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Abstract

Subordinators in Banach spaces are studied. The existence of the special Lévy-

Khintchine representation is related to the geometry of the space and a Pettis integral

with respecto to the underlying Lévy measure. Rates of growth of subordinators in a

special type of Banach spaces are studied, including laws of iterated logarithm which

give new results in finite dimensions bigger than one.
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1 Introduction

One dimensional increasing Lévy processes (also called subordinators) have been widely
studied. They have important properties and are useful in building other Lévy processes;
see [4], [5] and [21]. A one dimensional subordinator {σt : t ≥ 0} is a nonnegative Lévy
process characterized by the special form of the Lévy-Khintchine representation of its Fourier
transform
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Institute of Technology during the Fall 2003.



Eeiuσt = exp

{

t

∫

(0,∞)

(

eiux − 1
)

ν (dx) + ituγ0

}

u ∈ R, (1)

where there is no Gaussian part, the drift γ0 is nonnegative and the Lévy measure ν is
concentrated in the cone [0,∞) with the order of singularity

∫

(0,1]

xν(dx) <∞. (2)

The study of subordinators in higher dimensional spaces leads to consider Lévy processes
with values in cones. When a cone is proper, a Lévy process is cone-valued if and only if
it is cone-increasing. Then it is natural to call these processes cone-valued subordinators or
simply subordinators. In the finite dimensional case, cone-valued Lévy processes are already
discussed in the classical books by Bochner [7] and Skorohod [24] and have been recently
studied in [3], [18] and [19].

The purpose of this paper is to study the structure of Lévy processes with values in cones
of infinite dimensional Banach spaces and investigate whether there is an intrinsic relation
between probability and functional analytic aspects. As a basic point of interest one may ask
whether there exists a special form of the Lévy-Khintchine representation (SLKR) similar
to the one dimensional case (1). A restricted class of Banach spaces where the answer is
affirmative was considered in [11]. In the present work we conduct a systematic study of
cone-valued Lévy processes in more general Banach spaces and on the convergence of their
non-compensated jumps. We find that the existence of the SLKR (in which case we say that
the subordinator is regular) is related to the geometry of the cone. Specifically, it is shown
that a cone-valued subordinator is always regular for proper normal cones containing no
copy of c+0 , the cone of nonnegative scalar sequences converging to zero. This fact is related
to the existence of a Pettis integral with respect to the underlying Lévy measure.

¿From the application point of view, we consider cone-valued Lévy processes in Birkhoff-
Kakutani spaces, which arises from Banach spaces where there is a continuous linear func-
tional that agrees with the norm in the cone. They are named in this way after Birkhoff [6]
and Kakutani [14] who studied Banach lattices and the so-called AL-spaces which form a
subclass of the more general Birkhoff-Kakutani spaces. Specific examples are the Euclidean
space R

d, the space of real symmetric d×d-matrices M
d, the space L1(H) of trace class oper-

ators in a Hilbert space H and duals of C∗-algebras. In connection with Lévy processes, we
prove that Birkhoff-Kakutani-valued subordinators inherit several properties from the one
dimensional subordinators associated to the norm-process. As a consequence of this inheri-
tance, sample path properties on the asymptotic behavior of one dimensional subordinators
are easily transferred to this Banach space setting, such as the one-dimensional laws of iter-
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ated logarithm in [4]. These asymptotic properties give new results even for subordinators
taking values in the octant Rd

+ and in the cone Md
+ of nonnegative definite d × d-matrices

when d is bigger than one.
The paper is organized as follows. In section 2 we review basic facts about convergences in

cones of Banach spaces. In Section 3 a systematic and detailed analysis of cone-valued Lévy
processes is done. We first review some facts about Banach space-valued Lévy processes and
give sufficient conditions to have the SLKR and being cone-valued. These conditions include
the existence of a Pettis integral with respect to the Lévy measure. Then we consider the
converse problem, by studying the convergence of the non-compensated sum of jumps of
cone-valued subordinators and conditions on the geometry of the cone for the existence
of the SLKR and the associated Pettis integral. In section 4 we concentrate in regular
subordinators, including the class of LK-cones in which every subordinator is regular. We
prove that the cones considered in [11] are particular cases of LK-cones. We also present
concrete examples of regular subordinators in arbitrary proper cones of general Banach
spaces, showing that there exist cone-valued regular subordinators even when the cone has
a copy of c+0 . Finally, in Section 5 we deal with subordinators in Birkhoff-Kakutani cones,
their one dimensional similarities and the relation with the associated norm process. As an
application of this intimate relation we point out laws of iterated logarithm for Birkhoff-
Kakutani valued subordinators.

2 Preliminaries on Cones in Banach Spaces

Recall that a nonempty closed convex set K of B is said to be a cone if λ ≥ 0 and x ∈ K
imply λx ∈ K. Note that a cone is closed under finite sums and contains the zero element.
A cone K is generating if B = K−K, that is, every x ∈ B can be written as x = x1 −x2 for
x1 ∈ K and x2 ∈ K. It is proper if x = 0 whenever x and −x are in K. The dual cone K∗

of K is defined as K∗ = {f ∈ B∗ : f(s) ≥ 0 for every s ∈ K} . A proper cone K of a Banach
space B induces a partial order on B by defining x1 ≤K x2 whenever x2 −x1 ∈ K for x1 ∈ B
and x2 ∈ B. Given a sequence (xn) = (xn)∞n=1 in B, if xn ≤K xn+1 (respectively xn+1 ≤K xn)
for each n ≥ 1, the sequence is called K-increasing (respectively K-decreasing). Likewise, a
function f : [0,∞) → B is called K-increasing (respectively K-decreasing) if f(t1) ≤K f(t2)
(respectively f(t2) ≤K f(t1)) for t1 ≤ t2.

