−1,1)(x)dx,

s > − 1
2 , with the characteristic exponent κ(ωs,1) = 2. There exists a probability measure νs,2

such that ωs,1 ◦ νs,2 =N(0,1), where the density of νs,2 is given by

fs,2(x)= 1

2s
(s + 1)
x2s+1e−x2/21(0,∞)(x).
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If by λp we denote the distribution of the random variable
√

�, where � is the positive
p/2-stable random variable with the Laplace transform exp{−(2t)p/2}, then ωs,1 ◦ νs,2 ◦ λp =
N(0,1) ◦ λp is symmetric p-stable. For p < 2 the spectral measure for γp is a scale mixture of
ωs,1 since for a suitable constant K > 0

|t |p =
∫ ∞

0

(
1− ω̂s,1(tr)

) K

rp+1
dr.

4. Lévy and additive processes with respect to generalized and
weak generalized convolutions

In this section, we consider an analog of a process with independent increments, when the usual
convolution is replaced by a generalized one. To see that this is a natural generalization, consider
the usual process with independent increments X = {Xt : t ≥ 0}. X is also a Markov process
with transition probabilities Ps,t (x, ·) = δx ∗ λs,t , where probability measures λs,t = L(Xt −
Xs) satisfy an obvious consistency condition: λs,t ∗ λt,u = λs,u, s < t < u. Conversely, given
a family of distributions {λs,t } satisfying the above consistency condition, there is a Markov
process X with transition probabilities Ps,t (x, ·)= δx ∗λs,t . Due to the consistency condition, the
increments of X are independent and determined by λs,t . Therefore, the existence of a process
with independent increments follows from a standard construction of a Markov process with
given transition probabilities (see, e.g., Theorems 9.7 and 10.4 in [26]).

This approach was also applied by Nguyen Van Thu [29] in the context of generalized con-
volutions, and for Kingman’s convolutions in particular, to relate generalized Lévy processes to
Bessel processes.

We will use this approach to define and construct additive processes for generalized and weak
generalized convolutions. We will identify properties of convolutions that are needed for this
construction to go through, which indicates possible extensions beyond the types of convolutions
considered in this paper. The consistency condition stated above naturally extends to the case of
generalized convolutions as follows

λs,t � λt,u = λs,u ∀s < t < u. (4.1)

It turns out that, given (4.1) and properties of generalized convolutions,

Ps,t (x, ·) := δx � λs,t (·), s < t, x ∈R+, (4.2)

satisfy the Chapman–Kolmogorov equations (see Theorem 4.2 below), hence generalized addi-
tive process can be well-defined.

Definition 4.1. X = {Xt : t ≥ 0} is said to be a �-additive process (associated with {λs,t } satis-
fying (4.1)) if X is a Markov process with transition probabilities given by (4.2). If λs,t = λ�(t−s)

for some �-infinitely decomposable measure and all 0≤ s < t , then X is called a �-Lévy process
generated by λ. The definition of ⊗μ-additive and ⊗μ-Lévy processes is analogous, we replace
� in the above by ⊗μ.
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The next theorem is stated in a greater generality to show that only minimal conditions on
convolutions are needed for the existence of generalized additive processes.

Theorem 4.2. Let E be a Polish space. Let � be a binary associative operation on P(E) such
that the map E2 � (x, y) �→ δx � δy(A) ∈ [0,1] is measurable for each A ∈ B(E), and for every
λ1, λ2 ∈P(E)

λ1 � λ2(A)=
∫
E2

(δx � δy)(A)λ1(dx)λ2(dy). (4.3)

Given a family {λs,t : 0≤ s < t} ⊂P(E) such that

λs,u = λs,t � λt,u, s < t < u,

the probability kernels Ps,t (x, ·) := δx �λs,t (·) on E×B satisfy the Chapman–Kolmogorov equa-
tions, that is, for every 0 < s < t < u, x ∈ E and A ∈ B(E),

Ps,u(x,A)=
∫
E

Ps,t (x,dy)Pt,u(y,A). (4.4)

Consequently, for any μ0 ∈ P(E), there exists a Markov process X = {Xt : t ≥ 0} in E such that
L(X0)= μ0 and, for all t > s, x ∈ E,

P
(
Xt ∈ (·)|Xs = x

)= δx � λs,t (·). (4.5)

Proof. Let s, t, u, x and A be as in (4.4). We have

Ps,u(x,A) = δx � λs,u(A)= δx � (λs,t � λt,u)(A)

= (δx � λs,t ) � λt,u(A)

=
∫
E2

(δy � δz)(A)(δx � λs,t )(dy)λt,u(dz)

=
∫
E3

(δx � λs,t )(dy)(δw � δz)(A)δy(dw)λt,u(dz)

=
∫
E

(δx � λs,t )(dy)(δy � λt,u)(A)

=
∫
E

Ps,t (x,dy)Pt,u(y,A),

where the third equality uses the associativity of �; we also applied (4.1)–(4.3). The existence
of the process X with desired properties follows now from (4.4) by Kolmogorov’s extension
theorem. �

Remark 4.3. Given a probability kernel E2 � (x, y) �→ ρx,y ∈ P(E), one can define a “con-
volution” on P(E) setting δx � δy := ρx,y , and then extending � to arbitrary measures by
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(4.3). If E is also a semigroup (not-necessarily commutative), then it is natural to assume that
ρx,0 = ρ0,x = δx . If (δx � δy) � δz = δx � (δy � δz) for all x, y, z ∈ E, then � is associative on
P(E). In this way, new classes of Markov processes, which are Lévy processes relative to such
convolutions, can be defined.

