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LEVY RANDOM MEASURES

By ALaN F. KARR
The Johns Hopkins University

A Iévy random measure is characterized by a conditional inde-
pendence structure analogous to the Markov property. Here we introduce
Lévy random measures and present their basic properties. Preservation of
the Lévy property under transformations of random measures (e.g., change
of variable, passage to a limit) and under transformations of the proba-
bility laws of random measures is investigated. One random measure is
said to be a submeasure of a second random measure if its probability law
is absolutely continuous with respect to that of the second. We show that
if the second measure is a Lévy random measure then the submeasure is
Lévy if and only if the Radon-Nikodym derivative satisfies a natural
factorization condition. These results are applied to extend the theories of
Gibbs states on bounded sets in R» and Z».

0. Introduction. In this paper we introduce a class of random measures,
Lévy random measures, that possess a conditional independence structure rem-
iniscent of the Markov property. Our results mainly concern preservation of
the Lévy property under transformations of random measures and their prob-
ability laws. Section 1 of the paper contains the basic definition, examples, and
some elementary results. In Section 2 we deal with preservation of the Lévy
property under certain transformations of random measures, namely change of
variable, construction of product measures, compounding, and passage to a limit.
Results in Section 3 concern construction of submeasures, which is effected
by an absolutely continuous change of probability law. A natural factorization
condition akin to the defining property of a multiplicative functional of a Markov
process is shown to be necessary and sufficient in order that a submeasure of a
Lévy random measure itself be a Lévy random measure. Finally, in Section 4
we apply the results of the other sections to Gibbs random measures, which are
of interest in statistical mechanics as models of distributions of particies in space.
Our treatment extends and simplifies previous treatments.

Throughout our notations for measurability are based on [2]. Hence, Y e .5~
means that Y is % -measurable; if Y is bounded we write Y € 6.5. A nonnega-
tive Y e .5 is distinguished by writing ¥ € p.5".

1. Lévy random measures. Let (E, &) be a LCCB space and let (Q, _#, P)
be a probability space. We shall deal with random measures on (E, &), in the
following sense.
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(1.1) DEFINITION. A random measure on (E, ') over the probability space
(Q, #, P) is a mapping M: & x Q — R, = [0, oo] such that

(a) For each 4 ¢& the mapping w — M(A, w) is a random variable;
(b) Almost surely, 4 — M(A4, w) is a measure on & .

Of particular importance are random measures corresponding to point processes
without muitiple points; we call these simple random measures. A random
measure M on (E, &) is said to be simple provided that

(a) M is o-finite and purely atomic;
(b) All atoms of M are of mass one.

A simple random measure M can be represented in the form

M= 3z €x;

where for each ie Z, X, e _#/%. Here ¢, denotes the measure which has an
atom of mass one at x, and no other mass. Among simple random measures
are certain Poisson random measures [3] and the Gibbs random measures dis-
cussed in Section 4. ’
Below we sometimes write M(f) for § fdM.
We now formulate the Lévy property of conditional independence for random
measures. Let M be a random measure on (E, &) and for each 4 € & let

Sy =0(M(B):Be&,BC A);
that is, &, is the g-algebra describing the behavior of M on 4 and its subsets.

(1.2) DEFINITION. Let 2 be a class of proper subsets of E in &; M will be
said to be a Lévy random measure with respect to <% if for each 4 € <# there
exists a measurable subset 4’ of A° such that

(a) A"+ A%

(b) &, and &, are conditionally independent given .5+ ,,;

(¢) If BC 4° and .5, and & . are conditionally independent given .& ,
then 4’ C B.

“The structure of <#'is discussed in Proposition (1.5) below.

REMARKS. (1) The meaning of the three conditions in (1.2) is the following.
Condition (a) is to eliminate trivialities; without it every random measure satis-
fies (b) and (c) with 4’ = A°. Condition (b) is the main restriction: it imposes
on the random measure M a conditional independence structure analogous to
the Markov property; cf. Example (1.4) below. Condition (c) expresses mini-
mality of the sets A'.

