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Abstract: Log-linear models and more recently neural network models used for
supervised relation extraction requires substantial amounts of training data and
time, limiting the portability to new relations and domains. To this end, we pro-
pose a training representation based on the dependency paths between entities in a
dependency tree which we call lexicalized dependency paths (LDPs). We show
that this representation is fast, efficient and transparent. We further propose repre-
sentations utilizing entity types and its subtypes to refine our model and alleviate
the data sparsity problem. We apply lexicalized dependency paths to supervised
learning using the ACE corpus and show that it can achieve similar performance
level to other state-of-the-art methods and even surpass them on several
categories.

Keywords: Relation extraction; dependency paths; lexicalized dependency paths;
supervised learning; rule-based models

1 Introduction

There has been steady progress over the last fifteen years in relation extraction, primarily using
supervised machine learning methods for training log-linear models [1–11], more recently neural network
models [12–24] and joint models that combine several models in one [25–28]. This requires lots of
training data and time, which limits the portability to new relations and domains. This has led in practice
to the continued use of manually-curated rule-based systems, which are more inspectable and thus give
the developer more control [29].

We believe that customization of extraction engines is ultimately a collaborative process, with system
and developer both providing some guidance and both proposing and validating improvements to the
model. This is possible only if the developer can grasp the current state of the model. This requires a
rule-based representation that is (1) transparent and intuitive, so that rules can be easily understood, and
(2) efficient, in the sense that, compared to other representations, a small set of rules yields satisfactory
performance.

To achieve this desired goal, we propose the use of lexicalized dependency paths (LDP) with types and
subtypes as the representation. Dependency paths have been widely used in relation extraction ([30–37]), so
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this seems a natural choice. However, adopting a constrained representation such as dependency paths will
inevitably mean some loss of performance. Our main goal here is to gauge that loss. In the sections which
follow we describe the proposed representation and compare its performance to published results using other
types of models.

2 Related Work

In dependency kernels, [38] proposed a tree kernel over shallow parse tree representations of sentences
and [32] generalized the tree kernel and used dependency trees. [30] used the shortest-path between the
two relation entities in the dependency graph as the kernel for relation extraction. Scoring on ACE 2004,
they outperformed previous dependency tree kernels. Then [31] presented a new kernel based on
generalization of subsequence kernels. [33] used dependency parse trees to extract relations in the
biomedical domain. [11], [34–36], and [38] all utilized various modified, improved and augmented tree
kernels to extract relations. [18] used augmented dependency paths composed of shortest dependency
path as well as the subtrees attached to the path for relation classification. [20] tackled domain adaptation
using word embeddings to generate semantic representations in tree kernels.

In terms of featured-based methods, [8] proposed a maximum entropy model combining lexical,
syntactic and semantic features. [39] presented a feature-based system description for ACE 2005. [7] used
various features including dependency parse tree representations. [6] and [10] exploited various
knowledge information such as background knowledge in relation extraction. [1] proposed a feature-rich
compositional embedding model of relation extraction. They handled arbitrary types of sentence
annotations and utilized global information for composition. They outperformed previous compositional
models as well as feature rich models on ACE 2005. In terms of neural network methods, [40] proposed
a hybrid model that combines feature-based method with convolutional and recurrent neural networks to
effectively extract relations from ACE 2005. [21–24] all proposed various neural networks for relation
extraction.

3 Lexicalized Dependency Paths

3.1 Definition

Many previous works have utilized dependency paths ([30–37]) for relation extraction. A dependency
path is essentially the path between two entities in a dependency graph, and it usually offers a condensed
representation of the information needed to assess the relationship between the entities. We propose a
lexicalized version of this path which we call lexicalized dependency path (LDP). A LDP has the
following form:

arg1type–deptype:lex:deptype:lex:…:deptype–arg2type.

The arg1type and arg2type are entity types of the two arguments of a relation (e.g., PERSON, GPE),
deptype specifies a type of dependency relation (e.g., nsubj, dobj), and lex is the base form of a lexical
item (e.g. work, from). If an arc of type X in the dependency tree is traversed from governor to
dependent, the path includes ‘X’; if the arc is traversed from dependent to governor, the path includes
‘X-1’, e.g., nsubj-1 or dobj-1.