Theorem 4.4. Let � denote either a generalized convolution � or a weak generalized convolution
⊗μ. Then for any consistent family of probability measures {λs,t : 0 ≤ s < t} there exists a �-
additive process X = {Xt : t ≥ 0} generated by this family and starting from 0. If limt↓s λs,t = δ0

for every s ≥ 0 [lims↑t λs,t = δ0 for every t > 0, resp.], then X is right [left, resp.] continuous in
probability. Any �-Lévy process is continuous in probability.

Proof. Suppose that λs,t → δ0 as t ↓ s. For every ε > 0, by (4.5) we have

P
(|Xt −Xs |> ε

) = ∫
P
(|Xt − x|> ε|Xs = x

)
L(Xs)(dx)

=
∫

δx � λs,t

({
y : |y − x|> ε

})
L(Xs)(dx)

→
∫

δx � δ0
({

y : |y − x|> ε
})
L(Xs)(dx)= 0

as t ↓ s. Similarly we treat continuity from the left. Now, if X is a Lévy process, then the conti-
nuity of λs,t = λ�(t−s) follows from Proposition 3.2 and the beginning of Section 3.2. �

Remark 4.5. The �-Lévy processes are Markov processes in classical sense. By Theorem 2.6 in
[28], it follows that if � is a generalized convolution on R+, or a weak generalized convolution
with κ(�) > 0, then each �-Lévy processes has strong Markov property, the Feller property, it is
continuous in probability and has càdlàg trajectories. Consequently, for each such process start-
ing from a fixed (nonrandom) point the Blumenthal’s 0–1 law holds (see, e.g., Proposition 40.4
in [26]).

Moreover, �-Lévy processes have heavy-tailed distributions in each of the examples consid-
ered in this paper, provided κ(�) < 2 and � is not the maximum or stable convolution. To see
this it is enough to notice that in these cases for all x, y ∈ R \ {0} the measure δx � δy has in-
finite p-moment for p > κ(�). Such processes provide interesting new models for the study of
heavy-tail phenomena and possible long range dependence.

5. Stochastic integral processes with respect to �-Lévy processes

For λ being �-infinitely decomposable probability measure with the �-generalized characteristic
function

�λ(t)= exp

{
−Atκ(�) −

∫ ∞

0

1−�(tx)

υ(x)
m(dx)

}
,
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let Aλ be the class of nonnegative functions f on the positive half-line which are nonnegative,
measurable, bounded on compact intervals, and such that for every t, u > 0∫ t

0
f (x)κ(�) dx <∞,

∫ ∞

0

∫ t

0

1−�(uf (x)s)

υ(s)
dxm(ds) <∞.

By {Xt : t ≥ 0} we denote the �-additive process based on λ defined in the previous section. We
want to define a stochastic process

Yt = �
∫ t

0
f (s)dXs, t ≥ 0

as a Markov process with the transition probabilities P
f
s,t (x, ·) = δx � P

f
s,t (0, ·) defined by the

�-generalized characteristic function of P
f
s,t (0, ·):

�(f, s, t, u)= exp

{
−Auκ(�)

∫ t

s

f (x)κ(�) dx −
∫ ∞

0

∫ t

s

1−�(uf (x)s)

υ(s)
dxm(ds)

}
.

In view of the previous section the construction will be completed when we prove the following:

Lemma 5.1. For each f ∈ Aλ and every s, t ≥ 0, s < t the function �(f, s, t, ·) is a �-
generalized characteristic function of a �-infinitely decomposable measure P

f
s,t .

Proof. Assume first that f is a simple function, which means that f (x) =∑n
k=1 ak1Bk

(x),
where Bj ∩Bk =∅ for j �= k and

⋃n
k=1 Bk = [s, t]. We define the following measure

P
f
s,t := Ta1λ

�(B1) � · · · � Tanλ
�(Bn),

where  is the Lebesgue measure on the positive half-line. We see that

�
P

f
s,t

(u) =
∫ ∞

0
�(ux)P

f
s,t (dx)

= exp

{
−Auκ(�)

n∑
k=1

a
κ(�)
k (Bk)−

n∑
k=1

(Bk)

∫ ∞

0

1−�(uakx)

υ(x)
m(dx)

}

= exp

{
−Auκ(�)

∫ t

s

f (r)κ(�) dr −
∫ t

s

∫ ∞

0

1−�(uf (r)x)

υ(x)
m(dx)dr

}
.

Now, if f ∈Aλ, then there exists a sequence of simple functions fn monotonically increasing to
f in each point r ∈ [s, t]. By the Lebesgue dominated convergence theorem we have that

lim
n→∞�

P
fn
s,t

(u)= exp

{
−Auκ(�)

∫ t

s

f (r)κ(�) dr +
∫ t

s

∫ ∞

0

�(uf (r)x)− 1

υ(x)
m(dx)dr

}
.
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Since the sequence of continuous functions converging to a continuous function is converging
uniformly on every compact interval, by the definition of �-generalized characteristic function
there exists a probability measure P

f
s,t (0, ·) such that P

fn
s,t → P

f
s,t weakly if n→∞ and∫ ∞

0
�(ux)P

f
s,t (dx)=�(f, s, t, u).