A sequence (xn) in K is said to be K-majorized if there exists x ∈ K with xn ≤K x, for
n ≥ 1. A cone K is said to be regular if every K-increasing and K-majorized sequence in K
is norm convergent. A cone K is said to have generating dual if K∗ is generating for B∗. A
useful characterization in Banach spaces is that K∗ is generating for B∗ if and only if K is
normal, i.e., 0 ≤K x ≤K y for y ∈ K, implies ‖x‖ ≤ λ ‖y‖, where λ > 0 ([13, Th. 1.5.4 and
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Prop. 1.5.7]).
Given two cones K1 and K2 of the Banach spaces B1 and B2, it is said that K1 is

isomorphic to K2 if there is an isomorphism ϕ between Span(K1) and Span(K2) such that
ϕ(K1) = K2.

Let c0 denote the Banach space of real sequences a = (an) converging to zero with
norm ‖a‖ = supn≥1 |an| and let c+0 denote the cone of c0 consisting of all sequences with
nonnegative terms. The cone c+0 plays an important role in the study of convergence of cone
valued series and sequences. The following Bessaga-Pelczynski type result for convergence
of series in Banach spaces follows straightforward from Theorem 5.8 in [9], assuming that
the summands are cone-valued. Recall that a series

∑∞
k=1 xk in B is weakly unconditionally

Cauchy (w.u.C.) if for all f ∈ B∗,
∑∞

k=1 |f(xk)| is a real convergent series.

Proposition 1 Let K be a cone of a Banach space B. In order that any w.u.C. series
∑∞

k=1 xk, with xn ∈ K, n ≥ 1, be (norm) unconditionally convergent, it is necessary and
sufficient that K contain no subcone isomorphic to c+0 .

A major result in the convergence of cone-valued sequences is given by a result in [13,
Th. 12.4.5] proved in the more general setting of Fréchet spaces.

Proposition 2 Let K be a proper normal cone. Then K is regular if and only if K contains
no subcones isomorphic to c+0 .

In view of the main results of this work we introduce the following terminology.

Definition 3 A proper cone K is said to be an LK-cone if it is normal and contains no
copy of c+0 .

Remark 4 a) A Banach space that contains no copy of c0 does not have cones isomorphic
to c+0 .

b) Every Banach space has a cone with no subcones isomorphic to c+0 .
c) There are Banach spaces containing a copy of c0 with cones containing no subcones

isomorphic to c+.
0 .

There are several well known examples of Banach spaces containing no copy of c0. Among
others we mention reflexive Banach spaces, weakly sequentially complete spaces and Schur
spaces for which proper cones with generating duals are LK-cones. More concretely, the
space of real sequences lp, the space of p-integrable functions in a measure space Lp(X,A, µ)
and the space Lp(H) of p-trace class operators in a Hilbert space H , for any 1 ≤ p <∞, are
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examples of spaces containing no copy of c0 and where their corresponding proper cones l+p ,
L+

p (X,A, µ) and L+
p (H) have generating duals.

For a cone containing a copy of c+0 -and therefore an example of a cone that is not of
LK-type- we mention the cone of positive compact selfadjoint operators K+(H) in a Hilbert
space H with the operator norm. As for an example of a cone with no generating dual, we
mention the subcone of c0 defined by K = {(an) ∈ c0 : an + an+1 ≥ 0}; see [13, Ex. 12.3.5].

3 Cone-valued Lévy Processes

Throughout this section B will denote a separable Banach space with norm ‖·‖ , topological
dual space B∗ and dual norm ‖·‖́ .

3.1 The special Lévy-Khintchine representation

Recall that a Banach space valued (B-valued) Lévy process X = {Xt : t ≥ 0} is a stochastic
process with values in B defined on a probability space (Ω,F , P ) such that i) X0 = 0 a.s., ii)
it has independent and stationary increments, ii) it is stochastically continuous with respect
to the norm ‖·‖ (for every ε > 0, P (‖Xt −Xs‖ > ε) → 0 as s → t) and iii) almost surely
the paths are right-continuous in t ≥ 0 and have left-limits in t > 0 (càdlàg) with respect to
the norm.

Let D0 = {0 < ‖x‖ ≤ 1}. The following Lévy-Khintchine representation for B-valued
Lévy processes is presented in [11].

Theorem 5 Let {Xt : t ≥ 0} be a Lévy process in a separable Banach space B. Then, its
characteristic functional is such that

Eeif(Xt) = exp

{

t

(

−
1

2
(Af, f) + if(γ) + ψ(f, ν)

)}

f ∈ B∗, (3)

where

ψ(f, ν) =

∫

[

eif(x) − 1 − if(x)1D0(x)
]

ν(dx), (4)

γ ∈ B, A is a nonnegative selfadjoint operator from B∗ to B, the Lévy measure ν on
B (B\{0}) the Borel σ-algebra of B\{0}, is such that for any f ∈ B∗

∫

D0

|f (x)|2 ν(dx) <∞. (5)
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The triplet of parameters (A, ν, γ) in Theorem 5 is called the generating triplet of the
Lévy process X and it is unique.

Remark 6 a) For infinite dimensional Banach spaces, Lévy measures are not characterized
by the condition

∫

D0
‖x‖2 ν(dx) <∞; see [1] and [16]. They are rather identified by the fact

that the mapping
f 7−→ exp{ψ(f, ν)} f ∈ B∗ (6)

is the characteristic functional of some probability measure on B.
b) Denote Xs− := lims↑tXs and let C ∈ B0 the ring of Borel sets of B with positive

distance from 0, then the process

XC
t =

∑

s<t

(Xs −Xs−) 1C (Xs −Xs−) (7)

is well defined and represents the sum of jumps of the process X occurred up to time t and
took place in C. Its characteristic functional has the form

Eeif(XC
t ) = exp

{

t

∫

C

(

eif(x) − 1
)

ν(dx)

}

f ∈ B∗. (8)

As in the finite dimensional case, there is a one-to-one relation between Lévy processes
and infinitely divisible laws in Banach spaces.

Proposition 7 Let µ be an infinitely divisible probability measure with generating triplet
(A, ν, γ). Then there exists a Lévy process {Xt : t ≥ 0} with generating triplet (A, ν, γ) such
that X1 has the law µ and viceversa.

The Lévy-Khintchine representation for Lévy processes of bounded variation is also de-
rived in [11].

