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Different methods have been recently put forward and implemented experimentally to inverse engineer the
time-dependent Hamiltonian of a quantum system and accelerate slow adiabatic processes via nonadiabatic
shortcuts. In the “transitionless quantum driving” proposed by Berry, shortcut Hamiltonians are designed so that
the system follows exactly, in an arbitrarily short time, the approximate adiabatic path defined by a reference
Hamiltonian. A different approach is based on first designing a Lewis-Riesenfeld invariant to carry the eigenstates
of a Hamiltonian from specified initial to final configurations, again in an arbitrary time, and then constructing
from the invariant the transient Hamiltonian that connects these boundary configurations. We show that the two
approaches, apparently quite different in form and so far in results, are, in fact, strongly related and potentially
equivalent, so that the inverse-engineering operations in one of them can be reinterpreted and understood in terms
of the concepts and operations of the other one. We study, as explicit examples, expansions of time-dependent
harmonic traps and the state preparation of two-level systems.
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I. INTRODUCTION

Externally imposed time-dependent interactions are fre-
quently varied slowly to keep adiabaticity and control the
final state of a quantum system robustly versus parameter
fluctuations. There are, however, many instances where we
would like or need to quicken these operations. If they
take too long, they will be impractical for applications with
many repetitions, e.g., to manipulate quantum information
by transporting ions or atoms [1], or they may suffer from
decoherence, noise, or losses, so speeding them up may be
the only way to actually implement the ideal final outcome.
Moreover, in many experiments, as in atomic fountain clocks,
high repetition rates contribute to the achievement of better
signal-to-noise ratios and better accuracy [2]. Adiabatic steps
are also the bottleneck in some cyclic processes. They deter-
mine, for example, the cooling rates in quantum refrigerators
and quantify the unattainability of absolute zero [3–5].

Recently, several works have been devoted to theoretical
proposals [3,6–20] or experimental realizations [21–25] of fast
nonadiabatic shortcuts to the states reached by slow adiabatic
processes in matter wave expansions or compressions, split-
ting, and transport. Berry, in particular, has proposed a “tran-
sitionless quantum driving” (also known as “transitionless
tracking algorithm”) to design time-dependent interactions
so that the system follows exactly, in an arbitrarily short
time, the approximate adiabatic path defined by a reference,
zeroth order Hamiltonian [10]. This method has been applied
to speed up adiabatic passage techniques and achieve fast
and robust population control in two- and three-level atomic
systems [12]. A different approach is based on first designing
a Lewis-Riesenfeld invariant [26] to carry the eigenstates of
a Hamiltonian from initial to final configurations, again in
an arbitrary time, and then constructing from the invariant
a transient, driving Hamiltonian [8,9]. These methods were
compared for harmonic oscillator expansions for which they
provided rather different shortcut paths [15].

Berry mentioned the existence of connections between
the invariants and the transitionless algorithm for a two-state

system without pursuing them further [10]. Following that
hint, we show in this work that these two approaches are in
fact closely related, and can be stated in common terms, so
that the inverse-engineering operations in one of them can be
reinterpreted using concepts and operations of the other one.
This sets their potential equivalence. The different results that
have been found so far, as explained in detail below, are due to
the ample freedom offered by both approaches to construct the
driving shortcut Hamiltonian. We study the general setting as
well as two explicit examples: expansions of time-dependent
harmonic traps and the state preparation in two-level systems.

A word of caution on notation: as we shall deal with
different methods and examples, multiple usage of some
symbols, such as |φn⟩, |n⟩,H , I , λn,U , andEn, is unavoidable
unless we load them with subscripts and superscripts; so
consistency is strictly guaranteed only within each section.
In most cases, this repeated usage will suggest a possible
relation. The context and explanations will clarify how this
comes about.

II. GENERAL FRAMEWORK

A. Lewis-Riesenfeld invariants

We shall describe first Lewis-Riesenfeld theory in a nutshell
[26]. Let us consider a quantum system evolving with a
time-dependent HamiltonianH (t). A dynamical invariant I (t)
satisfies

ih̄
∂I (t)
∂t

− [H (t),I (t)] = 0, (1)

so that its expectation values remain constant in time. I (t) can
be used to express an arbitrary solution of the time-dependent
Schrödinger equation

ih̄
∂

∂t
|$(t)⟩ = H (t)|$(t)⟩ (2)

as a superposition of “dynamical modes” |ψn(t)⟩:

|$(t)⟩ =
∑

n

cn|ψn(t)⟩, (3)
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|ψn(t)⟩ = eiαn(t)|φn(t)⟩, (4)

where n = 0,1,. . ., cn are time-independent amplitudes,
|φn(t)⟩ are orthonormal eigenvectors of the invariant I (t), a
Hermitian operator satisfying I (t)|φn(t)⟩ = λn|φn(t)⟩, with λn

real constants, and the Lewis-Riesenfeld phases are defined
as [26]

αn(t) =
1
h̄

∫ t

0

〈
φn(t ′)

∣∣∣ih̄
∂

∂t ′
− H (t ′)

∣∣∣φn(t ′)
〉
dt ′. (5)

We use, for simplicity, a notation for a discrete spectrum of
I (t), but the generalization to a continuum or mixed spectrum
is straightforward. We also assume a nondegenerate spectrum.