Infinite decomposability follows from the fact that

�(f, s, t, u)=�A,m(f, s, t, u)=�n
A/n,m/n(f, s, t, u).

It can also be derived from the following property:

P
f
s,t � P

f
t,u = P

f
s,u, s < t < u. �

From this lemma, we conclude the following theorem.

Theorem 5.2. Let λ be �-infinitely decomposable and let X = {Xt : t ≥ 0} be the corresponding
�-Lévy process associated with λ. For given f ∈ Aλ, there exists nonhomogenous Markov pro-
cess Y = {Yt : t ≥ 0} with transition probabilities δx �P

f
s,t , where Ps,t are transition probabilities

of X. The process Y is a �-additive process which is denoted by

Yt = �
∫ t

0
f (s)dXs, t ≥ 0.

6. Weak generalized summation

Naturally, one would like to describe a generalized convolution in terms of an operation on
independent random variables. To this aim, one can consider a weak generalized summation
X ⊕ Y of nonnegative random variables, where ⊕ is a binary operation on R+. It turns out
that this method is very restrictive, only convolutions described in Examples 2.3 and 2.6 can
be realized this way. Indeed, if we assume that for all a, b, c ≥ 0, a ⊕ b = b ⊕ a, a ⊕ 0 = a,
a⊕ (b⊕ c)= (a⊕b)⊕ c and c(a⊕b)= (ca)⊕ (cb), together with an assumption on continuity,
then by Bohnenblust’s theorem (see [2]), for some α ∈ (0,∞],

a ⊕ b=
{(

aα + bα
)1/α if α <∞,

max{a, b} if α =∞.

The problem of describing a generalized convolution in the language of random variables
seems to be difficult. However, weak generalized convolutions open some new possibilities in
this direction.

Recall that the random vector X and its distribution μ is weakly stable if for all random vari-
ables θ1, θ2 and X1,X2 independent copies of X such that θ1, θ2,X1,X2 are independent there
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exists a random variable θ independent of X such that

X1θ1 +X2θ2
d=Xθ. (∗∗)

Until now, we were satisfied by defining the weak generalized convolution based on this prop-
erty:

L(θ1)⊗μ L(θ2)= L(θ).

Now we want to use the original property in defining weak generalized addition which involves
all random elements appearing in (∗∗).

Lemma 6.1. Let μ be a nontrivial weakly stable distribution. Suppose that X,X1 and X2
are i.i.d. with distribution μ. Then for all nonnegative random variables θ1, θ2 such that

θ1, θ2,X1,X2 are independent there exist random elements X , �, X d=X, such that

θ1X1 + θ2X2 =X ·� a.e.

Proof. Let θ1, θ2,X1,X2 be as assumed in the lemma, with random elements taking values in a
separable Banach space E. By weak stability of X we have that there exists independent random
variable � independent of X such that

θ1X1 + θ2X2
d=X�.

Corollary 5.11 in [11] states that for each two Borel spaces S and T , a measurable mapping

f :T → S and some random elements ξ in S and η in T with ξ
d= f (η) there exists a random

element η̃
d= η in T with ξ = f (̃η) a.e. We see that it is enough to apply this corollary for

ξ = θ1X1 + θ2X2, η= (X,�) and f :E×[0,∞) �→R given by f (x, s)= xs to obtain existence
of η̃= (X ,�) such that

θ1X1 + θ2X2 =X� a.e. �

In the following definition by K we understand one of the sets R or R+ = [0,∞). If μ is
symmetric, then we can take P(K)=Ps as well as P(K)=P+.

Definition 6.2. Let (�,F,P) be a rich enough probability space, μ ∈ P(E) be a nontrivial
weakly stable distribution, and let s, t ∈K.

The weak generalized convolution algebra (P(K),⊗μ) is representable (or the weak general-
ized convolution ⊗μ is representable) if there exist measurable functions

� : (K×E)2 →K and X : (K×E)2 → E

such that for every choice of i.i.d. vectors (Xi )i∈N with distribution μ and all i �= j , i, j ∈N, the
following conditions hold

(1) �(s,Xi; t,Xj )=�(t,Xj ; s,Xi ) and X (s,Xi; t,Xj )=X (t,Xj ; s,Xi );
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(2) X (s,Xi; t,Xj )
d=X1;

(3) L(�(s,Xi; t,Xj ))= δs ⊗μ δt ;
(4) �(s,Xi; t,Xj ) and X (s,Xi; t,Xj ) are independent;
(5) sXi + tXj =�(s,Xi; t,Xj )X (s,Xi; t,Xj ) a.e.;
(6) �(�(s,Xi; t,Xj ),X (s,Xi; t,Xj );u,Xk) = �(s,Xi;�(t,Xj ;u,Xk),X (t,Xj ;u,Xk))

a.e. and X (�(s,Xi; t,Xj ),X (s,Xi; t,Xj );u,Xk) = X (s,Xi;�(t,Xj ;u,Xk),X (t,Xj ;
u,Xk)) a.e.;

(7) If
∑∞

i=1 siXi converges a.e. for some choice of si ∈K, i ∈N, then Sn → S a.e. and Xn →
X a.e., where

S1 = s1, Sn+1 =�(Sn,Xn; sn+1,Xn+1) a.e.;
X1 =X1, Xn+1 =X (Sn,Xn; sn+1,Xn+1) a.e.