Extending dependency path this way has several advantages over predecessors. First, it creates a rule-
based system that is unified and easily understood and it allows a nature extension to other forms of learning
such as active learning. Second, this representation also means we can dissect a sentence into a number of
LDPs allowing for a supervised trainer to be used. A potential problem here is data sparsity and we propose a
further representation based on type and subtypes LDPs to eliminate this problem which we describe in a
following section.
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3.2 Constructing a Lexicalized Dependency Path

To produce a set of LDPs for a sentence, we start with a dependency parse for the sentence (we use the
dependency parser of [41]). Then several transformations are applied to the parse. These recognize various
syntactic forms involving the same semantic relation, such as active, passive, relative, and reduced relative
forms; these are all transformed to simple active clauses. By collapsing such forms, there will be fewer forms
to learn and learning should be accelerated. A few of the transformations serve to restructure the tree so that
crucial information will be included in the dependency path. One such transformation fuses a verb with a
verbal particle.

We then generate a dependency path connecting every pair of entity mentions in the sentence using a
shortest path algorithm. An entity mention is a name or noun phrase belonging to one of a specified set
of semantic types. We reduce the conjunctions in the path: if the path includes a constituent conjoined
with another entity, the conjoined constituent is eliminated. We then lemmatize the path: replacing each
word in the path with the stem of the word, for example the word ‘sold’ becomes ‘sell’.

Finally, we generate an English phrase from each LDP. This is done in a rather straightforward way,
combining the lexical items in the LDP with lexical realizations of some of the dependency relations (for
example, the ’s for the possessive relation). In most cases the result is a word sequence containing a
subset of the words between the two arguments in the original sentence, preserving their order. Internally
the extraction customization uses LDPs, but interaction with the developer is in terms of these phrases.

3.3 Example Sentence

We use ACE 2005 [42] to train and evaluate our model. ACE has approximately 600 documents with a
total of 300,000 words, annotated for entities, relations, and events.

For ACE 2005, 6 relation classes are annotated: ORG-AFF (Organization-Affiliation), PART-WHOLE,
PHYS (Physical), GEN-AFF (General-Affiliation), PER-SOC (Person-Social), and ART (Artifact). We also
use the NR class to indicate ‘no relation’.

7 entity types are annotated in ACE 2005: PERSON, GPE (Geo-Political Entity), ORGANIZATION,
LOCATION, FACILITY, WEA (Weapon), and VEH (Vehicle).

Take the example ACE 2005 ‘sentence’:

And here in Washington, Democratic senator Christopher Dodd of Connecticut.

This sentence contains three relation instances: ORG-AFF between Christopher Dodd (PERSON) and
Democratic (ORGANIZATION), GEN-AFF between Christopher Dodd (PERSON) and Connecticut
(GPE), and PHYS between Christopher Dodd (PERSON) and Washington (GPE).

The LDPs and associated English phrase of the three relation instances are respectively:

LDP: ORGANIZATION–amod-1:senator:nn-1–PERSON Phrase: Organization senator Person

LDP: PERSON–prep:of:pobj–GPE Phrase: Person of GPE

LDP: PERSON–pobj-1:here:prep:in:pobj–GPE Phrase: Person here in GPE

This same basic procedure is used for training and decoding. For training, each LDP taken from the
corpus is tagged with its relation type or NR to indicate ‘no relation’. An extraction model is simply a set
of LDPs with their tags. For decoding, each test LDP is compared with all the LDPs collected during
training; if it matches one and that one is not labelled NR, we assign that test LDP with the label of the
training LDP.
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3.4 Type and Subtype Lexicalized Dependency Path

We counter the problem of data sparsity usually found in dependency-based models by using types and
subtypes of entities. Entities in ACE assigned a type are also assigned a subtype, for example a PERSON
entity can be classified into three subtypes: Individual, Group or Indeterminate, a GPE entity can be one
of 7 subtypes: Continent, County-or-District, GPE-Cluster, Nation, Population-Center, Special, State-or-
Province, and an ORGANIZATION entity can be one of 9 subtypes: Commercial, Educational,
Entertainment, Government, Media, Medical-Science, Non-Governmental, Religious, or Sports.