B. Invariant based inverse engineering

Suppose that we want to drive the system from an
initial Hamiltonian H (0) to a final one H (tf ), such that the
populations in the initial and final instantaneous bases are the
same but admitting transitions at intermediate times. To inverse
engineer a time-dependent Hamiltonian H (t) and achieve this
goal, we may define first the invariant through its eigenvalues
and eigenvectors as

I (t) =
∑

n

|φn(t)⟩λn⟨φn(t)|. (6)

The Lewis-Riesenfeld phases may also be chosen as arbitrary
functions to write down the time-dependent unitary evolution
operator U [see Eqs. (3) and (4)] as

U =
∑

n

eiαn(t)|φn(t)⟩⟨φn(0)|. (7)

It must obey

ih̄
∂

∂t
U = H (t)U, (8)

which we solve formally for the Hamiltonian,

H (t) = ih̄(∂tU )U †, (9)

that is,

H (t) = F (t)+ ih̄
∑

n

|∂tφn(t)⟩⟨φn(t)|, (10)

where F (t) is diagonal in the basis of the invariant:

F (t) = −h̄
∑

n

|φn(t)⟩α̇n⟨φn(t)|, (11)

and the dot denotes the derivative with respect to time. Note
that for a given invariant, there are many possible Hamilto-
nians corresponding to different choices of phase functions
αn(t).1 In general, I (0) does not commute with H (0), which
means that the eigenstates of I (0), |φn(0)⟩, do not coincide
with the eigenestates of H (0). H (tf ) does not necessarily
commute with I (tf ) either. If we impose [I (0),H (0)] = 0 and
[I (tf ),H (tf )] = 0, the eigenstates coincide and then a state
transfer without final excitations is guaranteed. In a typical

1To connect with Lohe’s work [27], we may also write I (t) =
T I (0)T † in terms of the unitary operator T =

∑
n |φn(t)⟩⟨φn(0)|.

application, the Hamiltonians H (0) and H (tf ) are given; they
set the initial and final boundaries for the process, and we use
these boundary conditions to define I (t) and its eigenvectors
accordingly. A convenient, although by no means necessary,
relation is to set I (0) = H (0).

While the αn(t) may be taken as fully free time-dependent
phases in some applications, the choice of αn(t) may also be
constrained by a preimposed or assumed structure of H (t).
H (t) may, for example, be set initially as a given function of
parameters whose time dependence is not yet specified, as in
the ordinary harmonic oscillator with a frequency whose time
dependence is not yet fixed initially. If the assumed structure of
H (t) leads to a specific structure of I (t) and the αn, the inverse
method can be applied so that I (t) and αn(t) are fully specified
first within the forms that guarantee the imposed structure of
H (t). We shall see examples of how this works in Secs. III
and IV.

C. Transitionless tracking algorithm

In Berry’s method [10], the starting point is a time-
dependent reference Hamiltonian

H0(t) =
∑

n

|n0(t)⟩E(0)
n (t)⟨n0(t)| (12)

for which the approximate time-dependent adiabatic solutions
are

|ψn(t)⟩ = eiξn(t)|n0(t)⟩, (13)

where the adiabatic phases, with dynamical and geometric
parts, are

ξn(t) = −1
h̄

∫ t

0
dt ′E(0)

n (t ′)+ i

∫ t

0
dt ′⟨n0(t ′)|∂t ′n0(t ′)⟩. (14)

The approximate adiabatic vectors in Eq. (13) are defined
differently from the dynamical modes of Eq. (4), but they
may potentially coincide, as discussed below, so, with some
caution, we use the same notation. Defining now the unitary
operator

U =
∑

n

eiξn(t)|n0(t)⟩⟨n0(0)|, (15)

a HamiltonianH (t) can be constructed, using again Eq. (9), to
drive the system exactly along the adiabatic paths of H0(t) as

H (t) = H0(t)+H1(t),

H1(t) = ih̄
∑

n

[|∂t n0(t)⟩⟨n0(t)|

−⟨n0(t)|∂tn0(t)⟩|n0(t)⟩⟨n0(t)|], (16)

where H1(t) is purely nondiagonal in the {|n0(t)⟩} basis.
We may change the functions E(0)

n (t), responsible for the
dynamical part of the phase, and, therefore, H0(t) itself,
keeping the same |n0(t)⟩ eigenvectors. We could, for example,
make all the E(0)

n (t) zero to suppress the dynamical phases,
or compensate the geometric phase to have ξn(t) = 0 [10].
Therefore, the Hamiltonian can be generally written in terms
of the phases as