Lemma 6.3. Assume that the weak generalized convolution algebra (P(K),⊗μ) is repre-
sentable. If θ1, θ2 are independent with distributions λ1, λ2 respectively, and they are independent
of X1,X2, then the random elements �(θ1,X1; θ2,X2) and X (θ1,X1; θ2,X2) are independent.

Proof. In fact, the result follows from properties (2) and (4) of Definition 6.2 by the following
arguments:

P
{
X (θ1,X1; θ2,X2) ∈ B,�(θ1,X1; θ2,X2) ∈A

}
=
∫
K

∫
K

P
{
X (s,X1; t,X2) ∈ B,�(s,X1; t,X2) ∈A

}
λ1(ds)λ2(dt)

(4)=
∫
K

∫
K

P
{
X (s,X1; t,X2) ∈ B

}
P
{
�(s,X1; t,X2) ∈A

}
λ1(ds)λ2(dt)

(2)= μ(B)

∫
K

∫
K

P
{
�(s,X1; t,X2) ∈A

}
λ1(ds)λ2(dt)

= P
{
X (θ1,X1; θ2,X2) ∈ B

}
P
{
�(θ1,X1; θ2,X2) ∈A

}
. �

The following are examples of weak generalized convolutions that are representable.

Examples

Example 6.1. The symmetric convolution as the convolution on P+ is representable and we
have

� : (R+ ×R)2 → R+, �(s, x; t, y)= |sx + ty|,
X : (R+ ×R)2 → R+, X (s, x; t, y)= sx + ty

|sx + ty| = sign(sx + ty).
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Example 6.3. For p ∈ (0,2] the weak generalized convolution algebra (P+,∗p) generated by
symmetric p-stable, weakly stable distribution γp is evidently representable:

� : (R+ ×R)2 → R+, �(s, x; t, y)= ∥∥(s, t)∥∥
p
,

X : (R+ ×R)2 → R+, X (s, x; t, y)= s

‖(s, t)‖p

x + t

‖(s, t)‖p

y.

Example 6.5. The weak generalized convolution algebra (P+,⊗ωn) is representable. The corre-
sponding functions are the following

� :
(
R+ ×Rn

)2 → R+, �(s,x; t,y)= ‖sx+ ty‖2;

X :
(
R+ ×Rn

)2 → R, X (s,x; t,y)= sx+ ty
‖sx+ ty‖2

.

If a nontrivial weak generalized convolution ⊗μ is representable and this will not lead to
misunderstanding, we use the notation

�(θ1,X1, θ2,X2)= θ1 ⊕μ θ2.

In most of the cases, we shall however write

�(θ1,X1, θ2,X2)= (θ1|X1)⊕μ (θ2|X2)

and

(θ1|X1)⊕μ (θ2|X2)⊕μ · · · ⊕μ (θn|Xn)=:
∑
i≤n

⊕μ
(θi |Xi ).

To see the advantage of introducing representability for the weak generalized convolution
consider examples constructed as follows:

Let X with distribution μ be weakly stable and such that the weak generalized convolution ⊗μ

is representable. As in Section 4, for any distribution λ there exists a Markov process {Sn:n ∈N0}
with the transition probabilities

Pn,k(x, ·)= δx ⊗μ λ⊗μ(k−n).

The existence of the process {Sn:n ∈ N0} follows from a kind of existence theorem. Using the
representability we can do it more explicitly:

Let θi, i ∈ N, be a sequence of i.i.d. random variables with distribution λ and Xi , i ∈ N be a
sequence of i.i.d. vectors with distribution μ. Now we define

Sn :=
∑
i≤n

⊕μ
(θi |Xi ), Zn :=

∑
i≤n

Xiθi = SnXn,

where X1 = X1, Xn+1 = X (θn+1,Xn+1;Sn,Xn). We see that the sequence {SnXn:n ∈ N}
is a classical independent increments homogenous random walk with the step distribution
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μ ◦ λ. Considering simultaneously both processes {(Sn,Zn):n ∈ N} or even all three processes
{(Sn,Xn,Zn):n ∈N} we obtain more information than considering them separately.

Examples

Example 6.5a. In the case of μ= ωd uniform distribution on the unit sphere Sd−1 ⊂ Rd and λ

with the density function

fd−1,2(r)= 1

2d−1
(d)
r2d−1e−r2/21(0,∞)(r)

we see that Zn,n ∈ N, is the classical Wiener process describing the position of the particle in
Rd observed in discrete times, Sn,n ∈ N, describes the actual distance of the particle form the
origin, and the stationary process Xn, n ∈N describes the projection of the actual position of the
particle on the unit sphere in Rd .

Example 6.3a. Another interesting example is connected with the symmetric α-stable Lévy mo-
tion, where symmetry means in fact spherical symmetry of the distribution of increments. To see
this notice first that every zero mean Gaussian random vector X is weakly stable and defines the
representable weak generalized convolution ∗2:

aX+ bX′ =
√

a2 + b2

(
a√

a2 + b2
X+ b√

a2 + b2
X′
)

.

Thus we have �(a,X;b,X′)= ‖(a, b)‖2, and

X
(
a,X;b,X′)= ( a

‖(a, b)‖2
X+ b

‖(a, b)‖2
X′
)

.

We see that for the sequence Xn, n ∈N, of i.i.d. random vectors with rotationally invariant Gaus-
sian distribution and θi, i ∈ N, i.i.d. sequence of random variables such that θ2

i has α
2 -stable

distribution with the Laplace transform e−tα/2
the sequence Zn = SnXn consists of variables

with symmetric α-stable distribution.