To combine coarse and fine semantic classes, we differentiate LDPs formed between pairs of entity type
arguments and all of its subtype arguments. Given a sentence with a pair of entity mentions, we can proceed
in three ways: we can create a type LDP from the types of the entity mentions; we can create a subtype LDP
from the subtypes of the entity mentions; or we can create both type and subtype LDPs. In the last case, a test
LDP may have two matches against the model: one matching types, one matching subtypes. In that case the
subtype match takes precedence. This makes it possible to have general rules and more specific exceptions.

Training instances of each relation class identified by the type LDPGPE–nn-1–PERSON and its subtype
LDPs are shown in Tab. 1. The type LDP is assigned ORG-AFF as that is the most common class with
283 instances. But some of its subtype LDPs get assigned a different class: State-or-Province–nn-1–
Individual is assigned GEN-AFF, and Special–nn-1–Group and Continent–nn-1–Individual are assigned
PHYS. This is a consequence of giving subtypes precedence over types.

4 Learning with Lexicalized Dependency Paths

We evaluate the performance under supervised learning with a substantial training corpus. We extract
and score relations between all ACE entity mentions including named, nominal and pronominal mentions.
On the ACE training split, we construct a LDP for every pair of entity mentions appearing within a single
sentence. Following the general practice for the evaluation of relation extractors, we provide ‘perfect’

Table 1: The number of training instances of different relation classes identified by a type LDP and its
subtype LDPs. NR denotes ‘No Relation’

LDP ORG-AFF GEN-AFF PHYS NR

Type GPE–nn-1–PERSON 283 23 6 40

Nation–nn-1–Group 167 11 1 13

Nation–nn-1–Individual 85 3 0 13

GPE-Cluster–nn-1–Group 11 0 0 0

Population-Center–nn-1–Group 4 1 1 3

State-or-Province–nn-1–Individual 4 6 0 1

Subtypes Population-Center–nn-1–Individual
State-or-Province–nn-1–Group

4
3

0
2

2
0

6
1

County-or-District–nn-1–Individual 3 0 0 1

Special–nn-1–Individual 1 0 0 0

GPE-Cluster–nn-1–Individual 1 0 0 1

Special–nn-1–Group 0 0 1 0

Continent–nn-1–Individual 0 0 1 1
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(hand-coded) entity mentions. To reduce the noise, only examples where the two arguments are separated by
less than 5 entity mentions are kept. We count the number of relation instances of each relation label that a
LDP identifies. If a LDP occurs with more than one relation label, e.g. PERSON–prep:of:pobj–GPE has four
relation labels: ORG-AFF with 24 instances, NR with 13 instances, GEN-AFF with 11 instances, and PHYS
with 1 instance, the most common relation label is assigned (ORG-AFF in this case). When deciding the most
common type, the six ACE relation types all get an equal weight of 1.0, but the NR (no relation) type gets a
weight of 0.5, as we found that assigning a lower weight to the NR class improves the F1 score on training,
and the weight of 0.5 produced the best score. This is why the subtype LDP Population-Center–nn-1–
Individual in Tab. 1 gets assigned the label ORG-AFF, not NR despite the latter having a higher count.

In terms of the kernel function, we compute the dot-product between two relations. If x ¼ x1x2 . . . xn
and y ¼ y1y2 . . . ym are two examples of relations, for instance ‘Person from GPE’ can be one and
‘Person of Organization’ can be the other, then the number of common features between x and y is
calculated by the following equation:

K x; yð Þ ¼
0; n 6¼ m

Qm
i¼1

c xi; yið Þ; n ¼ m

8<
:

where c xi; yið Þ ¼ xi \ yij j is the number of common word classes between them and K denoting the kernel
function we are trying to compute. This is used to initially identify the feasibility of our LDP model in
achieving the baseline requirement for supervised learning.