H (t) = G(t)+ ih̄
∑

n

|∂t n0(t)⟩⟨n0(t)|, (17)
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where

G(t) = −h̄
∑

n

|n0(t)⟩ξ̇n⟨n0(t)| (18)

is diagonal in the instantaneous basis of H0(t). Subtracting
H1(t), H0(t) may also be written as

H0(t) =
∑

n

|n0(t)⟩[ih̄⟨n0(t)|∂t n0(t)⟩ − h̄ξ̇n]⟨n0(t)|. (19)

In general, it is required that H1(t) vanish for t < 0 and
t > tf , either suddenly or continuously at the extreme times.
In that case, the |n0(t)⟩ become, also at the extreme times
(at least at t = 0− and t = t+f ), eigenstates of the full
Hamiltonian.

Using Eq. (1) and the orthonormality of the {|n0(0)⟩}, we
may write invariants of H (t) with the form

I (t) =
∑

n

|n0(t)⟩λn⟨n0(t)|, (20)

where the λn are constant eigenvalues of I (t). For the simple
choice λn = E(0)

n (0), then I (0) = H0(0).
Up to now, we have presented the invariant-based and

tracking algorithm approaches in a common manner to make
their relations obvious. By reinterpreting the phases of Berry’s
method as ξn(t) = αn(t), and the states as |n0(t)⟩ = |φn(t)⟩, we
may immediately equate G(t) = F (t) and the Hamiltonians
H (t) in Eqs. (10) and (17). We may also find the H0(t)
implicit in the invariant’s method using Eq. (19). In other
words, the dynamical modes in the invariant-based method
can be also understood as approximate adiabatic modes of a
certain Hamiltonian H0(t).

An important caveat is that, although the two methods
could coincide, they do not have to. Given H (0) and H (tf ),
there is much freedom to connect them using different
invariants, phase functions, and reference HamiltoniansH0(t).
It should be clear by now that each of these methods
does not provide just a unique shortcut but entire families
of them, a welcome flexibility that allows us to optimize
the path according to physical criteria and/or operational
constraints [16].

In the following sections, we shall work out two specific
examples where the connections, differences, and similar-
ities of the two approaches are illustrated and examined
further.

III. TIME-DEPENDENT HARMONIC OSCILLATOR

A. Lewis-Riesenfeld invariants

The Schrödinger picture Hamiltonian of a particle in a
harmonic oscillator with mass m and time-dependent angular
frequency (all “frequencies” hereafter are angular frequencies)
ω(t) is

H (t) = 1
2m

p̂2 + mω2(t)
2

q̂2, (21)

where q̂ and p̂ are canonical conjugate position and momen-
tum operators. The instantaneous eigenstates, in coordinate
representation, and energies are, respectively,

⟨q|n(t)⟩ =
(
mω(t)
πh̄

)1/4 1
(2nn!)1/2

× exp
[
−mω(t)

2h̄
q2

]
Hn

(√
mω(t)
h̄

q

)

, (22)

where Hn is a Hermite polynomial, and En(t) = (n+
1/2)h̄ω(t), so that H (t)|n(t)⟩ = En(t)|n(t)⟩. The invariant
form is found by trying a quadratic ansatz [26–29]:

I (t) = 1
2

[
(1/b2)q̂2mω2

0 +
1
m

π̂2
]
, (23)

where π̂ = b(t)p̂ − mḃq̂ plays the role of a momentum
conjugate to q̂/b. Inserting it into Eq. (1), the scaling factor
b = b(t) is found to satisfy the Ermakov equation [26,27]

b̈ + ω2(t)b = ω2
0

b3
. (24)

ω0 is in principle an arbitrary constant, which we fix as the
initial frequency ω0 = ω(0). The eigenfunctions of I (t) are

⟨q|φn(t)⟩ =
1

(2nn!b)1/2
exp

[
i
m

2h̄

(
ḃ

b
+ iω0

b2

)
q2

]

×Hn

((mω0

h̄

)1/2 q

b

)
, (25)

and since I (t) has the structure of a generalized harmonic
oscillator, i.e., quadratic but with “cross” momentum-position
terms, the eigenvalues are λn = (n+ 1/2)h̄ω0.