Consequently the sequences Sn,Xn appearing in the condition (7) of Definition 6.2 are such
that

Sn :=
(

n∑
i=1

θ2
i

)1/2

is a square root of a positive
α

2
-stable process,

Zn :=
∑
i≤n

Xiθi = SnXn is SαS rotationally invariant Lévy process.

Lemma 6.4. The sequence
∑⊕μ

1≤i≤n(θi |Xi ) converges a.e. if and only if the sequence∑
1≤i≤n θiXi converges a.e.
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Proof. Assume that the sequence
∑⊕μ

1≤i≤n(θi |Xi ) converges a.e. (and in particular weakly) to a
random variable θ . Since (∑

i≤n

⊕μ
(θi |Xi )

)
Xn =

n∑
i=1

θiXi a.e.

we see that the right-hand side of this equality converges weakly to a random variable with
distribution L(θ)◦μ. Since the summands θiXi are independent, the Lévy’s equivalence theorem
implies that

∑
1≤i≤n θiXi converges a.e.

The opposite implication is a direct consequence of the property (7) of representable weak
generalized convolution. �

7. Random measures with weak generalized summation

Let (S,E) be a measurable space equipped with a σ–finite measure �. We define

E0 =
{
A ∈ E :�(A) <∞}.

By L0(�,E) we denote the space of all random elements on � taking values in a separable
Banach space E.

Definition 7.1. Let μ ∈ P(E) be a nontrivial weakly stable measure with representable convolu-
tion ⊗μ and let λ ∈P be μ-weakly infinitely divisible measure. The set function

M�,λ,μ =M :E0 → L0(�;R)×L0(�;E)

is called the μ-weak generalized random measure on a measurable space (S,E) with the control
measure � if the following conditions hold:

(1) M(∅)= (0,0) a.e.,
(2) M(A) = (Mμ(A),Mμ(A)Y(A)), where Mμ(A) has the distribution λ⊗μ�(A), Y(A) has

the distribution μ, Mμ(A) and Y(A) are independent for every set A ∈ E0,
(3) if the sets A1,A2, . . . ,An ∈ E0 are disjoint, then the random vectors M(A1),M(A2), . . . ,

M(An) are independent,
(4) if sets A1,A2, . . . ∈ E0 are disjoint and

⋃
i∈N Ai ∈ E0, then

M
(⋃

i∈N
Ai

)
=
(

Mμ

(⋃
i∈N

Ai

)
,
∑
i∈N

Mμ(Ai)Y(Ai)

)
a.e.

For simplicity, we use the following notation

Mμ

(⋃
i∈N

Ai

)
=
∑
i∈N

⊕μ
Mμ(Ai),
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when the sets (Ai) are disjoint. Notice that this means that on the second coordinate we have a
random measure in the classical sense, that is, the set function{

M∗(A)=Mμ(A)Y(A):A ∈ E0
}

is a classical independently scattered random measure and M∗(A) has the distribution (μ ◦
λ)∗�(A).

The existence of the μ-weak generalized random measure can be derived from the Kol-
mogorov extension theorem by showing the consistency conditions for finite-dimensional dis-
tributions of the process {M(A) : A ∈ E0}. Instead of checking this directly we show that finite-
dimensional distributions of this process can be represented as distributions of random vectors
built with a collection of independent two-dimensional random vectors and their ⊕μ-sums.

Let A1, . . . ,An ∈ E0. Then there exist disjoint sets B1, . . . ,BN ∈ E0 and sets I1, . . . , In ⊆
{1, . . . ,N} such that

Ai =
⋃
j∈Ii

Bj , i = 1, . . . , n.

Consequently �(Ai) =∑j∈Ii
�(Bj ). For each choice of B1, . . . ,BN ∈ E0 we can choose inde-

pendent random variables θ1, . . . , θN with distributions λ⊗μ�(B1), . . . , λ⊗μ�(BN ) respectively and
a sequence of i.i.d. random vectors X1, . . . ,XN with distribution μ such that

�(Ai)=
∑
j∈Ii

⊕μ
(θj |Xj ) a.e.

The random variables �(Ai) are well defined in view of representability of the weak generalized
convolution ⊗μ. By the same argument, similarly as in the condition (6) in Definition 6.2 we
have uniquely, up to equality almost everywhere, defined vectors X(Ai), i = 1, . . . , n such that
�(Ai) and X(Ai) are independent and∑

j∈Ii

Xj θj =X(Ai)�(Ai) a.e.

Now it is easy to see that the random vector((
�(A1),X(A1)�(A1)

)
, . . . ,

(
�(An),X(An)�(An)

))
has the distribution desired for (M(A1), . . . ,M(An)) and the consistency conditions in the Kol-
mogorov extension theorem are evidently satisfied.

8. Lévy processes with respect to weak generalized summation

In this section, we assume that S= [0,∞), E = B([0,∞)) and � is a σ -finite measure on [0,∞),
finite on compact sets.
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Definition 8.1. Let μ be a weakly stable measure on E with representable generalized convo-
lution ⊗μ and let λ ∈ P be μ-weakly infinitely divisible. If M�,λ,μ is the μ-weak generalized
random measure on ([0,∞),E) with the control measure �, then the stochastic process{

Z�,λ,μ(t) :=Mμ

([0, t)
)
: t ≥ 0

}
is μ-weakly additive that is, has μ-weakly independent increments, and the additive in classical
sense process {

Y�,λ,μ(t) :=Mμ

([0, t)
)
Y
([0, t)

)
: t ≥ 0

}
is said to be associated with {Z�,λ,μ(t): t ≥ 0}.