We perform supervised training on both type and subtype LDPs. In the implementation of our system,
we take the order of arguments in the text into account: ‘Fred is employed by IBM’ has the label ORG-AFF
and ‘IBM hired Fred’ has a different label ORG-AFF-1 where ‘−1’ indicates the arguments of the relation are
inverted. After the first pass through the training data producing type as well as subtype LDPs, we combine
them together to form type + subtype LDPs: for each subtype LDP, if there are one or more training LDPs
which match both arguments of the LDP at the subtype level, take the most common relation label at the
subtype level (including no relation) among the training LDPs; otherwise if there are one or more training
LDPs which match both arguments of the LDP at the type level, take the most common relation label at
the type level (including no relation). This allows us to assign a type LDP and its subtype LDPs different
relation labels based on the most common label at the subtype level.

To help resist overfitting, we can further exploit the dual formation to calculate the kernel. In this case,
the kernel function is K xi; xð Þ ¼ f xið Þf xð Þ, where xi and x are two objects and f is the mapping from object
to feature. Then the formation is given by the following equation:

Xn
i¼1

xiaif oið Þf oð Þ þ b ¼ 0

5 Experimental Results

5.1 Results

There are six news sources (genres) in ACE: broadcast conversations (bc), broadcast news (bn),
conversational telephone speech (cts), newswire (nw), usenet (un), and weblog (wl). Most earlier
evaluations reported an aggregate score across these genres ( [5–7], [9–11]) but recently there have been
several studies which assessed genre independence ( [1,34,40]). To provide an additional assessment of
our LDP-based models, we have replicated this data split, using bn and nw as training data and testing on
bc, cts, un and wl separately.
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We train on nw and bn news sources of ACE, and test on bc, cts, un and wl separately. Type, subtype, and
the combination of type and subtype (type + subtype) LDP scores on the test are shown in Tab. 2. Type +
subtype LDPs produced the best result for each of the four test sources, and on the un genre, adding
subtype LDPs on top of type LDPs achieved close to a 3% F1 increase compared to just type LDPs. This
shows the advantage of combining coarse and fine semantic classes in type + subtype LDPs.

Performance comparisons between type and subtype LDPs are shown in Fig. 1. We see that using
subtype LDP alone gets a worse performance compared to using type LDP. This is to be expected since
utilizing entity subtype information is very limited and too fine-grained, giving a lot less recall score than
typed LDP despite it producing better precision scores. Combining type and subtype outperforms both
type and subtype LDPs on its own, showing its effectively in countering the data sparsity problem.

Next, we compare our scores to state-of-the-art systems in Tab. 2. Precision (P), Recall (R), and F-score
(F) are shown. The F score is the standard metric for comparing the overall performance of models. They can
be calculated as follows:

Table 2: Performance of type (T) LDPs, subtype (S) LDPs, and combination of type and subtype (T + S)
LDPs on each of the 4 ACE test sources. Results for other state-of-the-art models are also shown

LDP bc cts un wl

P R F P R F P R F P R F

T 72.34 52.47 60.82 70.02 49.46 57.97 62.84 42.48 50.69 53.31 46.03 49.41

S 74.91 47.65 58.25 76.81 43.97 55.92 71.55 37.85 49.51 57.50 38.88 46.39

T + S 74.09 52.89 61.72 73.29 50.40 59.73 68.10 43.98 53.45 56.14 45.77 50.43

State-of-the-art systems

Log-linear 68.44 50.07 57.83 73.62 41.57 53.14 N/A N/A N/A 60.40 47.31 53.06

FCM 66.56 57.86 61.90 65.62 44.35 52.93 N/A N/A N/A 57.80 44.62 50.36

Hybrid FCM 74.39 55.35 63.48 74.53 45.01 56.12 N/A N/A N/A 65.63 47.59 55.17

CNN 65.62 61.06 63.26 65.92 48.12 55.63 N/A N/A N/A 54.14 53.68 53.91

Hybrid NN 70.40 63.84 66.96 65.91 52.21 58.26 N/A N/A N/A 58.81 55.81 57.27

Figure 1: F1 scores of LDP representation with entity type, subtype and type + subtype comparisons across
different ACE domains (bc, cts, un and wl)
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P ¼ relevat relationsf g \ retrieved relationsf gj j
retrieved relationsf gj j

