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Abstract

We present an approach to speech recogni-

tion that uses only a neural network to map

acoustic input to characters, a character-level

language model, and a beam search decoding

procedure. This approach eliminates much of

the complex infrastructure of modern speech

recognition systems, making it possible to di-

rectly train a speech recognizer using errors

generated by spoken language understand-

ing tasks. The system naturally handles out

of vocabulary words and spoken word frag-

ments. We demonstrate our approach us-

ing the challenging Switchboard telephone

conversation transcription task, achieving a

word error rate competitive with existing base-

line systems. To our knowledge, this is the

first entirely neural-network-based system to

achieve strong speech transcription results on

a conversational speech task. We analyze

qualitative differences between transcriptions

produced by our lexicon-free approach and

transcriptions produced by a standard speech

recognition system. Finally, we evaluate the

impact of large context neural network charac-

ter language models as compared to standard

n-gram models within our framework.

1 Introduction

Users increasingly interact with natural language

understanding systems via conversational speech in-

terfaces. Google Now, Microsoft Cortana, and

Apple Siri are all systems which rely on spoken

language understanding (SLU), where transcribing
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speech is a single step within a larger system. Build-

ing such systems is difficult because spontaneous,

conversational speech naturally contains repetitions,

disfluencies, partial words, and out of vocabulary

(OOV) words (De Mori et al., 2008; Huang et al.,

2001). Moreover, SLU systems must be robust to

transcription errors, which can be quite high depend-

ing on the task and domain.

Modern systems for large vocabulary continuous

speech recognition (LVCSR) use hidden Markov

models (HMMs) to handle sequence processing,

word-level language models, and a pronunciation

lexicon to map words into phonetic pronunciations

(Saon and Chien, 2012). Traditional systems use

Gaussian mixture models (GMMs) to build a map-

ping from sub-phonetic states to audio input fea-

tures. The resulting speech recognition system con-

tains many sub-components, linguistic assumptions,

and typically over ten thousand lines of source code.

Within the past few years LVCSR systems improved

by replacing GMMs with deep neural networks

(DNNs) (Dahl et al., 2011; Hinton et al., 2012),

drawing on early work on with hybrid GMM-NN

architectures (Bourlard and Morgan, 1993). Both

HMM-GMM and HMM-DNN systems remain dif-

ficult to build, and nearly impossible to efficiently

optimize for downstream SLU tasks. As a result,

SLU researchers typically operate on an n-best list

of possible transcriptions and treat the LVCSR sys-

tem as a black box.

Recently Graves and Jaitly (2014) demonstrated

an approach to LVCSR using a neural network

trained with the connectionist temporal classifica-

tion (CTC) loss function (Graves et al., 2006). Us-



ing the CTC loss function the authors built a neural

network which directly maps audio input features to

a sequence of characters. By re-ranking word-level

n-best lists generated from an HMM-DNN system

the authors obtained competitive results on the Wall

Street Journal corpus.

Our work builds upon the foundation introduced

by Graves and Jaitly (2014). Rather than reason-

ing at the word level, we train and decode our sys-

tem by reasoning entirely at the character-level. By

reasoning over characters we eliminate the need

for a lexicon, and enable transcribing new words,

fragments, and disfluencies. We train a deep bi-

directional recurrent neural network (DBRNN) to

directly map acoustic input to characters using the

CTC loss function introduced by Graves and Jaitly

(2014). We are able to efficiently and accurately

perform transcription using only our DBRNN and

a character-level language model (CLM), whereas

previous work relied on n-best lists from a baseline

HMM-DNN system. On the challenging Switch-

board telephone conversation transcription task, our

approach achieves a word error rate competitive

with existing baseline HMM-GMM systems. To our

knowledge, this is the first entirely neural-network-

based system to achieve strong speech transcription

results on a conversational speech task.

Section 2 reviews the CTC loss function and de-

scribes the neural network architecture we use. Sec-

tion 3 presents our approach to efficiently perform

first-pass decoding using a neural network for char-

acter probabilities and a character language model.

Section 4 presents experiments on the Switchboard

corpus to compare our approach to existing LVCSR

systems, and evaluates the impact of different lan-

guage models. In Section 5, we offer insight on how

the CTC-trained system performs speech recogni-

tion as compared to a standard HMM-GMM model,

and finally conclude in Section 6.

