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Abstract

Conditioning Markov processes to avoid a set is a classical problem that has been

studied in many settings. In the present article we study the question if a Lévy process

can be conditioned to avoid an interval and, if so, the path behavior of the conditioned

process. For Lévy processes with finite second moments we show that conditioning is

possible and identify the conditioned process as an h-transform of the original killed

process. The h-transform is explicit in terms of successive overshoot distributions and

is used to prove that the conditioned process diverges to +∞ and −∞ with positive

probabilities.
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1 Introduction

Conditioning Markov processes to avoid sets is a classical problem. Indeed, suppose

(Px)x∈E is a family of Markov probabilities on the state space E, and that T is the first

hitting time of a fixed set. When T is almost surely finite, it is non-trivial to construct

and characterise the conditioned process through the natural limiting procedure

lim
s→∞

P
x(Λ | s < T ) (1.1)

or the randomized version

lim
q→0

P
x(Λ | eq < T ), (1.2)

for Λ ∈ Ft and x ∈ E. Here, (Ft)t≥0 denotes the natural filtration of the underlying

Markov process and eq are independent exponentially distributed random variables with

parameter q > 0.

A classical example is Brownian motion conditioned to avoid the negative half-line. In

this case, the limits (1.1) and (1.2) lead to a so-called Doob h-transform of the Brownian

motion killed on entering the negative half-line, by the positive harmonic function

h(x) = x on (0,∞). This Doob h-transform turns out (see Chapter VI.3 of [20]) to be

the Bessel process of dimension 3, which is transient. This example is typical, in that

a conditioning procedure leads to a new process which is transient where the original

process was recurrent.

Extensions of this result have been obtained in several directions, most notably to

random walks and Lévy processes. A prominent example with several applications

is that of a Lévy process conditioned to stay positive, which was found by Chaumont

and Doney [5] using the randomised conditioning (1.2). In that case, the associated

harmonic function h is given by the potential function of the descending ladder height

process. Similarly, Bertoin and Doney [2] have shown how to condition a random walk

to stay non-negative. Other examples include random walks conditioned to stay in a

cone (Denisov and Wachtel [7]), isotropic stable processes conditioned to stay in a cone

(Kyprianou et al. [15]), spectrally negative Lévy processes conditioned to stay in an

interval (Lambert [17]), subordinators conditioned to stay in an interval (Kyprianou et

al. [13]), Lévy processes conditioned to avoid the origin (Pantí [18] and Yano [24]) and

self-similar Markov processes conditioned to avoid the origin (Kyprianou et al. [16]).

The purpose of this article is to take advantage of the path discontinuities of Lévy

processes and to condition them to avoid an interval. In Döring et al. [8] this problem

was tackled for strictly stable processes since their structure as self-similar Markov

processes allowed to deduce the right harmonic functions. The proofs were based on the

so called deep factorisation (see Kyprianou et al. [12, 14]), which analyses stable process

using the Lamperti-Kiu transform. In the present article, we consider Lévy processes

with zero mean and finite variance. This assumes less structure on the Lévy process, but

at the same time excludes the stable processes, which have infinite second moments.

The discrete-time analogue of our problem was considered by Vysotsky [23], who used
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Lévy processes conditioned to avoid an interval

a Doob h-transform to condition a centred random walk with finite second moment to

avoid an interval. One of the harmonic functions we will discover is the analogue of the

harmonic function found by Vysotsky for random walks, but the techniques needed are

different.

Before presenting our results, we introduce the most important definitions and

results concerning Lévy processes. More details can be found, for example, in Bertoin

[1], Kyprianou [11] or Sato [22].

Lévy Processes: A Lévy process ξ is a stochastic process with stationary and inde-

pendent increments whose trajectories are almost surely right-continuous with left-limits

(RCLL). For each x ∈ R, we define the probability measure P
x under which the canonical

process ξ starts at x almost surely. We write P for the measure P
0. The dual measure

P̂
x denotes the law of the so-called dual process −ξ started at x. A Lévy process can be

identified using its characteristic exponent Ψ, defined by the equation E[eiqξt ] = e−tΨ(q),

q ∈ R, which has the Lévy-Khintchine representation:

Ψ(q) = iaq +
1

2
σ2q2 +

∫

R

(1− eiqx + iqx1{|x|<1})Π(dx), q ∈ R,

where a ∈ R is the so-called centre of process, σ2 ≥ 0 is the variance of the Brownian

component, and the Lévy measure Π is a real measure with no atom at 0 satisfying
∫

(x2 ∧ 1)Π(dx) <∞.

Our main assumption is:

(A) ξ has zero mean and finite variance, and is not a compound Poisson process.

We define TB = inf{t ≥ 0 : ξt ∈ B} for any open or closed set B ⊆ R. This is known to be

a stopping time with respect to the right-continuous natural enlargement of the filtration

induced by ξ, which we denote by (Ft)t≥0. For certain auxiliary results, we will need to

distinguish two cases:

(B) Π(b− a,∞) > 0, i.e., upward jumps avoiding [a, b] are possible

and

(B̂) Π(−∞, a− b) > 0, i.e., downward jumps avoiding [a, b] are possible

Killed Lévy processes and h-transforms: For a < b the killed transition measures

are defined as

p
[a,b]
t (x, dy) = P

x(ξt ∈ dy, t < T[a,b]), t ≥ 0.

The corresponding sub-Markov process is called the Lévy process killed in [a, b]. A

harmonic function for the killed process is a measurable function h : R\[a, b] → [0,∞)

such that

E
x
[

1{t<T[a,b]}h(ξt)
]

= h(x), x ∈ R\[a, b], t ≥ 0. (1.3)

A harmonic function taking only strictly positive values is called a positive harmonic

function. Thanks to the Markov property, harmonicity is equivalent to (1{t<T[a,b]}h(ξt))t≥0

being a P
x-martingale with respect to (Ft)t≥0. When h is a positive harmonic function,

the associated Doob h-transform is defined via the change of measure

P
x
h(Λ) := E

x
[

1Λ1{t<T[a,b]}
h(ξt)

h(x)

]

, x ∈ R\[a, b], (1.4)

for Λ ∈ Ft. From Chapter 11 of Chung and Walsh [6], we know that under P
x
h the

canonical process is a conservative strong Markov process. In Chapter 11 of Chung
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and Walsh [6] it is shown that (1.4) extends from deterministic times to (Ft)t≥0-stopping

times T ; that is,

P
x
h(Λ, T <∞) = E

x
[

1Λ1{T<T[a,b]}
h(ξT )

h(x)

]

, x /∈ [a, b], (1.5)

for Λ ∈ FT .
Ladder height processes and potential functions: A crucial ingredient in our

analysis is the potential function U− of the descending ladder height process, which is

positive harmonic for a Lévy process killed on the negative half-line. To introduce U−,

some notation is needed. Denote the local time of the Markov process (sups≤t ξs − ξt)t≥0

at 0 by L, which is also called the local time of ξ at the maximum. Let L−1
t = inf{s >

0 : Ls > t} denote the inverse local time at the maximum and κ(q) = − logE
[

e−qL
−1
1

]

,

for q ≥ 0, the Laplace exponent of L−1. We define Ht = sups≤L−1
t
ξs, the so-called

(ascending) ladder height process. It is well-known that H is a subordinator and we

denote by a+ the drift coefficient of H, and by µ+ its Lévy measure. Under the dual

measure P̂, the process L−1 is the inverse local time at the minimum, and we denote its

Laplace exponent by κ̂. Still under this dual measure, H is the descending ladder height

process, and we define a− and µ− to be its drift coefficient and Lévy measure.

The q-resolvents of H, for q ≥ 0, will be denoted by U q+; that is,

Uq+(dx) := E

[

∫

[0,∞)

e−qt1{H+
t ∈dx,L−1

t <∞} dt
]

.

For q = 0 we abbreviate U+(dx) = U0
+(dx), and denote the so-called potential function

by U+(x) = U+([0, x]), for x ≥ 0. We define U q− and U− according to the same procedure

for the descending ladder height process. If ξ is not a compound Poisson process, it is

known that U+ and U− are continuous.

2 Main results

Before stating the main results, some more notation is needed to define our harmonic

functions. We first define inductively the sequence of successive stopping times at which

the process jumps crossing a or b:

τ0 := 0,

τk+1 := inf{t > τk : ξt− > b, ξt ≤ b} ∧ inf{t > τk : ξt− < a, ξt ≥ a}.

Second, let K† := inf{k ≥ 1 : τk = T[a,b]} be the index indicating the time at which the

process hits the given interval, let

νxk (dy) = P
x(ξτk ∈ dy, τk <∞, k ≤ K†), x, y ∈ R \ [a, b]

be the distribution of the position of ξ after its k-th jump across the interval, for k ≥ 0.

It is important to note that each νxk can be expressed explicitly in terms of the Lévy

measures and potential measures of the ladder height processes. Indeed, νx1 is nothing

but an overshoot distribution, for which a formula is given in Proposition III.2 of Bertoin

[1], using that the overshoot of ξ has the same distribution as the overshoot of the

corresponding ladder height subordinator H. Applying the strong Markov property

successively yields explicit expressions for all other νxk which can be found at the

beginning of Section 4.
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Theorem 2.1. If Assumptions (A) and (B) hold, then the function

h+(x) :=















∞
∑

k=0

∫

(b,∞)

U−(y − b) νx2k(dy) if x > b

∞
∑

k=0

∫

(b,∞)

U−(y − b) νx2k+1(dy) if x < a

is a positive harmonic function for ξ killed on entering [a, b], i.e.

E
x
[

1{t<T[a,b]}h+(ξt)
]

= h+(x), t ≥ 0, x ∈ R \ [a, b].

If Assumption (B) is not satisfied, then h+ is still harmonic, but may not be positive.

To be precise, when (B) fails, h+ is positive on (b,∞) but zero on (−∞, a).

Similarly, under (A) and (B̂), the function

h−(x) :=















∞
∑

k=0

∫

(−∞,a)

U+(a− y) νx2k+1(dy) if x > b

∞
∑

k=0

∫

(−∞,a)

U+(a− y) νx2k(dy) if x < a

is positive harmonic as well. As above, when (B̂) fails, h− remains harmonic, but is

positive only on (−∞, a) and zero on (b,∞).

An important corollary of this discussion is the existence of positive harmonic func-

tions under the Assumption (A) only:

Corollary 2.2. If Assumption (A) holds, then all linear combinations of h+ and h− with

strictly positive coefficients are positive harmonic functions.

A significant part of the proof of Theorem 2.1 consists of showing that h± are finite.

As a consequence of this proof, we also obtain the inequality

P
x(K† − 1 ≥ k) ≤ γk, k ≥ 0, x ∈ R \ [a, b],

where γ is defined by (4.7). In other words, the number of crossings of the interval [a, b]

before it is hit is stochastically dominated by a geometric distribution.

