
Digital Object Identifier (DOI) 10.1007/s10032-003-0113-0
IJDAR (2003) 6: 126–144

Lexicon-driven HMM decoding for large vocabulary handwriting
recognition with multiple character models

Alessandro L. Koerich1, Robert Sabourin2, Ching Y. Suen3

1 PPGIA – CCET – PUCPR, Pontifical Catholic University of Paraná, Rua Imaculada Conceição, 1155, 80.215-901,
Curitiba (PR) Brazil

2 Département de Génie de la Production Automatisée (GPA), École de Technologie Supérieure (ETS),
1100, rue Notre-Dame Ouest, H3C 1K3, Montreal, QC, Canada

3 Centre for Pattern Recognition and Machine Intelligence (CENPARMI), Concordia University,
1455, Maisonneuve Blvd. West, Suite GM606, H3G 1M8, Montreal, QC, Canada

Received: 8 July 2002 / Accepted: 1 July 2003
Published online: September 12, 2003 – c© Springer-Verlag 2003

Abstract. This paper presents a handwriting recogni-
tion system that deals with unconstrained handwrit-
ing and large vocabularies. The system is based on the
segmentation-recognition paradigm where words are first
loosely segmented into characters or pseudocharacters
and the final segmentation is obtained during the recog-
nition process, which is carried out with a lexicon. Char-
acters are modeled by multiple hidden Markov models
(HMMs), which are concatenated to build up word mod-
els. The lexicon is organized as a tree structure, and
during the decoding words with similar prefixes share
the same computation steps. To avoid an explosion of
the search space due to the presence of multiple char-
acter models, a lexicon-driven level building algorithm
(LDLBA) is used to decode the lexical tree and to choose
at each level the more likely models. Bigram probabili-
ties related to the variation of writing styles within the
words are inserted between the levels of the LDLBA to
improve the recognition accuracy. To further speed up
the recognition process, some constraints are added to
limit the search efforts to the more likely parts of the
search space. Experimental results on a dataset of 4674
unconstrained words show that the proposed recognition
system achieves recognition rates from 98% for a 10-
word vocabulary to 71% for a 30,000-word vocabulary
and recognition times from 9ms to 18.4 s, respectively.

Keywords: Handwriting recognition – Large vocabu-
lary – Level building algorithm – Hidden Markov models
– Search strategies

Correspondence to: Alessandro L. Koerich
(e-mail: alekoe@ppgia.pucpr.br)

1 Introduction

Offline recognition of handwritten words is a challeng-
ing task due to the high variability and uncertainty
of handwriting. Several proposals to solve this problem
have been presented recently [2,5,6,13,17,23,25]. How-
ever, handwriting recognition has success in only very
constrained contexts. The main constraints that are cur-
rently used in handwriting recognition are:

– Well-defined application environments
– Small vocabularies
– Constrained handwriting styles (cursive or handprin-

ted)
– User-dependent (or writer-dependent) recognition

A careful analysis of the handwriting recognition field
reveals that most of the research has been devoted to rela-
tively simple problems, e.g., recognition of isolated digits
and characters and recognition of words in small lexicons.
The key point is the number of classes and the ambigu-
ity among them. As the number of classes increases, the
amount of data required to develop a good recognition
approach increases.

Despite this, one of the most common constraints of
current recognition systems is that they are only capa-
ble of recognizing words that are present in a restricted
vocabulary, typically comprised of 10 to 1000 words [5,6,
13,24,35,40]. Such a restricted vocabulary is usually in-
tegrated into the recognition engine to discard as soon
as possible the unlikely word hypotheses. The use of a
restricted vocabulary, also called lexicon, reduces some
problems related to the segmentation of words into char-
acters [17,25,41] and also helps to disambiguate single
characters by looking at the entire context.

The recognition process can be viewed as a search
problem: given a sequence of features extracted from
the input image, find a word from the lexicon that best
matches such a sequence. Generally, this search prob-

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 127

Recognition

Front-end Parameterization

Training

Labels

Pre-Processing

Feature Extraction

Character
Models

Segmentation

Lexicon Decoding

N-Best Word Hypotheses

CAUBEYRES
COUBEYRAC
CAMPAGNAC
COURPIGNAC
CAMBAYRAC
COMPREGNAC
CAMPAGNAN

-22.350
-23.063
-23.787
-24.028
-24.093
-24.097
-24.853

training

recognition

Fig. 1. An overview of the handwriting
recognition system

lem has been tackled using dynamic programming tech-
niques [6,13,40], but as the number of words in the lex-
icon grows, recognition becomes more and more difficult
due to two main reasons: it is more probable to have
similar words; more words need to be matched against
the sequence of features [40]. The former results in more
confusions to the recognition engine, so the recognition
accuracy decreases as the number of words in the lexicon
increases. The latter results in higher recognition times
since more word hypotheses have to be decoded. For these
reasons, there are relatively few studies with vocabular-
ies comprising more than 1000 words. A very common
approach is to use pruning methods prior to recogni-
tion to reduce the lexicon size to tens or hundreds of
words [16,18,20,22,30,39,43]. As a result, the recognition
time aspect can be negligible. These pruning methods are
based on the characteristics of the application environ-
ment, such as the ZIP code in postal envelopes [13], the
courtesy amount in bankchecks [19], on characteristics of
the word to be recognized, such as structural elements ex-
tracted from the words, e.g., upstrokes and downstrokes
[30,39], key characters [20,43], estimation of word length
[22,43], or on some measure of similarity of the words

in the lexicon [16,18]. Nevertheless, the problem is that
all of these pruning methods rely on heuristics, and the
number of word hypotheses is reduced at the expense of
accuracy. Moreover, most of these pruning methods are
not capable of dealing with unconstrained handwriting
but only with certain types of writing styles: cursive [30,
39,43] or handprinted [20]. Some methods also involve the
extraction of other features from the input image rather
than those used during the recognition process [20,30,
43] and may introduce delays and increase the computa-
tional complexity of the overall recognition process. Be-
sides these pruning methods, some search techniques that
constrain the search space such as A*, beam search, and
multipass have also been used in handwriting recogni-
tion [2,9,21,38]. A survey on these search methods used
in large vocabulary handwriting recognition is presented
in [28].

Another very common constraint is the writing style.
The large number of writing styles and the variability
among them makes the problem of handwriting recogni-
tion even more challenging. If different ways of writing
a character can be identified, then it is often possible to
increase the recognition accuracy by modeling each sub-

128 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

class separately, creating multiple models per character
class [8,12]. On the other hand, while multiple charac-
ter models may improve the recognition accuracy, they
may also increase the computational complexity of the
recognition process.

In this paper, the problem of handwriting recogni-
tion given a large vocabulary and unconstrained hand-
writing is addressed. The basic problem we have to solve
is this: Having multiple character class models to cope
with unconstrained handwriting, how does one make use
of these models and accommodate them into a lexicon-
driven recognition approach where a large vocabulary is
employed? In this paper, we focus our attention on the
problem of matching a sequence of observations gener-
ated from high-level features extracted from words and
statistical models of characters (HMMs) in an efficient
manner.

The organization of this paper is as follows. Section 2
presents an overview of the handwriting recognition sys-
tem. Section 3 presents an overview of the word recog-
nition problem in a probabilistic framework. Section 4
shows some ways of organizing a lexicon for single and
multiple character class models. Section 5 presents the
search strategy based on the level-building algorithm, the
use of bigram probabilities to improve the recognition ac-
curacy, and the use of contextual information to constrain
the search space. Experimental results are presented in
Sect. 6. An analysis of the achieved results and a discus-
sion are presented in the last section.

2 An overview
of the handwriting recognition system

A wide variety of techniques are used to perform hand-
writing recognition. Figure 1 highlights the many com-
ponents of the handwriting recognition system that was
designed to deal with unconstrained handwriting (hand-
printed, cursive, and mixed styles), multiple writers
(writer-independent), and dynamically generated lexi-
cons. For these reasons it uses a segmentation-recognition
strategy where handwritten words are loosely segmented
(oversegmented) into subword units (characters or pseu-
docharacters). These subword units are modeled in
a probabilistic framework by elementary HMMs. The
Markovian modeling assumes that a word image is repre-
sented by a sequence of observations. These observations
should be statistically independent once the underlying
hidden state sequence is known. Therefore, before seg-
mentation the input images are preprocessed to get rid
of information that is not meaningful to recognition and
that may lead to dependence between observations. Fol-
lowing the segmentation, two sequences of high-level fea-
tures are extracted from the segments to form an observa-
tion sequence. During training, since only the word labels
are available, word models are built up of the concatena-
tion of the appropriate character models and the training
algorithm decides itself what the optimal segmentation
might be. Recognition is carried out by a lexicon-driven
decoding algorithm where each word in the lexicon is

(a)

(b)

(c)

(d)

(e)

Fig. 2a–e. Preprocessing steps applied to a word image. a
Original image. b Baseline slant normalization. c Character
skew correction. d Lowercase character area normalization. e
Final image after smoothing

modeled by a “super-HMM” created by concatenating
character HMMs. The decoding algorithm finds the N -
best word hypotheses that have the highest likelihood
given the observation sequence.

In the following sections, we provide a brief descrip-
tion of the main components of the handwriting recogni-
tion system.