2 Model

We address the complete LVCSR problem. Our

system trains on utterances which are labeled by

word-level transcriptions and contain no indication

of when words occur within an utterance. Our ap-

proach consists of two neural networks which we

integrate during a beam search decoding procedure.

Our first neural network, a DBRNN, maps acoustic

input features to a probability distribution over char-

acters at each time step. Our second system compo-

nent is a neural network character language model.

Neural network CLMs enable us to leverage high or-

der n-gram contexts without dramatically increas-

ing the number of free parameters in our language

model. To facilitate further work with our approach

we make our source code publicly available. 1

2.1 Connectionist Temporal Classification

We train neural networks using the CTC loss func-

tion to do maximum likelihood training of letter

sequences given acoustic features as input. This

is a direct, discriminative approach to building a

speech recognition system in contrast to the gen-

erative, noisy-channel approach which motivates

HMM-based speech recognition systems. Our ap-

plication of the CTC loss function follows the ap-

proach introduced by Graves and Jaitly (2014), but

we restate the approach here for completeness.

CTC is a generic loss function to train systems

on sequence problems where the alignment between

the input and output sequence are unknown. CTC

accounts for time warping of the output sequence

relative to the input sequence, but does not model

possible re-orderings. Re-ordering is a problem in

machine translation, but is not an issue when work-

ing with speech recognition – our transcripts provide

the exact ordering in which words occur in the input

audio.

Given an input sequence X of length T , CTC as-

sumes the probability of a length T character se-

quence C is given by,

p(C|X) =
T∏

t=1

p(ct|X). (1)

This assumes that character outputs at each timestep

are conditionally independent given the input. The

distribution p(ct|X) is the output of some predictive

model.

CTC assumes our ground truth transcript is a char-

acter sequence W with length τ where τ ≤ T . As

a result, we need a way to construct possibly shorter

output sequences from our length T sequence of

1Available at: deeplearning.stanford.edu/lexfree



character probabilities. The CTC collapsing func-

tion achieves this by introducing a special blank

symbol, which we denote using “ ”, and collapsing

any repeating characters in the original length T out-

put. This output symbol contains the notion of junk

or other so as to not produce a character in the fi-

nal output hypothesis. Our transcripts W come from

some set of symbols ζ ′ but we reason over ζ = ζ ′∪ .

We denote the collapsing function by κ(·) which

takes an input string and produces the unique col-

lapsed version of that string. As an example, here

are the set of strings Z of length T = 3 such that

κ(z) = hi, ∀z ∈ Z:

Z = {hhi,hii, hi,h i,hi }.

There are a large number of possible length T

sequences corresponding to a final length τ tran-

script hypothesis. The CTC objective function

LCTC(X,W ) is a likelihood of the correct final tran-

script W which requires integrating over the prob-

abilities of all length T character sequences CW =
{C : κ(C) = W} consistent with W after applying

the collapsing function,

LCTC(X,W ) =
∑

CW

p(C|X)

=
∑

CW

T∏

t=1

p(ct|X).

(2)

Using a dynamic programming approach we can ex-

actly compute this loss function efficiently as well as

its gradient with respect to our probabilities p(ct|X).

2.2 Deep Bi-Directional Recurrent Neural

Networks

Our loss function requires at each time t a probabil-

ity distribution p(c|xt) over characters c given in-

put features xt. We model this distribution using

a DBRNN because it provides an expressive model

which explicitly accounts for the sequential relation-

ships that should exist in our task. Moreover, the

DBRNN is a relatively straightforward neural net-

work architecture to specify, and allows us to learn

parameters from data rather than more explicitly

specifying how to convert audio features into char-

acters. Figure 1 shows a DBRNN with two hidden

layers.

W (1) W (1) W (1)

W (2) W (2) W (2)

W (f) W (f)

W (b) W (b)
W (s) W (s) W (s)
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Figure 1: Deep bi-directional recurrent neural net-

work to map input audio features X to a distribu-

tion p(c|xt) over output characters at each timestep

t. The network contains two hidden layers with the

second layer having bi-directional temporal recur-

rence.