If the measures �,λ,μ are fixed and this does not cause a misunderstanding, then we use
simplified notation{

Z�,λ,μ(t): t ≥ 0
}= {Zt : t ≥ 0}, {

Y�,λ,μ(t): t ≥ 0
}= {Yt : t ≥ 0}.

The finite dimensional distributions of μ-weakly additive process are uniquely determined by
the measure � and the distribution L(Z1)= λ⊗μ�([0,1)).

Remark 8.2. Notice that if we have two independent μ-weakly additive processes {Z�1,λ1,μ(t):
t ≥ 0} and {Z�2,λ2,μ(t): t ≥ 0}, then their ⊕μ-sum

{Zt : t ≥ 0} = {Z�1,λ1,μ(t)⊕μ Z�2,λ2,μ(t): t ≥ 0
}

is also μ-weakly additive in the following two cases:

(1) if there exists a constant a > 0 such that λ
⊗μa

1 = λ2, and then

Zt = Z�1+a�2,λ1,μ(t),

(2) if there exists c > 0 such that �2 = c�1, and then

Zt = Z
�1,λ1⊗μλ

⊗μc

2 ,μ
(t).

We want to consider a μ-weakly additive process {Z�,λ,μ(t): t ≥ 0} as a process with inde-
pendent increments, but these increments shall not be defined as a usual difference of random
variables. Thus, for every 0≤ s ≤ t we define the increment between Zs and Zt to be the random
variable Zs,t =Mμ([s, t)). By the assumption, Zs,t is independent of Zs and

Zs ⊕μ Zs,t = Zt a.e.

Definition 8.3. A μ-weakly additive stochastic process{
Z�,λ,μ(t): t ≥ 0

}
is μ-weak Lévy process in law if the control measure � for the corresponding μ-weak generalized
random measure M�,λ,μ is proportional to the Lebesgue measure.
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It is easy to see that the stochastic process {Yt : t ≥ 0} associated with the μ-weak Lévy process
{Z�,λ,μ(t): t ≥ 0} is a Lévy process in law in the classical sense.

A Lévy process in law is an additive process with stationary increments, that is continuous in
probability. Since the control measure � in the definition of the μ-weak Lévy process in law is
proportional to the Lebesgue measure, stationarity of increments is evident. The next proposition
implies that our process is also continuous in probability.

Proposition 8.4. Let μ be a nontrivial weakly stable measure and let λ be μ-weakly infinitely di-
visible. If the measure � on [0,∞) does not have any atoms, then both μ-weakly additive process
{Z�,λ,μ(t): t ≥ 0} and the process {Yt : t ≥ 0} associated with {Z�,λ,μ(t): t ≥ 0} are continuous
in probability.

Proof. Since �([s, t))→ 0 for t ↘ s,

L(Zs,t )= λ⊗μ�([s,t)) → δ0,

which implies continuity in probability for the process {Z�,λ,μ(t): t ≥ 0}. Consequently, we have
also

L(Yt − Ys)= μ ◦ λ⊗μ�([s,t)) → μ ◦ δ0 = δ0 for t ↘ s. �

Definition 8.5. Let μ ∈ P(E) be a nontrivial weakly stable measure and let  be the Lebesgue
measure on [0,∞). The μ-weak Lévy process{

Nμ(t): t ≥ 0
} def= {

Z,λ,μ(t): t ≥ 0
}

is μ-weak Poisson processes with the intensity c > 0 if λ= Exp⊗μ
(cδ1).

Examples

Example 8.3. Let μ = γp , p ∈ (0,2] be a symmetric p-stable distribution on R with the char-
acteristic function e−A|r|p , A > 0. Then the μ-weak Poisson process {Nγp(t): t ≥ 0} is purely
discrete with the distribution

L
(
Nγp(t)

)= Exp⊗γp
(ctδ1)= e−ct

∞∑
k=0

(ct)k

k! δk1/p .

It is easy to notice that the stochastic process {Yt : t ≥ 0} associated with {Nγp(t): t ≥ 0} is such
that

EeirYt = ̂exp(ctγp)(r)= exp
{−ct

(
1− γ̂p(r)

)}= exp
{−ct

(
1− e−A|r|p)}.

Example 8.4. Consider the Kendall weak generalized convolution �α :Ps → Ps defined by the
weakly stable distribution μα on R with the characteristic function μ̂α(t) = (1 − |t |α)+, α ∈
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(0,1]. By Example 3.4as we know that the distribution of Nμα(t) is given by

Exp⊗μα
(ctδ1)(ds)= e−ct (δ0 + ctλ0)(ds)+ α(ct)2

2|s|(2α+1)
e−ct |s|−α

1(1,∞)

(|s|)ds.

The Lévy stochastic process in law {Yt : t ≥ 0} associated with the μα-weak Poisson process
{Nμα(t): t ≥ 0} is such that

EeirYt = exp
{−ct

(
1− μ̂α(r)

)}= e−ct |r|α 1[−1,1](r)+ e−ct1[−1,1]c (r).

This means that

L(Yt )(ds)= e−ct δ0(ds)+ (1− e−ct
)
fα(s)ds,

where

fα(s)= 1

π

1

1− e−ct

∫ 1

0
cos(sr)

(
e−ct |r|α − e−ct

)
dr.