Proposition 8 Let {Zt : t ≥ 0} be a B-valued Lévy process. Then, {Zt} has bounded varia-
tion on each interval [0, t], almost surely, if and only if, it has characteristic functional given
by

Eeif(Zt) = exp

{

t

∫

B

(

eif(x) − 1
)

ν(dx) + itf(γ)

}

f ∈ B∗,

where the Lévy measure ν satisfies
∫

D0

‖x‖ ν (dx) <∞. (9)
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A straightforward but key observation is that a Lévy process is cone-increasing if and
only if it is cone-valued.

Proposition 9 Let K be a proper cone of B and let {Zt : t ≥ 0} be a B-valued Lévy process.
Then the following are equivalent:

a) For any fixed t ≥ 0, Zt is concentrated on K almost surely.
b) Almost surely, Zt(ω) is K-increasing in t.

In view of the above result and similar to the one dimensional case, we shall say that a
K-increasing Lévy process in B is a K-subordinator or subordinator if the underlying cone
is well understood.

Given a Lévy measure ν on B (B\{0}), we shall say that an element Iν ∈ B is a ν-Pettis
centering if

∫

D0

|f(x)| ν(dx) <∞ for every f ∈ B∗ (10)

and f(Iν) =
∫

D0
f(x)ν(dx) for every f ∈ B∗. Sometimes we shall write Iν =

∫

D0
xν(dx).

Sufficient conditions on the generating triplet (A, ν, γ) of a Lévy process {Zt : t ≥ 0} to
be cone-subordinator are now presented. The only assumption on the cone K is to be proper.

Theorem 10 Let K be a proper cone of a separable Banach space B. Let {Zt : t ≥ 0} be a
Lévy process in B with generating triplet (A, ν, γ). Assume the following three conditions

a) A = 0,
b) ν(B\K) = 0, i.e., ν is concentrated on K and
c) there exists a ν-Pettis centering Iν =

∫

D0
xν(dx) such that γ0 := γ − Iν ∈ K.

Then the process Z is a subordinator.

Observe that assumptions (a)-(c) above give the special Lévy-Khintchine representation

Eeif(Zt) = exp

{

t

∫

K

(

eif(x) − 1
)

ν(dx) + itf(γ0)

}

, (11)

since for all f ∈ B∗, f (γ0) = f(γ)−
∫

D0
f(x)ν(dx). Before proving the theorem we point out

the following facts.

Remark 11 a) The existence of a ν-Pettis centering is related to the ν-integrability of the
function h(x) = x1D0(x) in the sense of Pettis. Recall that the B-valued function h is Pettis
integrable w.r.t. ν if (10) is satisfied and for any C ∈ B (B\{0}) there exists and element
IC in B such that f(IC) =

∫

D0
f(x)1C(x)ν(dx) for every f ∈ B∗. The element IC is called
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the Pettis integral and we have that Iν = IU , where U = {x ∈ B : x ∈ D0}. We refer to [17]
for a recent survey on the Pettis integral.

b) There are subordinators in Banach spaces whose Lévy measure satisfies the stronger
integrability condition (9) for the norm (see Examples 23 and 24). This yields the existence of
Iν =

∫

D0
xν(dx) as a Bochner integral. This is always the case for subordinators in Birkhoff-

Kakutani cones of Section 5.

The Laplace transform of a subordinator with Fourier transform (11) is obtained by
standard analytic continuation.

Proposition 12 Let K be a proper cone of a separable Banach space B and let {Zt : t ≥ 0}
be a Lévy process with the special representation (11). Let S be a K-valued infinitely divisible
random variable with the same law as Z1. Then

a) The Laplace transform of S is of the form

Ee−f(S) = exp {−Φ(f)} f ∈ K∗ (12)

with Laplace exponent

Φ(f) =

∫

K

(

1 − e−f(x)
)

ν(dx) + f(γ0). (13)

b) The Laplace transform of Zt is given by

Ee−f(Zt) = exp {−tΦ(f)} f ∈ K∗. (14)

Proof of Theorem 10. We have to show that Zt takes values in K almost surely. For
each ε > 0, consider the jumps sum process Z△ε

t defined by (7) where △ε = {x : ‖x‖ > ε}.
We observe that Z△ε

t ∈ K almost surely. Indeed, suppose that there exists C ∈ B0 contained
in B\K such that the process in (7) satisfies ZC

t 6= 0 with positive probability, then 0 <
P

(

ZC
t 6= 0

)

≤ 1 − e−tν(C) which is not possible since ν(C) = 0. Thus Z△ε

t ∈ K a.s.
Similar to the one-dimensional case, since γ0 ∈ K it is enough to prove that Jt = Zt−tγ0 ∈

K almost surely. Notice that Jt and Zt have the same jumps and therefore J△ε

t = Z△ε

t a.s.

Hence
{

J△ε

t

}

is a K-valued process and its characteristic functional is given by (8) on the

Borel set K ∩ {x : ‖x‖ > ε}. Since K is convex and closed then K = ∩∞
k=1 {x : gk (x) ≥ 0}

for a sequence of continuous linear functionals gk. Then, for u ≥ 0,

Ee−ugk(J△ε
t ) = exp

{

t

∫

K∩{x:‖x‖>ε}

(

e−ugk(x) − 1
)

ν(dx)

}

.
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Letting ε ↓ 0 we get

Ee−u limε↓0 gk(J△ε
t ) = exp

{

t

∫

K

(

e−ugk(x) − 1
)

ν(dx)

}

,

where the right hand side is finite by (10) and tends to 1 as u decreases to zero. Therefore
limε↓0 gk(J

△ε

t ) exists a.s. and it is nonnegative for each k. From (11) and the fact that Z△ε

t

and Zt − Z△ε

t are independent

Eeigk(Jt−J△ε
t ) = exp

{

t

∫

K∩{x:‖x‖≤ε}

(

eigk(x) − 1
)

ν(dx)

}

where the right hand side tends to 1 as ε ↓ 0 and therefore gk(Jt) = limε↓0 gk(J
△ε

t ) almost

surely. Since gk

(

J△ε

t

)

is nonnegative and increasing as ε ↓ 0 for all k, then gk(Jt−J
△ε

t ) ≥ 0.

Hence Jt − J△ε

t and J△ε

t are in K and therefore Jt ∈ K.