A DBRNN computes the distribution p(c|xt) us-

ing a series of hidden layers followed by an output

layer. Given an input vector xt the first hidden layer

activations are a vector computed as,

h(1) = σ(W (1)Txt + b(1)), (3)

where the matrix W (1) and vector b(1) are the

weight matrix and bias vector. The function σ(·)
is a point-wise nonlinearity. We use σ(z) =
min(max(z, 0), µ). This is a rectified linear acti-

vation function clipped to a maximum possible ac-

tivation of µ to prevent overflow. Rectified linear

hidden units have been show to work well in gen-

eral for deep neural networks, as well as for acoustic

modeling of speech data (Glorot et al., 2011; Zeiler

et al., 2013; Dahl et al., 2013; Maas et al., 2013)

We select a single hidden layer j of the network

to have temporal connections. Our temporal hidden

layer representation h(j) is the sum of two partial

hidden layer representations,

h
(j)
t = h

(f)
t + h

(b)
t . (4)

The representation h(f) uses a weight matrix W (f)

to propagate information forwards in time. Sim-

ilarly, the representation h(b) propagates informa-

tion backwards in time using a weight matrix W (b).

These partial hidden representations both take input

from the previous hidden layer h(j−1) using a weight



matrix W (j),

h
(f)
t = σ(W (j)Th

(j−1)
t +W (f)Th

(f)
t−1 + b(j)),

h
(b)
t = σ(W (j)Th

(j−1)
t +W (b)Th

(b)
t+1 + b(j)).

(5)

Note that the recurrent forward and backward hid-

den representations are computed entirely inde-

pendently from each other. As with the other

hidden layers of the network we use σ(z) =
min(max(z, 0), µ).

All hidden layers aside from the first hidden layer

and temporal hidden layer use a standard dense

weight matrix and bias vector,

h(i) = σ(W (i)Th(i−1) + b(i)). (6)

DBRNNs can have an arbitrary number of hidden

layers, but we assume that only one hidden layer

contains temporally recurrent connections.

The model outputs a distribution p(c|xt) over a

set of possible characters ζ using a softmax output

layer. We compute the softmax layer as,

p(c = ck|xt) =
exp(−(W

(s)T
k h(:) + b

(s)
k ))

∑|ζ|
j=1 exp(−(W

(s)T
j h(:) + b

(s)
j ))

,

(7)

where W
(s)
k is the k’th column of the output weight

matrix W (s) and b
(s)
k is a scalar bias term. The vec-

tor h(:) is the hidden layer representation of the final

hidden layer in our DBRNN.

We can directly compute a gradient for all weights

and biases in the DBRNN with respect to the CTC

loss function and apply batch gradient descent.

3 Decoding

Our decoding procedure integrates information from

the DBRNN and language model to form a sin-

gle cohesive estimate of the character sequence in

a given utterance. For an input sequence X of

length T our DBRNN produces a set of probabilities

p(c|xt), t = 1, . . . , T . Again, the character proba-

bilities are a categorical distribution over the symbol

set ζ.

3.1 Decoding Without a Language Model

As a baseline, we use a simple, greedy approach

to decoding the DBRNN outputs (Graves and Jaitly,

2014). The simplest form of decoding does not em-

ploy the language model and instead finds the high-

est probability character transcription given only the

DBRNN outputs. This process selects a transcript

hypothesis W ∗ by making a greedy approximation,

W ∗ = argmax
W

p(W |X) ≈ κ(argmax
C

p(C|X))

= κ(argmax
C

T∏

t=1

p(ct|X)).

(8)

This decoding procedure ignores the issue of many

time-level character sequences mapping to the same

final hypothesis, and instead considers only the most

probable character at each point in time. Because

our model assumes the character labels for each

timestep are conditionally independent, C∗ is sim-

ply the most probable character at each timestep in

our DBRNN output. As a result, this decoding pro-

cedure is very fast to compute, requiring only time

O(T |ζ|).

3.2 Beam Search Decoding

To decode while taking language model probabili-

ties into account, we use a beam search to combine

a character language model and the outputs of our

DBRNN. This search-based decoding method does

not make a greedy approximation and instead as-

signs probability to a final hypothesis by integrat-

ing over all character sequences consistent with the

hypothesis under our collapsing function κ(·). Al-

gorithm 1 outlines our decoding procedure.