The harmonic functions h+ and h− typically do not have a simple closed form (but

Section 3 below for an example where they do). This would appear to reduce their

applicability; however, we can use our definition to prove results on conditioning. We will

show that the conditioning in the sense of (1.2) works and, as a consequence of general

h-transform theory, that the conditioned process is strong Markov. Additionally, it turns

out that the harmonic functions are explicit enough to explain the limiting behavior of

trajectories under the conditioned law.

Remark 2.3. Vysotsky [23] considered the analogous problem for a centred random

walk S = (Sn)n∈N with finite variance. He derived a harmonic function V which is the

discrete analogue of some linear combination of h+ and h−. However, it does not appear

to be simple to translate the proofs of [23] to the case of a Lévy process. In discrete-time,

it is enough to show that V (S) is a martingale by considering the first time-step. In

continuous time, on the other hand, t ≤ T[a,b] does not hold almost surely for any t ≥ 0,

and different arguments are required.

With the harmonic functions h+, h− and their positive linear combinations it is now

possible to h-transform the killed process as in (1.4). The h-transforms P+ (resp. P−) are

defined through (1.4) with the positive harmonic functions h+ (resp. h−). We will show

how to condition the Lévy process in order to obtain h-transforms with h+ and h−, and

then derive the correct linear combination of h+ and h− corresponding to conditioning

the Lévy process to avoid the interval in the sense of (1.2).
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The next proposition gives a probabilistic representation of Px+ by conditioning to

avoid [a, b] and staying above b at late times. The analogous conditioning under (A) and

(B̂) below the interval results in the h-transform P
x
−.

Proposition 2.4. Assume (A) and (B). Then

P
x
+(Λ) = lim

qց0
P
x(Λ | eq < T[a,b], ξeq > b), x /∈ [a, b],

for Λ ∈ Ft, t ≥ 0.

To understand the Lévy process conditioned to avoid the interval without additional

condition on the late values a natural guess is an h-transform using a linear combination

of h+ and h−. Possible asymmetry of the Lévy process implies that different weights

must be chosen for h+ and h−. It emerges that the right harmonic function is

h := h+ + Ch−, where C = lim
qց0

κ(q)

κ̂(q)
. (2.1)

Note that, if ξ oscillates and has finite variance, then C ∈ (0,∞) exists; see, for instance,

Patie and Savov [19], Remark 2.21. From Corollary 2.2, it follows that h is a positive

harmonic function if we assume only (A). The h-transform of ξ killed in [a, b] with h from

(2.1) will be denoted by Pl, i.e.

P
x
l(Λ) = E

x
[

1Λ1{t<T[a,b]}
h(ξt)

h(x)

]

, x /∈ [a, b],

for Λ ∈ Ft. Our main result can now be formulated. Conditioning to avoid an interval

is always possible for Lévy processes with second moments and the conditioned law

corresponds to the h-transform with h from (2.1).

Theorem 2.5. Assume (A). Then,

P
x
l(Λ) = lim

qց0
P
x(Λ | eq < T[a,b]), x /∈ [a, b],

for Λ ∈ Ft, t ≥ 0.

We remark that one can see from our proofs that

lim
qց0

P
x(Λ | eq < T[a,b]) = lim

qց0
P
x(Λ, t < eq | eq < T[a,b]), x /∈ [a, b],Λ ∈ Ft.

In particular the h-transform P
x
l(Λ) also equals the probability on the right-hand side. A

characterisation of this form (i.e. including the event t < eq) appears in different settings

of conditioned Lévy processes, e.g. for the Lévy process conditioned to stay positive,

Chaumont and Doney [5].

Typically the first property analyzed for a conditioned process is the long-time

behavior. It is often the case that the conditioning turns a recurrent process into a

transient process. Nonetheless, the limit behavior under P±, and in particular Pl, is

a priori unclear. Processes might be oscillating, diverge to +∞ or −∞, or might even

diverge to both infinities with positive probability. The next proposition covers the case

P+:

Proposition 2.6. Assume (A) and (B). Then P
x
+( lim
t→∞

ξt = +∞) = 1 for all x /∈ [a, b].

Analogously, assuming (A) and (B̂) one can show that ξ drifts to −∞ almost surely

under Px−. It remains to consider the behaviour of (ξ,Pxl). Our final theorem shows that

Lévy processes with second moments conditioned to avoid an interval drift to either +∞
or −∞, each with (explicit) positive probabilities:
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Theorem 2.7. Assume (A). Then, Pxl is transient in the sense that

E
x
l

[

∫

[0,∞)

1{ξt∈K} dt
]

<∞, x /∈ [a, b],

for all bounded K ⊆ R \ [a, b]. More precisely,

P
x
l

(

lim
t→∞

ξt = +∞
)

=
h+(x)

h(x)
and P

x
l

(

lim
t→∞

ξt = −∞
)

=
Ch−(x)

h(x)
, x /∈ [a, b],

so that, in particular, Pxl -almost all trajectories do not oscillate.

In the recent article [8] it was proved that stable processes conditioned to avoid an

interval are transient. Since stable processes have infinite second moments, Theorem

2.7 does not apply, and it remains unclear if trajectories oscillate or diverge to +∞ and

−∞ with positive probabilities. This is not merely a technical issue with our proof: for a

stable process, the functions h+ and h−, as defined above, are actually infinite at every

point of R \ [a, b]; this can be shown directly using explicit formulas for the potential

functions and overshoot distributions (see, e.g., Rogozin [21]).

3 An explicit example

When ξ is a Lévy process with no drift and two-sided exponential jumps, it is possible

to compute the harmonic functions h+, h− and h explicitly. Let

ξt = σBt +

Nt
∑

i=1

Yi, t ≥ 0, (3.1)

where σ ≥ 0, (Bt)t≥0 is a standard Brownian motion, and
∑Nt

i=1 Yi is a compound Poisson

process with rate λ > 0 and absolutely continuous jump distribution with density

fY (y) =
1

2
ηe−ηy1{y>0} +

1

2
ηe−η(−y)1{y<0}.

For definiteness, let σ =
√
2 and λ = 1. The Laplace exponent ψ of ξ, given by E[e−θξt ] =

e−tψ(θ), can be expressed, for θ ∈ (−η, η), by

ψ(θ) = −θ2 − θ2

(η + θ)(η − θ)
=
θ(β + θ)

η + θ
· (−θ)(β − θ)

η − θ
, (3.2)

where β =
√

η2 + 1 > η. Note that ξ oscillates and has finite variance, so (A) holds, (B)

and (B̂) both hold as well. Let

υ(θ) = υ̂(θ) =
θ(β + θ)

η + θ
= θ + (β − η)

∫ ∞

0

(1− e−θx)ηe−ηx dx, θ > −η,

which is the Laplace exponent of a subordinator with unit drift, jump rate β − η and

exponential jumps of parameter η. Since

ψ(θ) = υ(θ)υ̂(−θ),

the uniqueness of the Wiener–Hopf factorisation [11, Theorem 6.15(iv)] implies that υ

and υ̂ are indeed the Laplace exponents of the ascending and descending ladder height

subordinators, respectively.
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Since

∫

[0,∞)

e−θx U−(dx) =

∫

[0,∞)

e−θx U+(dx) =
1

υ(θ)
=

η + θ

θ(β + θ)
(3.3)

by [11, equation (5.23)], we can identify the potential measures

U−(dx) = U+(dx) =
( η

β
+
β − η

β
e−βx

)

dx,

and the potential functions

U−(x) = U+(x) =
η

β
x+

β − η

β2
(1− e−βx), x ≥ 0. (3.4)

To find h+ in closed form we first need to find the measures νxk explicitly. This can in

principle be done using the expressions we have just found for U± and the Lévy measures

of the ladder height subordinators, but in fact the overshoot distributions have already

been found in Kou and Wang [9], Corollary 3.1, where

P
x(ξT[a,∞)

∈ dy) =
η(β − η)

β
(1− e−β(a−x))e−η(y−a) dy, x < a < y,

and

P
x(ξT(−∞,b]

∈ dy) =
η(β − η)

β
(1− e−β(x−b))e−η(b−y) dy, x > b > y,

are proven.

We now claim that

νx2k+1(dy) = c2kνx1 (dy), x < a, y > b, (3.5)

and

νx2k+2(dy) = c2kνx2 (dy), x, y > b, (3.6)

hold for all k ≥ 0, where c = e−η(b−a)(β − η)/(β + η). For proving this, note that

∫

(b,∞)

(1− e−β(z−b))e−η(z−a) dz =

∫

(−∞,a)

(1− e−β(a−z))e−η(b−z) dz

= e−η(b−a)
β

η(β + η)
.

For k = 0 the claims are clearly correct. Next, note that for x > b:

νx2 (dy) =

∫

(−∞,a)

P
z(ξT[a,∞)

∈ dy)Px(ξT(−∞,b]
∈ dz)

=
(η(β − η)

β

)2

(1− e−β(x−b))e−η(y−a) dy

∫

(−∞,a)

(1− e−β(a−z))e−η(b−z)dz

=
(η(β − η)

β

)2

(1− e−β(x−b))e−η(y−a)e−η(b−a)
β

η(β + η)
dy

= c
η(β − η)

β
(1− e−β(x−b))e−η(y−a) dy.

EJP 24 (2019), paper 55.
Page 8/32

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP306
http://www.imstat.org/ejp/


Lévy processes conditioned to avoid an interval

Now, let us assume the claims are correct for k − 1, k ≥ 1. Then, for x < a, b < y,

νx2k+1(dy) =

∫

(b,∞)

νz2k(dy)P
x(ξT[a,∞)

∈ dz)

= c2k−2

∫

(b,∞)

νz2 (dy)P
x(ξT[a,∞)

∈ dz)

= c2k−2c
(η(β − η)

β

)2

(1− e−β(a−x))e−η(y−a) dy

∫

(b,∞)

(1− e−β(z−b))e−η(z−a) dz

= c2k−1
(η(β − η)

β

)2

e−η(b−a)
β

η(β + η)
(1− e−β(a−x))e−η(y−a) dy

= c2k−1
(β − η

β + η

)

e−η(b−a)Px(ξT[a,∞)
∈ dy)

= c2kνx1 (dy),

which is (3.5). Similarly we get, for x, y > b,

νx2k+2(dy) =

∫

(−∞,a)

νz2k+1(dy)P
x(ξT(−∞,b]

∈ dz)

= c2k
∫

(−∞,a)

νz1 (dy)P
x(ξT(−∞,b]

∈ dz)

= c2k
∫

(−∞,a)

νz1 (dy) ν
x
1 (dz)

= c2kνx2 (dy)

which is (3.6).