Proposition 8 and Theorem 10 yield a stronger result.

Corollary 13 Let K be a proper cone of B. Let {Zt : t ≥ 0} be a B-valued Lévy process with
generating triplet (A, ν, γ) satisfying (a), (b), (c) in Theorem 10 as well as the additional
condition (9). Then

∫

D0
xν(dx) is a Bochner integral and the process Z is a subordinator of

bounded variation.

While in finite dimensions every subordinator is of bounded variation, for infinite di-
mensional Banach spaces there are subordinators of unbounded variation. This is the case
when the ν-Pettis centering Iν is not Bochner integrable. For example, let σn, n ≥ 1, be
a sequence of one-dimensional independent subordinators, where for each n ≥ 1, σn has
generating triplet (0, νn, n

−1) with Lévy measure νn = n−2δ{n}. Then Zt = (σ1(t), σ2(t), ...)
is a subordinator in c+0 with drift γ0 = 0 and Lévy measure ν(C) =

∑∞
n=1 n

−21C(nen), where
{en}n≥1 is the sequence of unit vectors in c+0 . Then

∫

D0

‖x‖ ν(dx) =

∞
∑

n=1

n−1 = ∞,

but Iν =
∑∞

n=1 n
−1en ∈ c+0 and for any f ∈ l1 = c∗0, f = (f1,, f2,...),

∫

D0

|f(x)| ν(dx) =

∞
∑

n=1

n−1 |fn| <∞.

¿From Theorem 10 we have that Z has the special Lévy-Khintchine representation and
therefore from (9) in Proposition 8, Z cannot have bounded variation.
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3.2 Convergence of non-compensated jumps

Whether the converse of Theorem 10 is true or not, relies in the analysis of the sums of
the non-compensated jumps of the subordinator falling into the cone. While in the finite
dimensional case these sums are always convergent ([24, Th. 3.21]), for infinite dimensional
Banach spaces a more detailed analysis is needed.

Fix t > 0 and consider for each ε > 0, the sum of non-compensated jumps of size bigger
than ε, defined in (7),

Z△ε

t =
∑

s<t

∆Zs1△ε
(∆Zs) (15)

where △ε = {x : ‖x‖ > ε} and ∆Zs = Zs − Zs−. Observe that for any sequence εn ↓ 0, one
has the alternative representation of (15) as sums of independent random elements in K

Z
△εn

t =

n
∑

k=1

ξk (16)

where ξ1 = Z
△ε1
t , ξk =

∑

s<t ∆Zs1△εk,εk−1
(∆Zs) , k ≥ 2, with △εk,εk−1

= {x : εk < ‖x‖ ≤

εk−1}.
We first prepare a technical lemma on the one-dimensional processes f(Zt), f ∈ B∗.

Lemma 14 Let K be a proper cone of B and let {Zt : t ≥ 0} be a K-valued Lévy process.
For any f ∈ K∗, the one dimensional family f(Z△ε

t ) is nonnegative, increasing as ε ↓ 0 and
bounded by f(Zt), almost surely.

Proof. The process {f(Zt) : t ≥ 0} is a one dimensional subordinator since {Zt} is a
K-valued Lévy process and f ∈ K∗. Its corresponding sum of non-compensated jumps

[f (Zt)]
△f

ε :=
∑

s<t

(f(Zs) − f(Zs−)) 1{f(x):|f(x)|>ε} (f(Zs) − f(Zs−))

is nonnegative, increasing as ε ↓ 0 and bounded by f (Zt). Hence limε↓0 [f (Zt)]
△f

ε exists.

Let εn be any decreasing sequence to 0 and let εn(f) = εn ‖f‖
′

. Assume, without

loss of generality, that ‖f‖
′

> 0. If f (∆Zs) > εn(f) then ‖∆Zs‖ > εn. Therefore

[f (Zt)]
△f

εn(f) ≤ f(Z
△εn

t ) almost surely for every n ≥ 1 and hence f(Z
△εn

t ) is nonnega-

tive almost surely. Next, when ε2 < ε1 we have that △ε1 ⊂ △ε2 and hence f(Z
△ε2
t −Z

△ε1
t ) =

∑

s<t f(∆Zs)1{x:ε2<‖x‖≤ε1} (∆Zs) ≥ 0, proving the increasingness. Finally, let ε > 0 and

note that f(Z△ε

t ) =
∑

s<t f (∆Zs) 1{x:‖x‖>ε} (∆Zs) is bounded by f(Zt) almost surely since
it represents a finite number of jumps of the one-dimensional subordinator {f(Zt)}.
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For each t > 0 the jumps sum Z△ε

t is K-increasing as function of ε and it is K-majorized
by Zt.

Lemma 15 Z
△ε2
t − Z

△ε1
t ∈ K for ε1 < ε2 and Zt − Z△ε

t ∈ K for ε > 0.

Proof. If ε1 < ε2 then Z
△ε2
t − Z

△ε1
t =

∑

s<t ∆Zs1{x:ε1<‖x‖≤ε2}(∆Zs) ∈ K. This proves
the first assertion. If 0 ≤ s < t then Zt− − Zs = limε↓0 Zt−ε − Zs ∈ K. Hence, if 0 < s1 <
s2 < ... < sn ≤ t

Zt −
n

∑

k=1

(Zsk
− Zsk−) = Zt +

n
∑

k=1

(Zsk− − Zsk
)

= Zt − Zsn
+ (Zs2− − Zs1) + ...+ (Zsn− − Zsn−1) + Zs1−

which belongs to K. Thus Zt − Z△ε

t ∈ K for all ε > 0.

In order to get more insight into the structure of cone-valued Lévy processes on infinite
dimensional Banach spaces, we require additional assumptions on the cone. The following
weak result always holds for subordinators with values in normal cones.

Theorem 16 Let K be a proper normal cone of B and let {Zt : t ≥ 0} be a K-valued Lévy

processes. Then the jumps sum Z
△εn

t is w.u.C. almost surely for any sequence εn ↓ 0.