2.1 Preprocessing

Preprocessing attempts to eliminate some variability re-
lated to the writing process that is not very significant
from the point of view of recognition, such as variability
due to the writing environment, writing style, acquisition,
digitizing of images, etc. In addition, the preprocessing
steps are also useful for holding the assumption of the
Markovian modeling, which states that the observations
in the sequence should be statistically independent once

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 129

(a)

(b)

(c)

(d)

Fig. 3. a Segmentation of a word into characters or pseu-
docharacters. b Sequence of global features. c Sequence of
bidimensional contour transition histogram features. d Se-
quence of segmentation features

the underlying hidden state is known. Figure 2 illustrates
the preprocessing steps, which include baseline slant nor-
malization, lowercase character area normalization (for
cursive words), character skew correction, and smooth-
ing. More details about the preprocessing steps can be
found in [11,13].

2.2 Segmentation of words into characters

Segmentation of words into basic units is necessary when
dealing with dynamically generated lexicons of moder-
ate size. The segmentation method performs an explicit
segmentation of the words that deliberately proposes a
high number of segmentation points, offering in this way
several segmentation options, the best ones to be vali-
dated during recognition. The segmentation algorithm is
based on the analyses of the upper and lower contours,
loops, and contour minima. Then, each minimum satis-
fying some empirical rules gives rise to a segmentation
point. The algorithm mainly looks in the neighborhood
of this minimum for the upper contour point that permits
a vertical transition from the upper contour to the lower
one without crossing any loop while minimizing the verti-
cal transition histogram of the word image. If the crossing
of a loop is unavoidable, no segmentation point is pro-
duced. This strategy may produce correctly segmented,
undersegmented, or oversegmented characters. Figure 3a
illustrates the segmentation of a word into characters or
pseudocharacters.

2.3 Feature extraction

The main philosophy in this step is that, unlike isolated
character recognition, lexicon-driven word recognition
approaches do not require features to be very discrim-
inative at the character or pseudocharacter level because
other information, such as context, word length, etc., are
available and permit high discrimination of words. Thus,

features at the grapheme level are considered with the
aim of clustering letters into classes. A grapheme may
consist of a full character, a fragment of a character, or
more than one character.

The sequence of segments obtained by the segmenta-
tion process is transformed into a sequence of symbols by
considering two sets of features where the first feature set
is based on global features, namely, loops, ascenders, and
descenders (Fig. 3b). Each combination of these features
within a segment is encoded by a distinct symbol, leading
in this way to an alphabet of 27 symbols [11]. The second
feature set is based on the analysis of the bidimensional
contour transition histogram of each segment in the hor-
izontal and vertical directions (Fig. 3c), which leads to a
set of 14 symbols [11]. There are also five segmentation
features that try to reflect the way segments are linked
together (Fig. 3d). For connected segments, two configu-
rations are distinguished: if the space width is less than
a third of the average segment width, it is considered
that there is no space. Otherwise, the space is validated
and encoded in two ways depending on whether the space
width is smaller than the average segment width. Finally,
given an input word image, the output of the feature ex-
traction process is a pair of symbolic descriptions of equal
length, each consisting of an alternating sequence of seg-
ment shape symbols and associated segmentation point
symbols.

2.4 Character and word models

Several HMM architectures can be considered for hand-
writing recognition. This stems from the fact that hand-
writing is certainly not a Markovian process and, even if
it was so, the correct HMM architecture is actually not
known. The usual solution to overcome this problem is to
first make structural assumptions and then use parame-
ter estimation to improve the probability of generating
the training data by the models.

In some applications, it is more convenient to pro-
duce observations by transitions rather than by states.
The character models use discrete HMMs where obser-
vations are produced by transitions and transitions with
no output are also incorporated into the model. In this
case, the conventional definition of an HMM is modified
and now the compact notation is λ = {A,A′, Π}, where
A = {azg

ij } is the probability distribution associated with
transitions from state si to state sj and at the same time
producing observation symbol zg, A′ = {a′Φ

ij } is the prob-
ability distribution associated with null transitions from
state si to state sj and at the same time producing null
observation symbol Φ, and Π = {πi} is the initial state
distribution.

As the segmentation process may produce either a
correct segmentation of a letter, a letter omission, or an
oversegmentation of a letter into two or three segments,
a ten-state left-right HMM as shown in Fig. 4a with
three paths to take into account these configurations is
adopted. Transition t1−10 emitting the null symbol mod-
els the letter omission case. Null transition t1−2 models

130 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

1 2

3

4 5 6

9 10

7

8

1 2

(a) (b)

Fig. 4. a A left–right character HMM
with 10 states and 12 transitions where
5 of them are null (dotted line). b The
interword space model with 2 states and
2 transitions, where 1 is null [13]

the case of a correctly segmented character, while transi-
tions t2−9 and t9−10 emit symbols encoding the correctly
segmented letter shape and the nature of the segmenta-
tion point associated with this shape, respectively. Null
transition t1−3 models the case of oversegmentation into
two or three segments. Transitions t3−4, t5−6, and t8−9
are associated with the shapes of the first, second, and
third parts of an oversegmented letter, while transitions
t4−5, t7−8, and t9−10 model the nature of the segmen-
tation points that gave rise to this oversegmentation. In
addition, there is a special model for interword space in
the case where the input image contains more than one
word (compound word). This model simply consists of
two states linked by two transitions, modeling a space or
no space between a pair of words (Fig. 4b).

Considering a discrete symbol observation with G
symbols, a character HMM represented by its compact
notation λ = {A,A′, Π} and a recognition vocabulary
represented by a lexicon R that contains V words in
which the average length is L characters, word models,
denoted as λ̂, regarded as a “super-HMM” can be built
by the concatenation of L subword HMMs, i.e.:

λ̂ = λ1 ⊕ · · · ⊕ λL (1)

2.5 Training of character models

The goal of the training phase is to estimate the best
parameter values of the character models, say A and A′
for all models λ, given a set of training examples and
their associated word labels. Since the exact orthographic
transcription of each training word image is available, the
word model, denoted as λ̂, is made up of the concatena-
tion of the appropriate character models (Eq. 1), where
L is the number of characters that form a word. In such
a scheme, the final state of an HMM becomes the initial
state of the next one, and so on.

A variant of the Baum–Welch algorithm is used for
training in which the segments produced by the seg-
mentation algorithm need not be manually labeled [13,
14]. Since a sufficient learning database is available, the
Baum–Welch training procedure allows the recognizer to
capture contextual effects and permits the segmentation
of the feature sequence into characters and the reesti-
mation of the associated transitions so as to optimize
the likelihood of the training database. Thus, the rec-
ognizer decides for itself what the optimal segmentation

might be, rather than being heavily constrained by a pri-
ori knowledge based on human intervention.

While the preprocessing, segmentation, feature ex-
traction, modeling, and training of characters are very
important aspects in any recognition system, they have
already been presented elsewhere [11,13]. Therefore, in
the remainder of this paper we will focus our attention on
the original aspects of the handwriting recognition sys-
tem: the recognition approach that deals with multiple
character models and a large vocabulary.

3 Recognition
of unconstrained handwritten words

The basic problem in large vocabulary handwriting recog-
nition is: given a handwritten word represented by a se-
quence of observations denoted as O = (o1 . . . ot . . . oT)
in which T is the number of observations in the se-
quence and ot represents the t-th symbol, and a recog-
nition vocabulary represented by a set of words R =
{w1, . . . , wv, . . . , wV } in which V is the number of words
and wv is the v-th word that is formed by the concatena-
tion of characters such that wv = (c1 . . . cl . . . cL) in which
L is the total number of characters that form a word and
cl represents the l-th character, find the word hypothesis
that best represents the sequence of observations.

A standard approach is to assume a simple probabilis-
tic model of handwriting production whereby a specified
word w produces an observation sequence O with prob-
ability P (w,O). The goal is then to decode the word,
based on the observation sequence, so that the decoded
word has the maximum a posteriori (MAP) probability,
i.e.,

ŵ � P (ŵ|O) = max
w∈R

P (w|O) (2)

where ŵ is the word with maximum a posteriori prob-
ability. Using Bayes’ rule and assuming that P (O) does
not depend on w and equal a priori probabilities of words
P (w), the MAP decoding rule can be approximated by:

ŵ ≈ argmax
w∈R

P (O|w) (3)

While it may be possible to train full-word models
for a small vocabulary of words, this is not feasible for
larger vocabularies (> 100 words) due to the amount of
data required to train each model. The way we compute

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 131

P (O|w) for large vocabularies is to build statistical mod-
els for subword units (characters) in an HMM framework,
build up word models from these subword models using
a lexicon to describe the spelling of words, and then eval-
uate the model probabilities via standard concatenation
methods.

Here we can make use of the so-called maximum
approximation, which is also referred to as Viterbi ap-
proximation. In this maximum approximation, the search
space can be described as a huge network (trellis or lat-
tice) through which the best time alignment path has
to be found. Recalling that characters are modeled by
HMMs and word models are built by the concatenation
of such models, the decoding rule of Eq. 3 can be rewrit-
ten as:

ŵ ≈ argmax
w∈R

{max
Q

P (o1 . . . oT , q1 . . . qT |λ1 ⊕ · · · ⊕ λL)}
(4)

where qt denotes the state at time t and Q = (q1 . . .
qt . . . qT) is the best state sequence.

Conventionally, given an observation sequence, all
words in the lexicon are represented by “super-HMMs”
and the Viterbi algorithm is used to decode each word
separately, finding the best state sequence as well as
the corresponding likelihood for each of them. When all
words have been decoded, the words with the highest
likelihoods are chosen as the best word hypotheses.