For α = 1 we obtain

f1(s)= ct

π(ect − 1)

sect − ct sin(s)− s cos(s)

s((ct)2 + s2)
.

Example 8.5. Consider {Nω3,1(t): t ≥ 0}, the ω3,1-weak Poisson process with the intensity c > 0.
In this construction, we assume that ⊗ω3,1 :Ps → Ps .

The distribution of Nω3,1(t) we obtain substituting c by ct in the formula obtained in Example
3.5a, thus

L
(
Nω3,1(t)

)= exp(ctω3,1) ∗ (δ0 − ctω3,1 + ctλ0).

The Lévy process in law {Yt : t ≥ 0} associated with {Nω3,1(t): t ≥ 0} is such that

L(Yt )= exp(ctω3,1)= e−ct

∞∑
n=0

(ct)n

n! ω∗n
3,1.

Since ω3,1 is the uniform distribution on [−1,1], ω∗n
3,1 are also well known and, for example, in

[12] we can find that ω∗n
3,1 has the following density function:

f (n)(x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k∑

i=0

(−1)i
(

n

i

)
(x + n− 2i)n−1

(n− 1)!2n
, x ∈ [−n+ 2k,−n+ 2(k + 1)),

k = 0, . . . , n− 1,

0, otherwise.

Remark 8.6. The idea of a stochastic process associated with another process suggests a natural
connections with the idea of subordinated processes described in Feller’s monograph [4]. The
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construction there was the following: We start with two independent stochastic processes {Xt ∈
R: t ≥ 0} and {T(t) ∈ [0,∞): t ≥ 0}, T(t) increasing, and we define

{XT(t): t ≥ 0}.

The process {XT(t): t ≥ 0} is subordinated to the process {Xt : t ≥ 0} by {T(t): t ≥ 0}. This con-
struction is rich enough to cover many cases.

One of the best known subordinated processes is the sub-stable independent increments pro-
cess. It is based on a strictly stable process {Xt : t ≥ 0} with independent stationary increments.
This means that

Xt
d= t1/αX1, Xt+s −Xt

d= s1/αX1, Xt⊥(Xt+s −Xt).

The corresponding time stochastic process {T(t): t ≥ 0} takes values in the positive half-line, has
independent increments and the Laplace transform Ee−rTt = exp{− trβ} for some β < 1. Then
{XT(t): t ≥ 0} is an (αβ)-stable stochastic process with independent increments.

The same process can be obtained by our construction as associated with the μ-weakly additive
process {

Z�,λ,γα (t)= T(t)1/α: t ≥ 0
}
,

where

λ= L
(
T(1)1/α

)
, μ= γα = L(X1), �= .

In this case Zs,t = Mμ([s, t)) = (T(t) − T(s))1/α and Yt − Ys
d= Zs,tX1. Thus the associated

process {Yt : t ≥ 0} was obtained by some operation on the space, not by randomizing the time, as
{XT(t): t ≥ 0}; however they are stochastically equivalent. In the case α = 2 and {Xt : t ≥ 0} being
multidimensional Brownian motion we again obtain rotationally invariant independent increment
symmetric 2β-stable stochastic process.

9. Weak stochastic integrals

In this section, we give a construction of a stochastic integral using the weak generalized sum-
mation. We assume that the considered nontrivial weakly stable measure μ belongs to P (instead
of μ ∈ P(E) for the sake of simplicity) and that the weak generalized convolution ⊗μ is repre-
sentable. Let λ be μ-weakly infinitely divisible, M�,λ,μ be μ-weak generalized random measure
for some σ -finite measure � on (S,E), and let E0 = {A ∈ E :�(A) <∞}.

The representability property of⊗μ allows us to construct a stochastic integral as in the case of
the usual convolution (see, e.g., Rajput and Rosiński [24]). We will only outline this construction.
For a simple function

f (x)=
n∑

i=1

ai1Ai
(x),
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where A1, . . . ,An ∈ E0 are disjoint sets and a1, . . . , an ∈R, put

I�,λ,μ(f )=
∫
S

f (x)Mμ(dx)
def=
∑
i≤n

⊕μ
aiMμ(Ai).

Lemma 9.1. Assume that we have two representations for the simple function f , that is,

f (x)=
n∑

i=1

ai1Ai
(x) and f (x)=

m∑
i=1

bi1Bi
(x),

such that A1, . . . ,An,B1, . . . ,Bm ∈ E0 and Ai ∩Aj =∅, Bi ∩Bj =∅ for i �= j . Then∑
i≤n

⊕μ
aiMμ(Ai)=

∑
j≤m

⊕μ
bj Mμ(Bj ) a.e.

Proof. There exists a family of disjoint sets C1, . . . ,CN ∈ E0 such that for every i ≤ n and j ≤m

there exists Ii = {k1,i , . . . , kni ,i} ⊂ {1, . . . ,N} and Jj = {1,j , . . . , mj ,j } ⊂ {1, . . . ,N} such that⋃
k∈Ii

Ck =Ai,
⋃
∈Jj

C = Bj , i ≤ n, j ≤m.

Of course Ik ∩ Ii =∅ and Jk ∩Ji =∅ for k �= i. Thanks to representability of ⊗μ it makes sense
to consider generalized sums, thus by our construction

Mμ(Ai)=
∑
k∈Ii

⊕μ
Mμ(Ck) a.e. and Mμ(Bj )=

∑
∈Jj

⊕μ
Mμ(C) a.e.