Having formulas for U− and all νk we can proceed to compute h+. Combining (3.4),

(3.5) and (3.6) standard integration shows, for k ≥ 1,
∫

(b,∞)

U−(y − b) νx2k+1(dy) = c2k
∫

(b,∞)

U−(y − b) νx1 (dy)

= c2k
2c

β
(1− eβ(a−x))

=
2c2k+1

β
(1− eβ(a−x))

for x < a and
∫

(b,∞)

U−(y − b) νx2k+2(dy) = c2k
∫

(b,∞)

U−(y − b) νx2 (dy)

= c2k
2c2

β
(1− e−β(x−b))

=
2c2k+2

β
(1− e−β(x−b))

for x > b. Hence, substituting in the definition of h+ gives

h+(x) =
(

∞
∑

k=0

c2k+1
) 2

β
(1− e−β(a−x)) =

2c

β(1− c2)
(1− e−β(a−x))
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Lévy processes conditioned to avoid an interval

for x < a and

h+(x) =
η

β
(x− b) +

β − η

β2
(1− e−β(x−b)) +

(

∞
∑

k=0

c2k+2
) 2

β
(1− e−β(x−b))

=
η

β
(x− b) +

β − η

β2
(1− e−β(x−b)) +

2c2

β(1− c2)
(1− e−β(x−b))

=
η

β
(x− b) +

(β − η

β2
+

2c2

β(1− c2)

)

(1− e−β(x−b))

for x > b. Analogously we obtain

h−(x) =







2c
β(1−c2) (1− e−β(x−b)) if x > b
η
β
(a− x) +

(

β−η
β2 + 2c2

β(1−c2)

)

(1− e−β(a−x)) if x < a

and, finally,

h(x) =







η
β
(x− b) +

(

β−η
β2 + 2(c+c2)

β(1−c2)

)

(1− e−β(x−b)) if x > b

η
β
(a− x) +

(

β−η
β2 + 2(c+c2)

β(1−c2)

)

(1− e−β(a−x)) if x < a,

using that by symmetry κ = κ̂ and consequently C = limqց0 κ(q)/κ̂(q) = 1.

Remark 3.1. It does not seem to be straightforward to find a general class of examples

which are as explicit as this one. For instance, suppose ξ is a process in the ‘meromor-

phic class’ defined by [10], which includes those Lévy processes with rational Laplace

exponent. Then, the overshoot distributions can be expressed in terms of affine combi-

nations of exponential densities and their products (see [10, Theorem 3]) and the same

is true of the renewal measures U± (thanks to the expression for the Laplace exponent

of the ladder height process found in [10, Corollary 2(ii)]). Therefore, the measures νxk
from this work, and the functions h± and h, can be found as repeated convolutions of

measures of this type. This is explicit enough to permit numerical evaluation of h±, say,

but not to give satisfactory analytic expressions.

4 Proofs

Before going into the proofs let us discuss the form of the measures νk defined before.

We assume in the theorems that ξ oscillates, hence, all appearing first hitting times are

almost surely finite. Keep in mind that on the event {K† > k} the time τk is the time of

the kth jump across the interval. By the strong Markov property and νx0 (dy) = δx(dy), we

find the relations

νx2k+1(dy) =

∫

(b,∞)

P
z(ξT(−∞,b]

∈ dy) νx2k(dz) =

∫

(b,∞)

νz1 (dy) ν
x
2k(dz),

νx2k(dy) =

∫

(−∞,a)

P
z(ξT[a,∞)

∈ dy) νx2k−1(dz) =

∫

(−∞,a)

νz1 (dy) ν
x
2k−1(dz),

for x > b, and

νx2k+1(dy) =

∫

(−∞,a)

P
z(ξT[a,∞)

∈ dy) νx2k(dz) =

∫

(−∞,a)

νz1 (dy) ν
x
2k(dz),

νx2k(dy) =

∫

(b,∞)

P
z(ξT(−∞,b]

∈ dy) νx2k−1(dz) =

∫

(b,∞)

νz1 (dy) ν
x
2k−1(dz),
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Lévy processes conditioned to avoid an interval

for x < a. More generally, the strong Markov property also implies the relation

∫

(b,∞)

νzl (dy) ν
x
2k(dz) = νx2k+l(dy) and

∫

(−∞,a)

νzl (dy) ν
x
2k+1(dz) = νx2k+l+1(dy) (4.1)

for x > b and k, l ∈ N and the analogous identities hold for x < a. It is important to note

that (see e.g. Bertoin [1], Proposition III.2) analytic formulas exist for the overshoot

distributions:

P
x(ξT[a,∞)

∈ dy) =

∫

[x,a]

µ+(dy − u)U+(du− x), x < a < y, (4.2)

and, analogously,

P
x(ξT(−∞,b]

∈ dy) =

∫

[b,x]

µ−(u− dy)U−(x− du), x > b > y. (4.3)

Hence, analytic expressions for the νxk exist in the oscillating case even though these

become more involved for big k due to the recursive definition. As an example, for x > b,

we have

νx2 (dy) =

∫

(−∞,a)

P
z(ξT[a,∞)

∈ dy)Px(ξT(−∞,b]
∈ dz)

=

∫

(−∞,a)

[

∫

[b,x]

(

∫

[x,a]

µ+(dy − u)U+(du− x)
)

µ−(w − dz)
]

U−(x− dw).

4.1 Finiteness of the harmonic function

Since h+ and h− are defined by infinite series finiteness has to be proved. Along the

way we deduce upper bounds that are needed in the sections below.

Note that Assumption (A) implies that E [H1] and Ê [H1] are finite and this will be

crucial for the technical steps which are necessary to prove the following.

Proposition 4.1. Assume (A), then there are constants c1, c2, c3 ≥ 0 such that

h+(x) ≤ c1U−(x− b)1{x>b} + c2U+(a− x)1{x<a} + c3, x /∈ [a, b],

in particular h+(x) is finite for all x ∈ R \ [a, b].
Before we start with the proof, we need a lemma which is intuitively clear, but needs

a certain argumentation:

Lemma 4.2. Let ξ be a Lévy process which is not the negative of a subordinator. Then,

for all y, z > 0,

P(T(−∞,−y] > T[z,∞)) > 0.

Proof. Assume P(T(−∞,−y] ≤ T[z,∞)) = 1. For any x < 0, we have T[z−x,∞) ≥ T[z,∞)

almost surely under P, and it then follows that

P
x(T(−∞,x−y] ≤ T[z,∞)) = P(T(−∞,−y] ≤ T[z−x,∞))

≥ P(T(−∞,−y] ≤ T[z,∞))

= 1
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Lévy processes conditioned to avoid an interval

for all x < 0. With the strong Markov property we get, for s > 0,

P(T[z,∞) < s) ≤ P(T[z,∞) < T(−∞,−y] + s)

= E

[

P
ξT(−∞,−y] (T[z,∞) < s)

]

≤ P
−y(T[z,∞) < s)

≤ P
−y(T[z,∞) < T(−∞,−2y] + s)

= E
−y

[

P
ξT(−∞,−2y] (T[z,∞) < s)

]

≤ P
−2y(T[z,∞) < s).

Inductively we get P(T[z,∞) < s) ≤ P
−ny(T[z,∞) < s) for all n ∈ N and hence

P(T[z,∞) < s) ≤ lim
n→∞

P
−ny(T[z,∞) < s) = 0.

With this we see

P(T[z,∞) < +∞) = lim
s→∞

P(T[z,∞) < s) ≤ lim
s→∞

lim
n→∞

P
−ny(T[z,∞) < s) = 0,

but this cannot happen unless ξ is the negative of a subordinator. This concludes the

proof.

To prove Proposition 4.1 we will combine two statements. The discrete analogous

statements were also used (with different arguments) by Vysotsky [23] to show finiteness

of the harmonic function in the discrete case.

Lemma 4.3. Suppose that ξ is not a subordinator and E[H1] <∞, then

γ+ := sup
x<a

P
x(ξT[a,∞)

> b, T[a,∞) <∞) < 1.

Proof. If ξ is the negative of a subordinator it holds γ+ = 0. So assume that ξ is not the

negative of a subordinator, in particular we can apply Lemma 4.2.

We separate three regions of the range of x. First we consider very small x, i.e. we

consider the limit of x tending to −∞, then we consider the values of x which are close

to a and last we treat the remaining values.

We begin with x close to −∞. If ξ drifts to −∞, then P
x(T[a,∞] <∞) → 0 as xց −∞,

and in particular Px(ξT[a,∞)
> b, T[a,∞) <∞) → 0 also. Therefore there exist a K < a and

a γ1 < 1 such that Px(ξT[a,∞)
> b, T[a,∞) <∞) < γ1 when x ≤ K.

If ξ oscillates or drifts to ∞, the bound for x close to −∞ is more involved. Because

E [H1] <∞, ξ has stationary overshoots in the sense that the weak limit of Px(ξT[a,∞)
∈

dy) for xց −∞ exists. It can be expressed as

w-lim
xց−∞

P
x(ξT[a,∞)

∈ dy) =
1

E [H1]
(a+δa(dy) + µ̄+(y − a)dy), (4.4)

where a+ is the drift of (H,P) and µ+ its Lévy measure with the right-tail µ̄+. For the

first special version of a subordinator see for example Bertoin et al. [4], for the general

version for example Bertoin and Savov [3]. Since weak convergence is equivalent to

the pointwise convergence of the distribution function at continuity points, due to the
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Lévy processes conditioned to avoid an interval

explicit formula in (4.4) it holds that, for b > a,

lim
x→−∞

P
x(ξT[a,∞)

> b) =
1

E [H1]

∫

(b,∞)

µ̄+(y − a)dy

=
1

E [H1]

∫

(b−a,∞)

µ̄+(y)dy

<
1

E [H1]

∫

(0,∞)

µ̄+(y)dy

≤ 1.

Hence, also in this case there exist a K < a and a γ1 < 1 such that

P
x(ξT[a,∞)

> b) ≤ γ1

for all x ≤ K. Now we have to treat the case x ∈ (K, a). Therefore we separate two

cases.

Case 1: The process ξ is regular upwards. First, we consider the limit for x ր a.

Since ξ is regular upwards it holds

lim
xրa

P
x(ξT[a,∞)

> b, T[a,∞) <∞) < 1

and hence, there is some δ > 0 such that

γ2 := sup
x∈(a−δ,a)

P
x(ξT[a,∞)

> b, T[a,∞) <∞) < 1.

It remains to consider x ∈ (K, a− δ]. First note that

P
x(ξT[a,∞)

> b, T[a,∞) <∞)

= P
x(ξT[a,∞)

> b, T(−∞,K] < T[a,∞) <∞) + P
x(ξT[a,∞)

> b, T(−∞,K] > T[a,∞)).

For the first term we use the Markov property to get

P
x(ξT[a,∞)

> b, T(−∞,K] < T[a,∞) <∞) = E
x
[

1{T(−∞,K]<T[a,∞)<∞}P
ξT(−∞,K] (ξT[a,∞)

> b)
]

≤ γ1P
x(T(−∞,K] < T[a,∞) <∞)

≤ γ1P
x(T(−∞,K] < T[a,∞)).