(2) Conditional independence of %, and ", given .~ ,, means, of course,
that

E[XZ|.5 ] = E[X| .5 JE[Z] ]
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for all Xep#,, Ze p” .. Equivalent forms of the definition (appearing in
[8, page 30]) and various monotone class theorem simplifications thereof, are
used below without special comment.

(3) As a convention we take .~ , = {¢, Q}; it is explicitly permitted that A’
be empty for some sets 4, in which case (1.2b) requires that .>*, and ., be
independent. See Example (1.3).

(4) The pair

L, = (2, {(4, 4): Ae 7))

is called the Lévy space of a Lévy random measure M. If L, and L, are Lévy
spaces such that

(i) & c %
(ii) Ae < implies 4 D A4/,

where A, corresponds to A4 in L, , then we write L, <L, . Introduction of
this notation simplifies statements of some of the theorems below. Observe
that to show that M, is a Lévy random measure with L, < L, it suffices to
show that o(M,(B): B C A,)and ¢(M,(B): B C A°) are conditionally independent
given ¢(My(B): B C A/) for every 4, € ZZ,.

We now give two examples.

(1.3) ExAMPLE. Additive random measures. Let M be an additive random
measure on (E, ¥’); that is, M(A)), ---, M(A,) are independent whenever
Ay, -+, A, are disjoint. Then M is a Lévy random measure with the maximal

Lévy space
Ly = ({4: 4 # 6, E), (4, 9): 4% 4, E)).

Additive random measures thus have a maximal Lévy property. In particular,
every deterministic measure is a Lévy random measure.

(1.4) EXAMPLE. Markov random fields on Z*. These processes are studied in
detail in [4], [13], and [14]; most of the results are summarized in [11]. In [14]
a Markov random field on a finite subset E of Z*, taking values in {0, 1}, is a
stochastic process {X,: e E} such that if A is a subset of E not containing a
point ¢ but containing the set 5, of its 2v nearest neighbors, then

PlX,=1|X,s5eA} =P{X,=1|X,,5¢en}.
By defining
M(A) = Ditea X
we obtain a random measure M on E which is a Lévy random measure with
Lévy space
L, = ({{}: 1 E}, ({1} 7): 1€ E}) . |
In many respects the random measure view of these processes is the most natural

and general: We refer the reader to Section 4 for further discussion of these
random measures and the corresponding random measures on R".
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The structure of the family 2%, corresponding to a Lévy random measure M
is elucidated in the following proposition.

(1.5) ProrosiTiON. If M is a Lévy random measure then

(a) By is hereditary in the sense that if A, € <), and A, C A, then A, € ZB,;
(b) By is closed under countable intersections;
(c) If A, Aye FBy and (A, N A)) U (A N A,) = ¢ then A, U A, € B,.

Proor.

(a) It is required, of course, that 4, belong to . We shall show that .57,12
and .# , are conditionally independent given 27" = F (ar-apuayp from which it
follows that 4,¢ <%, and that 4, C A/ U (4, — 4,). Let X, Y, Z and W be
nonnegative and measurable with respect to .5, , %", _, , % ,, and & ., re-

) 1~ 43 1 1
spectively. Then

E[XW(YZ)] = E[E[XY|.5 JE[W |5 ,]Z]
= E[E[E[XY | Z]| F LEIW|.F 4]Z]
= E[E[YE[X|2Z]| & L)EIW | F ,)Z]
= E[E[X|SFE[W |5 ,|YZ]
= E[E[X|2F|E[W | 2F1YZ],

where the first and fifth equalities are by the Lévy property for 4,. By the
monotone class theorem we conclude that E[XW |52 = E[X|SZ|E[W | 2]
and hence the Lévy property holds for 4,.

(b) is an immediate consequence of (a).