Put ck := ai = bj if Ck ⊂Ai ∩Bj . Now we see that the following equalities hold almost every-
where ∑

i≤n

⊕μ
aiMμ(Ai) =

∑
i≤n

⊕μ
ai

∑
k∈Ii

⊕μ
Mμ(Ck)=

∑
i≤n

⊕μ
∑
k∈Ii

⊕μ
aiMμ(Ck)

=
∑
i≤n

⊕μ
∑
k∈Ii

⊕μ
ckMμ(Ck)=

∑
k≤N

⊕μ
ckMμ(Ck)

=
∑
j≤m

⊕μ
∑
∈Jj

⊕μ
cMμ(C)=

∑
j≤m

⊕μ
bj

∑
∈Jj

⊕μ
Mμ(C)

=
∑
j≤m

⊕μ
bj Mμ(Bj ).

�

Remark 9.2. Let μ = L(X) ∈ P(E) be a nontrivial weakly stable measure and let λ =
Exp⊗μ

(δ1). The μ-weak generalized random measure Mμ consists of the variables with μ-weak
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Poisson distribution and L(Mμ(A)) = Exp⊗μ
(�(A)δ1) for A ∈ E0. Since the ⊗μ-generalized

characteristic function of the measure Exp⊗μ
(aδ1) is equal to the classical characteristic func-

tion of Exp⊗μ
(aδ1) ◦μ= exp(aδ1 ◦μ)= exp(aμ) then

E exp
{
i
〈
t, aMμ(A)X

〉} = exp
{−(1− μ̂(at)

)
�(A)

}
= exp

{
−
∫
S

(
1− μ̂

(
a1A(x)t

))
�(dx)

}
.

If f (x)=∑n
i=1 ai1Ai

(x), for disjoint A1, . . . ,An ∈ E0, then

E exp
{
i
〈
t, I�,λ,μ(f )X

〉} = n∏
k=1

E exp
{
i
〈
t, akMμ(Ak)X

〉}
= exp

{
−

n∑
k=1

∫
S

(
1− μ̂

(
ak1Ak

(x)t
))

�(dx)

}

= exp

{
−
∫
S

(
1− μ̂

(
f (x)t

))
�(dx)

}
= exp

{
−
∫
S

(
1− μ̂(st)

)
�f (ds)

}
,

where �f (A)= �(f−1(A))= �({x ∈ E : f (x) ∈A}), A ∈ E0. This means that

L
(
I�,λ,μ(f )

)= Exp⊗μ
(�f ).

Proposition 9.3. Assume that the weakly stable measure μ= L(X) on R is nontrivial and sym-
metric with the characteristic exponent κ. Let λ be μ-weakly infinitely divisible with the scale
parameter A ≥ 0 and the μ-weak generalized Lévy measure ν. Let f :S �→ R be a measurable
function such that∫

S

∣∣f (x)
∣∣κ�(dx) <∞ and

∫
R

∫
S

∣∣1− μ̂
(
f (x)ts

)∣∣�(dx)ν(ds) <∞.

Then the stochastic integral I�,λ,μ(f ) exists as the limit in probability of stochastic integrals
of simple functions. Moreover, the ⊗μ-generalized characteristic function of I�,λ,μ(f ) is of the
form

E exp
{
itI�,λ,μ(f )X

}
= exp

{
−A|t |κ

∫
S

∣∣f (x)
∣∣κ�(dx)−

∫
R

∫
S

(
1− μ̂

(
f (x)ts

))
�(dx)ν(ds)

}
.
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Proof. It is enough to prove this for simple function f = ∑n
i=1 ai1Ai

for disjoint sets
A1, . . . ,An. Notice that the generalized characteristic function for λ is the following

λ̂ ◦μ(t)= exp

{
−A|t |κ(μ) −

∫
R

(
1− μ̂(ts)

)
ν(ds)

}
.

Since (
Ta1λ

�(A1) ⊗μ · · · ⊗μ Tanλ
�(An)

) ◦μ = Ta1λ
�(A1) ◦μ ∗ · · · ∗ Tanλ

�(An) ◦μ

= Ta1(λ ◦μ)∗�(A1) ∗ · · · ∗ Tan(λ ◦μ)∗�(An),

where, for the simplicity, we write λ�(Ai) instead of λ⊗μ�(Ai), we have

E exp
{
itI�,λ,μ(f )X

}
=

n∏
i=1

exp

{
−A|tai |κ(μ)�(Ai)− �(Ai)

∫
R

(
1− μ̂(ai ts)

)
ν(ds)

}

= exp

{
−A

n∑
i=1

|tai |κ�(Ai)−
∫
R

n∑
i=1

(
1− μ̂(ai ts)�(Ai)

)
ν(ds)

}

= exp

{
−A|t |κ

∫
S

∣∣f (x)
∣∣κ�(dx)−

∫
R

∫
S

(
1− μ̂

(
f (x)ts

))
�(dx)ν(ds)

}
.

This ends the proof. �

Remark 9.4. The Proposition 9.3 states in particular that the random variable I�,λ,μ(f ) is μ-
weakly infinitely divisible with the scale parameter

A′ =A

∫
S

∣∣f (x)
∣∣κ(μ)

�(dx),

and the μ-weak generalized Lévy measure �f ◦ ν, where for A ∈ E0 �f (A)= �(f−1(A)).
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