Together we have for all x ∈ (K, a− δ]:

P
x(ξT[a,∞)

> b, T[a,∞) <∞) ≤ sup
x∈(K,a−δ]

(

P
x(ξT[a,∞)

> b, T(−∞,K] < T[a,∞) <∞)

+P
x(ξT[a,∞)

> b, T(−∞,K] > T[a,∞))
)

≤ sup
x∈(K,a−δ]

(

γ1P
x(T(−∞,K] < T[a,∞)) + P

x(T(−∞,K] > T[a,∞))
)

=: γ3.

With Lemma 4.2 (applying on the dual process which is not the negative of a subordinator)

we get

sup
x∈(K,a−δ)

P
x(T(−∞,K] > T[a,∞)) = P

a−δ(T(−∞,K] > T[a,∞)) < 1
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Lévy processes conditioned to avoid an interval

or, equivalently,

inf
x∈(K,a−δ)

P
x(T(−∞,K] < T[a,∞)) > 0.

Because of this it follows that

γ3 < sup
x∈(K,a−δ)

(

P
x(T(−∞,K] < T[a,∞)) + P

x(T(−∞,K] > T[a,∞))
)

= 1.

Case 2: The process ξ is not regular upwards. In this case it holds

sup
x∈(K,a)

P
x(T[a,∞) < T(−∞,K]) < 1,

or equivalently

inf
x∈(K,a)

P
x(T(−∞,K] < T[a,∞)) > 0. (4.5)

We split up again

P
x(ξT[a,∞)

> b, T[a,∞) <∞)

= P
x(ξT[a,∞)

> b, T(−∞,K] < T[a,∞) <∞) + P
x(ξT[a,∞)

> b, T(−∞,K] > T[a,∞)).

For the first term we use the Markov property to get

P
x(ξT[a,∞)

> b, T(−∞,K] < T[a,∞) <∞) = E
x
[

1{T(−∞,K]<T[a,∞)<∞}P
ξT(−∞,K] (ξT[a,∞)

> b)
]

≤ γ1P
x(T(−∞,K] < T[a,∞) <∞)

≤ γ1P
x(T(−∞,K] < T[a,∞)).

Together we have for all x ∈ (K, a):

P
x(ξT[a,∞)

> b, T[a,∞) <∞) ≤ sup
x∈(K,a)

(

P
x(ξT[a,∞)

> b, T(−∞,K] < T[a,∞) <∞)

+P
x(ξT[a,∞)

> b, T(−∞,K] > T[a,∞))
)

≤ sup
x∈(K,a)

(

γ1P
x(T(−∞,K] < T[a,∞)) + P

x(T(−∞,K] > T[a,∞))
)

=: γ3.

From (4.5) follows that

γ3 < sup
x∈(K,a)

(

P
x(T(−∞,K] < T[a,∞)) + P

x(T(−∞,K] > T[a,∞))
)

= 1.

For both of the two cases, set γ+ := max(γ1, γ2, γ3) < 1.

Analogously to the lemma before it holds

γ− := sup
x>b

P
x(ξT(−∞,b]

< a, T(−∞,b] <∞) < 1,

provided that Ê[H1] <∞. The second Lemma which we need to prove Proposition 4.1 is

the following:

Lemma 4.4. Assume ξ oscillates and Ê [H1] < ∞. For all α ∈ (0, 1) there exists a

constant C+(α) > 0 such that

E
x
[

U+(a− ξT(−∞,b]
)1{ξT(−∞,b]

<a}

]

≤ αU−(x− b) + C+(α)

for all x > b.
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Lévy processes conditioned to avoid an interval

Proof. We start to show that
∫

(K,∞)

U+(y)µ−(dy) < +∞

for all K > 0. For that we estimate U+(y) for y > K with Proposition III.1 of Bertoin [1]

which says that there are constants c1, c2 ≥ 0 such that

U+(x) ≤ c1

(

Φ

(

1

x

))−1

and Φ(x) ≥ c2x

(

I

(

1

x

)

+ a+

)

for all x > 0, where Φ(λ) = E
[ ∫

[0,∞)
e−λHt dt

]

and I(x) =
∫

(0,x]
µ̄+(y) dy. We combine

these two statements as follows:

U+(x) ≤ c1

(

Φ
( 1

x

)

)−1

≤ c1

(

c2
1

x
(I(x) + a+)

)−1

=
c1
c2

x

I(x) + a+
≤ c1
c2

x

I(K)
= cKx

for all x > K, where cK = c1
c2I(K) . Hence, by assumption,

∫

(K,∞)

U+(y)µ−(dy) ≤ cK

∫

(K,∞)

y µ−(dy) ≤ cKÊ [H1] < +∞

for all K > 0. The second inequality can be seen from Ê [H1] =
∫

(0,∞)

y µ−(dy) + a−

because H is a subordinator. Now, for fixed α ∈ (0, 1), choose K = K(α) > 0 such that
∫

(K,∞)

U+(y)µ−(dy) < α. (4.6)

To prove the claim let us first split as

E
x
[

U+(a− ξT(−∞,b]
)1{ξT(−∞,b]

<a}

]

= E
x
[

U+(a− ξT(−∞,b]
)1{ξT(−∞,b]

∈[a−K,a)}

]

+ E
x
[

U+(a− ξT(−∞,b]
)1{ξT(−∞,b]

∈(−∞,a−K)}

]

and estimate the first summand, using monotonicity of U+, as

E
x
[

U+(a− ξT(−∞,b]
)1{ξT(−∞,b]

∈[a−K,a)}

]

≤ U+(K).

Applying the overshoot formula (4.3) the second summand can be treated in the following

way:

E
x
[

U+(a− ξT(−∞,b]
)1{ξT(−∞,b]

∈(−∞,a−K)}

]

=

∫

(−∞,a−K)

U+(a− y)Px(ξT(−∞,b]
∈ dy)

=

∫

[b,x]

(

∫

(−∞,a−K)

U+(a− y)µ−(w − dy)
)

U−(x− dw)

=

∫

[b,x]

(

∫

(K+w−a,∞)

U+(y − w + a)µ−(dy)
)

U−(x− dw)

≤
∫

[b,x]

(

∫

(K,∞)

U+(y)µ−(dy)
)

U−(x− dw)

≤ αU−(x− b).
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Lévy processes conditioned to avoid an interval

Defining C+(α) := U+(K) we proved

E
x
[

U+(a− ξT(−∞,b]
)1{ξT(−∞,b]

<a}

]

≤ αU−(x− b) + C+(α)

for all x > b.

Analogously to the lemma above one can show in the case that ξ oscillates and

E [H1] <∞ that for all α ∈ (0, 1) there exists a constant C−(α) > 0 such that

E
x
[

U−(ξT[a,∞)
− b)1{ξT[a,∞)

>b}

]

≤ αU+(a− x) + C−(α), x < a.

Now we are ready to combine Lemmas 4.3 and 4.4 to show finiteness of h+(x). The

idea how to combine them was also used by Vysotsky [23].

Proof of Proposition 4.1. Set

γ = max(γ+, γ−) < 1, (4.7)

and let α ∈ (γ, 1) be arbitrary. In the first step we use the finiteness of E [H1] and Ê [H1]

combined with Lemmas 4.3 and 4.4 to find an upper bound for

∫

(b,∞)

U−(y − b) νx2k(dy), x > b.

Note, from the definition of γ and by Lemma 4.3, that for x > b and k ≥ 1:

νx2k−1(−∞, a) =

∫

(b,∞)

P
y(ξT(−∞,b]

< a) νx2k−2(dy)

≤ γνx2k−2(b,∞)

= γ
(

1{k=1} + 1{k≥2}

∫

(−∞,a)

P
y(ξT[a,∞)

> b) νx2k−3(dy)
)

≤ γ
(

1{k=1} + γ1{k≥2}ν
x
2k−3(−∞, a)

)

.

Inductively we get

νx2k−1(−∞, a) ≤ γ2k−1

for x > b and k ≥ 1. Analogously for k ≥ 1 we can show

νx2k(b,∞) ≤ γ2k

for x > b and

νx2k−1(b,∞) ≤ γ2k−1 and νx2k(−∞, a) ≤ γ2k

for x < a. Now set C(α) = max(C−(α), C+(α)) and use Lemma 4.4 for k ≥ 1 to find

∫

(b,∞)

U−(y − b) νx2k(dy) =

∫

(−∞,a)

(

∫

(b,∞)

U−(y − b)Pv(ξT[a,∞)
∈ dy)

)

νx2k−1(dv)

≤
∫

(−∞,a)

αU+(a− v)νx2k−1(dv) + C(α) νx2k−1(−∞, a)

≤ α

∫

(−∞,a)

U+(a− v) νx2k−1(dv) + C(α)γ2k−1.
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Lévy processes conditioned to avoid an interval

We estimate the first term in the same way by

α2

∫

(b,∞)

U−(y − b)νx2k−2(dy) + C(α)αγ2k−2

and hence,
∫

(b,∞)

U−(y − b) νx2k(dy) ≤ α2

∫

(b,∞)

U−(b− y) νx2k−2(dy) + C(α)(γ2k−1 + αγ2k−2).

Going on with this procedure until νx0 we see

∫

(b,∞)

U−(y − b) νx2k(dy) ≤ U−(x− b)α2k + C(α)

2k−1
∑

i=0

γiα2k−1−i

= U−(x− b)α2k + C(α)α2k−1
2k−1
∑

i=0

( γ

α

)i

.

Now note

α2k−1
2k−1
∑

i=0

( γ

α

)i

= α2k−1

(

γ
α

)2k − 1
γ
α
− 1

=
γ2k − α2k

γ − α

and hence
∫

(b,∞)

U−(y − b) νx2k(dy) ≤ U−(x− b)α2k +
C(α)

γ − α
(γ2k − α2k)

for k ≥ 1 (for k = 0 we get obiously U−(x− b) as upper bound). In the same way we get

for x < a:
∫

(b,∞)

U−(y − b) νx2k+1(dy) ≤ U+(a− x)α2k+1 +
C(α)

γ − α
(γ2k+1 − α2k+1)

for k ≥ 0 (here we get an upper bound dependent on U+ because the number of steps is

odd). All together we get

h+(x)

≤ 1(b,∞)(x)U−(x− b)

∞
∑

k=0

α2k + 1(−∞,a)(x)U+(a− x)

∞
∑

k=0

α2k+1 +
C(α)

γ − α

∞
∑

k=0

(γk − αk)

=
1

1− α2
U−(x− b)1(b,∞)(x) +

α

1− α2
U+(a− x)1(−∞,a)(x) +

C(α)

γ − α

( 1

1− γ
− 1

1− α

)

which finishes the proof of Proposition 4.1.