As a consistency check, using the relations between q̂, p̂, at ,
and a†t (see the Appendix), and substituting the wave function
⟨q|φn(t)⟩ into Eq. (10), the Hamiltonian may be written as

H (t) = F (t)+ ḃ

2b
(p̂q̂ + q̂p̂) − m

2b2
(ḃ2 + bb̈)q̂2. (26)

When ω(t) and, thus, H (t) are given, as we assume now, the
invariant eigenfunctions ⟨q|φn(t)⟩, the αn(t), and F (t) are not
free functions. In particular, αn(t) takes, from Eq. (5), the form

αn(t) = −
(
n+ 1

2

)
ω0

∫ t

0

1
b2

dt ′. (27)

This gives α̇n = −(n+ 1
2 )ω0/b

2 and F (t) = I (t)/b2. For con-
sistency with Eq. (21), the cross terms in Eq. (26) must cancel.
This is indeed the case. If F (t) = I (t)/b2, the Hamiltonian
H (t) can be finally written as

H (t) = 1
2m

p̂2 + 1
2
m

(
ω2
0

b4
− b̈

b

)
q̂2, (28)

which is nothing but theHamiltonianEq. (21) after substituting
ω(t) using the Ermakov equation [Eq. (24)].

B. Invariant-based engineering approach

In the inverse-engineering approach based on Lewis-
Riesefeld invariant theory as presented in [9], the main goal
is to find a “trajectory” for the external parameter ω(t) so
that the populations of the final oscillator levels are the same
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as the ones of the initial oscillator. The form of H (t) as
an ordinary time-dependent harmonic oscillator is therefore
imposed from the start although we do not know ω(t) yet.
The assumed structure of the Hamiltonian implies an invariant
like Eq. (23) and phases like Eq. (27). Designing I (t) first
here means to design b(t). Let us assume an expansion of
the time-dependent harmonic oscillator with initial and final
frequencies ω(0) = ω0 and ω(tf ) = ωf , respectively. To make
I (t) and H (t) commute at t = 0 and tf and have common
eigenfunctions, we impose the boundary conditions

b(0) = 1, ḃ(0) = 0, b̈(0) = 0,
(29)

b(tf ) =
√

ω0/ωf , ḃ(tf ) = 0, b̈(tf ) = 0,

by comparing Eqs. (22) and (25) and using Eq. (24). A
simple polynomial ansatz can be used to interpolate b(t) at
intermediate times [9]. Once b(t) and, therefore, the invariant
are set, the time-dependent frequency ω(t) and the shortcut
Hamiltonian follow from the Ermakov equation [Eq. (24)].
This method, including the effect of gravity, has been realized
experimentally [24,25], extended to Bose-Einstein conden-
sates [8,25] and also to design transport protocols [17,18], and
used in other applications, such as the cooling of mechanical
resonators [19] or the microscopy of quantum correlations in
many-body systems [20]. Bounds for the transient energies
involved and the implications in refrigeration cycles were
studied in [5].

C. Invariant-based method in transitionless
tracking algorithm language

As pointed out in Sec. II C, the invariant based method
can be restated in the language of the transitionless tracking
algorithm. To find the reference HamiltonianH0(t) implicit in
Sec. III B, we interpret the |φn(t)⟩ as the eigenstates |n0(t)⟩ of
H0, take ξn(t) = αn(t), and set the eigenvalues according to
Eq. (19). This gives

H0(t) =
(

1
b2

+ ḃ2 − b̈b

2ω2
0

)
I (t), (30)

which is a generalized harmonic oscillator. The corresponding
Hamiltonian H1(t) takes the form

H1(t) =
ḃ

2b
(p̂q̂ + q̂p̂) − m

2b2
(b̈b + ḃ2)q̂2 −

(
ḃ2 − b̈b

2ω2
0

)
I.

(31)

Because of the boundary conditions [Eq. (29)],H1(t) vanishes
at t = 0 and t = tf . The cross terms are canceled out in the
full Hamiltonian H (t) = H0(t)+H1(t) given by Eq. (28).

D. Transitionless tracking algorithm (standard application)

Unlike the previous subsection, in a more standard appli-
cation of the transitionless tracking algorithm to the harmonic
oscillator [15], H0(t) is set first as an ordinary harmonic
oscillator with given frequency ω(t), i.e., as in Eq. (21), so
that |n(t)⟩ in Eq. (22) should be now reinterpreted as |n0(t)⟩.

H1(t) is calculated from Eq. (23), and the resulting shortcut
Hamiltonian becomes

H (t) = p̂2

2m
+ 1

2
mω2(t)q̂2

︸ ︷︷ ︸
H0(t)

− ω̇

4ω(t)
(p̂q̂ + q̂p̂)

︸ ︷︷ ︸
H1(t)

, (32)

a generalized harmonic oscillator with cross terms that imply
a nonlocal interaction [28].