(c) We shall show that (4, U 4,)" = A4,” U 4, under the stated assumptions.
Let X, U, Y, Z,, Z,, and W be nonnegative and measurable, respectively, with
respect t0 F 4 1, F 4 aap F ay-ap F ap and % ;, where B = (4, U 4,)° —
(4 U 4). Let &= 5, By straightforward application of the Lévy
properties for 4, and A,,

(1.6) E[XUY|2F] = E[XU|F LIE[Y |5 ] .
Calculations using (1.6) then show that
E[(XUY - W)Z,Z,| = E[E[W | SFE[XUY |52, Z,],

which shows that &, ,, and &, ,, . are conditionally independent given 57"
The preceding shows that (4, U 4,) < 4, U 4); if the inclusion is strict then
either 4," or 4, fails to satisfy the minimality property (1.2¢). ]

REMARK. In general &%), is not closed under even finite unions.

We denote by K the family of all measures m on & such that m(4) < oo for
every compact set 4; elements of K are called Radon measureson &. We endow
K with the topology of vague convergence and associated Borel g-algebra .5
cf. [7] for details. It will often be convenient to choose K as a canonical sample
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space for random measures; the proposition below indicates that this does not
destroy the Lévy property. The proof is direct and omitted.

(1.7) PROPOSITION. Let M be a Lévy random measure such that P(M e K} = 1.

Then the coordinate random measure N on K is a Lévy random measure over
(K, 2%, PM~")and L, = L.

CoROLLARY. If M and M’ are identically distributed random measures on (E, &),
each of which lies in K almost surely, then M is a Lévy random measure with Lévy
space L if and only if N is.

The final result of this section shows that the asymmetry between 4 and A4°
in the Definition (1.2) is essentially only apparent.

(1.8) PROPOSITION. Let M be a Lévy random measure. Then for each Ac
Gy, F 44 and F . are conditionally independent given 5 ..

Straightforward application of the Lévy property and the monotone class
theorem yields the proof of (1.8).

2. Preservation of the Lévy property. Most transformations and limiting
processes discussed in the context of random measures do not, when applied to
Lévy random measures, lead to another random measure that is Lévy at all, let
alone with the same Lévy space, except possibly in the case of additive random
measures. For example, the superposition of two Lévy random measures with
the same Lévy space is not, in general, a Lévy random measure. The reason
is the same reason why the sum of Markov processes is not always Markov.
Similarly, a mixture of Lévy random measures is not a Lévy random measure;
indeed a mixture of additive random measures need not be additive. Simplifi-
cation (i.e., transformation of a purely atomic random measure to a simple
random measure with atoms at the same locations) also does not preserve the
Lévy property, although a particular inverse to this operation (namely, com-
pounding) does; see Theorem (2.3) below. The first two results of this section
show that change of variable preserves the Lévy property and that the product
of independent Lévy random measures is a Lévy random measure with a par-
ticular Lévy space. Finally, we consider preservation of the Lévy property
under limiting operations.

‘

(2.1) THEOREM. Let M be a Lévy random measure on (E, &), let E, be another
LCCB space, and let f: E — E, be a one-to-one function measurable with respect to
# and the Borel o-algebra &, on E,. Then N = Mf~is a Lévy random measure
on &, with :

Py = {f(A): Ae By}
and

fA) = f4), Ae By .
Proor. By the Kuratowski theorem [10, page 21}, f(A4) € &, for each 4 e &.
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Define

“p, = a(NC): C C D)
and observe that &, = F# ,_1,,, where .5, = a(M(B): B — A4). Choose f(4) ¢
By, Y € pZyyy and Z € pZy ypc = pZyiaey- Then

E[YZ| gf(A)'] = E[YZ| ?fm')]
= E[YZ’ jf"l(fm'))]
= E[YZ|# )]
= E[Y|.Z JE[Z]|.5 4]
= E[Y] gf(A)’]E[Zl gfm)'] .
Here the third equality uses the fact that f is one-to-one, which implies that

f~Y(f(4") = A4, the fourth equality is by the Lévy property of M and the fifth
equality traces in reverse order the first three equalities. []

In the next result we see that the product of independent Lévy random
measures itself possesses the Lévy property with a particular Lévy space. We
omit the proof, which follows the patterns used above; the reader may find a
picture useful in understanding how one arrives at (4 x C)'.