3.1 Complexity of handwriting recognition

One of the most important aspects of large vocabulary
handwriting recognition is the computational complexity
of the recognition process. This aspect is usually over-
looked in applications that deal with smaller vocabular-
ies. The complexity depends on the representation used
for each of the elements as well as on the algorithm used
for decoding. In describing the computational complexity
of the recognition process, we are interested in the num-
ber of basic mathematical operations, denoted as O. The
computational complexity, denoted as C, for a generic
recognition process considering character HMMs and a
conventional Viterbi algorithm can be approximated by:

C = O(TN2LV) (5)

This is a rough approximation considering that each
character class is modeled by only one HMM. However,
if handwriting is unconstrained, more than one HMM
per character class is usually necessary because a single
model is not enough to account for the high variability
and ambiguity of handwriting [13].

Assuming now that each character class is modeled by
two HMMs, one for uppercase and one for lowercase, and
that each word is either entirely uppercase or lowercase,
the computational complexity is now

C = O(2TN2LV) (6)

However, if we assume that words can be made up
by the combination of uppercase and lowercase charac-
ters (unconstrained words), the computational complex-
ity blows up exponentially as:

C = O(2LTN2V) (7)

If we generalize for multiple models per character
class, the computational complexity is still higher:

C = O(HLTN2V) (8)

where H denotes the number of HMMs for each character
class.

Therefore, recognition of unconstrained handwritten
words given a large vocabulary and multiple character
models to account for unconstrained writing styles is
a challenging and computationally demanding problem
that is clearly impractical to be carried out on today’s
computing platforms. The most common approaches at-
tempt to limit either one or more of the variables involved
in the recognition process or even to impose restrictions
on the writing styles. A survey on the methods used in
large vocabulary handwriting recognition is presented in
[28].

4 Organization of the search space
with multiple character class models

A single source of computational efficiency in perform-
ing searches is in organizing the HMMs to be searched
as a character tree (Fig. 5b) instead of as a flat structure
(Fig. 5a). A flat-structured lexicon is easy to implement
and to integrate into an HMM framework, and it provides
a good tradeoff in terms of computational complexity for
small to medium lexicons [13]. Assuming a unique char-
acter model (HMM) for each character class (e.g., the
characters “a” and “A” are modeled by the same HMM,
say λA), the total number of HMM states to be searched
during the decoding of a 10-word lexicon is approximately
1200.1 The extension to a 10,000-word lexicon increases
the number of states linearly, and as a consequence the
recognition time grows about 1000 times [26].

It is also possible to organize the lexicon as a char-
acter tree instead of a flat structure. In this structure,
referred to as tree-organized lexicon or lexical tree if the
spellings of two or more words contain the same n ini-
tial characters, they share a single sequence of n HMMs
during the decoding process (Fig. 5b). Now, for the same
10-word lexicon approximately 900 HMM states have to
be searched during the decoding.2

While for small to medium vocabularies this reduc-
tion in the number of HMM states to be searched is ir-
relevant, in the case of large vocabularies (> 1000 words)

1 LNV , where L=12 is the average number of characters in
the words of the lexicon, N=10 is the number of states of the
character HMMs, and V =10 is the lexicon size.

2 (L − Ls)NV , where Ls=3 is the average number of char-
acters shared by the words of the lexicon.

132 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

(b)

(a)

L

LIB

li

(d)

IB

b

M

LIB

IB

Y

E

M

L
IB

Y

E

Y

y

y

......... ...

MIB E

MIB e......... ...

mib e

l

L

I

B

Y

y

M

Y

y

E

e

m

M
E

e

E

e

i

b
l

Y

y

...

...

...

(e)

l

LIB

(c)

ib

Y

y

MIB E

mib e

Fig. 5a–e. Two four-character words (BILY
and BIME) represented as: a a flat structure,
b a tree structure where the prefix BI is shared
by both words, c a flat structure where each
word is entirely uppercase or lowercase, d a
flat structure where each character class (e.g.,
“M”) has two models (an uppercase and a low-
ercase model) and all combinations of models
within the words are allowed, e a tree repre-
sentation of the two words considering all com-
binations of uppercase and lowercase models

Table 1. Average number of characters for several different
sizes of lexicons of French city names represented as a flat
structure and as a tree structure

Lexicon Number of characters Reduction
size Flat lexicon Lexical tree ratio

10 119 113 1.05
100 1,198 987 1.21
1,000 11,998 8,361 1.43
10,000 120,035 66,558 1.80
30,000 360,012 173,631 2.07

it is more likely to have words with similar prefixes, so
it is very interesting to use a tree-structured lexicon to
avoid repeated computation of such prefixes. But notice
that the number of shared characters depends strongly
on the nature of the lexicon. Table 1 shows the reduction
in the number of characters by representing lexicons of
different sizes as tree structures. The expected speedup
in the recognition process by representing the lexicon as
a lexical tree is proportional to the reduction ratio shown
in Table 1, which is not very significant. However the tree
representation preserves the recognition accuracy.

4.1 Multiple character class models

In practice, it is not important to distinguish writing
styles at the output of the recognition system, e.g., it does
not matter if the word in Fig. 2 is recognized as “cam-
pagnac”, “Campagnac”, or “CAMPAGNAC” because all
three representations of the word have the same mean-
ing.3 On the other hand, it would be very interesting

3 Some applications that carry out postprocessing of the
recognition output may require correct identification of the
writing style.

to cope with different writing styles during the recog-
nition process. However, identification of writing styles
prior to recognition is also a difficult task that may in-
troduce errors into the recognition process. One alterna-
tive has been to build recognizers capable of recognizing
any writing style. In this case, the most straightforward
approach is to have different models for uppercase and
lowercase characters [13].

So far we have assumed a unique character model
(HMM) for each character class. However, this assump-
tion does not hold in the case of unconstrained hand-
writing recognition because it is very difficult for a single
model to capture the high variability and ambiguity of
a large number of writing styles and writers. It has been
shown that when a large amount of training data is avail-
able, the performance of a word recognizer generally can
be improved by creating more than one model for each of
the recognition units because it provides more accurate
representation of the variants of handwriting [8,13,37].
On the other hand, while multiple character models may
improve the recognition accuracy, they also may increase
the computational complexity.

Assuming that each character class is now modeled
by multiple HMMs (e.g., the character “M” is modeled
by λm, λm′

, λM , λM ′
, etc.) that may represent an up-

percase letter model, a lowercase letter model, a letter
model at the beginning or at the end of a word, etc. Usu-
ally we do not know which model we have to use dur-
ing the recognition since the writing style is not know
a priori. So we have to account for all possible combi-
nations of uppercase and lowercase models during the
decoding. Figure 5c shows the words of Fig. 5a consid-
ering that the writing style does not change within the
word, while Fig. 5d shows the same words but now con-
sidering all combinations of models within the words. For
the sake of simplicity, we assume that for each character
class we have only two different models, one that models
uppercase characters and another that models lowercase

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 133

B I

L Y

l y

b i M E

m e

max max

max

max

Fig. 6. A simplified representation of the lexical tree of
Fig. 5d by using the maximum approximation

characters (e.g., the character “A” is modeled by λA and
λa). Now, for a 10-word lexicon, approximately 4,096,000
HMM states4 have to be decoded and the extension to a
10,000-word vocabulary blows up the number of HMMs
to be searched. Even if we represent the lexicon by a tree
structure as shown in Fig. 5e, the computation required
to decode the whole vocabulary will be enormous. This
particular problem of how to manage the search complex-
ity in lexical trees when multiple character class models
are used has not been addressed in handwriting recogni-
tion yet.

4.2 Best-model selection

Instead of keeping all possible combinations of models, we
can make use of the maximum approximation to select
only the more likely combinations. Figure 6 shows an
approximated way to represent the lexical tree of Fig. 5e.
In such a case, the number of HMM states to be searched
can be approximated by H(L−Ls+1)NV , in which H is
the number of different models for each character class.
By such a representation, the number of HMM states
to be searched no longer grows exponentially with the
number of models per character class, but linearly.

While the growth of the number of HMM states can
be controlled by using the maximum approximation, it
can cause pruning errors during the search and the ac-
curacy may not be preserved. This occurs because we
are making decisions about the best models based on the
local context and not based on the whole word. It is obvi-
ous that the best model in a level may not be the correct
one since the sequence of observations that represents the
word to be recognized may be partially garbled by noise.
But the only manner in which to have a precise search
is to evaluate each combination of character models in-
dependently, and that is computationally very expensive
(Figs. 5d and 5e).

The criteria to select the best model at each tree level
is based on the likelihood of each model. Thus, in the
next section we use this approximation to decode uncon-
strained handwritten words in a large vocabulary consid-

4 HLNV , where H = 2 is the number of different models
for each character class, L = 12 is the average number of
characters within the words in the lexicon, N = 10 is the
number of states of the character HMMs, and V = 10 is the
lexicon size.

ering that the character classes have multiple models and
the lexicon is represented by a tree structure.

5 Lexicon-driven level building algorithm
(LDLBA)

The use of a lexical tree can be much more complex than
a flat lexicon considering the problems to integrate mul-
tiple character class models, and as a consequence the
advantages of avoiding repeated computation of common
prefixes may become insignificant. The main problem is
that each tree node can have multiple models associated
with it, which results in a new tree branch for each ad-
ditional model, that is, HL search hypotheses for each
word.

The difficulties can be overcome by using a level build-
ing algorithm (LBA) to find at each level the best model
and to reduce the amount of computation at the sub-
sequent levels. The LBA was introduced by Myers and
Rabiner to recognize connected words from a small vo-
cabulary and a highly constrained word syntax [32,33].
Since the vocabulary was small, they used whole words
as the basic speech-recognition units. The LBA has also
been used for the recognition of printed words [15], cur-
sively handwritten words [34], and numerical strings [4].
However, the LBA has not been used to integrate multi-
ple character class models, lexical tree search, and con-
textual information.