E. Relation to invariants

To reinterpret the previous subsection in terms of invariants,
we construct I (t) =

∑
n |n0(t)⟩λn⟨n0(t)|, with λn = E(0)

n (0) =
(n+ 1/2)h̄ω0. Since H0(t) =

∑
n |n0(t)⟩E(0)

n (t)⟨n0(t)| with
instantaneous eigenvalues E(0)

n (t) = (n+ 1/2)h̄ω(t), the in-
variant is now proportional to an ordinary harmonic oscillator

I (t) = ω0

ω(t)
H0(t) =

ω0

ω(t)

[
p̂2

2m
+ 1

2
mω2(t)q̂2

]
(33)

and I (0) = H0(0). Using ξ̇n = −E(0)
n (t)/h̄+ i⟨n0(t)|∂t n0(t)⟩,

and ⟨n0(t)|∂t n0(t)⟩ = 0, then letting αn(t) = ξn(t) and
|φn(t)⟩ = |n0(t)⟩, we may write down H (t) from Eq. (10):

H (t) = F (t) − ω̇

4ω(t)
(p̂q̂ + q̂p̂), (34)

but here F (t) = H0(t) = [ω(t)/ω0]I (t), so we recover the
Hamiltonian in Eq. (32). I (t) does not commute with H (t)
in general. To guarantee that I (t) and H (t) have common
eigenstates at t = 0 and t = tf , the boundary conditions
ω̇(0) = 0 and ω̇(tf ) = 0 should be satisfied, so that H1(t)
vanishes at the initial and final times, as discussed in Sec. II.

IV. TWO-LEVEL ATOM

The two-level atom is another fundamental model. Speed-
edup versions of adiabatic state preparation methods, such as
rapid adiabatic passage (RAP), in a two-level atomic system
may be useful in chemical reaction dynamics, laser cooling,
or quantum information processing.

For the two-level atom, using |1⟩ =
(0
1

)
, |2⟩ =

(1
0

)
, the

time-dependent Hamiltonian which we consider, in a laser
adapted interaction picture and applying the rotating wave
approximation [12], is

H (t) = h̄

2

(
* +Re

iϕ

+Re
−iϕ −*

)
, (35)

where * = *(t) and +R = +R(t) are the time-dependent
detuning and Rabi frequency, respectively, and ϕ = ϕ(t) a
time-dependent phase. The instantaneous eigenvectors are

|n+(t)⟩ = cos
(

θ

2

)
eiϕ|2⟩ + sin

(
θ

2

)
|1⟩, (36)

|n−(t)⟩ = sin
(

θ

2

)
|2⟩ − cos

(
θ

2

)
e−iϕ|1⟩, (37)

with the mixing angle θ = θ (t) ≡ arccos(*/+) and eigenval-
ues E±(t) = ±h̄+(t)/2, where +(t) =

√
*2 + +2

R . If ϕ = 0,
and the adiabaticity condition

∣∣∣∣
+R*̇ − +̇R*

+3

∣∣∣∣ ≪ 1, (38)
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is satisfied, the state evolving from |ψ±(0)⟩ = |n±(0)⟩ follows
the adiabatic approximation

|ψ±(t)⟩ = exp
{
− i

h̄

∫ t

0
dt ′E±(t ′)

}
|n±(t)⟩, (39)

whereas transitionswill occur otherwise. If the state starts from
|n+(0)⟩, the adiabatic evolution of the population of levels 1
and 2 is

P ad
1 (t) = |⟨1|n+(t)⟩|2 = sin2

(
θ

2

)
,

(40)

P ad
2 (t) = |⟨2|n+(t)⟩|2 = cos2

(
θ

2

)
.

In what follows, we shall speed up the adiabatic passage by
the two methods discussed in this work.

A. Invariants method

Similarly to Sec. III B, here we shall assume beforehand
a form of the Hamiltonian, in this case Eq. (35). The goal of
the inverse engineering will be to design the time dependence
of the functions in the assumed functional form so as to end
up with the desired final populations. We parametrize first the
eigenvalues and eigenstates of the invariant I (t), satisfying
I (t)|φn(t)⟩ = λn|φn(t)⟩ consistently with orthogonality and
normalization, in parallel to Eqs. (36) and (37):

|φ+(t)⟩ = cos
(γ

2

)
eiβ |2⟩ + sin

(γ

2

)
|1⟩,

(41)
|φ−(t)⟩ = sin

(γ

2

)
|2⟩ − cos

(γ

2

)
e−iβ |1⟩,

and set λ± = ±h̄+0/2. [+0 is an arbitrary constant with units
of frequency to keep I (t) with dimensions of energy.] Thus,
I (t) can be expressed as

I (t) = h̄

2
+0

(
cos γ sin γ eiβ

sin γ e−iβ − cos γ

)
, (42)

where β = β(t) and γ = γ (t) are auxiliary time-dependent
angles. Using Eqs. (35) and (41), the Lewis-Riesenfeld phase
[Eq. (5)] is now calculated as [30]

α±(t) = ±1
2

∫ t

0
[*(t ′) − 2+̃(t ′)]dt ′, (43)

where

+̃ = (* + β̇) cos2
(γ

2

)
+ +R

2
sin γ cos (β − ϕ).