We note that our decoding procedure is signifi-

cantly simpler, and in practice faster, than previous

decoding procedures applied to CTC models. This

is due to reasoning at the character level without a

lexicon so as to not introduce difficult multi-level

constraints to obey during the decoding search pro-

cedure. While a softmax over words is typically

the bottleneck in neural network language models,

a softmax over possible characters is comparatively

cheap to compute. Our character language model is

applied at every time step, while word models can

only be applied when we consider adding a space or

by computing the likelihood of a sequence being the

prefix of a word in the lexicon (Graves and Jaitly,

2014). Additionally, our lexicon-free approach re-



Algorithm 1 Beam Search Decoding: Given the likelihoods from our DBRNN and our character language

model, for each time step t and for each string s in our current previous hypothesis set Zt−1, we consider

extending s with a new character. Blanks and repeat characters with no separating blank are handled sep-

arately. For all other character extensions, we apply our character language model when computing the

probability of s. We initialize Z0 with the empty string ∅. Notation: ζ ′: character set excluding “ ”, s+ c:

concatenation of character c to string s, |s|: length of s, pb(c|x1:t) and pnb(c|x1:t): probability of s ending

and not ending in blank conditioned on input up to time t, ptot(c|x1:t): pb(c|x1:t) + pnb(c|x1:t)

Inputs CTC likelihoods pctc(c|xt), character language model pclm(c|s)
Parameters language model weight α, insertion bonus β, beam width k

Initialize Z0 ← {∅}, pb(∅|x1:0)← 1, pnb(∅|x1:0)← 0
for t = 1, . . . , T do

Zt ← {}
for s in Zt−1 do

pb(s|x1:t)← pctc( |xt)ptot(s|x1:t−1) ⊲ Handle blanks

pnb(s|x1:t)← pctc(c|xt)pnb(s|x1:t−1) ⊲ Handle repeat character collapsing

Add s to Zt

for c in ζ ′ do

s+ ← s+ c

if c 6= st−1 then

pnb(s
+|x1:t)← pctc(c|xt)pclm(c|s)

αptot(c|x1:t−1)
else

pnb(s
+|x1:t)← pctc(c|xt)pclm(c|s)

αpb(c|x1:t−1) ⊲ Repeat characters have “ ” between

end if

Add s+ to Zt

end for

end for

Zt ← k most probable s by ptot(s|x1:t)|s|
β in Zt ⊲ Apply beam

end for

Return argmaxs∈Zt
ptot(s|x1:T )|s|

β

moves the difficulties of handling OOV words dur-

ing decoding, which is typically a troublesome issue

in speech recognition systems.

4 Experiments

We perform LVCSR experiments on the 300 hour

Switchboard conversational telephone speech cor-

pus (LDC97S62). Switchboard utterances are taken

from approximately 2,400 conversations among 543

speakers. Each pair of speakers had never met, and

converse no more than once about a given topic cho-

sen randomly from a set of 50 possible topics. Ut-

terances exhibit many rich, complex phenomena that

make spoken language understanding difficult. Ta-

ble 2 shows example transcripts from the corpus.

For evaluation, we report word error rate (WER)

and character error rate (CER) on the HUB5

Eval2000 dataset (LDC2002S09). This test set con-

sists of two subsets, Switchboard and CallHome.

The CallHome subset represents a mismatched test

condition as it was collected from phone conversa-

tions among family and friends rather than strangers

directed to discuss a particular topic. The mismatch

makes the CallHome subset quite difficult overall.

The Switchboard evaluation subset is substantially

easier, and represents a better match of test data to

our training corpus. We report WER and CER on

the test set as a whole, and additionally report WER

for each subset individually.

4.1 Baseline Systems

We build two baseline LVCSR systems to compare

our approach to standard HMM-based approaches.