Given a recognition vocabulary R = {R1, . . . , Rv,
. . . , RV } in which Rv is a reference word (Fig. 7a), a
set of character models M = {λ1, . . . , λm, . . . , λM} in
which M is the number of models and λm is the m-
th model that models character classes (letters, digits,
and symbols) (Fig. 7c), and a sequence of observations
O = (o1 . . . ot . . . oT) (Fig. 7e), word recognition means
decoding O into a concatenation of L models λ1⊕· · ·⊕λL

(Fig. 7d). Since the concatenation of the characters is
driven by the lexicon, we call this recognition scheme
lexicon-driven level building algorithm (LDLBA). The
LDLBA matches the observation sequence to the multi-
ple character models at each level, determining the max-
imum likelihood state sequence of the models. It jointly
optimizes the segmentation of the sequence into subse-
quences produced by different models and the matching
of the subsequences to particular models.

Although the LBA has been used with statistical
models like HMMs [36], the presentation is always based
on simple left-right models with forward and self-loop
transitions. Its extension to more complicated models
with null transitions and observations emitted along tran-
sitions is not trivial. Thus the complete procedure for
finding the maximum likelihood state sequence of a word
that is built up by the concatenation of character HMMs
is presented as follows. We consider a lexicon-driven
strategy where the lexicon is represented as a tree struc-
ture, bigram probabilities between the levels of the LBA,
character HMMs with null transitions, observations emit-
ted along transitions, and the logarithm of the model pa-
rameters (known as likelihoods). The parameters used to

134 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

A B T

Level

2

. . .

Level

1

4 5 6

9

8

101 2

3

7

'A'

'a'

1

2

3

.
.
.

.

.

.
 T

Level

1

Level

9

Level

9

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

4 5 6

9

8

101 2

3

7

ABBECOURT

4 5 6

9

8

101 2

3

7

'B'

'b'

4 5 6

9

8

101 2

3

7

Level

2

4 5 6

9

8

101 2

3

7

'T'

't'

4 5 6

9

8

101 2

3

7

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

 .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a)

(b)

(d)

(e)

(c)

E - C | r r B B - r

L - H H - - o o - -

 s s u s s s # u u #

ABBECOURT

ABILLY

ABIMES

.

.

.

ERVILLE

YVIGNAC

ZONZA

P
t
*(1)

B
t
*(1)

W
t
*(1)

P
t
*(2)

B
t
*(2)

W
t
*(2)

. . .

P
t
*(9)

B
t
*(9)

W
t
*(9)

. . .

. . .

. . .

. . .

. . .

. . .

(f)

. . .

ABBECOURT
ABILLY

ABIMES
.
.

.
ERVILLE
YVIGNAC

ZONZA

P
T
*(9)

Fig. 7a–f. A simplified overview of the word decoding process. a A reference word taken from the lexicon. b The lexical tree
formed by all reference words. c Character models concatenated according to the spelling of the reference word. d The LDLBA
that matches the observation sequence and the word models generated by the concatenation of character models. e The input
observation sequence. f The output of the word decoding process

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 135

Table 2. Definition of the elements of an HMM and other terms used in the LDLBA

Term Definition

A = {aij} State transition probability distribution in which aij denotes the probability of going from state
si at time t − 1 to state sj at time t and producing an observation symbol Ot−1 = zg

A′ = {aij} State transition probability distribution in which aij denotes the probability of going from state
si at time t to state sj at time t and producing a null observation symbol Φ

B Level backtrack pointer
G Number of possible observation symbols
H Number of models per character class
i,j State index
l Character (or level) index
m Model index
N Number of states in the model
P Level output probability
qt State of the process at time t
S = {s1, . . . , sN} Set of possible states of the model
t Observation index
T Length of the observation sequence O = (o1 . . . oT)
W Level output model
Z = {z1, . . . , zG} Discrete set of possible observation symbols
αt(l, j) Observation frame in which a character ends
δt(l, j) Probability for each frame t, position l, and state j
λ HMM model
τ Bigram probability related to the writing style within a word

define an HMM as well as other terms used in the algo-
rithm are shown in Table 2.

(1) Initialization: For a given model λm, l = 1, t = 1,
and j = 1, we have:

δt(l, j) = τ(0, λm(l)) (9)

where δt(l, j) accumulates the likelihood scores for each
frame t, state j, and position l of the model within the
word (or level of the LDLBA) and τ is the bigram prob-
ability related to the writing style (probability of start-
ing a word with a given writing style) and is estimated
on the training dataset according to the position of the
characters within the words. However, the null transitions
must be initialized also for l = 1, t = 1, and all states
(j = 2, . . . , N) as:

δt(l, j) = max
1≤i<j

[
δt(l, i) + a′Φ

ij + τ(0, λm(l))
]

(10)

where a′Φ
ij is the probability of passing from a state i

at frame t to a state j at frame t and producing a null
observation symbol Φ, and N is the number of states in
the model.

For higher levels, the initialization differs slightly
since we must take into account the information provided
by the preceding level (l − 1). At levels (l > 1) we must
pick up the likelihood score at the most suitable observa-
tion frame from the previous level (l−1). For l = 2, . . . , L,
t = 1, . . . , T , and j = 1, we have:

δt(l, j) = δt(l − 1, N) + τ(λm(l − 1), λm(l)) (11)

where T is the length of the observation sequence, L is
the number of concatenated characters that form a word,

and τ is the bigram probability of keeping or changing
the writing style within the word.

To allow the best backtracking path, a new back
pointer array (α) is introduced to record the observa-
tion frame (t) at the previous level (l − 1) in which the
character ended. For l = 2, . . . , L, t = 1, and j = 1 we
have:

αt(l, j) = 0 . (12)

For all other observation frames (t = 2, . . . , T), we
have:

αt(l, j) = t . (13)

(2) Recursion: For l = 1, t = 2, . . . , T , j = 1, . . . , N ,
and considering the presence of null transitions, we have:

δt(l, j) = max
{

max
1≤i<j

[
δt−1(l, i) + a

Ot−1
ij

]
;

max
1≤i<j

[
δt(l, i) + a′Φ

ij

]} (14)

where a
Ot−1
ij is the state transition probability distribu-

tion for which aij is the probability of passing from a
state i at frame t− 1 to a state j at frame t and produc-
ing an observation symbol Ot−1 = zg, where zg ∈ Z =
{z1, . . . , zg, . . . , zG} is the discrete set of possible observa-
tion symbols and G is the number of distinct observation
symbols.

During the recursion the back pointer αt(l, j) is up-
dated for l = 1, . . . , L, t = 2, . . . , T , and j = 2, . . . , N

136 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

as:

αt(l, j) =




αt

(
l,argmax

1≤i<j

[
δt(l, i) + a′Φ

ij

])

if ij is null

αt−1

(
l,argmax

1≤i<j

[
δt−1(l, i) + a

Ot−1
ij

])

otherwise
(15)

For higher levels (l > 1), αt(l, j) is also computed by
Eq. 15. However, δt(l, j) is computed by Eq. 14 with a
slight difference: now, only the states greater than 1 must
be considered (j = 2, . . . , N) since for j = 1, δt(l, j) was
already computed by Eq. 11.

(3) Level termination: For l = 1, t = 1, . . . , T and a
given model λm, we have:

Pt(l, λm) = δt(l, N)
Bt(l, λm) = 0 (16)

For higher levels (l = 2, . . . , L), Pt(l, λm) is also com-
puted by Eq. 16, but Bt(l, λm) now is given by:

Bt(l, λm) = αt(l, N) (17)

At the output of the level we store the resulting prob-
abilities in an array P , which is a function of the level,
observation frame, and the character model. The array B
stores the backtrack pointer for each frame and level. At
level l = 1 and at higher levels (l > 1), we cycle multiple
models of a character class (m = 1, . . . , H)(uppercase,
lowercase, context-dependent, etc.) in the manner de-
scribed above, that is, steps 1, 2, and 3 are repeated for
each character class model.

(4) Level reduction: At the end of each level when all
appropriate class models have been used, we level reduce
to form the array P ∗

t . For all l and t, we have:

P ∗
t (l) = max

m
[Pt(l, λm)] (18)

where P ∗
t is the best level output probability.

The above equation searches the model λm at the level
l that gives the highest likelihood at each frame t. The
level output back pointer for all l’s and t’s is given by:

B∗
t (l) = Bt

(
l, argmax

m
[Pt(l, λm)]

)
(19)

where B∗
t is the level output back pointer.

Finally, we keep the output model λm for each level
(l) that gives the highest likelihood score for each level
and frame:

W ∗
t (l) = argmax

m
[Pt(l, λm)] (20)

where W ∗
t is the level output character indicator.

(5) Word termination: Since the words have a known
length, at the end of the last level (L) the probability
score for the word hypothesis is given as:

P̂T (L) = max
m

[PT (L, λm)] (21)

The level output back pointer for the word hypothesis is
given by:

B̂T (L) = BT

(
L, argmax

m
[PT (L, λm)]

)
(22)

The output model λm for L that gives the highest likeli-
hood score is given as:

ŴT (L) = argmax
m

[PT (L, λm)] (23)

This is the decoding procedure for only one word from
the lexicon, given an observation sequence. The same pro-
cedure is repeated for all other words in the lexicon. How-
ever, since the lexicon is organized as a tree structure, the
computation of steps 1 to 4 can be avoided for words that
have similar prefixes. Instead of steps 1 to 4, the results
stored in the tree nodes (the arrays P ∗

t , B∗
t , and W ∗

t)
are used and the complete decoding procedure is applied
only to the remainder of the word.