Proof. By assumption, any continuous linear functional f on B can be decomposed into
f = f+ − f− where f+ ∈ K∗ and f− ∈ K∗. It is enough to prove the assertion for any
positive (with respect to K) linear functional since |f | = f+ + f−. Let f ∈ K∗. ¿From (16)
∑n

k=1 f(ξk) = f(Z
△εn

t ) which is increasing as function of εn and bounded, by Lemma 14.
Therefore

∑n
k=1 f(ξk) converges a.s.

Under the additional condition on the norm convergence of the jumps sum, the converse
of Theorem 10 is true for proper normal cones.

Theorem 17 Let K be a proper normal cone of a separable Banach space B and let
{Zt : t ≥ 0} be a K-subordinator. If the jumps sum Z△ε

t converges a.s. in norm as ε ↓ 0,
then the characteristic functional of Z has the special Lévy-Khintchine representation (11)
and its generating triplet satisfies conditions (a)-(c) in Theorem 10. In particular, there
exists a ν-Pettis centering Iν such that γ0 = γ − Iν .
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Proof. Step 1. We first prove (b), that is, ν is concentrated on K. For some sequence of
continuous linear functionals gk we have K = ∩∞

k=1 {x : gk (x) ≥ 0}. Then for each k ≥ 1, the
one dimensional subordinator {gk (Zt)} has only nonnegative jumps since it is nonnegative.
So if C is contained in ∪∞

k=1 {x : gk (x) < 0} then ν (C) = 0. Thus ν is concentrated on K.
Step 2. We now show that the Gaussian part is zero. Let △ε = {x : ‖x‖ > ε} ∩K. By

assumption Z△ε

t converges strongly to some Z0
t as ε ↓ 0 almost surely. Therefore the process

{Zt − Z0
t } is continuous almost surely and

Eeif(Zt−Z0
t ) = exp

{

−
1

2
(Af, f) + if(γ0)

}

. (17)

Since Zt − Z△ε

t ∈ K for all ε > 0 (Lemma 15) then Zt − Z0
t ∈ K by closedness of K. Hence

for every f+ ∈ K∗ the process {f+(Zt − Z0
t )} is nonnegative, continuous and Gaussian,

therefore var (f+(Zt − Z0
t )) = (Af+, f+) = 0. This gives var (f(Zt − Z0

t )) = 0 for any
f ∈ B∗, which shows that the covariance operator A is null.

Step 3. We check the required form of the drift. The fact that γ0 ∈ K follows since
f(Zt − Z0

t ) ≥ 0 for every f ∈ K∗ and from (17) we get γ0 ∈ K. Moreover, using A = 0, (17)
and the fact that (see (8))

Eeif(Z0
t ) = lim

ε↓0
Eeif(Z△ε

t ) = exp

{

t

∫

K

(

eif(x) − 1
)

ν(dx)

}

, (18)

we obtain (11).
Next, let f+ ∈ K∗. From (3), (18) and

Eeif+(Z0
t ) = lim

ε↓0
exp

{

t

∫

{x∈K:ε<‖x‖≤1}

[

eif+(x) − 1 − if+(x)
]

ν(dx)

+t

∫

{x∈K:‖x‖>1}

(

eif+(x) − 1
)

ν (dx) + it

∫

{x∈K:ε<‖x‖≤1}

f+(x)ν (dx)

}

we have that exp
{

it
∫

ε<‖x‖≤1
f+(x)ν (dx)

}

converges as ε ↓ 0. This implies the convergence

of the degenerate distribution at point t
∫

ε<‖x‖≤1
f+(x)ν (dx) and consequently

∫

ε<‖x‖≤1
f+(x)ν (dx) →

∫

D0
f+(x)ν (dx) as ε ↓ 0. Since ν is concentrated on K and K∗ is a

generating cone of B∗, (10) holds for every f ∈ B∗.
Finally, Iν = γ − γ0 ∈ B is a well defined ν-Pettis centering, since (10) holds and

∫

D0
f(x)ν (dx) = f(γ − γ0) for any f ∈ B∗ by the uniqueness of the generating triplet of the

process Z.

Lemma 15 and Theorem 17 yield the following result for subordinators with values in
regular cones.
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Theorem 18 Let K be a proper regular cone of a separable Banach space B and let
{Zt : t ≥ 0} be a K-subordinator. Then

a) The jump process Z△ε

t in (15) is always norm convergent a.s.
b) If K is normal, Z has the special Lévy-Khintchine representation.

4 Regular subordinators

Given a proper cone K of a separable Banach space B, a K-subordinator {Zt : t ≥ 0} is
called a regular subordinator in K or a K-valued regular subordinator if its has the special
Lévy-Khintchine representation (11).

4.1 Subordinators in LK-cones

In the case of LK-cones every subordinator is a regular subordinator.

Theorem 19 Let K be an LK-cone of a separable Banach space B. A B-valued Lévy
process is a K-subordinator if and only if it is regular.

Proof. Assume the special Lévy-Khintchine representation, then by Theorem 10 the
process Z is K-valued. Conversely, if Z is a K-valued Lévy process then the assertion
follows from Proposition 2 and Theorem 18 (b).

As a special case of Theorem 19 we recover a result formulated in [11, Cor. p. 278], that
considered a restricted class of cones. Here we give a rigorous proof of this result by proving
that the underlying cone is an LK-cone.

Proposition 20 Let B be a separable Banach space with a proper cone K such that there
is a continuous linear functional f0 satisfying k0 = infx∈K,‖x‖=1 f0(x) > 0.

A B-valued Lévy process has the special Lévy-Khintchine representation if and only if it
is a K-valued process.

Proof. We first observe that for 0 6= x ∈ K , 0 < k0 ≤ f0(x/ ‖x‖) and therefore

‖x‖ ≤ k−1
0 f0(x), x ∈ K. (19)

For any nonzero continuous linear functional f on B, define f1(x) = f(x)+‖f‖
′

k−1
0 f0(x)

and f2(x) = ‖f‖
′

k−1
0 f0(x) for all x ∈ B. Then f1, f2 ∈ K∗ and f1 − f2 = f. Indeed, observe

that f2 is nonnegative on K since f0(x) > 0 for x ∈ K and using (19) f1 is also nonnegative
on K. Then K∗ is a generating cone for B∗.