(2.2) THEOREM. Let M and N be independent Lévy random measures on
LCCB spaces E and E' respectively, with Lévy spaces L, and L. Then the product
random measure M X N is a Lévy random measure with <8y, C {A x C: A€ S5y,
C e %} and for such A and C

(AxCY c(AxCy —~ (AU Ay x(CuCy.
When M and N are additive, equality holds in the preceding expression for
(4 x C).
The compounding transformation discussed below is that used to construct

certain classes of compound Poisson random measures [3] and in particular a
compound Poisson process from a simple Poisson process.

(2.3) THEOREM. Let M = 3] ¢, be a simple Lévy random measure on &. Let
(W) be a sequence of independent, identically distributed, strictly positive random
variables such that (W) and M are independent. Then

(2.4) N =3 W,

is a Lévy random measure and L L,..
M N

Proor. Let i denote the common distribution of the W, and let {W; x ¢ E}
be independent, identically distributed random variables with common distri-
bution 2, such that {W,} and M are independent, and let N’ be the random

measure defined by
(2.5) N'(A) = Y.ea W.M({x}) .
Since M({x}) = 0 for at most countably many x, there is no difficulty with
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existence and measurability of the right-hand side of (2.5); the sum may, of
course, be infinite. We assert that N defined by (2.4) and N’ defined by (2.5)
are identically distributed. To establish this, it suffices (cf. [7]) to show that

E[e—N(f)] — E[e—N'(f)]

for each fe p&, which can be shown by direct computations.

It is evident that P{Ne K} = 1, so by Proposition (1.7) the theorem follows
if N is a Lévy random measure with L,, < L,,. For each 4e& let &, =
o(M(B):BC A), G, = o(.F ; W,:xe A), 5, = o(N'(B): B C A); then .5, C
2, C &,. Choose 4 € ZB,, disjoint sets 4,, - - -, A4, C A, and functions g,, - - -,
g, from [0, o] to [0, co0). Then

E[IT 9: 0 N(A) | 4e] = ENITE 9 Xae s, W M(x)) | 5]
= E[E[T]f 9 Zeea, W M(X)) | Z 1] | 5]
= E[E[II: 9 Zseu, W M(X)) | F 41| 52 4]
= E[IIt 9 Xeea, W. M(x))| & 4]
= E[IIf 9 Zsca, W. M(x))| 2£,] 5

which completes the proof. []

ReMARKS. (1) The assumption that the W, be strictly positive cannot be
suppressed in general, as the following example indicates. Let E = {1, 2, 3}
and let {M(1), M(2), M(3)} be a Markov chain with state space {0, 1}, initial
distribution (4, 1) and transition kernel

1 3
K=|4 4.
11
2
The Lévy property holds for M with 4 = {3} and 4’ = {2}. Let W,, W,, W,
be independent and identically distributed with P{W, = 1} = P{W, =0} = 4.
Straightforward computations then verify that
P{N(3)=1|N2)=0} =4},
while
P{N(3) = 1|N(1) =0, N2) =0} = 5 .

Positivity of the W, can be suppressed.if M is additive.

(2) The inverse operation to that of Theorem (2.3), namely simplification,
which transforms a purely atomic random measure M = 3; Y,e, into the simple
random measure N = Y ¢, does not, in general, preserve the Lévy property;
examples substantiating this assertion-are easily constructed. The transfor-
mation M — N is deterministic but not one-to-one, so should not be expected
to preserve the Lévy property.

The final result of this section concerns preservation of the Lévy property
under limits. For simplicity we assume that all random measures involved lie
in K almost surely.
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(2.6) THEOREM. Let M*, M?, ... be Lévy random measures on &, all with the
same Lévy space L, and let M be another random measure on &. Let

S = g(M"(B): B C A)
F,=0o(M(B): BC A).
If
(a) M™— M in probability as random elements of K
(b) F,"1.F , foreach Ac&,
then M is a Lévy random measure and L < L,,.

Previously established patterns yield a proof of '(2 6) as well; the only subtlety
involved is an appeal to a generalized form of the martingale convergence
theorem [9, page 143].

REMARKS. (1) If one assumes that .5, be complete for each A’ then (2.6b)
need hold only for the sets 4° and 4’ arising from the Lévy space L. In fact,
one then need not assume that 5 1 1 %, but only that &7 c % ,, for
each A'.