5.1 Summary of the decoding procedure

The relation among words, characters, tree nodes, char-
acter HMMs, and levels of the LDLBA can be simply
stated: each word is composed of a sequence of L charac-
ters that are further represented by a sequence of L linked
nodes in the lexical tree. During the decoding each tree
node is “replaced” by an HMM, which together with the
observation sequence forms a level of the LDLBA (trel-
lis or lattice). At each level, the multiple models for the
character class are cycled. At the end of each level, the
arrays P ∗

t , B∗
t , and W ∗

t are obtained. These arrays are
integrated into the lexical tree to avoid repeated compu-
tation of the prefixes of similar words. Figure 7 illustrates
the decoding of a word from the lexicon for a given ob-
servation sequence O.

The result of the recognition process is a list contain-
ing multiple word hypotheses with the respective likeli-
hoods (Fig. 7f). Additionally, the state lattice that con-
tains all characters that form the word hypotheses (which
is readily converted into an ASCII label) and the segmen-
tation of the word hypotheses into characters can also be
provided.

5.2 Analysis of the LDLBA

One of the main advantages of the LDLBA is that it is
very easy to add contextual information during the search
as well as multiple models for each character class with-
out a significant increase in the size of the search space.
Figure 8 shows an example of multiple models for the
character “M”. If the level reduction is not carried out
as shown in Fig. 8a, each model would generate a tree
branch to be decoded during the recognition (Fig. 8b) and
that would be very time-consuming. On the other hand,
the main drawback of the LDLBA is that it provides a
sub-optimal solution due to the level reduction and as

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 137

M

max max... ...
M'

M*

m

M

...

...

M'

M*

m

...

...

...

(a) (b)

Fig. 8a,b. The inclusion of several models for
a unique character class in parallel. a With
level reduction only the model with the highest
likelihood is expanded. b Without level reduc-
tion all models are expanded

a consequence, the recognition accuracy is expected to
be inferior relative to a recognition approach that ac-
counts for the whole search space. The sub-optimal solu-
tion arises from the level reduction, that is, at the end of
each level we choose one among the multiple models (e.g.
uppercase or lowercase models), taking the one that gives
the best likelihood score at each observation frame. As a
consequence, for the subsequent levels (l+1), only the
character model that gives the highest likelihood scores
at level (l) will be considered. On the other hand, with
the Viterbi search, all models are kept and the decision is
taken only after the decoding of the last character model
of the word.

A close analysis of the errors of the LDLBA indicates
that the majority of them (≈ 83%) occurs on relatively
short words (≤ 4 characters). For long words, even if
wrong local decisions are taken, that is, the best model
is wrongly selected at the level reduction, the final likeli-
hood of the words is not severely affected since the errors
are minimized by the context during decoding, while for
short words wrong local decisions are more meaningful.

5.3 Incorporation of time and length constraints
to the LDLBA

Even though the computational complexity for the level
building approach seems to be significantly less than an
exhaustive search through the whole search space, there
are several ways of further improving its performance in
terms of speed. To this end, we can rely on the particular
characteristics of our application:

– We are decoding words of known length from a lex-
icon. Thus the number of levels l of the LDLBA is
known a priori (before the decoding).

– The words are formed by the concatenation of charac-
ter HMMs whose architecture is associated with the
shape of the characters.

– The high-level features used to generate the sequence
of observations imply that characters are usually rep-
resented by few observations (no more than 6).

Given these three remarks, it is clear that the condi-
tions for the recursion of the LDLBA (Eq. 14) are not
realistic since it is carried out for almost the entire se-
quence of observations (t = 2, . . . , T) at almost all levels
(l = 2, . . . , L). In other words, this means that the whole
observation sequence that represents a whole word is al-
ways matched against individual character models. This
is done due to the difficulty of segmenting words into
characters because the boundaries of characters, that is,
which part of the sequence of observations corresponds
to each character, are difficult to determine in the case of
unconstrained handwritten words. However, since we are
relying on a lexicon during the decoding and the search
is carried out from left to right, we can estimate approx-
imately the character boundaries and the alignment of
the whole observation sequence with the HMMs at each
level can be optimized. Another point is that short ob-
servation sequences are more likely to be generated from
short words. Therefore, there is not much sense in decod-
ing long words from the lexicon given a short observation
sequence. Nevertheless, if we consider the architecture of
the character model shown in Fig. 4 in which the max-
imum and minimum number of observations that it can
emit are well known, new limits to optimize the search
can be easily established.

Therefore, the two hypotheses to further improve the
performance of the LDLBA are: (1) by constraining the
number of levels according to the length of the observa-
tion sequences (length) and (2) by limiting the number of
observations aligned at each level (time).

5.3.1 Time constraint. The time constraint concerns the
limitation of the number of observations aligned at each
level of the LDLBA. We introduce two variables: s(l) and
e(l). The former denotes the index of the first observation
for which valid paths to a given level can begin, while the
latter denotes the index of the last observation for which
valid paths to a given level can end. Figure 9 shows how
these two constraints are incorporated into the levels of
the LDLBA.

138 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

Table 3. A summary of the approximate computational com-
plexity and storage requirements for several search strategies

Search Computational Storage
strategy complexity requirements

Exhaustive FL TN2HLV 2THL

Exhaustive LT TN2HL′
V 2THL′

+ 2TH(L−L′)V
LDLBA FL TN2HLV 3TL
LDLBA LT TN2HL′V 3TL + 3T (L − L′)V
CLDLBA LT T ′N2HL′′V 3TL + 3T (L − L′)V

To incorporate these two constraints into the LDLBA,
only the limits of the observation index t are modified as
follows.

t = s(l), s(l) + 1, . . . , e(l) − 1, e(l) (24)

where 1 ≤ s(l) ≤ T , 1 ≤ e(l) ≤ T , 1 ≤ l ≤ L, and, for
a left-to-right HMM, e(l) ≥ s(l). Furthermore, both s(l)
and e(l) must be positive integers, and they are given by
Eqs. 25 and 26, respectively:

s(l) =
{

1 if l = 1
�l − s∗� if l > 1, s∗ < l

(25)

e(l) =
{ �Dmax · [l + e∗]� if Dmax · [l + e∗] < T

T otherwise

(26)

where s∗ and e∗ are the two control factors to be deter-
mined and Dmax is the maximum number of observations
that can be emitted, which is associated with the HMM
architecture.

5.3.2 Length constraint. The length constraint concerns
the limitation of the number of levels of the LDLBA. We
introduce the variable Lv, which denotes the maximum
number of levels of the LDLBA given an observation se-
quence with length T (Fig. 9). To incorporate this con-
straint into the LDLBA, the range of the variable l that
denotes the level index is modified slightly. Now, instead
of ranging from levels 1 to L, the range will be given by:

l = 1, 2, . . . , Lv, 1 < Lv ≤ L (27)

where Lv is an integer given by Eq. 28 and its lower and
upper limits are given by the shortest and the longest
words in the lexicon, respectively.

Lv = TLv∗, 0 < Lv∗ ≤ 1 (28)

where Lv∗ is the control factor to be determined.
The control factors s∗, e∗, and Lv∗ have to be ad-

justed to jointly optimize the system performance, that
is, find the best tradeoff between recognition accuracy
and recognition speed. A long-established technique in-
volves changing the value of each control factor in turn

in an attempt to determine the effect of each on the re-
sponse. Several approaches exist for optimization such
as response surface techniques, hill climbing algorithms,
and genetic algorithms. However most of these techniques
are either inefficient or require a large number of ex-
periments. To minimize the number of experiments and
at the same time obtain a satisfactory performance, we
have used a statistical experimental design technique that
studies the effects of the multiple variables simultane-
ously and optimizes the performance of the constrained
recognition system [1]. The application of the statistical
experimental design technique to determine the optimal
values of the control factors (s∗, e∗, and Lv∗) that op-
timize the performance of the recognition system is de-
scribed in [27].

5.4 Computational complexity and storage requirements

It is worthwhile comparing the computational complexity
and storage requirements of the different search strate-
gies. The computational complexity of decoding an ele-
mentary N -state HMM is TN2, which is common for all
search strategies. The recognition process involves the de-
coding of V words that are made up by the concatenation
of L characters that are modeled by HMMs where each
character class may have H models. Table 3 shows the
computational complexity of decoding the whole lexicon
considering several search strategies and the combina-
tion of the elements involved in the recognition process.
In this table, we consider both a flat-structured lexicon
(FL) and a lexical tree (LT). In the case of the lexical
tree, the variable L is replaced by L′, which is defined as
the L/RR, where RR is the reduction rate in the num-
ber of characters afforded by representing the lexicon as
a tree structure.

The storage requirements refer to the arrays used dur-
ing the decoding of the whole lexicon, that is, those that
keep the probabilities and the best state sequences. The
search strategies that use flat-structured lexicons (de-
noted as FL in Table 3), require only the storage of the
variables used during the decoding of each word because
no information is shared between words. On the other
hand, the search strategies that use tree-structured lexi-
cons (denoted as LT in Table 3) require the storage of the
variables used during the decoding of each word as well
as some additional variables to store the information that
is shared by words with common prefixes. Furthermore,
the search strategies based on the LDLBA also require
the storage of the best models at each level.

The computational complexity of the constrained lex-
icon-driven level building algorithm (CLDLBA) is diffi-
cult to establish exactly since it depends on heuristics to
reduce some of the elements involved in the number of
computations, say T and L, where T ′ < T denotes the
reduced number of operations due to the time constraint
and L′′ < L′ denotes the reduced number of operations
due to the length constraint.

Table 3 also includes the computational complexity
and the storage requirements for the exhaustive search

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 139

1
2
3
.
.
.