13



Let
∑∞

k=1 xk be any w.u.C. series of elements in K and let sn =
∑n

k=1 xk. Then
∑∞

k=1 |f0(xk)| is finite and for n > m, sn−sm ∈ K and therefore ‖sn − sm‖ ≤ k−1
0 f0(sn−sm).

Then (sn) is norm convergent and hence from Proposition 1, K does not contain any copy
of c+0 . Then, K is an LK-cone and the result then follows from Theorem 19.

As a consequence of Propositions 7 and 12, infinitely divisible random elements in LK-
cones are characterized by a special form of their Laplace transform. The next result may
be thought as the Banach space analogue of the well known characterization of the Laplace
transform of a real nonnegative infinitely divisible random variable in [10, Th. 13.7.2]. It is
proved in [8] for normal and regular cones of general ordered vector spaces.

Corollary 21 Let K be an LK-cone of a separable Banach space B. In order that a K-
valued random variable S have an infinitely divisible law it is necessary and sufficient that
S have the Laplace transform (12).

Proof. Suppose S is an infinitely divisible random variable in K and let {Zt : t ≥ 0} be
the associated K-subordinator such that S and Z1 have the same law. From Theorem 19
the process Z is a K-regular subordinator. Then from Proposition 12 (b) Z has the Laplace
transform (12). The converse is immediate.

Remark 22 a) It remains the open question whether the above result is a characterization
of LK-cones. That is, given a proper normal cone, is it true that every K-subordinator
is a K-regular subordinator if and only if K is a LK-cone (which contains no isomorphic
copy of c+0 )? We believe the answer is positive and that the characterization is related to the
existence of a Pettis integral.

b) It is well known that the convergence of sums of independent symmetric random vari-
ables in a Banach Space is related to the geometry of the space. For example, [12] and [15]
characterize the class of separable Banach spaces B for which the boundedness of the par-
tial sums of independent random variables implies the convergence of the series, as those
containing no copy of c0. In this direction we point out that the non-compensated sum of
jumps has non symmetric elements, and that a symmetric argument does not lead us to the
characterization.

4.2 Examples of regular subordinators in arbitrary proper cones

Theorem 10 gives a general method for constructing regular subordinators from the original
Lévy-Khintchine representation (3) in a proper cone. Below we use this technique to con-
struct α-stable and tempered stable regular subordinators in an arbitrary proper cone K of
a general separable Banach space.
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Example 23 Let B be a separable Banach space with a proper cone K. Recall from [16,
Prop. 6.3.1] that a probability measure µ on B has α-stable distribution, 0 < α < 2, if and
only if its characteristic functional has the form

µ̂t(f) = exp

{

c−1
α t

∫

(0,∞)

∫

∂U

(

eirf(y) − 1 − irf(y)1U(ry)
) λ(dy)

r1+α
dr + itf(γ)

}

for f ∈ B∗, where γ ∈ B, cα > 0 is a constant and λ is the spectral measure of µ con-
centrated on the unit sphere ∂U of the unit closed ball U of B. Then, from Proposition
7, there exists a Lévy process {Zt : t ≥ 0} such that Zt has the α-stable distribution
µ. Let 0 < α < 1 and assume that λ is concentrated on SK = {x ∈ K : ‖x‖ = 1}. Let
ν(C) = c−1

α

∫

(0,∞)

∫

SK
1C(ry)λ(dy) dr

r1+α , for C ∈ B0, which is concentrated on K. Since

∫

D0

‖x‖ ν(dx) = c−1
α

∫

(0,1)

∫

SK

λ(dy)
dr

rα
= c−1

α

1

1 − α
λ(SK) <∞,

condition (9) is satisfied and we have that
∫

D0
xν(dx) and

∫

SK
yλ(dy) are well defined Bochner

integrals and
∫

D0
|f(x)| ν(dx) < ∞ for each f ∈ B∗. Next, choose γ0 such that γ0 = γ−

c−1
α

1
1−α

t
∫

SK
yλ(dy) belongs to K. Then assumptions (a)-(c) in Theorem 10 are satisfied.

Therefore the Lévy process Z is concentrated on K and has characteristic functional (11).
Furthermore, using the fact that

∫

(0,∞)

(

e−rf(y) − 1
)

dr
r1+α = {f(y)}α Γ(−α) for every f ∈ K∗,

the Laplace transform of Z given by Proposition 12 becomes

Ee−f(Zt) = exp

{

c−1
α Γ(−α) t

∫

SK

{f(y)}α λ(dy) − tf(γ0)

}

(20)

for f ∈ K∗. The K-valued Lévy process {Zt : t ≥ 0} is called α-stable subordinator. .

The family of finite dimensional tempered stable distributions was introduced in [20].
This class includes the case of distributions obtained by exponential tilting of positive stable
distributions; see [2]. In analogy, an infinite dimensional α-tempered stable regular subordi-
nator is constructed as follows.

Example 24 Let B be a separable Banach space with a proper cone K. For 0 < α < 2, let
υ be a σ-finite measure on B0 = B\{0} such that

∫

B0
‖x‖α υ(dx) <∞.

A probability measure µ on B is tempered stable if it is infinitely divisible without Gaussian
part and with Lévy measure

ν(C) =

∫

B0

∫

(0,∞)

1C(ry)
e−r

r1+α
drυ(dy), C ∈ B0. (21)
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Assuming that υ is concentrated on K, we also have that ν is concentrated on K. Observe
that for 0 < α < 1,

∫

D0

‖x‖ ν(dx) ≤

∫

B0

∫

(0,1)

‖y‖α e−r

r1+α
drυ(dy) <∞,

which gives the existence of the ν-Pettis centering Iν = kα

∫

0<‖y‖≤1
yυ(dy) as a Bochner

integral, where kα =
∫ 1

0
e−r

r1+αdr. Let γ ∈ B be such that γ0 = γ − Iν ∈ K. Then, by Theorem
10 the associated Lévy process {Zt : t ≥ 0} is concentrated on K. This process is called
α-tempered subordinator. The case α = 1/2 may be thought as the Banach space version of
the well known one dimensional inverse Gaussian process.