R ¼ relevat relationsf g \ retrieved relationsf gj j
relevant relationsf gj j

F ¼ 2PR

P þ R

As shown in the table, [1] proposed feature rich models FCM and Hybrid FCM, and our system
outperforms their best system Hybrid FCM on the cts genre. Compared to log-linear models, we
outperform on both bc and cts. Hybrid NNs were proposed in [40] and our system beats Hybrid NN and
CNN on cts. Overall, the LDP model does exceptionally well on cts and does well on bc. These cross-
domain results show that our rule-based LDP model can compete with feature-based models in the same
as well as different domains, displaying the benefit of a transparent model and providing evidence that
active learning using LDPs is very feasible.

5.2 Aggregate Performance and Variance

To evaluate the performance of the LDP model on ACE as a whole, we did 90%/10% splits on the train
and test data, randomly selecting 10% of ACE as test, and the rest (90%) as training. We performed the
random splits 20 times for type, subtype and type + subtype LDPs and recorded the scores on the test.
The results of the 20 runs are separated in intervals ranging from the lowest score to the highest score
with 1% as the increment. Distribution of the frequency of F1 scores on the test are shown in Fig. 2.
There are certainly some fluctuations of scores obtained from different runs but we see that the variation
in scores all somewhat conform to a normal distribution. The mean, standard deviation etc. of scores are
shown in Tab. 3. Type + Subtype LDPs achieves the highest mean of 59.14 out of the three, a good
indicator of the performance of the overall system. Type LDP achieved the second-best score, followed
by just using subtype LDPs, which is to be expected. A comparable result given by [19] on the entire
corpus using a convolutional neural net is 61.32, only slightly better than our score, while us having a
much faster and transparent model.

Figure 2: Frequency distributions of F1 scores after 20 random 90%/10% splits on train and test with type
(left), subtype (middle) and type + subtype (right) LDPs
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We expected LDP models to perform worse than log-linear and neural network models, particularly
across domains. Log-linear models can be trained (and NN models can train themselves) to emphasize
certain features of the input in ways that LDP models cannot. But our results show that this is not
necessarily the case: our LDP-based models achieve a comparable performance to the best log-linear
models. This can be attributed in part to the relatively local nature of most relations. More than half the
relations are picked out by LDPs with length 1 and 3: either a direct dependency or a single word
connecting the two arguments (for example GPE–nn-1–PERSON has length 1 and PERSON–prep:of:
pobj–GPE has length 3). For these local relations, all the ‘features’ (words and dep. relations) are
essential to the correct choice of label, and this exact match is just what you get with LDPs. There are
lots of training examples for these small paths, so sparse data is not an issue. The performance of these
local LDPs largely won’t be affected when switching between domains as local relations for different
domains remain similar. On the other hand, long LDPs are responsible for picking out more distant
relations. These LDPs more often include some sort of clause and so may benefit from the
transformations which simplify clause structure.

6 Future Work

Our future goal is to apply our Lexicalized Dependency Path (LDP) learner to simulated and real active
learning of relations. We aim to experiment to see if we can achieve state-of-the-art results using a small
number of annotations.

7 Conclusion

To remedy the inability of current supervised learning methods to examine the extraction model under
development, we have presented a transparent and intuitive representation based on dependency path which
we call lexicalized dependency path (LDP). We used entity types with specific subtypes to counter the effect
of data sparsity inherent with such a dependency representation and it achieved a noticeable improvement
over just dependency path representations. We applied our LDP model to supervised relation extraction
and showed that supervised learning of LDPs achieved comparable performance to the state-of-the-art,
with an average F1 of 59.14% on ACE 2005. This result allows us to extend LDP beyond supervised
learning and makes the possibility of active learning feasible with this representation.
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