.

.

.
T

Level
l = 1

Level
l = Lv

. . .

Level
l =2

e(l)

s(l)

. . .

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

e(l)

s(l)

e(l)

s(l)

Dmax

Dmax

Dmax

Fig. 9. Levels of the LDLBA incor-
porating the time constraints s(l) and
e(l), which limit the number of obser-
vations aligned at each level, and the
length constraint Lv, which limits the
number of levels of the LDLBA

B I L Y

l yb imax

max max

max

max

max

beg endmax
Fig. 10. The decoding of an uncon-
strained handwritten word with the
conventional Viterbi algorithm and a
flat-structured lexicon

Table 4. Typical computational requirements for the
case T=30, T ′=25, N=10, H=2, L=10, L′=8, L′′=7, and
V =30,000

Search Computational Storage
strategy complexity (×109) requirements

Exhaustive FL 92 61,440
Exhaustive LT 23 7,261,440
LDLBA FL 1.8 900
LDLBA LT 1.44 5,400,900
CLDLBA LT 1.05 5,400,900

of the whole search space using the conventional Viterbi
algorithm with a flat lexicon (FL) and with a lexical tree
(LT). The exhaustive search (Fig. 5d) implies the use of
two arrays for each tree branch to keep the best states and
likelihoods at each t. This highlights another problem: the
number of possible hypotheses grows exponentially as a
function of the number of character class models, and this
imposes formidable storage capability requirements. To
get a feeling of the computational complexity and storage
requirements of each recognition strategy in Table 4, we
used typical values of the parameters.

6 Experimental results

Experiments have been carried out using a database con-
taining unconstrained handwritten words extracted from
postal envelopes consisting of 12,012 and 3,475 hand-

written words for training and validation, respectively.
The test set used in the experiments consists of another
4,674 handwritten words. Character models (HMMs)
were trained once and used with all search strategies. Pa-
rameters and models were developed exclusively on the
training and validation sets. The criteria that we have
used to evaluate the recognition approaches are:

– Recognition speed: performance in terms of the run-
ning time of the software implementation (on an AMD
Athlon 1.1 GHZ) – all figures refer to the recognition
time and do not include the computation time needed
for preprocessing and feature extraction.

– Recognition accuracy: performance in terms of the
recognition rate, which is given as the number of cor-
rectly recognized words by the total number of words.

All results are averaged over the test set of 4,674
words and 10 runs. At each run, a lexicon of fixed size
is randomly generated. Furthermore, to assess the per-
formance of the recognition system for both small and
large vocabularies, all the experiments were carried out
considering five different sizes of lexicons (10, 100, 1,000,
10,000, and 30,000 entries), which were dynamically gen-
erated from a global lexicon with 36,116 entries.

6.1 Performance of the baseline recognition system
(BRS)

For comparison purposes, we first evaluated the per-
formance of a baseline recognition system (BRS) given

140 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

Table 5. Word recognition rate and recognition time for the
baseline recognition system (BRS) on the SRTP test dataset

Lexicon Recognition rate (%) Recognition

size TOP 1 TOP 5 TOP 10 time (sec/word)

10 98.93 99.93 100 0.074
100 95.89 98.99 99.40 0.690
1,000 89.79 95.97 97.30 6.902
10,000 79.50 89.53 91.89 75.39
30,000 73.70 85.17 88.15 216.7

Table 6. Word recognition rate and recognition time of the
LDLBA and speedup over the baseline recognition system
(BRS)

Lexicon Recognition rate (%) Recognition Speedup
size TOP TOP TOP time (×BRS)

1 5 10 (sec/word)

10 98.76 99.93 100 0.013 5.5
100 95.46 98.82 99.40 0.123 5.6
1,000 89.00 95.49 96.81 1.095 6.3
10,000 78.22 88.49 90.99 10.18 7.4
30,000 71.03 84.02 87.06 28.14 7.7

the experimental conditions stated earlier. This baseline
recognition system was already presented elsewhere and
was implemented using the paradigm shown in Fig. 10
with a flat-structured lexicon and Viterbi search to de-
code unconstrained words [13]. The BRS uses two models
per character, one for uppercase and another for lower-
case. Table 5 shows the performance of the BRS in terms
of both recognition accuracy and recognition time.

As expected, the recognition rate decreases with an
increasing number of words in the lexicon. However, the
foremost concern is the recognition time that is as low as
74ms for a small lexicon and as high as 3.6min in the
case of a large lexicon. Thus this recognition approach is
clearly impractical for use in real-life applications dealing
with large vocabularies.

6.2 Performance of the lexicon-driven level building
algorithm (LDLBA)

The first attempt to improve the performance of the BRS
is by representing the lexicon as a tree and pursuing the
search only by considering the character models with the
best partial likelihood. Table 6 summarizes the results
for the recognition accuracy and recognition time for the
recognition system based on the LDLBA. Table 6 also
lists the speedup obtained over the BRS.

Clearly the LDLBA decoding is several times faster
than the BRS with speedup factors between 5.5 and 7.7
for 10-word and 30,000-word lexicons, respectively. The
relative reduction in recognition rates, compared to the
BRS, is not very significant, as shown in Table 7. The av-
erage loss of accuracy is 1.068%, 0.568%, and 0.496% for

Table 7. Difference in the word recognition rates between the
LDLBA and the BRS

Lexicon Recognition rate (%)
size TOP 1 TOP 5 TOP 10

10 0.17 0 0
100 0.43 0.17 0
1,000 0.79 0.48 0.49
10,000 1.28 1.04 0.90
30,000 2.67 1.15 1.09

Average 1.068 0.568 0.496

the TOP 1, TOP 5, and TOP 10 best choices, respec-
tively, and increases with the lexicon size. However, it
can be argued that the speedup afforded by the LDLBA
is well worth the increase in error rate.

The errors are due to the search algorithm approxi-
mation and/or pruning of the correct transcription. We
attribute the reduction in recognition rate to the level
reduction of the LDLBA that selects only the best char-
acter model at each word position and pursue the search
considering only such a best model. On the other hand,
the Viterbi decoding of the BRS with a flat lexical struc-
ture decodes all hypotheses. This would also be possible
with the tree structure; however, the number of hypothe-
ses to be decoded would make the advantages of using a
lexical tree not meaningful.

The problems in the search due to the level reduction
is more pronounced on short words especially. Consider-
ing that the average length of the words in the test set
is 11.14 characters, 83% of the search errors occur with
words less than 4 characters long.

6.3 Performance of the constrained LDLBA (CLDLBA)

The inclusion of some constraints in the LDLBA yields
the constrained lexicon-driven level building algorithm
(CLDLBA) presented in the previous section. It is an at-
tempt to further reduce processing time while preserving
recognition accuracy. These constraints are particularly
interesting for establishing a tradeoff between recognition
accuracy and recognition speed.

We have set as our goal to obtain the maximum
speedup of the recognition process while reducing the ac-
curacy of the LDLBA no more than 0.5%. We have used a
statistical experimental design method to determine the
values of the control factors s∗, e∗, and Lv∗, while Dmax

was kept constant and equal to six since this is the max-
imum number of observations that the character HMMs
can emit (due to the HMM architecture). To this end, we
used three regression models where the independent vari-
ables are the three control factors and the dependent vari-
ables are the responses of the recognition system: recog-
nition rate and recognition speed. Afterwards, an L9 or-
thogonal array was employed to gain information on the
control factors and to determine the coefficients of the
regression models. Based on these regression models, the

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 141

Table 8. Values of the constraints of the CLDLBA deter-
mined by the statistical experimental design technique [27]

Lexicon Constraints
size Lv∗ e∗ s∗

10 0.18 0.5 −0.5
100 0.68 0.5 −0.5
1,000 0.87 0.5 −0.5
10,000 0.85 0.5 −0.5
30,000 0.89 0.5 −0.5

Table 9. Word recognition rate and recognition time for the
system based on the CLDLBA

Lexicon Recognition rate (%) Recognition Speedup
size TOP TOP TOP time (×BRS)

1 5 10 (sec/word)

10 98.50 99.85 100 0.009 7.8
100 94.95 98.59 99.19 0.084 8.2
1,000 88.42 95.04 96.41 0.726 9.5
10,000 77.60 87.89 90.37 6.793 11.1
30,000 71.03 83.42 86.58 18.36 11.8

optimal values of the control factors that jointly optimize
both the accuracy and the speed were determined [27].
Several experimental runs were conducted, corresponding
to the different values of the control factors, and both
recognition rate and recognition speed were measured.
In these experiments, we used the validation set. Table 8
shows the values of the constraints for different lexicon
sizes resulting from the optimization step. With the three
control factors set up as in Table 8, the performance of
the CLDLBA was evaluated over the test set and the
results are shown in Table 9.

Table 8 shows that the time constraints (s∗, e∗) do not
depend on the lexicon size. On the other hand, the length
constraint (Lv∗) does depend on it. Table 10 shows the
reduction in recognition rates relative to the BRS. The
constraints added to the LBA brings about an average
loss in accuracy of 0.394%, 0.392%, and 0.342% for the
TOP 1, TOP 5, and TOP ten best choices, respectively,
when compared with the performance of the LDLBA.
On the other hand, if we compare the speedup shown in
Table 9, the CLDLBA is faster than the LDLBA with
speedup factors between 1.42 and 1.53. The average loss
in accuracy is 1.462%, 0.96%, and 0.838% for the TOP
1, TOP 5, and TOP ten best choices, respectively, when
compared with the performance of the BRS. Comparing
the performance of the CLDLBA with the BRS in terms
of recognition speed, we have speedup factors between
7.8 and 11.8. The speedup afforded by the CLDLBA is
well worth the increase in error rate.