4.2 Harmonicity of h+ and h−

In this section we give the proof of Theorem 2.1. Define, for q ≥ 0 and x /∈ [a, b], the

auxiliary functions

hq+(x) :=















∞
∑

k=0

∫

(b,∞)

U q−(y − b) νx2k(dy) if x > b

∞
∑

k=0

∫

(b,∞)

Uq−(y − b) νx2k+1(dy) if x < a

=















∞
∑

k=0

E
x
[

Uq−(ξτ2k − b)1{K†≥2k,τ2k<∞}

]

if x > b

∞
∑

k=0

E
x
[

Uq−(ξτ2k+1
− b)1{K†≥2k+1,τ2k+1<∞}

]

if x < a
,
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Lévy processes conditioned to avoid an interval

where U q−(dx) := Ê
[ ∫

[0,∞)
e−qt1{Ht∈dx,L−1

t <∞} dt
]

is the q-potential of the dual ladder

height process. It follows immediately that hq+(x) ≤ h+(x) for all x /∈ [a, b] and by

monotone convergence that hq+ converges pointwise to h+ for q ց 0.

Proposition 4.5. Assume (A) and let eq be independent exponentially distributed ran-

dom variables with parameter q > 0. Then, for x /∈ [a, b],

1

κ̂(q)
P
x
(

eq < T[a,b], ξeq > b
)

≤ hq+(x), q > 0, (4.8)

and

lim
qց0

1

κ̂(q)
P
x
(

eq < T[a,b], ξeq > b
)

= h+(x). (4.9)

To prove this crucial proposition we need a small lemma which is basically just the

strong Markov property:

Lemma 4.6. Let be s ≥ 0 and k ≥ 0. Then it holds

∫

(b,∞)

P
y(s < T(−∞,b]) ν

x
2k(dy) = P

x
(

s < τ2k+1 − τ2k,K
† ≥ 2k + 1

)

and
∫

(−∞,a)

P
y(s < T[a,∞)) ν

x
2k+1(dy) = P

x
(

s < τ2k+2 − τ2k+1,K
† ≥ 2k + 2

)

for x > b and

∫

(−∞,a)

P
y(s < T[a,∞)) ν

x
2k(dy) = P

x
(

s < τ2k+1 − τ2k,K
† ≥ 2k + 1

)

and
∫

(b,∞)

P
y(s < T(−∞,b]) ν

x
2k+1(dy) = P

x
(

s < τ2k+2 − τ2k+1,K
† ≥ 2k + 2

)

for x < a.

Proof. We focus on the case x > b and prove the first equality. We use the strong Markov

property in the shift operator formulation, see e.g. Chung and Walsh [6], p. 57. Therefore

we introduce D := {ω : [0,∞) → R |ω is RCLL}. The shift operator is a map θt : D → D

such that Xs ◦ θt = Xt+s. The strong Markov property tells that for a (Ft)t≥0-stopping

time T it holds

1{T<∞}E
ξT [Y ] = 1{T<∞}E

x
[

Y ◦ θT | FT
]

(4.10)

for all F∞ :=
⋃

t≥0 Ft-measurable and integrable Y . Here, we set T = τ2k and Y =

1{s<T(−∞,b]}. It is clear that Y is bounded and that Y is F∞-measurable can be seen as

follows:

{s < T(−∞,b]} = {T(−∞,b] ≤ s}C ∈ Fs ⊆ F∞.

With (4.10) we obtain for our choice of Y :

P
ξτ2k

(

s < T(−∞,b]

)

= E
x
[

1{s<T(−∞,b]} ◦ θτ2k | Fτ2k
]

.
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Lévy processes conditioned to avoid an interval

Using this we get

∫

(b,∞)

P
y(s < T(−∞,b]) ν

x
2k(dy)

= E
x
[

1{ξτ2k>b,K
†≥2k}P

ξτ2k (s < T(−∞,b])
]

= E
x
[

1{ξτ2k>b,K
†≥2k}E

x
[

1{s<T(−∞,b]} ◦ θτ2k | Fτ2k
]

]

= E
x
[

1{τ2k<T[a,b]}P
x(s+ τ2k < τ2k+1 | Fτ2k)

]

= E
x
[

P
x(τ2k < T[a,b], s < τ2k+1 − τ2k | Fτ2k)

]

= P
x(τ2k < T[a,b], s < τ2k+1 − τ2k)

= P
x(K† ≥ 2k + 1, s < τ2k+1 − τ2k).

We used that {ξτ2k > b} ∈ Fτ2k and {τ2k < T[a,b]} ∈ Fτ2k ∩ FT[a,b]
⊆ Fτ2k which can be

seen by Theorem 1.3.6 of [6]. The remaining claims follow analogously.

Now we continue the proof of Proposition 4.5 for which we use the identity

κ̂(q)U q−(x) = P
x(eq < T(−∞,0]), x > 0, q > 0, (4.11)

proved by Kyprianou [11], Section 13.2.1 for a general Lévy process.

Proof of Proposition 4.5. We only consider the case x > b and start to prove the bounds

1 ≤ κ̂(q)hq+(x)

Px(eq < T[a,b], ξeq > b)
≤ 1

Px(eq ≥ T[a,b])
. (4.12)

To derive the lower bound we define τ̃k = min(τk, T[a,b]). It follows, in particular, that

τ̃k = τk on K
† ≥ k and τ̃k+1 − τ̃k = 0 on K† ≤ k. For the next chain of equalities we use

(4.11), Lemma 4.6 and the lack of memory property of eq:

κ̂(q)

∫

(b,∞)

Uq−(y − b) νx2k(dy) =

∫

(b,∞)

P
y(eq < T(−∞,b]) ν

x
2k(dy)

= P
x(τ2k+1 − τ2k > eq,K

† ≥ 2k + 1)

= P
x(τ̃2k+1 − τ̃2k > eq)

= P
x(τ̃2k+1 > eq|eq ≥ τ̃2k)

=
P
x(eq ∈ [τ̃2k, τ̃2k+1))

Px(eq ≥ τ̃2k)
.

Furthermore, it holds that

P
x(eq ≥ τ̃2k) ≥ P

x(eq ≥ T[a,b])

because τ̃2k ≤ T[a,b]. So we obtain

P
x(eq ∈ [τ̃2k, τ̃2k+1)) ≤ κ̂(q)

∫

(b,∞)

Uq−(y − b) νx2k(dy) ≤
P
x(eq ∈ [τ̃2k, τ̃2k+1))

Px(eq ≥ T[a,b])
. (4.13)
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Lévy processes conditioned to avoid an interval

Before proving the bounds of (4.12) we note that

P
x(eq < T[a,b], ξeq > b) = P

x(eq < lim
k→∞

τ̃k, ξeq > b)

= P
x
(

∞
⋃

k=0

{eq ∈ [τ̃k, τ̃k+1), ξeq > b}
)

= P
x
(

∞
⋃

k=0

{eq ∈ [τ̃2k, τ̃2k+1)}
)

=
∞
∑

k=0

P
x(eq ∈ [τ̃2k, τ̃2k+1)).

(4.14)

The first equality follows from the definition of τ̃k and the facts that T[a,b] < ∞ almost

surely (because ξ is recurrent under Assumption (A)) and that τk diverges to +∞ almost

surely. The third one is due to the fact that for x < b the process remains above b only in

the intervals [τ̃2k, τ̃2k+1). With (4.14), summing (4.13) over k yields

κ̂(q)hq+(x) =

∞
∑

k=0

κ̂(q)

∫

(b,∞)

Uq−(y − b) νx2k(dy)

∈
[

P
x(eq < T[a,b], ξeq > b),

P
x(eq < T[a,b], ξeq > b)

Px(eq ≥ T[a,b])

]

which is (4.12). Since ξ is recurrent Px(eq ≥ T[a,b]) converges to 1 for q ց 0, hence,

(4.12) implies the claim.

The key for the proof of Theorem 2.1 are the relations in Proposition 4.5. We use

them in a similar way Chaumont and Doney [5] proved harmonicity of a certain function

for the Lévy process killed on the negative half-line.

Proof of Theorem 2.1. First note that (B) guarantees that h+(x) is strictly positive for

all x ∈ R \ [a, b], which is not the case for x < a when (B) fails. From now on Assumption

(B) won’t be used anymore. For x ∈ R \ [a, b] and t ≥ 0 we have to show

E
x
[

1{t<T[a,b]}h+(ξt)
]

= h+(x).

First we show that the left-hand side is smaller or equal to the right-hand side. This can

be done applying Proposition 4.5 in the first step and Fatou’s Lemma in the second one:

E
x
[

1{t<T[a,b]}h+(ξt)
]

= E
x
[

1{t<T[a,b]} lim
qց0

1

κ̂(q)
P
ξt(eq < T[a,b], ξeq > b)

]

≤ lim
qց0

1

κ̂(q)
E
x
[

1{t<T[a,b]}P
ξt(eq < T[a,b], ξeq > b)

]

(4.15)

= lim
qց0

q

κ̂(q)

∫

(0,∞)

e−qsEx
[

1{t<T[a,b]}P
ξt(s < T[a,b], ξs > b)

]

ds

= lim
qց0

q

κ̂(q)

∫

(0,∞)

e−qsPx(s+ t < T[a,b], ξs+t > b) ds

= lim
qց0

q

κ̂(q)
eqt

∫

(t,∞)

e−qsPx(s < T[a,b], ξs > b) ds

= lim
qց0

q

κ̂(q)
eqt

∫

(0,∞)

e−qsPx(s < T[a,b], ξs > b) ds
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− lim
qց0

q

κ̂(q)
eqt

∫

(0,t]

e−qsPx(s < T[a,b], ξs > b) ds

= lim
qց0

1

κ̂(q)
eqtPx(eq < T[a,b], ξeq > b)

− lim
qց0

q

κ̂(q)
eqt

∫

(0,t]

e−qsPx(s < T[a,b], ξs > b) ds

= h+(x)− lim
qց0

q

κ̂(q)
eqt

∫

(0,t]

e−qsPx(s < T[a,b], ξs > b) ds

= h+(x).

The last equality follows because, according to Kyprianou [11], Section 13.2.1, it holds

that limqց0
q

κ̂(q) = 0 if ξ oscillates. To show the equality it remains to show that we can

replace the inequality in (4.15) by an equality. To apply the dominated convergence

theorem, we use Proposition 4.5 which says also that

1

κ̂(q)
P
ξt(eq < T[a,b], ξeq > b) ≤ hq+(ξt) ≤ h+(ξt)

for all q > 0. Furthermore, we have just seen that

E
x
[

1{t<T[a,b]}h+(ξt)
]

≤ h+(x) <∞.

So we can apply dominated convergence to switch the limit and the integral.

4.3 Conditioning and h-transforms

The aim of this section is to prove Proposition 2.4 and Theorem 2.5.

Proof of Proposition 2.4. Integrating out eq and using Proposition 4.5, gives

lim
qց0

P
x(Λ | eq < T[a,b], ξeq > b)

= lim
qց0

1

Px(eq < T[a,b], ξeq > b)

∫

(0,∞)

qe−qsPx
(

Λ, s < T[a,b], ξs > b
)

ds

=
1

h+(x)
lim
qց0

1

κ̂(q)

∫

(0,∞)

qe−qsPx
(

Λ, s < T[a,b], ξs > b
)

ds

=
1

h+(x)
lim
qց0

1

κ̂(q)

∫

(0,t]

qe−qsPx
(

Λ, s < T[a,b], ξs > b
)

ds

+
1

h+(x)
lim
qց0

1

κ̂(q)

∫

(t,∞)

qe−qsPx
(

Λ, s < T[a,b], ξs > b
)

ds.