(2) A situation in which the hypotheses hold is the following. Suppose that
each A4 and A4’ are compact, let 4, be a sequence of compact sets increasing to
E and put M*(B) = M(B n A,). Verification of the Lévy property of M may be
difficult to effect directly; by Theorem (2.6) it follows from the Lévy property
of each M™.

(3) As usual, additivity constitutes a special case. If M,, M,, ... are additive
random measures on & and M, — M in distribution, then M is additive.

3. Construction of submeasures. In this section we discuss in some detail a
construction that transforms (the probability law of) one random measure into
(that of) another and which, subject to a factorization condition analogous to
the defining property of a multiplicative functional of a Markov process, pre-
serves the Lévy property. We also prove a converse: if both random measures
are Lévy, the factorization condition is satisfied. As applications, we study in
Section 4 the Lévy properties of a class of random measures on R* and Z* arising
in statistical mechanics.

For the remainder of this section we denote by N a Levy random measure
on (E, &) with Lévy space L. It is assumed throughout that N is a Radon
measure almost surely. '

3.1 DEFINITION. Let W be a nonnegative random variable in & = g(N)
such that
(3.2) 0< Z=E[W]<oo.

A random measure M on & such that for each 4 e %~

(3.3) P{Me A} = %E[W; (Ne 4)],
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where Z is given by (3.2), is called the submeasure of N generated by W. Here
E[X; A] = E[X-1,]. Examples are discussed in detail in Section 4, so we
present none at this point.

(3.4) DEFINITION. Let L = (&7, {(4, A'): Ae <#}) be a Lévy space such
that L < L,. A nonnegative random variable We .5 is an L-multiplicative
functional of N if for every A e <%, W admits a factorization of the form

(3.5) W=WwWWwW, W, as.,

where W, ep>, ., W,eps ., Wyep . Of course, &, = o(N(D):
D c B).

REMARKs. (1) Observe that we do not require that W, e 5 ,. Theorems
(3-6) and (3.12) below show that in order that the submeasure M of N generated
by W be a Lévy random measure with L < L,, it is necessary and sufficient that
W be an L-multiplicative functional of N. This would not be true if one required
that W, e % ,. See also Proposition (1.8).

(2) The null set in (3.5) is permitted to depend on A.

We now present the main results of this section.

(3.6) THEOREM. Let N be a Lévy random measure and let M be the submeasure
of N generated by an L-multiplicative functional W. Then M is a Lévy random
measure with L < L,,.

Proor. By (3.3) and Proposition (1.7) we may take N and M to be defined
on the same sample space (K, .%"), but with respect to different probability
measures, in the following manner. Let L denote the coordinate random
measure on (K, 277): that is, L(A4, o) = w(A4), and let P be the probability
measure on .77 with respect to which L is the underlying Lévy random measure
N. It follows from (3.3) that with respect to the probability measure Q defined by
(3.7) 0(4) = ,_;. \, Wdp, de o,

L is the submeasure M generated by N and W. It then follows from (3.7) that
for any Y e p.¥"and any sub-g-algebra & of s~

(3.8) E[Y|Z]= %l[%'g]]

Ep[+] denotes expectation with respect to P; E [+] is that with respect to Q.
Since

Q{E[W

©) = 0) = ZUE[W; (E,[W| %] = 0)]
= ZOEEAW | S (E[W| 2] = 0]
=0,

we may safely ignore, in (3.8) and similar expressions below, the set on which
the denominator of the right-hand side of (3.8) is zero.
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Suppose now that 4 ¢ 2%, that Y e p.>, and that Z e p.57 ., where =
o(L(B): B C A). Then in the notation of (3.5),
E,[YZW| .5 ,]
Ex[W|F 4]

(3.9) — Bl YZW W, Wy | 7,
E (W W, W, | &

W,E[YW,| 5 E[ZW,| 5]
WLE W, | F Ep[Ws| F 4]
ZUAE AT

Ep[Wy | Z W IEp[Ws| F 4]