The errors introduced by the CLDLBA are due to the
constraints. We have investigated the effects of each con-
straint on the recognition accuracy and on the recogni-
tion speed separately and have found that the constraint
Lv∗ does not introduce search errors for any lexicon size.
The speedup obtained due to this constraint is not very

Table 10. Difference in the word recognition rates between
the CLDLBA and the BRS

Lexicon Recognition rate (%)
size TOP 1 TOP 5 TOP 10

10 0.43 0.08 0
100 0.94 0.40 0.21
1,000 1.37 0.93 0.89
10,000 1.90 1.64 1.52
30,000 2.67 1.75 1.57

Average 1.462 0.96 0.838

Table 11. Individual influence of the control factors s∗ and
Lv∗ on the recognition rate (TOP 1) and on the recognition
speed of the LDLBA

Recognition rate (%) Recognition time
Lexicon (sec/word)
size s∗ Lv∗ s∗ Lv∗

10 98.48 98.76 0.030 0.039
100 94.95 95.46 0.258 0.343
1,000 88.42 89.00 2.237 2.942
10,000 77.60 78.21 17.17 21.71

Table 12. Recognition rate (TOP 1) for the LDLBA with
and without bigram probabilities

Lexicon Recognition rate (%)
Size Without bigram With bigram

10 98.31 98.76
100 94.43 95.46
1,000 86.90 89.00
10,000 75.54 78.22
30,000 68.88 71.03

expressive for small lexicons (≤ 1,000 words), but it be-
comes very interesting for larger lexicons. On the other
hand, the constraints s∗ and e∗ have a strong influence
on the recognition accuracy and recognition speed inde-
pendently of the lexicon size. This is attributed to the
architecture of the character models that include null
transitions. These two constraints are particularly sen-
sitive to the presence of null transitions. Table 11 shows
in an abbreviated manner the individual contributions of
s∗ and Lv∗ to the accuracy and speed of the LDLBA.

6.4 Influence of the contextual information
between levels

The results presented so far have taken into account the
bigram probabilities between the word characters. How-
ever, we have also analyzed the influence of the bigram
probabilities related to the writing style transition within
the words. Table 12 shows the recognition accuracy of the
LDLBA with and without the bigram probabilities. Note
that the use of such contextual information improves sig-

142 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

Table 13. Recent results on large vocabulary handwriting recognition

Author Method Lexicon Accuracy Test set Comments
size (%) (#)

Marti et al. [31] HMM 7,719 60.05 44,019 Unconstrained, omniwriter, 250 writers
Cho et al. [7] HMM 10,000 67.09 700 Cursive, omniwriter
Wimmer et al. [42] NN/HMM 20,200 73.13 1,500 Cursive, writer-dependent, 9 writers
Brakensiek et al. [3] HMM 30,000 89.2 800 Cursive, writer-dependent, 4 writers
Dzuba et al. [10] DP 40,000 60.7 3,000 Cursive, omniwriter

nificantly the accuracy of the LDLBA (1.8% on average),
especially for large lexicons.

7 Discussion and conclusion

This paper has focused on the problems of unconstrained
handwriting recognition given a large vocabulary and
multiple character models. The foremost concern ad-
dressed in this paper is computational complexity of the
recognition process. We have proposed a tree-organized
lexicon and a decode algorithm based on the level build-
ing algorithm to deal efficiently with multiple character
models avoiding an exponential explosion of the search
space, with a moderate reduction in recognition accuracy.

The use of the LDLBA to decode unconstrained hand-
written words facilitates the inclusion of multiple mod-
els for each individual character (e.g., context-dependent
models) with an insignificant increase in the size of the
search space and computational complexity. However,
due to the local decision, the recognition accuracy is
slightly inferior to that of an equivalent Viterbi algorithm
that accounts for the whole search space.

We have also introduced some constraints to the de-
coding algorithm to further reduce the search effort. We
have seen that limiting the number of observations ac-
cording to the level of the LDLBA, as well as limiting the
number of levels of the LDLBA by taking into account
the length of the observation sequences, leads to an im-
provement of 24.4%–30.3% in the recognition speed with
a slight reduction of 0.28%–0.77% in the recognition rate
for lexicons with 10 to 30,000 entries, respectively, when
compared with the conventional LDLBA. If we compare
these results with those obtained by the BRS using the
Viterbi algorithm with a flat lexicon, the improvement in
speed is more impressive (7.8–11.8 speedup factors) with
a reasonable reduction in the recognition rate (0.45%–
1.8%). Nevertheless, the recognition times for large vo-
cabularies are still far from meeting the throughput re-
quirements of many real-life applications; however, the
achieved results are very promising, that is, a recogni-
tion rate of about 71% and a decoding time of about 18 s
on a 30,000-word vocabulary.

Table 13 shows some recent results from the literature
for the problem of large vocabulary handwriting recogni-
tion. It should be stressed that these studies have used
different datasets and experimental conditions, which
makes a direct comparison very difficult. However, they
are very useful to illustrate how difficult is the problem

we are dealing with as well as to highlight the promising
results that we have obtained by applying the proposed
recognition scheme.

We also have investigated the use of Viterbi beam
search; however, contrary to what is reported [9,21], we
did not obtain good results. We have attributed this to
the characteristics of our HMMs that have null transi-
tions. In such a situation, it is difficult to find a pruning
threshold since we can reach the last state of the last
character within a word with very low likelihoods (given
a sum of logs). Furthermore, the search strategy that we
have adopted is time asynchronous, and the beam search
is usually associated with time-synchronous search.

In all experiments presented in Sect. 6, two models per
character class were used. Nevertheless, we believe that
the loss in recognition accuracy of the proposed search
method may be compensated by using a higher number
of models per character class such as context-dependent
character models that depend on the immediate left or
right neighboring characters, models for the first char-
acters of words, models for the most common prefixes,
etc. [12,29]. For instance, the benefits of using multiple
character models in the baseline recognition system is
presented in [11,12]. As mentioned earlier, these models
can be easily integrated into the LDLBA with little effect
on recognition time.

Acknowledgements. The authors would like to acknowledge
the National Research Council of Brazil (CNPq) (grant
200276-98/0), the Ministère de l’Éducation du Québec, and
the NSERC, Canada for supporting this research, and the
Service Technique de la Poste (SRTP-France) for providing
us the database and the baseline recognition system.

References

1. Box GEP, Hunter WG, Hunter JS (1978) Statistics for
experimenters: an introduction to design, data analysis,
and model building. Wiley, New York

2. Bozinovic RM, Srihari SN (1989) Off-line cursive script
word recognition. IEEE Trans Patt Anal Mach Intell
22(1):63–84

3. Brakensiek A, Willett D, Rigoll G (2000) Unlimited vo-
cabulary script recognition using character n-grams. In:
Proceedings of the 22nd DAGM symposium, Tagungs-
band Springer-Verlag, Kiel, Germany, 13–15 September
2000, pp 436–443

A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models 143

4. Britto AS, Sabourin R, Bortolozzi F, Suen CY (2001) A
two-stage hmm-based system for recognizing handwrit-
ten numeral strings. In: Proceedings of the 6th interna-
tional conference on document analysis and recognition,
Seattle, 10–13 September 2001, pp 396–400

5. Bunke H, Roth M, Schukat-Talamazzini EG (1995) Off-
line cursive handwriting recognition using hidden markov
models. Patt Recog 28(9):1399–1413

6. Chen MY, Kundu A, Zhou J (1994) Off-line handwrit-
ten word recognition using a hidden markov model type
stochastic network. IEEE Trans Patt Anal Mach Intell
16(5):481–496

7. Cho W, Kim JH (1994) Off-line recognition of cursive
words with network of hidden Markov models. In: Pro-
ceedings of the 4th international workshop on the fron-
tiers of handwriting recognition, Taipei, Taiwan, 7–9 De-
cember 1994, pp 410–417

8. Connell S (2000) Online handwriting recognition us-
ing multiple pattern class models. PhD thesis, Michigan
State University, East Lansing

9. Dolfing JGA (1998) Handwriting recognition and verifi-
cation – a hidden Markov approach. PhD thesis, Eind-
hoven University of Technology, Eindhoven, The Nether-
lands

10. Dzuba G, Filatov A, Gershuny D, Kill I (1998) Hand-
written word recognition – the approach proved by prac-
tice. In: Proceedings of the 6th international workshop
on frontiers in handwriting recognition, Taejon, Korea,
12–14 August 1998, pp 99–111

11. El-Yacoubi A (1996) Modélisation Markovienne de
l’écriture manuscrite application à la reconnaissance des
adresses postales. PhD thesis, Université de Rennes 1,
Rennes, France

12. El-Yacoubi A, Sabourin R, Suen CY, Gilloux M (1998)
Improved model architecture and training phase in an
off-line hmm-based word recognition system. In: Pro-
ceedings of the 14th international conference on pattern
recognition, Brisbaine, Australia, 16–20 August 1998,
pp 17–20

13. El-Yacoubi A, Gilloux M, Sabourin R, Suen CY (1999a)
Unconstrained handwritten word recognition using hid-
den markov models. IEEE Trans Patt Anal Mach Intell
21(8):752–760

14. El-Yacoubi A, Sabourin R, Gilloux M, Suen C (1999b)
Off-line handwritten word recognition using hidden
markov models. In: Jain LC, Lazzerini B (eds)
Knowledge-based intelligent techniques in character
recognition, CRC Press, Boca Raton, FL, pp 191–229