5 Subordinators in Birkhoff-Kakutani Spaces

5.1 Birkhoff-Kakutani cones

Birkhoff [6] and Kakutani [14] studied the so-called Abstract-Lebesgue spaces (AL-spaces)
which are Banach lattices where the norm is additive in the cone of positive elements. There
are more general Banach spaces where this additive property holds.

Definition 25 Let (B, ‖·‖) be a Banach space and let K be a proper cone of B. The triplet
(B, ‖·‖ , K) is called a Birkhoff-Kakutani space if there exists a continuous linear functional
f0 ∈ B∗ such that f0(x) = ‖x‖ for every x ∈ K. In this case, it is said that K is a
Birkhoff-Kakutani cone.

Birkhoff-Kakutani spaces have important properties collected in the next result.

Proposition 26 Let (B, ‖·‖ , K) be a Birkhoff-Kakutani space. Then
a) K has generating dual cone.
b) Every weakly unconditionally Cauchy series in K is norm convergent.
c) K contains no subcones isomorphic to c+0 .
d) K is a regular cone.
e) K is an LK-cone.

Proof. a) Assume that f0 is a continuous linear functional on B such that f0(x) = ‖x‖
for all x ∈ K. Let f be any nonzero continuous linear functional on B. Define f1(x) =

f(x) + ‖f‖
′

f0(x) and f2(x) = ‖f‖
′

f0(x) for all x ∈ B. Clearly f1 and f2 are continuous
linear functionals on B which are nonnegative on K and f1 − f2 = f .
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b) Let (xn) be a sequence in K and let sn =
∑n

k=1 xk. For every f ∈ B∗
∑∞

k=1 |f(xk)| is
finite, in particular for f0. If n > m, sn − sm ∈ K and therefore f0(sn − sm) = ‖sn − sm‖ .
Then (sn) is norm convergent.

c) Follows from Proposition 1, (d) follows using (a), (c) and Proposition 2, and finally
(e) follows from (a) and (c).

Several interesting Banach spaces provide examples of Birkhoff-Kakutani spaces and
their associated LK-cones. First we mention the AL-spaces introduced by Birkhoff [6] and
characterized by Kakutani [14] which are Banach lattices whose cone of positive elements is
of Birkhoff-Kakutani type; see [22]. Other concrete examples are the following.

Example 27 a) The Euclidean space Rd with the norm ‖x‖ = |x1|+ |x2|+ ...+ |xd| and Rd
+

as a proper cone.
b) The finite dimensional Banach space of real symmetric d× d matrices Md×d, with the

trace norm ‖A‖ = tr((AAT )1/2) and the proper cone M+
d×d of nonnegative definite matrices.

c) The Banach space (L1(H), ‖·‖) of trace class operators of a separable Hilbert space H,
with trace norm ‖S‖ =

∑∞
n=1 sn (where sn are the eigenvalues of (SS∗)1/2) and the proper

cone L+
1 (H) of positive trace class operators.

Examples (b) and (c) provide Birkhoff-Kakutani spaces which are not lattices. More
generally, the Banach dual of any C∗-algebra is a Birkhoff-Kakutani space.

Example 28 Recall that a Banach algebra A over C with involution x → x∗ satisfying
‖xx∗‖ = ‖x‖2 is called a C∗-algebra. Let A∗ denote the Banach dual of A and Asa = {x ∈
A : x = x∗} denote the selfadjoint elements of A. Let A+ = {xx∗ : x ∈ A} be the (proper)
cone of Asa and A∗

+ be the proper cone of positive linear functionals of A∗. The cone A∗
+ is

generating for A∗ ([23, p. 270]) and the dual norm ‖·‖′ is additive in A∗
+ ([23, Cor. 6.4.2]).

A continuous linear functional f on A can be defined satisfying f(φ) = ‖φ‖ for every φ ∈
A∗

+. Therefore
(

A∗, ‖·‖′ , A∗
+

)

is a Birkhoff-Kakutani space. Conditions for separability of
duals of C∗-algebras are given in [25].

5.2 The associated norm subordinator process

Cone-valued Lévy processes in Birkhoff-Kakutani spaces have several properties similar to
the one dimensional subordinators.
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Proposition 29 Let (B, ‖·‖ , K) be a separable Birkhoff-Kakutani space.
a) All K-valued subordinators are K-regular subordinators and the Lévy measure ν sat-

isfies
∫

(1 ∧ ‖x‖) ν(dx) <∞ (22)

and γ −
∫

0<‖x‖≤1
xν(dx) ∈ K, where the last integral is in the sense of Bochner.

b) In order that a K-valued random element S has an infinitely divisible law it is necessary
and sufficient that S have the Laplace transform (12), where γ0 ∈ K and the Lévy measure
ν is concentrated on K satisfying the integrability condition (22).

c) Every K-valued subordinator has bounded variation on each interval [0, t], t > 0,
almost surely.

Proof. ¿From Proposition 26 K is a LK-cone. By Theorem 19, a K-subordinator is
a regular subordinator. Let f0 ∈ B∗ such that f0(x) = ‖x‖ for x ∈ K. Hence condition
(22) follows from (10) since ν is concentrated on K. Next (b) is obtained from (a) and
Proposition 12. Finally, (c) follows from (a) and Proposition 8.

Proposition 29 (b) answers in an affirmative way a question in [8, Remark 2] of whether
there are Banach spaces other than lattices such that the condition (22) is satisfied for
infinitely divisible cone valued elements.

For any cone-valued Lévy process in a Birkhoff-Kakutani space its associated norm pro-
cess is a one dimensional subordinator.

Theorem 30 Let (B, ‖·‖ , K) be a separable Birkhoff-Kakutani space and let {Zt : t ≥ 0} be
a K-valued subordinator with drift γ0 and Lévy measure ν. Then the process {‖Zt‖ : t ≥ 0}
is a one dimensional subordinator with Lévy-Khintchine representation

Eeiu‖Zt‖ = exp

{
∫

R+

(

eiur − 1
)

ν ◦ ‖·‖−1 (dr) + iu ‖γ0‖

}

u ∈ R, (23)

where
∫

0<r≤1

rν ◦ ‖·‖−1 (dr) <∞.