EJYZ|5 ] =

where the first equality is by (3.8), the second is by (3.5) and the third is by the
Lévy property of L with respect to P. We have also invoked Proposition (1.8).
Similarly,
ElY|F 4] = Ep[YW | F L) E W |5 4]
WL E YW, | & E[Ws| & 4]
WLEp[W, | & L ]E[W,| 54
= E[YW, |5 EAW, |5 0]

(3.10) =

and, in the same way,
EqlZ| F 4] = EplZW,| & L) EpWs | 4] -
Comparing (3.9) with (3.10) and (3.11), we see that
EYZ|Z o] = EJY|-F p]ElZ] F 4],

which establishes the Lévy property of the submeasure M and the inclusion
L <L, 0

REMARKS. (1) There need be no particular relation between L, and L, in
general. If N is additive and L L, and P{}¥ = 0} = 0, then M and N are each
submeasures of the other (N is the submeasure of M generated by the L-multi-
plicative functional W) and in general L, = L,. If L = L, then the Theo-
rem shows that L, < L,. If L=L, and P{W =0} =0 then L, = L, by
symmetry.

(2) Since (3.5) is analogous to the deﬁnmg property of a multiplicative
functional of a Markov process [2, Definition (III. 1.1)], Theorem (3.6) is the
analog, in the context of Lévy random measures, of the possession of the Markov
property by a subprocess of a Markov process [2, Theorem (III. 3.3)]. This
connection furthers the analogy between the Lévy property and the Markov
property. See also Theorem 10.4 of [6].

The following result is a converse to Theorem (3.6): if a submeasure of a Lévy
random measure is itself a Lévy random measure, then the generating functional
is multiplicative. This result is analogous to Theorem (III. 2.3) of [2].
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(3.12) THEOREM. Let N be a Lévy random measure with Lévy space L and let
M be a submeasure of N such that M is a Lévy random measure with L,, < L.
Then there exists an L -multiplicative functional W of N that generates M.

ProoF. We use the notations of (3.6) and assume for simplicity that E,[W]=1.
Suppose that A ¢ &, let A = A U A’, and choose Xep.#;, Yep# ,,and Z ¢
P 4. Then

{ XYZ. WdP = § XYZdQ
= § YE[XZ| 7 ,]dQ
= § YEX| 7 |E[Z] 5,]dQ
by the Lévy property of the submeasure M. By (3.8) the last expression is
equal to
§ YELLXW | .5 | Ep[ZW| 5 JE[W | 5, W dP
= { YE[XW| 5 JEZW | 5 NEW |7 ,]7 dP
= { YEQ[XE[W | F 1 ZEL|W | 7 o] | & L EIW |5 ] dP
= § XYZE[W | .F {1E[W | 57 ] Eo[W|.F ,.] dP .
The second equality above is justified by the Lévy property of the generating
random measure N as follows:
E [ XE,[W| ?J]ZEP[W| '7/10] l '7//7,1’]
= Ep[Ep[XW | F Z]EZW | F 4] |7 4]
= Ep[Ep[XW | F ]| & L EREp[ZW | F ]| F 4]
= E[XW] “g[—A’]EP[ZW| Fals

where the third equality is by the Lévy property and by Proposition (1.8). Note
that this computation could not be carried out with 4 in place of 4; cf. the
remark following (3.5). By the monotone class theorem it follows that (3.5)
holds with W, = E[W | ;], W, = E,[W | ,]and W, = E,[W| > ] [

In general the limit, even in the almost sure sense, of Lévy random measures
need not itself be a Lévy random measure. Using submeasures we can establish
a set of conditions under which a limit in distribution is Lévy; compare Theo-
rem (2.6).

(3.13) THEOREM. Let P be the probability law of a Lévy random measure N
with Lévy space L,. Let L be a Lévy space with L. < L and let W, W, W,, ...
be ¢ -measurable and nonnegative. Suppose that

(8) 0< Z = EJ[W] < oo;
(b) W, W,, ... are L-multiplicative functionals,
(c) W,— W in L\(P).

Let Q, Q,, Q,, « - - be the probability laws of the submeasures M, M,, M,, - . - of



68 ALAN F. KARR

N generated by W, W,, W,, - - -, respectively. Then M, — M in distribution and M
is a Lévy random measure with L. < L.