The first term is 0 because
∫

(0,t]

qe−qsPx
(

Λ, s < T[a,b], ξs > b
)

ds ≤
∫

(0,t]

qe−qs ds = 1− e−qt

and

lim
qց0

1− e−qt

κ̂(q)
= lim
qց0

1− e−qt

q
× lim
qց0

q

κ̂(q)
= t× 0 = 0.

EJP 24 (2019), paper 55.
Page 21/32

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP306
http://www.imstat.org/ejp/
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That 1− e−qt/q converges to t can be seen via l’Hopital’s rule and that q/κ̂(q) tends to 0

we have already seen in the proof of Theorem 2.1.

It follows by a substitution and the Markov property,

lim
qց0

P
x(Λ | eq < T[a,b], ξeq > b)

=
1

h+(x)
lim
qց0

1

κ̂(q)

∫

(t,∞)

qe−qsPx
(

Λ, s < T[a,b], ξs > b
)

ds

=
1

h+(x)
lim
qց0

e−qt

κ̂(q)

∫

(0,∞)

qe−qsPx
(

Λ, s+ t < T[a,b], ξs+t > b
)

ds

=
1

h+(x)
lim
qց0

1

κ̂(q)

∫

(0,∞)

qe−qsEx
[

1Λ1{t<T[a,b]}P
ξt(s < T[a,b], ξs > b)

]

ds

=
1

h+(x)
lim
qց0

1

κ̂(q)
E
x
[

1Λ1{t<T[a,b]}P
ξt(eq < T[a,b], ξeq > b)

]

.

From Proposition 4.5 we also know 1
κ̂(q)P

ξt(eq < T[a,b], ξeq > b) ≤ h+(ξt) for all q > 0

and 1Λ1{t<T[a,b]}h+(ξt) is integrable since h+ is harmonic. So we can use dominated

convergence to conclude

lim
qց0

P
x(Λ | eq < T[a,b], ξeq > b)

=
1

h+(x)
E
x
[

1Λ1{t<T[a,b]} lim
qց0

1

κ̂(q)
P
ξt(eq < T[a,b], ξeq > b)

]

=E
x

[

1Λ1{t<T[a,b]}
h+(ξt)

h+(x)

]

,

where we used again Proposition 4.5 in the final equality. Hence, conditioning is possible

and coincides with the h-transform with h+ which confirms Proposition 2.4.

For the proof of Theorem 2.5 we will use a corollary of Proposition 4.5.

Corollary 4.7. Assume (A) and let eq be an independent exponentially distributed

random variable with parameter q > 0. Then, for x /∈ [a, b], we have

P
x(eq < T[a,b]) ≤ κ̂(q)hq+(x) + κ(q)hq−(x), q > 0, (4.16)

and

lim
qց0

1

κ̂(q)
P
x(eq < T[a,b]) = h+(x) + Ch−(x), (4.17)

where C = limqց0
κ(q)
κ̂(q) .

Proof. Let be x /∈ [a, b]. With Proposition 4.5 and its counterpart for h− we have

P
x(eq < T[a,b], ξeq > b) ≤ κ̂(q)hq+(x) and P

x(eq < T[a,b], ξeq < a) ≤ κ(q)hq−(x)

from which the first claim follows. Furthermore we have again with Proposition 4.5:

lim
qց0

1

κ̂(q)
P
x(eq < T[a,b], ξeq > b) = h+(x)

and

lim
qց0

1

κ(q)
P
x(eq < T[a,b], ξeq < a) = h−(x).
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With this we get

lim
qց0

1

κ̂(q)
P
x(eq < T[a,b])

= lim
qց0

1

κ̂(q)
P
x(eq < T[a,b], ξeq > b) + lim

qց0

κ(q)

κ̂(q)

1

κ(q)
P
x(eq < T[a,b], ξeq < a)

= h+(x) + Ch−(x)

and the proof is complete.

Proof of Theorem 2.5. We follow a similar strategy as in the proof of Proposition 2.4.

First we use the second part of Corollary 4.7 and split up the integral again,

lim
qց0

P
x(Λ | eq < T[a,b])

= lim
qց0

1

Px(eq < T[a,b])

∫

(0,∞)

qe−qsPx
(

Λ, s < T[a,b]
)

ds

=
1

h+(x) + Ch−(x)
lim
qց0

1

κ̂(q)

∫

(0,∞)

qe−qsPx
(

Λ, s < T[a,b]
)

ds

=
1

h+(x) + Ch−(x)
lim
qց0

1

κ̂(q)

∫

(0,t]

qe−qsPx
(

Λ, s < T[a,b]
)

ds

+
1

h+(x) + Ch−(x)
lim
qց0

1

κ̂(q)

∫

(t,∞)

qe−qsPx
(

Λ, s < T[a,b]
)

ds.

Analogously to the proof of Proposition 2.4 the first term is just 0. Note that since

limqց0 κ(q)/κ̂(q) exists, the ratio is bounded for q ∈ (0, 1) by some β > 0. Hence, with

Corollary 4.7 we get

1

κ̂(q)
P
y(eq < T[a,b]) ≤ hq+(y) +

κ(q)

κ̂(q)
hq−(y) ≤ h+(y) + βh−(y)

for all y /∈ [a, b]. So we use dominated convergence to get

lim
qց0

P
x(Λ | eq < T[a,b])

=
1

h+(x) + Ch−(x)
lim
qց0

1

κ̂(q)

∫

(t,∞)

qe−qsPx
(

Λ, s < T[a,b]
)

ds

=
1

h+(x) + Ch−(x)
lim
qց0

e−qt

κ̂(q)

∫

(0,∞)

qe−qsPx
(

Λ, s+ t < T[a,b]
)

ds

=
1

h+(x) + Ch−(x)
lim
qց0

e−qt

κ̂(q)

∫

(0,∞)

qe−qsEx
[

1Λ1{t<T[a,b]}P
ξt(s < T[a,b])

]

ds

=
1

h+(x) + Ch−(x)
lim
qց0

1

κ̂(q)
E
x
[

1Λ1{t<T[a,b]}P
ξt(eq < T[a,b])

]

=
1

h+(x) + Ch−(x)
E
x
[

1Λ1{t<T[a,b]} lim
qց0

1

κ̂(q)
P
ξt(eq < T[a,b])

]

=
1

h+(x) + Ch−(x)
E
x
[

1Λ1{t<T[a,b]}

(

h+(ξt) + Ch−(ξt)
)

]

.
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4.4 Long-time behaviour

Finally, we analyze the transience behavior of the conditioned processes constructed

in the previous section.

Proof of Proposition 2.6. Step 1: We show that ξ under P
x
+ is almost surely bounded

from below. First note that, for x < a,

E
x
[

1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)
]

=

∫

(b,∞)

h+(y) ν
x
1 (dy)

=

∞
∑

k=0

∫

(b,∞)

∫

(b,∞)

U−(z − b) νy2k(dz) ν
x
1 (dy)

=

∞
∑

k=0

∫

(b,∞)

U−(z − b) νx2k+1(dz)

= h+(x).

For the first equality we used νx1 (dy) = P
x(ξT[a,∞)

∈ dy, T[a,∞) < T[a,b]) for x < a, in the

second we plugged-in the definition of h+(y) for y > b and used Fubini’s theorem, in the

third we used (4.1) and for the final equality we used the definition of h+(x) for x < a.

Since ξT(−∞,c]
< a for c < a it follows, for all x ∈ R \ [a, b], that

P
x
+(T(−∞,c] <∞ for all c < a)

= lim
c→−∞

P
x
+(T(−∞,c] <∞)

=
1

h+(x)
lim

c→−∞
E
x
[

1{T(−∞,c]<T[a,b]}h+(ξT(−∞,c]
)
]

=
1

h+(x)
lim

c→−∞
E
x
[

1{T(−∞,c]<T[a,b]}E
ξT(−∞,c]

[

1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)
]

]

=
1

h+(x)
lim

c→−∞
E
x
[

1{T(−∞,c]<T[a,b]}E
x
[

(1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)) ◦ θT(−∞,c]

| FT(−∞,c]

]

]

,

where we used again the strong Markov property (4.10) with Y =1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)

in the final equality. According to Theorem 1.3.6 of Chung and Walsh [6] it holds that

{T(−∞,c] < T[a,b]} ∈ FT(−∞,c]
∩ FT[a,b]

⊆ FT(−∞,c]
.

So we continue for all x ∈ R \ [a, b] with

E
x
[

1{T(−∞,c]<T[a,b]}E
x
[

(1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)) ◦ θT(−∞,c]

| FT(−∞,c]

]

]

= E
x
[

E
x
[

1{T(−∞,c]<T[a,b]}(1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)) ◦ θT(−∞,c]

| FT(−∞,c]

]

]

= E
x
[

1{T(−∞,c]<T[a,b]}

(

(1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)) ◦ θT(−∞,c]

)

]

.

Now consider just x < a and observe

E
x
[

1{T(−∞,c]<T[a,b]}

(

(1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)) ◦ θT(−∞,c]

)

]

=

∞
∑

k=0

E
x
[

1{T(−∞,c]∈[τ̃2k,τ̃2k+1)}

(

(1{T[a,∞)<T[a,b]}h+(ξT[a,∞)
)) ◦ θT(−∞,c]

)

]

=

∞
∑

k=0

E
x
[

1{T(−∞,c]∈[τ̃2k,τ̃2k+1)}1{τ̃2k+1<T[a,b]}h+(ξτ̃2k+1
)
]
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=

∞
∑

k=0

E
x
[

1{T(−∞,c]∈[τ2k,τ2k+1)}1{τ2k+1<T[a,b]}h+(ξτ2k+1
)
]

,

where τ̃k = min(τk, T[a,b]) as in the proof of Proposition 4.5. Combining the above

computations gives

P
x
+(T(−∞,c] <∞ for all c < a) (4.18)

=
1

h+(x)
lim

c→−∞

∞
∑

k=0

E
x
[

1{T(−∞,c]∈[τ2k,τ2k+1)}1{τ2k+1<T[a,b]}h+(ξτ2k+1
)
]

for x < a. Our aim is to switch the limit and the sum. In order to justify the dominated

convergence theorem it is enough to verify

∞
∑

k=0

E
x
[

1{τ2k+1<T[a,b]}h+(ξτ2k+1
)
]

<∞.