The Laplace transform of {‖Zt‖ : t ≥ 0} is given by

Ee−u‖Zt‖ = exp {−tΦ(u)} u ∈ R+,

with Laplace exponent

Φ(u) =

∫

R+

(

1 − e−ur
)

νZ ◦ ‖·‖−1 (dr) + u ‖γ0‖ . (24)
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Proof. For each u ∈ R take the continuous linear functional uf0 on B where f0(x) = ‖x‖
for all x ∈ K. Then, from (11) in Theorem 10 the characteristic functional of {Zt} evaluated
in the linear functional uf0 gives

Eeiu‖Zt‖ = exp

{

t

(
∫

K

(

eiu‖x‖ − 1
)

ν(dx) + iu ‖γ0‖

)}

u ∈ R,

from which (23) is obtained. Using the Laplace transform (12), a similar argument as above
gives (24).

5.3 Norm-inheritance sample path properties

For a Birkhoff-Kakutani space (B, ‖·‖ , K), some asymptotic sample path properties of the
associated one dimensional norm subordinators are inherited by the cone-valued subordina-
tors. These results are new, even in the finite dimensional cone Rd

+, d > 2, and for the cone
of nonnegative definite d× d matrices.

Proposition 31 (Law of large numbers) Let {Zt : t ≥ 0} be K-valued subordinator with
drift γ0

Z. Then

P

(

lim
t→0+

∥

∥

∥

∥

Zt

t
− γ0

Z

∥

∥

∥

∥

= 0

)

= 1.

Proof. Theorem 10 implies that {Zt − tγ0
Z : t ≥ 0} is a K-valued subordinator with zero

drift. Let {σt : t ≥ 0}be the corresponding norm subordinator which also has zero drift (i.e.
σt = ‖Zt − tγ0

Z‖). Then Proposition 3.8 in [4] implies limt→0+ σt/t = 0 almost surely and
the result follows.

The following two zero-one laws for the limsup of the rate of growth of a subordinator in
a Birkhoff-Kakutani space are characterized in terms of the behavior of the Lévy measure
and the Laplace exponent of the associated norm subordinator.

For small times we have.

Proposition 32 Let {Zt : t ≥ 0} be a K-subordinator and let {σt : t ≥ 0} be its norm
subordinator with Lévy measure νσ and Laplace exponent Φσ. Let I(t) =

∫ t

0
ν̄σ(x)dx where

ν̄σ(x) = νσ((x,∞)), x > 0, and suppose that

lim inf
x→0+

I(2x)/I(x) > 1. (25)

Let h : [0,∞) → [0,∞) be an increasing function. Then the following are equivalent:
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a) P
(

lim supt→0+ ‖Zt/h(t)‖ = ∞
)

= 1

b)
∫ 1

0
ν̄σ(h(t))dt = ∞

c)
∫ 1

0
Φσ(1/h(t))dt = ∞.

When the above conditions fail we have that

P

(

lim
t→0+

‖Zt/h(t)‖ = 0

)

= 1.

Proof. We apply Proposition 3.10 in [4] to the one dimensional subordinator σt = ‖Zt‖,
t ≥ 0, since its Lévy measure νσ satisfies (25). This yields the equivalence of (a), (b) and
(c).

For large times, the following rates of growth results are also easily derived from the
one-dimensional case in [4, Th. 3.13].

Proposition 33 Let {Zt : t ≥ 0} be a K-subordinator such that E ‖Z1‖ = ∞. Let
{σt : t ≥ 0} be its norm subordinator with Lévy measure νσ and Laplace exponent Φσ. Let
h : [0,∞) → [0,∞) be an increasing function such that the function t→ h(t)/t is increasing
as well. Then the following are equivalent:

a) P (lim supt→∞ ‖Zt/h(t)‖ = ∞) = 1

b)
∫ ∞

1
ν̄σ(h(t))dt = ∞

c)
∫ ∞

1

{

Φσ(1/h(t)) − (1/h(t)) Φ
′

σ(1/h(t))
}

dt = ∞.

If the above conditions fail then P (limt→∞ ‖Zt/h(t)‖ = 0) = 1.

We finally point out how laws of iterated logarithm for cone-valued subordinators in
a Birkhoff-Kakutani space (B, ‖·‖ , K) are easily transferred from those corresponding to
the norm subordinator. Recall that a positive measurable function ϕ : (0,∞) → (0,∞) is
regularly varying at ∞ (respectively, at 0+) if for each c > 0, the ratio ϕ(cx)/ϕ(x) converges
in (0,∞) as x tends to ∞ (respectively, to 0+). In both cases there exists ρ > 0 (called the
index of ϕ) such that ϕ(cx)/ϕ(x) converges to cρ. Let

ψ1(t) =
log |log(t)|

ϕσ(t−1 log |log(t)|)
, 0 < t < e−1

and

ψ2(t) =
log log(t)

ϕσ(t−1 log log(t))
, e < t <∞,

where ϕσ is the inverse function of Φσ.
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Proposition 34 Let {Zt : t ≥ 0} be K-valued subordinator and Φσ the Laplace exponent of
the norm-subordinator {σt : t ≥ 0}.

a) If Φσ is regularly varying at ∞ with index ρ ∈ (0, 1) then

P

(

lim inf
t→0+

∥

∥

∥

∥

Zt

ψ1(t)

∥

∥

∥

∥

= ρ(1 − ρ)(1−ρ)/ρ

)

= 1.

b) If Φσ is regularly varying at 0+ with index ρ ∈ (0, 1) then

P

(

lim inf
t→∞

∥

∥

∥

∥

Zt

ψ2(t)

∥

∥

∥

∥

= ρ(1 − ρ)(1−ρ)/ρ

)

= 1.

Proof. a) Since the Laplace exponent Φσ of the one dimensional subordinator {σt : t ≥
0} is regularly varying at ∞ with index ρ ∈ (0, 1) we can apply Theorem 3.11 in [4] to
yield lim inf

t→0+
σt/ψ1(t) = ρ(1 − ρ)(1−ρ)/ρ almost surely. The result follows from the fact that

σt = ‖Zt‖. Similarly (b) follows using Theorem 3.14 in [4].
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