Proor. By (3.3)
Q%(A) = Zn—l SA an dP ’

where Z, = | W, dP; the hypotheses (a) and (c) imply that (at least for n suf-
ficiently large) 0 < Z, < oo, so we can assume that Q,, is well defined for each n.

To show that M, — M in distribution we may show that { fdQ, — § fdQ
for every bounded, continuous function f on K, which follows from (c) by an
obvious triangle inequality estimate.

To show that M is a Lévy random measure with L < L, we need only, by
virtue of Theorem (3.6), show that W is L-multiplicative. The computations
in Theorem (3.12) show that for each n and each 4 ¢ & we may write

(3'14) W, = P[Wn|?J]EP[W”|ﬁ“,]-1 P[W'nl'y-Ac]'

Let (n’) be a subsequence such that W, — W almost surely with respect to
P. Taking limits along (') in (3.14) yields, by L! continuity of conditional
expectations,

W = Ep[W | F11Ep[W | F L] Ep[W |5 ]
which shows that W is L-multiplicative. []

4. Gibbs random measures. In this section we apply the results of the preced-
ing sections to a class of random measures important in statistical mechanics,
namely Gibbs random measures. We consider such random measures, which
are models of distributions of particles in space subject to a potential energy
of interaction, on both R* and Z*. Throughout, all Poisson random measures
on R* are assumed to have nonatomic mean measures, and are hence simple.

To begin, let £ be a bounded convex set in R* or Z* with positive uniform
measure |E|. Let K denote the set of Radon measures on E. By a potential on
E we mean a measurable mapping U: K — R U {+ oo} such that U(0) = 0,
where 0 € K is the measure with no mass.

(4.1) DEefFINITION. Let N be a random measure on E. If
(4.2) 0< Z(U,N) = E[e""] < oo,

then the submeasure M of N generated by W = e~"" is the Gibbs submeasure
of N with potential U.

Remark. The constant Z(U, N) defined by (4.2) is of interest in itself, es-
pecially in statistical mechanical applications such as Example (4.6) below. In
this context it is known as the partition function. If N is the restriction to E of
a random measure on R* then the behavior of Z(U, N) as ET R* is also a
problem of interest.

We say that a potential U has range » > 0 if whenever m,, m,c K and the
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supports of 1, and m, are separated by more than r with respect to the Euclidean
metric on R*, then

(4.3) U(m, + my) = U(my) + U(my) .

A random measure M is said to be a Lévy random measure of order r if M is a
Lévy random measure with

Fy ={AC E: A isclosed, A+ ¢, E}
and

A Cclyed:.dy, A) <r}

for each A4 ¢ <%,, where d is the Euclidean distance on R* and d(y, 4) =
inf {d(y, x): x € A}. One then has the following result.

(4.4) THEOREM. (a) Let M be the Gibbs submeasure of a Lévy random measure
of order r generated by a potential U. If U has range r then M is a Lévy random
measure of order r.

(b) If M is the submeasure of a Lévy random measure N of order r; if P{N(A°) =
0} > O for each A e <By; if the functional of N generating M is positive a.s. with
respect to the probability law P of N; and if M is a Lévy random measure of order
r, then there exist a potential U and a function U*: K — R (which is not necessarily
measurable) such that

(i) M is the Gibbs submeasure of N with potential U,
(ii) U* has range r in the sense of (4.3);
(iii) {U = U*} is a P-null set.

Proor. (a) If U has range r and A4 is closed then by the Mo&ebius inversion
formula we may write for me K

(4.5) Um) = Ulmy) + Ulmys) — Um)

where we have put 4 = 4 U 4. We then conclude at once from (4.5) and
Theorem (3.6) that M is a Lévy random measure of order ». Here m (B) =
m(B N A).