With Proposition 4.1 we have

E
x
[

1{τ2k+1<T[a,b]}h+(ξτ2k+1
)
]

≤ c1E
x
[

1{τ2k+1<T[a,b]}U−(ξτ2k+1
− b)

]

+ c3P
x(τ2k+1 < T[a,b])

≤ c1E
x
[

1{K†≥2k+1}U−(ξτ2k+1
− b)

]

+ c3ν
x
2k+1((b,∞))

≤ c1E
x
[

1{K†≥2k+1}U−(ξτ2k+1
− b)

]

+ c3γ
2k

where c1, c3 and γ are the constants from Proposition 4.1 and its proof. It follows that

∞
∑

k=0

E
x
[

1{τ2k+1<T[a,b]}h+(ξτ2k+1
)
]

≤ c1

∞
∑

k=0

E
x
[

1{K†≥2k+1}U−(ξτ2k+1
− b)

]

+ c3

∞
∑

k=0

γ2k

= c1h+(x) +
c3

1− γ2
<∞.

So we can switch the limit and the integral in (4.18). With the same upper bound for

every summand for itself we can even move the limit inside the expectation. Hence,

P
x
+(T(−∞,c] <∞ for all c < a)

=
1

h+(x)

∞
∑

k=0

E
x

[

lim
c→−∞

1{T(−∞,c]∈[τ2k,τ2k+1)}1{τ2k+1<T[a,b]}h+(ξτ2k+1
)

]

.

Since ξ oscillates (which implies τk<∞P
x-almost surely) we obtain that 1{T(−∞,c]∈[τ2k,τ2k+1)}

converges to 0 almost surely under Px for c→ −∞. Hence,

P
x
+(T(−∞,c] <∞ for all c < a) = 0

for x < a. For x > b it is proved analogously that

P
x
+(T(−∞,c] <∞ for all c < a)

=
1

h+(x)
lim

c→−∞

∞
∑

k=0

E
x
[

1{T(−∞,c]∈[τ2k+1,τ2k+2)}1{τ2k+2<T[a,b]}h+(ξτ2k+2
))
]
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and, with the above argumentation, we also find that Px+(T(−∞,c] <∞ for all c < a) = 0

for x > b. This finishes the arguments for Step 1.

Step 2: In the second step we show that ξ is transient under Px+, i.e. only spends

finite time in sets of the form [d, a) ∪ (b, c] for d < a and c > b. Actually, we even show

that the expected occupation is finite:

E
x
+

[

∫

[0,∞)

1{ξt∈[d,a)∪(b,c]}dt
]

=

∫

[0,∞)

P
x
+(ξt ∈ [d, a) ∪ (b, c]) dt

=

∫

[0,∞)

E
x
[

1{ξt∈[d,a)∪(b,c]}1{t<T[a,b]}
h+(ξt)

h+(x)

]

dt

≤ 1

h+(x)
sup

y∈[d,a)∪(b,c]

h+(y)

∫

[0,∞)

E
x
[

1{ξt∈[d,a)∪(b,c]}1{t<T[a,b]}

]

dt.

(4.19)

Recalling Proposition 4.1, supy∈[d,a)∪(b,c] h+(y) is finite and it remains to show finiteness

of
∫

[0,∞)

E
x
[

1{ξt∈[d,a)∪(b,c]}1{t<T[a,b]}

]

dt

which is just the potential of [d, a) ∪ (b, c] of the process killed on entering [a, b]. To

abbreviate we denote the potential of (ξ,Px) killed on entering a Borel set B by UB(x, dy).

It follows

U [a,b](x, [d, a) ∪ (b, c]) =

∞
∑

k=0

(

U (−∞,b](νx2k, (b, c]) + U [a,∞)(νx2k+1, [d, a))
)

.

To compute the righthand side we apply Proposition VI.20 of Bertoin [1] for y > b:

U (−∞,b](y, (b, c]) = U (−∞,0](y − b, (0, c− b])

=

∫

(0,c−b]

∫

[(y−b−u)+,y−b]

U+(du+ v − (y − b))U−(dv)

=

∫

[0,y−b]

(

∫

(0,c−b]

1{u≥y−b−v} U+(du− (y − b− v))
)

U−(dv)

=

∫

[0,y−b]

U+(c+ v − y)U−(dv)

≤ U+(c− b)U−(y − b).

It holds analogously that U [a,∞)(y, [d, a)) ≤ U−(a− d)U+(a− y) for y > a. So we have

U[a,b](x, [d, a) ∪ (b, c]) ≤ U+(c− b)

∞
∑

k=0

∫

(b,∞)

U−(y − b) νx2k(dy)

+ U−(a− d)
∞
∑

k=0

∫

(−∞,a)

U+(a− y) νx2k+1(dy)

= U+(c− b)h+(x) + U−(a− d))h−(x) <∞.
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It follows in particular that the time the process (ξ,Px+) spends in sets of the form

[d, a) ∪ (b, c] is finite almost surely. Together with the first result that the process

is bounded below almost surely and that the process is conservative it follows that

limt→∞ ξt = +∞ almost surely under Px+.

Proof of Theorem 2.7. The proof strategy is similar to the one above. Transience of the

conditioned process is verified again by computing the occupation measure using the

representation of the conditioned process as h-transform. The computation is in analogy

to (4.19), using that h = h+ + Ch− is bounded by Proposition 4.1.

Next, recall from the counterpart of Proposition 2.6 for Px− that under (B̂),

P
x
−(T(−∞,c] <∞) = 1, c < a

for all x ∈ R \ [a, b]. Since (1.5) implies

P
x
−(T(−∞,c] <∞) =

1

h−(x)
E
x
[

1{T(−∞,c]<T[a,b]}h−(ξT(−∞,c]
)
]

we deduce

E
x
[

1{T(−∞,c]<T[a,b]}h−(ξT(−∞,c]
)
]

= h−(x), c < a (4.20)

for all x ∈ R \ [a, b] under (B̂). If (B̂) fails we know

h−(x) =

{

0 if x > b

U+(a− x) if x < a
.

Let us check if (4.20) holds in this case, too. If x > b the left-hand side of (4.20) is 0

(because there are no jumps bigger than b− a), as well as the right-hand side. For x > a

the measure P
x
− corresponds to the process conditioned to stay below a which is known

to drift to −∞ (see Chaumont and Doney [5]). In particular it holds

P
x
−(T(−∞,c] <∞) = 1, c < a

from which we can deduce (4.20) in the same way as before. So (4.20) holds for all

x ∈ R \ [a, b] just under (A).
Again using (1.5) yields

P
x
l(T(−∞,c] <∞)

=
1

h(x)

(

E
x
[

1{T(−∞,c]<T[a,b]}h+(ξT(−∞,c]
)
]

+ E
x
[

1{T(−∞,c]<T[a,b]}Ch−(ξT(−∞,c]
)
]

)

=
1

h(x)
E
x
[

1{T(−∞,c]<T[a,b]}h+(ξT(−∞,c]
)
]

+
Ch−(x)

h(x)
.

In the proof of Proposition 2.6 we have already seen that Ex
[

1{T(−∞,c]<T[a,b]}h+(ξT(−∞,c]
)
]

vanishes for c→ −∞, hence,

P
x
l(ξ is unbounded below) = P

x
l(T(−∞,c] <∞ for all c < a) =

Ch−(x)

h(x)
.

So we get

P
x
l(ξ is bounded below) = 1− Ch−(x)

h(x)
=
h+(x)

h(x)

and, because of transience,

h+(x)

h(x)
= P

x
l(ξ is bounded below) = P

x
l( lim
t→∞

ξt = ∞).

Analogously one derives Pxl(limt→∞ ξt = ∞) = Ch−(x)
h(x) and the proof is complete.
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5 Extension to transient Lévy processes

When conditioning a process to avoid an interval, the most interesting case is when

the process is recurrent; if it is transient, it may avoid the interval with positive proba-

bility, and things become simpler. On the other hand, the conditionings in Proposition

2.4, to avoid the interval while finishing above (or below) it, may still be non-trivial. In

this section, we drop Assumption (A), and require only that ξ is not a compound Poisson

process and does not oscillate. In particular, we do not assume that ξ has finite second

moments; only for the study of h− do we need further conditions.

Without loss of generality, we assume from now on that ξ drifts to +∞, and indicate

which of our results still hold and which need modification. Under this assumption,

the function h defined by (2.1) simplifies to h+. This can be seen from the fact that

κ(0) = 0 < κ̂(0), which implies C = limqց0
κ(q)
κ̂(q) = 0.

5.1 Study of h = h+

For the study of h (which is now equal to h+) we need to distinguish two cases based

on whether or not condition (B) is satisfied.

5.1.1 Condition (B) holds

Since the Lévy process is transient, the event {T[a,b] = ∞} has positive probability for

every starting point. The conditioning simplifies dramatically and our results are still

valid, as we now demonstrate. Let ℓ(x) := P
x(T[a,b] = ∞) for x /∈ [a, b]. This is easily seen

to be harmonic using the strong Markov property:

E
x
[

1{t<T[a,b]}ℓ(ξt)
]

= E
x
[

1{t<T[a,b]}P
ξt(T[a,b] = ∞)

]

= lim
s→∞

E
x
[

1{t<T[a,b]}P
ξt(T[a,b] > s)

]

= lim
s→∞

P
x(T[a,b] > t+ s)

= P
x(T[a,b] = ∞).

(5.1)

Transience ensures that ℓ is a positive harmonic function. We next show that ℓ is indeed

a multiple of h = h+. To do so we will use the identity κ̂(q)Uq−(x) = P
x(eq < T(−∞,0]),

where eq is an independent exponentially distributed random variable with parameter

q > 0 (see Kyprianou [11], Section 13.2.1 for a general Lévy process). Since ξ drifts to

+∞, we have κ̂(0) > 0, and hence

κ̂(0)U−(x) = P
x(T(−∞,0] = ∞), x > 0.

The idea is to separate the two-sided entrance problem in infinitely many one-sided

entrance problems and use the strong Markov property to combine them. For x > b,

using the strong Markov property, we find

P
x(T[a,b] = ∞)

= P
x(T(−∞,b] = ∞) + P

x(T[a,b] = ∞, T(−∞,b] <∞)

= P
x(T(−∞,b] = ∞) + E

x
[

1{T(−∞,b]<∞,ξT(−∞,b]<a}P
ξT(−∞,b] (T[a,b] = ∞)

]

= κ̂(0)U−(x− b) + E
x
[

1{T(−∞,b]<∞,ξT(−∞,b]<a}E
ξT(−∞,b]

[

1{ξT[a,∞)
>b}P

ξT[a,∞) (T[a,b] = ∞)
]

]

= κ̂(0)U−(x− b) +

∫

(b,∞)

P
y(T[a,b] = ∞) νx2 (dy).
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Now we split up P
y(T[a,b] = ∞) in the same manner, i.e.,

P
y(T[a,b] = ∞) = κ̂(0)U−(y − b) +

∫

(b,∞)

P
z(T[a,b] = ∞) νx2 (dz).