Substituting these phases into Eq. (11) and then Eq. (10), the
Hamiltonian is given by

H (t) =
(
2+̃ − *

+0

)
I (t)+ ih̄

∑

±
|∂tφ±(t)⟩⟨φ±(t)|, (44)

which can be finally expressed as

H (t) = h̄

2

(
M Neiβ

N∗e−iβ −M

)
, (45)

where

M = * cos2 γ + +R sin γ cos γ cos (β − ϕ) − β̇ sin2 γ ,

N = [* cos γ + +R sin γ cos (β − ϕ)+ β̇ cos γ ] sin γ − iγ̇ .

The Hamiltonian in Eq. (45) must be equivalent to the
Hamiltonian in Eq. (35); so from M = * and Neiβ = +Re

iϕ

[30], we get the auxiliary equations

γ̇ = +R sin (β − ϕ), (46)

(* + β̇) sin γ = +R cos γ cos (β − ϕ). (47)

In general, H (t) does not commute with I (t):

[H (t),I (t)]/(h̄2+0)

= σ̂+(* sin γ eiβ − +R cos γ eiϕ)/2

− σ̂−(* sin γ e−iβ − +R cos γ e−iϕ)/2

− σ̂0i+R sin γ sin (β − ϕ)/2, (48)

where

σ̂0 =
(
1 0
0 −1

)
, σ̂+ =

(
0 1
0 0

)
, σ̂− =

(
0 0
1 0

)
. (49)

[H (0),I (0)] = 0 is satisfied, if

*(0) sin γ (0)eiβ(0) − +R(0) cos γ (0)eiϕ(0) = 0, (50)

*(0) sin γ (0)e−iβ(0) − +R(0) cos γ (0)e−iϕ(0) = 0, (51)

+R(0) sin γ (0) sin [β(0) − ϕ(0)] = 0, (52)

and there are similar equations for tf . For population inversion,
we are interested in processes starting and ending with zero
+R and some finite detuning, so we impose

+R(0) = 0, γ (0) = νπ, (53)

so far with arbitrary β(0) and ϕ(0). ν is an arbitrary integer.
In this case,H (0) and I (0) have common eigenvectors, which
are exactly the pure ground state |1⟩ and the excited state |2⟩.

Similarly, for [H (tf ),I (tf )] = 0,

+R(tf ) = 0, γ (tf ) = ν ′π, (54)

with arbitrary β(tf ) and ϕ(tf ), and integer ν ′. Again, H (tf )
and I (tf ) share common eigenstates, which are the ground and
the excited state.

Substituting the above boundary conditions into Eqs. (46)
and (47), we have

γ̇ (0) = 0, γ̇ (tf ) = 0, (55)

whereas β̇(0) and β̇(tf ) will determine the value of the initial
and final detunings.

We are now ready to set some ansatz for β and γ using
appropriate boundary conditions. Once the functions β and γ
are fixed, we can construct+R and* and thus the Hamiltonian
H (t) with a given ϕ. In the following subsection, we shall
provide some examples of invariant-based inverse engineering
with different boundary conditions.

B. Examples

We shall apply the previous results to design fast population
transfer protocols. For simplicity, we assume ϕ = 0 and
consider the Hamiltonian

H (t) = h̄

2

(
* +R

+R −*

)
, (56)
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with yet unknown functions+R and* that will be determined,
from Eqs. (46) and (47), by

+R = γ̇ / sinβ, (57)

* = +R cot γ cosβ − β̇. (58)

We suppose that this Hamiltonian drives the state from |1⟩
to |2⟩, up to a phase factor, along the invariant eigenvector
|φ+(t)⟩. We set the boundary conditions +R(0) = +R(tf ) = 0
and

γ (0) = π, γ̇ (0) = 0, (59)

γ (tf ) = 0, γ̇ (tf ) = 0. (60)

As mentioned before, we have freedom to choose the values
of β(0) and β(tf ). According to Eq. (57), it is useful to keep
β close to (n+ 1/2)π , so as to minimize +R along the path,
whereas the derivatives fix the initial and final detunings [see
Eq. (58)], which should have opposite signs here. Moreover
they should not be too large to keep β close to the chosen
reference β value, and to avoid β = 0 at some intermediate
time and, thus, an infinite +R . Considering all these physical
constraints, we impose

β(0) = −π/2, β̇(0) = 3π/(2tf ), (61)

β(tf ) = −π/2, β̇(tf ) = −3π/(2tf ), (62)

where the negative sign of β [see Eq. (57) and Fig. 1(a)] keeps
+R positive, as γ̇ becomes negative.