(b) By Theorem (3.12) there exists a multiplicative functional W of N which
generates M. Since W is positive a.s. we can write W = e~“" for some measur-
able function U: K — R; replacing, if necessary, W by W/IW(0) we may take

U(0) = 0. Consider a fixed set 4 € &, (= <5, by (3.6)) and factor W according
to (3.5):

e=UN) . p=Vi(Ng=Vy(W)g=V (M)

where V,, V,, V, are measurable with respect to .% ;, & ,, and .& ., respectively;
these three functions may all be assumed to be potentials. An easy calculation
shows that

U(m) = Vi(mz) + Vi(m,e)
for P-almost all m such that m(4’) = 0; as before m, is the restriction of mec K
to BeZ. Since P{N(A') = 0} = P{N(A°) = 0} > 0, the set of m in question is
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not void. Identification of ¥ ,(m) is easily accomplished on the same basis: if
m = m, then V\(m) = U(m). Consequently
Ulm) = U(m;) + U(m )
= U(m,) + U(me_y,)
for P- almost every m such that m(4’) = 0.

There exists a countable family .5 of closed subsets of E such that if m, and
m, have supports separated by r then there exists 4 € .5/ such that m, is supported
in Aand m,in 4° — A4’. Consequently, U has the property that U(m) = U(m,) +
U(m,) for P- almost every m representable in the form m = m, + m,, where the

supports of m, and m, are separated by r. U® is then obtained by setting U = 0
on a P-null set. []

(4.6) ExAMPLE. Let N = } ¢, be the Poisson random measure on E with
mean the Lebesgue measure and let N’ be obtained from N by randomizing the
masses of the atoms of N according to the procedure of Theorem (2.3). That is,
N' = 3} W,ex, where the W, are independent, identically distributed, nonnegative
random variables independent of N. By Theorem (2.3) N’ is additive. Hence,
if U is a potential of range r, then the Gibbs submeasure M’ of N’ generated by
U is a Lévy random measure of order r (provided it be well defined by (4.1)).
M’ may be regarded as one form of Gibbs state expressing the distribution of
particles with random masses subject to a potential energy of interaction. This
model and the associated Lévy characterization generalize models and results
concerning distributions of identical particles in R* [5, 12] and Z* [11, 13, 14].
Of particular interest are pair potentials, namely potentials U of the form
(4.7) u(zr aieyi) =pria; + N0,V (i y5)
where V: R* X R* - R U {+ oo} and z# > 0 is the chemical potential. Con-
ditions on ¥ implying that U satisfy (4.2) may be found in [5, 12]. In general
the simple random measure M describing particle positions will not be a Lévy
random measure; cf. Remark (2) following Theorem (2.3).

For a specific example consider the hard core potential ¥, with range 4,
given by

Vit y) = oo, |x—y <0
=0, |x—y=o9.

The Gibbs submeasure M, of the Poisson random measure N generated by the
pair potential

(4-8) Us(2 eyi) = Xixi V(¥ ¥;)

is by Theorem (4.4) a’Lévy random measure of order 4, since the potential U,
given by (4.8) is evidently of range 4. It may serve, for example, as a model
of the distribution of the centers of balls of diameter d that cannot overlap.
By Theorem (3.13), M, converges in distribution to the Poisson random measure
N as § — 0, confirming that this is the appropriate generalization of the Poisson



LEVY RANDOM MEASURES 71

random measure to bodies of positive diameter. Random masses may be incor-
porated using (4.7):

To represent balls of random radii, one can transform the Poisson random
measure N = 3 ¢, to the random measure N’ = 3 ¢, x;py> Where the D, are
i.i.d. random variables taking values in [0, d] for some & > 0. The ball at
X, is to have diameter D,; § is the maximum diameter. The random measure
N’ is Poisson with mean measure the product of Lebesgue measure on E and
the common distribution of the D, [3]. The Gibbs submeasure M, of N’ gener-
ated by the potential U which takes the value co at J pap I [ye — 5] <
3(d; + d;) for some i = jand is zero elsewhere is, again by Theorem (4.4), a
Lévy random measure of order d on E x [0, §]. Hence the projection of M,
onto E, which represents the positions of particle centers, is also Lévy; it is,
however, M itself which is of main interest. As before, M, — N’ in distribution
as § — 0.
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and the referee contributed helpful suggestions. ’
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