Using
∫

(b,∞)

νz2 (dy) ν
x
2 (dz) = νx4 (dy) from (4.1) yields

P
x(T[a,b] = ∞)

= κ̂(0)
(

U−(x− b) +

∫

(b,∞)

U−(y − b) νx2 (dy)
)

+

∫

(b,∞)

P
y(T[a,b] = ∞) νx4 (dy).

By induction the following series representation is obtained:

P
x(T[a,b] = ∞) = κ̂(0)

∞
∑

k=0

∫

(b,∞)

U−(y − b) νx2k(dy).

For x < a a similar computation can be carried out, and we obtain

ℓ(x) = P
x(T[a,b] = ∞) =















κ̂(0)
∞
∑

k=0

∫

(b,∞)

U−(y − b) νx2k(dy) if x > b

κ̂(0)
∞
∑

k=0

∫

(b,∞)

U−(y − b) νx2k+1(dy) if x < a

= κ̂(0)h+(x) = κ̂(0)h(x).

Theorem 2.1: This is a consequence of the discussion above.

Theorem 2.5: Since we condition here on a positive probability event, the h-

transform and the conditioning are related in a standard way, using the strong Markov

property and integrating out eq:

E
x
[

1Λ1{t<T[a,b]}
ℓ(ξt)

ℓ(x)

]

=
1

Px(T[a,b] = ∞)
E
x
[

1Λ1{t<T[a,b]}P
ξt(T[a,b] = ∞)

]

= lim
qց0

1

Px(eq < T[a,b])
E
x
[

1Λ1{t<T[a,b]}P
ξt(eq < T[a,b])

]

= lim
qց0

P
x(Λ, t+ eq < T[a,b])

Px(eq < T[a,b])

= lim
qց0

eqtPx(Λ, t < eq < T[a,b])

Px(eq < T[a,b])

= lim
qց0

P
x(Λ, t < eq | eq < T[a,b]),

for Λ ∈ Ft, t ≥ 0.

Proposition 2.4: The conditioning of Proposition 2.4 is equivalent to the conditioning

of Theorem 2.5, since the additional condition to stay above the interval at late time

vanishes in the limit due to the transience towards +∞. Since h = h+ the result of

Proposition 2.4 follows.

Proposition 2.6 and Theorem 2.7: Since the conditioned measure is a restriction

of the original one, the long-time behaviour of the conditioned process is identical to that

of the original process. Hence, the statements of Proposition 2.6 and Theorem 2.7 hold.
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5.1.2 Condition (B) fails

The definition of h+ in this case simplifies to

h+(x) =

{

U−(x− b) if x > b

0 if x < a
.

This function is plainly not positive everywhere. It is nonetheless harmonic for the

process killed on entering [a, b]. The conditionings in Theorem 2.5 and Proposition 2.4

can still be carried out but, as we now prove, the results are somewhat different.

Let h↑ : (b,∞) → [0,∞) be given by h↑(x) = U−(x − b), the restriction of h+ to

(b,∞). As shown by Chaumont and Doney [5], this function is harmonic for the process ξ

killed on entering (−∞, b], and the h-transform of this process using h↑ is the process ξ

conditioned to avoid (−∞, b]. We will write (Px↑)x∈(b,∞) for the probabilities associated

with this Markov process.

Consider now the conditioning of Proposition 2.4. When x > b the process cannot

cross below the set [a, b] and return above it without hitting the set. Therefore, we have

that

lim
qց0

P
x(Λ, t < eq | eq < T[a,b], ξeq > b) = lim

qց0
P
x(Λ, t < eq | eq < T(−∞,b]) = P

x
↑(Λ),

the last equality being due to Chaumont and Doney [5]. For x < a, Px(eq < T[a,b], ξeq >

b) = 0 for every q > 0, so the conditioning does not have any sense. In total, the

conditioning of Proposition 2.4 reduces to conditioning ξ to avoid (−∞, b).

We turn next to the conditioning in Theorem 2.5. Let us define h↓ : (−∞, a) → [0,∞)

by h↓(x) = U+(a − x), which is a positive harmonic function for the process killed on

entering [a,∞) resulting in the process conditioned to avoid [a,∞) when h-transformed

with h↓. As before, we write (Px↓)x∈(−∞,a) for the probabilities associated with the

conditioned process, which is killed at its lifetime ζ. By the same reasoning in the

case where (B) holds, limqց0 P
x(T[a,b] > eq) = κ̂(0)h+(x) = κ̂(0)h↑(x) when x > b; and,

when x < a, using the asymptotics of T[a,∞) which we have already seen, we obtain

P
x(T[a,b] > eq) = P

x(T[a,∞) > eq) ∼ κ(q)U+(a − x) as q ց 0, since ξ cannot jump over

[a, b] from below. If x > b, and Λ ∈ Ft, the same technique as in the proof of Theorem 2.5

gives rise to the calculation

lim
qց0

P
x(Λ, t < eq | eq < T[a,b])

=
1

κ̂(0)h↑(x)
E
x
[

1Λ1{t<T[a,b]} lim
qց0

P
ξt(eq < T[a,b])

]

=
1

κ̂(0)h↑(x)
E
x
[

1Λ1{t<T[a,b]} lim
qց0

(

1{t<T(−∞,b]}κ̂(0)h↑(ξt) + 1{t>T(−∞,b]}κ(q)U+(a− ξt)
)

]

=
1

h↑(x)
E
x[h+(ξt)1Λ1{t<T(−∞,b]}] = P

x
↑(Λ).

Similarly, if x < a, we obtain limqց0 P
x(Λ, t < eq | eq < T[a,b]) = P

x
↓(Λ, t < ζ).

This shows that the conditioning from Theorem 2.5 leads not to a single Doob h-

transform of a killed Lévy process, but rather to a Markov process which behaves entirely

differently depending on whether it is started above or below the interval. The long-time

behaviour can be deduced from Chaumont and Doney [5]: the conditioned process

approaches +∞ when started above b, and is killed when started below a.

5.2 Study of h−

This section is kept informal; the claims can be proved by an adaptation of arguments

developed in Section 4.
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In order to study h− we need to assume that E[H1] < ∞ and Ê[H1] < ∞. Note that

here the descending ladder height subordinator has finite lifetime ζ, so we understand

Ê[H1] = Ê[H111<ζ ]. The function h− is merely superharmonic, in the sense that

E
x[h−(ξt)1{t<T[a,b]}] ≤ h−(x), x ∈ R \ [a, b].

We may still define the superharmonic transform

P
x
−(Λ, t < ζ) = E

x

[

1Λ1{t<T[a,b]}
h−(ξt)

h−(x)

]

, x ∈ R \ [a, b],

but the transformed process is now a killed Markov process, with lifetime ζ.

The dual version of the conditioning of Proposition 2.4 is then given by

P
x
−(Λ, t < ζ) = lim

qց0
P
x(Λ, t < eq | eq < T[a,b], ξeq < a), x ∈ R \ [a, b], (5.2)

and gives rise to a killed strong Markov process. This is a generalization of the subordi-

nator conditioned to stay below a level as studied in Kyprianou et al. [13].
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[14] A. E. Kyprianou, V. Rivero, and B. Şengül: Deep factorisation of the stable process II:

Potentials and applications, Ann. Inst. Henri Poincaré Probab. Stat., 54(1), (2018), 343–362.

MR-3765892

[15] A. E. Kyprianou, V. Rivero, and W. Satitkanitkul: Stable processes in a cone. arXiv:1804.08393

[16] A. E. Kyprianou, V. M. Rivero, and W. Satitkanitkul: Conditioned real self-similar Markov

processes, Stochastic Process. Appl., 129(3),(2019), 954–977. MR-3913275

EJP 24 (2019), paper 55.
Page 31/32

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=1331218
http://www.ams.org/mathscinet-getitem?mr=2765554
http://www.ams.org/mathscinet-getitem?mr=1718352
http://www.ams.org/mathscinet-getitem?mr=2164035
http://www.ams.org/mathscinet-getitem?mr=2152573
http://www.ams.org/mathscinet-getitem?mr=3342657
http://arXiv.org/abs/1802.07223
http://www.ams.org/mathscinet-getitem?mr=1970485
http://www.ams.org/mathscinet-getitem?mr=2977987
http://www.ams.org/mathscinet-getitem?mr=3155252
http://www.ams.org/mathscinet-getitem?mr=3485365
http://www.ams.org/mathscinet-getitem?mr=3619269
http://www.ams.org/mathscinet-getitem?mr=3765892
http://arXiv.org/abs/1804.08393
http://www.ams.org/mathscinet-getitem?mr=3913275
https://doi.org/10.1214/19-EJP306
http://www.imstat.org/ejp/


Lévy processes conditioned to avoid an interval

[17] A. Lambert: Completely asymmetric Lévy processes confined in a finite interval, Ann. Inst. H.

Poincaré Probab. Statist., 36(2), (2000), 251–274. MR-1751660

[18] H. Pantí: On Lévy processes conditioned to avoid zero, ALEA Lat. Am. J. Probab. Math. Stat.,

14(2), (2017), 657–690. MR-3689384

[19] P. Patie and M. Savov: Bernstein-gamma functions and exponential functionals of Lévy

processes, Electron. J. Probab., 23:(75), (2018), 1–101. MR-3835481

[20] D. Revuz and M. Yor: Continuous martingales and Brownian motion, Grundlehren der

Mathematischen Wissenschaften, Springer-Verlag, Berlin, third edition, (1999). MR-1725357

[21] B. A. Rogozin: Distribution of the position of absorption for stable and asymptotically

stable random walks on an interval, Teor. Verojatnost. i Primenen., 17, (1972), 342–349.

MR-0300349,

[22] K.-I. Sato: Lévy processes and infinitely divisible distributions, Cambridge University Press,

Cambridge, (2013). MR-3185174

[23] V. Vysotsky: Limit theorems for random walks that avoid bounded sets, with applications to

the largest gap problem, Stochastic Process. Appl., 125(5), (2015), 1886–1910. MR-3315616

[24] K. Yano: On harmonic function for the killed process upon hitting zero of asymmetric Lévy

processes, J. Math-for-Ind., 5A, (2013),17–24. MR-3072331

Acknowledgments. We thank three anonymous referees for their detailed and insightful

comments.

EJP 24 (2019), paper 55.
Page 32/32

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1751660
http://www.ams.org/mathscinet-getitem?mr=3689384
http://www.ams.org/mathscinet-getitem?mr=3835481
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=0300349
http://www.ams.org/mathscinet-getitem?mr=3185174
http://www.ams.org/mathscinet-getitem?mr=3315616
http://www.ams.org/mathscinet-getitem?mr=3072331
https://doi.org/10.1214/19-EJP306
http://www.imstat.org/ejp/

	Introduction
	Main results
	An explicit example
	Proofs
	Finiteness of the harmonic function
	Harmonicity of h+ and h-
	Conditioning and h-transforms
	Long-time behaviour

	Extension to transient Lévy processes
	Study of h=h+
	Condition (B) holds
	Condition (B) fails

	Study of h-

	References