To interpolate at intermediate times, we assume a polyno-
mial ansatz. Figure 1(a) shows γ (t) =

∑3
j=0 aj t

j and β(t) =
∑3

j=0 bj t
j , where the coefficients are found by solving the

equations set by the boundary conditions. The time-dependent
+R and * calculated from Eqs. (57) and (58) are shown in
Fig. 1(b). Once we have specified H (t) in Eq. (56), we solve
the dynamics numerically by a Runge-Kutta method with an
adaptive step [see the population inversion in Fig. 1(c) for
levels 1 and 2]. We have also compared the bare state pop-
ulations P1 and P2 with the populations of the instantaneous
eigenstates ofH (t), P ad

1 , and P ad
2 . Their agreement shows that

the designed protocol is in fact an adiabatic passage for the
specified final time tf .

We may impose additional conditions at an intermediate
time, for example, to keep β closer to −π/2:

β(0) = −π/2, β(tf ) = −π/2, β(tf /2) = −π/2, (63)

β̇(0) = π/(2tf ), β̇(tf ) = −π/(2tf ), (64)

where we have also diminished the detuning. This new set
of conditions requires a higher order polynomial, β(t) =∑4

j=0 bj t
j . Figure 2 shows the results, to be compared with

those of Fig. 1. Note that in Fig. 2(b), Rabi frequency and
detunings are smaller than in Fig. 1(b), so smaller energies
are involved. Now, the dynamical evolution is not adiabatic
[see Fig. 1(c)]. The method can be further complemented by
optimizing the trajectory with respect to different physical
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P

FIG. 1. (Color online) (a) Examples of polynomial ansatzes for
γ (t) =

∑3
j=0 aj t

j (solid red line) and β(t) =
∑3

j=0 bj t
j (dashed

blue line). (b) Corresponding functions of +R (solid red line) and
* (dashed blue line) are determined by Eqs. (57) and (58).
(c) Time evolution of the populations of levels 1 and 2:P1 (dashed blue
line), P2 (solid red line), and adiabatic approximations P ad

1 (dotted
purple line) and P ad

2 (dash-dotted orange line) [see Eq. (40)], hardly
distinguishable from the former. tf = 1 µs.

cost functions or constraints [16]. This will be discussed
elsewhere.

C. Invariant-based method in transitionless
tracking algorithm language

In order to reexamine the invariant-based inverse-
engineering approach in the language of Berry’s transitionless
tracking algorithm, we take |φ±(t)⟩ as |n0±(t)⟩, and let α±(t) =
ξ±(t), so that Eq. (19) gives

H0(t) =
* cos γ + +R sin γ cos (β − ϕ)

+0
I (t)

= 2+̃ − * − 2β̇ cos2 (γ /2)
+0

I (t), (65)

and the Hamiltonian H1(t) in Eq. (16) is

H1(t) =
h̄

2

(
−β̇ sin2 γ (−iγ̇ + β̇

2 sin 2γ )e
iβ

(iγ̇ + β̇
2 sin 2γ )e

−iβ β̇ sin2 γ

)

.

(66)
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FIG. 2. (Color online) (a) Examples of polynomial ansatzes for
γ (t) =

∑3
j=0 aj t

j (solid red line) and β(t) =
∑4

j=0 bj t
j (dotted-

dashed orange line). (b) Corresponding functions of +R (solid red
line) and * (dotted-dashed orange line) are determined by Eqs. (57)
and (58). (c) Time evolution of the populations P1 (dashed blue line)
and P2 (solid red line); adiabatic approximations P ad

1 (dotted purple
line) and P ad

2 (dotted-dashed orange line) for comparison. tf = 1 µs.

Using the boundary conditions [Eqs. (53)–(55)], H1(t) van-
ishes at t = 0 and t = tf .

D. Transitionless tracking algorithm

Let us now apply Berry’s transitionless tracking algorithm
taking the interaction picture Hamiltonian (35) as the reference
Hamiltonian [12]:

H0(t) =
h̄

2

(
* +Re

iϕ

+Re
−iϕ −*

)
. (67)

Choosing |n±(t)⟩ given by Eqs. (36) and (37) as |n0±(t)⟩, the
driving Hamiltonian [Eq. (16)] becomes in this case,

H1(t) =
h̄

2

(
−ϕ̇ sin2 θ (−iθ̇ + ϕ̇

2 sin 2θ )e
iϕ

(iθ̇ + ϕ̇
2 sin 2θ )e

−iϕ ϕ̇ sin2 θ

)

.