15. Elms AJ, Procter S, Illingworth J (1999) The advantage
of using an hmm-based approach for faxed word recog-
nition. Int J Doc Anal Recog 1:18–36

16. Farouz C (1999) Reconnaissance de mots manuscrits
hors-ligne dans un vocabulaire ouvert par modélisation
Markovienne. PhD thesis, Université de Nantes, Nantes,
France

17. Gader PD, Mohamed MA, Chiang JH (1994) Handwrit-
ten word recognition with character and inter-character
neural networks. IEEE Trans Sys Man Cybern Part B
27:158–164

18. Gilloux M (1998) Réduction dynamique du lexique par
la méthode tabou. In: Proceedings of the colloque inter-
national Francophone sur l’ecrit et le document, Quebec,
11–13 May 1998, pp 24–31

19. Guillevic D, Suen CY (1995) Cursive script recognition
applied to the processing of bank cheques. In: Proceed-
ings of the 3rd international conference on document
analysis and recognition, Montreal, 14–16 August 1995,
pp 11–14

20. Guillevic D, Nishiwaki D, Yamada K (2000) Word lex-
icon reduction by character spotting. In: Proceedings
of the 7th international workshop on frontiers in hand-
writing recognition, Amsterdam, 11–13 September 2000,
pp 373–382

21. Jaeger S, Manke S, Reichert J, Waibel A (2001) Online
handwriting recognition: the npen++ recognizer. Int J
Doc Anal Recog 3:169–180

22. Kaufmann G, Bunke H, Hadorn M (1997) Lexicon re-
duction in an hmm-framework based on quantized fea-
ture vectors. In: Proceedings of the 4th international
conference on document analysis and recognition, Ulm,
Germany, 18–20 August 1997, pp 1097–1101

23. Kim G, Govindaraju V (1997a) Bankcheck recogni-
tion using cross validation between legal and courtesy
amounts. In: Impedovo S, Wang PSP, Bunke H (eds) Int
J Patt Recog Artif Intell pp 657–673. World Scientific,
Singapore

24. Kim G, Govindaraju V (1997b) A lexicon driven ap-
proach to handwritten word recognition for real-time ap-
plications. IEEE Trans Patt Anal Mach Intell 19(4):366–
379

25. Kimura F, Shridhar M, Chen Z (1993) Improvements
of a lexicon directed algorithm for recognition of uncon-
strained handwritten words. In: Proceedings of the 2nd
international conference on document analysis and recog-
nition, Tsukuba, Japan, 20–22 October 1993, pp 18–22

26. Koerich AL, Sabourin R, Suen CY, El-Yacoubi A (2000)
A syntax-directed level building algorithm for large vo-
cabulary handwritten word recognition. In: Proceedings
of the 4th international workshop on document analysis
systems, Rio de Janeiro, 10–13 December 2000, pp 255–
266

27. Koerich AL, Sabourin R, Suen CY (2001) A time-length
constrained level building algorithm for large vocabulary
handwritten word recognition. In: Proceedings of the 2nd
international conference on advances in pattern recogni-
tion, Rio de Janeiro, 11–14 March 2001, pp 127–136

28. Koerich AL, Sabourin R, Suen CY (2002) Large vocabu-
lary off-line handwriting recognition: a survey. Patt Anal
Applicat 6(2):97–121

29. Lee KF (1990) Context-dependent phonetic hid-
den markov models for speaker-independent continuous
speech recognition. IEEE Trans Acoust Speech Signal
Process 39(4):599–609

30. Madhvanath S, Krpasundar V, Govindaraju V (2001)
Syntatic methodology of pruning large lexicons in cur-
sive script recognition. Patt Recog 34:37–46

31. Marti U, Bunke H (2000) Handwritten sentence recogni-
tion. In: Proceedings of the 15th international conference
on pattern recognition, Barcelona, 3–8 September 2000,
pp 467–470

32. Myers CS, Rabiner LR (1981a) Connected digit recog-
nition using a level building dtw algorithm. IEEE Trans
Acoust Speech Signal Process 29(3):351–363

33. Myers CS, Rabiner LR (1981b) A level building dynamic
time warping algorithm for connected word recognition.
IEEE Trans Acoust Speech Signal Process 29(2):284–297

144 A.L. Koerich et al.: Lexicon-driven HMM decoding for LVHR with multiple character models

34. Procter S, Illingworth J (1999) Handwriting recognition
using hmms and a conservative level building algorithm.
In: Proceedings of the 7th international conference on
image processing and its applications, Manchester, UK,
12–15 July 1999, pp 736–739

35. Procter S, Illingworth J, Mokhtarian F (2000) Cur-
sive handwriting recognition using hidden markov mod-
els and a lexicon-driven level building algorithm. IEE
Proc Vision Image Signal Process 147(4):332–339

36. Rabiner LR, Levinson SE (1985) A speaker-independent,
syntax-directed, connected word recognition system
based on hidden markov models and level building. IEEE
Trans Acoust Speech Signal Process 33(3):561–573

37. Rabiner L, Lee CH, Juang BH, Wilpon JG (1989) Hmm
clustering for connected word recognition. In: Proceed-
ings of the international conference on acoustics, speech
and signal processing, Glasgow, 23–26 May 1989, pp 405–
408

38. Ratzlaff EH, Nathan KS, Maruyama H (1996) Search
issues in the IBM large vocabulary unconstrained hand-
writing recognizer. In: Proceedings of the 5th interna-
tional workshop on frontiers in handwriting recognition,
Essex, UK, 2–5 September 1996, pp 177–182

39. Seni G, Srihari RK, Nasrabadi N (1996) Large vocab-
ulary recognition of on-line handwritten cursive words.
IEEE Trans Patt Anal Mach Intell 18(7):757–762

40. Senior AW, Robinson AJ (1998) An off-line cursive hand-
writing recognition system. IEEE Trans Patt Anal Mach
Intell 20(3):309–321

41. Shridhar M, Houle G, Kimura F (1997) Handwritten
word recognition using lexicon free and lexicon directed
word recognition algorithms. In: Proceedings of the 4th
international conference on document analysis and recog-
nition, Ulm, Germany, 18–20 August 1997, pp 861–865

42. Wimmer Z, Salicetti SG, Dorizzi B, Gallinari P (1997)
Off-line cursive word recognition with a hybrid neural-
hmm system. In: Proceedings of the 1st Brazilian sym-
posium on document image analysis, Curitiba, Brazil,
2–5 November 1997, pp 249–260

43. Zimmermann M, Mao J (1999) Lexicon reduction using
key characters in cursive handwritten words. Patt Recog
Lett 20:1297–1304

Alessandro L. Koerich received the
B.Sc. degree in electrical engineering
from the Federal University of Santa
Catarina (UFSC), Brazil, in 1995, the
M.Sc. degree in electrical engineer-
ing from the University of Campinas
(UNICAMP), Brazil, in 1997, and the
Ph.D. degree in automated manufac-
turing engineering from the École de
Technologie Supérieure (ETS), Uni-
versité du Québec, Montréal, Canada,
in 2002. From 1997 to 1998 he was
a lecturer at the Federal Center for

Technological Education (CEFETPR). From 1998 to 2002 he
was a visiting scientist at the Centre for Pattern Recognition
and Machine Intelligence (CENPARMI). In 2003, he joined
the Pontifical Catholic University of Paraná (PUCPR), Cu-
ritiba, PR, Brazil where he is currently an associate professor
of computer science. His research interests include machine
learning, pattern recognition, and multimedia.

Robert Sabourin received the
B.ing., M.Sc.A. and Ph.D. degrees in
electrical engineering from the École
Polytechnique de Montréal in 1977,
1980, and 1991, respectively. In 1977,
he joined the physics department of
the Université de Montréal where
he was responsible for the design
and development of scientific instru-
mentation for the Observatoire du
Mont Mégantic. In 1983, he joined
the staff of the École de Technologie
Supérieure, Université du Québec,

Montréal, P.Q., Canada, where he is currently a professeur
titulaire in the Département de Génie de la Production
Automatisée. In 1995, he joined the Computer Science De-
partment of the Pontif́icia Universidade Católica do Paraná
(PUCPR, Curitiba, Brazil) where since 1998 he has been
coresponsible for the implementation of a Ph.D. program
in applied informatics. Since 1996, he has been a senior
member of the Centre for Pattern Recognition and Machine
Intelligence (CENPARMI). His research interests are in the
areas of handwriting recognition and signature verification
for banking and postal applications.

Ching Y. Suen received an
M.Sc.(Eng.) from the University of
Hong Kong and a Ph.D. from the Uni-
versity of British Columbia, Canada.
In 1972, he joined the Department
of Computer Science of Concordia
University, where he became professor
in 1979 and served as chairman from
1980 to 1984 and as associate dean for
research of the Faculty of Engineering
and Computer Science from 1993 to
1997. Currently he is a distinguished
research chair in AI & PR and the

director of CENPARMI, the Centre for Pattern Recognition
and Machine Intelligence. Professor Suen is the author/editor
of 11 books and more than 300 papers on subjects ranging
from computer vision and handwriting recognition to expert
systems and computational linguistics. He is the founder
and editor-in-chief of a journal and an associate editor of
several journals related to pattern recognition. A Fellow
of the IEEE, IAPR, and the Academy of Sciences of the
Royal Society of Canada, he has served several professional
societies as president, vice-president, or governor. He is also
the founder and chair of several conference series including
ICDAR, IWFHR, and VI and served as the general chair
of the International Conference on Pattern Recognition in
Quebec City in 2002. Dr. Suen is the recipient of several
awards, including the ITAC/NSERC award in 1992 and the
Concordia “Research Fellow” award in 1998.