(68)

For ϕ = 0, this reduces to

H1(t) =
h̄

2

(
0 −i+a

i+a 0

)
, (69)

where +a ≡ θ̇ = (+̇R* − +R*̇)/+2. In [12], this was used
to speed up an Allen-Eberly scheme for H0(t) and achieve
fast population transfer. To determine the physical meaning
and realizability of the results, we may to go back to

the original Schrödinger picture as discussed in [12]. We
summarize here the conclusions for completeness: implement-
ing H (t) = H0(t)+H1(t) implies using two lasers with the
same frequency, orthogonal polarization, and time-dependent
intensities but different intensity shapes [12]. An alternative
is to drive the system with H1(t) only, without H0(t). In the
Schrödinger picture, this amounts to act with one laser and
to perform level shift engineering to modulate the transition
frequency so as to leave * = 0 in the interaction picture [12].
Note that these complications (an extra laser or the need for
level-shift engineering) do not arise from the results of the
previous subsection.

E. Relation to invariants

Let us now reinterpret the previous (standard) Berry’s
transitionless tracking algorithm in terms of invariant theory.
In the language of Lewis-Riesefeld invariant theory, we can
construct an invariant as I (t) =

∑
± |n0±(t)⟩λ±⟨n0±(t)|, where

λ± = ±h̄+0/2, with matrix form

I (t) = h̄

2
+0

(
cos θ sin θeiϕ

sin θe−iϕ − cos θ

)
. (70)

With the choice of +0 = +(0), then λ± = E
(0)
± (0)

and I (0) = H0(0). Since H0(t) =
∑

± |n0±(t)⟩E(0)
± (t)⟨n0±(t)|

with instantaneous eigenvalues E
(0)
± (t) = ±h̄+(t)/2, we

have H0(t) = [+(t)/+0]I (t). Using ξ̇± = −E
(0)
± (t)/h̄+

i⟨n0±(t)|∂t n0±(t)⟩ and ⟨n0±(t)|∂tn0±(t)⟩ = ±iϕ̇ cos2 (θ/2),
then letting |φ±(t)⟩ = |n0±(t)⟩ and α±(t) = ξ±(t), we may
write H (t) from Eq. (10). Canceling terms, this gives exactly
the Hamiltonian H0(t)+H1(t) in the previous subsection.
I (t) does not commute with H (t) in general, but, when the
boundary conditions

θ (0) = νπ, θ̇ (0) = 0, (71)

θ (tf ) = ν ′π, θ̇ (tf ) = 0, (72)

are satisfied, H1(t) will vanish at initial and final times.

V. CONCLUSION

In previous publications, we applied and compared two
methods to speed up adiabatic processes through nonadi-
abatic shortcuts: Berry’s transitionless tracking algorithm
and the invariant-based inverse-engineering approach. Their
differences were emphasized, in particular, in time-dependent
harmonic oscillators [15] or the transport of particles by
a moving trap [17]. The message here is quite different,
even opposite: we point out now that in fact both ap-
proaches share a common ground of concepts and structure.
There is, however, no contradiction. It is indeed possible
to interpret a particular inverse-engineering operation using
either the language of transitionless tracking or invariants
approaches, and consider them to be potentially equivalent.
The explanation of the differences found is the large freedom
to design different Hamiltonians for a given speedup goal.
In other words, the different results are not fundamental
but due to the particular choices that have been made to
resolve that freedom in specific implementations. The choice
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of method from this point becomes thus, in part, a matter
of taste, but there are also elements that make one or the
other approach more natural or convenient. For example,
systems with Hamiltonians that admit known structures for
the invariants are easy to approach with the invariant-based
method. This includes transport, expansions, rotations [27],
or, as shown here, discrete level systems. The tracking
algorithm can be applied in many systems where the invariants
are unknown. In summary, this work provides a deeper
understanding of shortcut-to-adiabaticity methods that will
help to choose themost adequate approach in atomic transport,
quantum gates, and generally atomic manipulation and control
applications.
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APPENDIX: RELATIONS BETWEEN q̂, p̂, at , AND a†t

We can rewrite the dynamical invariant I (t) in Eq. (23) as

I (t) = 1
2

[
mω2

0

b2
q̂2 + 1

m
π̂2

]
= h̄ω0

(
a
†
t at +

1
2

)
, (A1)

in terms of the time-dependent creation and annihilation
operators at and a

†
t , which are defined by the following

relations

at =
√
mω0

2h̄

[
1
b
q̂ + i

mω0
(bp̂ − mḃq̂)

]
, (A2)

a
†
t =

√
mω0

2h̄

[
1
b
q̂ − i

mω0
(bp̂ − mḃq̂)

]
, (A3)

and satisfy the canonical commutation relation [at ,a
†
t ] = 1.

Thus, the operators q̂ and p̂ can be expressed by

q̂ = b

2

√
2h̄
mω0

(at + a
†
t ), (A4)

p̂ = i

b

√
h̄mω0

2
(a†t − at )+ ḃ

√
h̄m

2ω0
(at + a

†
t ). (A5)

These relations simplify the calculation of
ih̄

∑
n |∂tφn(t)⟩⟨φn(t)|, as in [15].
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