Method CER EV CH SWBD

HMM-GMM 23.0 29.0 36.1 21.7

HMM-DNN 17.6 21.2 27.1 15.1

HMM-SHF NR NR NR 12.4

CTC no LM 27.7 47.1 56.1 38.0

CTC+5-gram 25.7 39.0 47.0 30.8

CTC+7-gram 24.7 35.9 43.8 27.8

CTC+NN-1 24.5 32.3 41.1 23.4

CTC+NN-3 24.0 30.9 39.9 21.8

CTC+RNN 24.9 33.0 41.7 24.2

CTC+RNN-3 24.7 30.8 40.2 21.4

Table 1: Character error rate (CER) and word er-

ror rate results on the Eval2000 test set. We re-

port word error rates on the full test set (EV) which

consists of the Switchboard (SWBD) and CallHome

(CH) subsets. As baseline systems we use an HMM-

GMM system and HMM-DNN system. We evaluate

our DBRNN trained using CTC by decoding with

several character-level language models: 5-gram, 7-

gram, densely connected neural networks with 1 and

3 hidden layers (NN-1, and NN-3), as well as recur-

rent neural networks s with 1 and 3 hidden layers.

We additionally include results from a state-of-the-

art HMM-based system (HMM-DNN-SHF) which

does not report performance on all metrics we eval-

uate (NR).

First, we build an HMM-GMM system using the

Kaldi open-source toolkit2 (Povey et al., 2011). The

baseline recognizer has 8,986 sub-phone states and

200K Gaussians trained using maximum likelihood.

Input features are speaker-adapted MFCCs. Overall,

the baseline GMM system setup largely follows the

existing s5b Kaldi recipe, and we defer to previous

work for details (Vesely et al., 2013).

We additionally built an HMM-DNN system

by training a DNN acoustic model using maxi-

mum likelihood on the alignments produced by our

HMM-GMM system. The DNN consists of five hid-

den layers, each with 2,048 hidden units, for a total

of approximately 36 million (M) free parameters in

the acoustic model.

Both baseline systems use a bigram language

2http://kaldi.sf.net

model built from the 3M words in the Switch-

board transcripts interpolated with a second bi-

gram language model built from 11M words on the

Fisher English Part 1 transcripts (LDC2004T19).

Both LMs are trained using interpolated Kneser-

Ney smoothing. For context we also include WER

results from a state-of-the-art HMM-DNN system

built with quinphone phonetic context and Hessian-

free sequence-discriminative training (Sainath et al.,

2014).

4.2 DBRNN Training

We train a DBRNN using the CTC loss function on

the entire 300hr training corpus. The input features

to the DBRNN at each timestep are MFCCs with

context window of ±10 frames. The DBRNN has

5 hidden layers with the third containing recurrent

connections. All layers have 1824 hidden units, giv-

ing about 20M trainable parameters. In preliminary

experiments we found that choosing the middle hid-

den layer to have recurrent connections led to the

best results.

The output symbol set ζ consists of 33 characters

including the special blank character. Note that be-

cause speech recognition transcriptions do not con-

tain proper casing or punctuation, we exclude capi-

tal letters and punctuation marks with the exception

of “-”, which denotes a partial word fragment, and

“’”, as used in contractions such as “can’t.”

We train the DBRNN from random initial pa-

rameters using the gradient-based Nesterov’s accel-

erated gradient (NAG) algorithm as this technique

is sometimes beneficial as compared with standard

stochastic gradient descent for deep recurrent neural

network training (Sutskever et al., 2013). The NAG

algorithm uses a step size of 10−5 and a momentum

of 0.95. After each epoch we divide the learning rate

by 1.3. Training for 10 epochs on a single GTX 570

GPU takes approximately one week.

4.3 Character Language Model Training

The Switchboard corpus transcripts alone are too

small to build CLMs which accurately model gen-

eral orthography in English. To learn how to spell

words more generally we train our CLMs using a

corpus of 31 billion words gathered from the web

(Heafield et al., 2013). Our language models use

sentence start and end tokens, <s> and </s>, as



well as a <null> token for cases when our context

window extends past the start of a sentence.

We build 5-gram and 7-gram CLMs with modified

Kneser-Ney smoothing using the KenLM toolkit

(Heafield et al., 2013). Building traditional n-gram

CLMs is for n > 7 becomes increasingly difficult as

the model free parameters and memory footprint be-

come unwieldy. Our 7-gram CLM is already 21GB;

we were not able to build higher order n-gram mod-

els to compare against our neural network CLMs.

Following work illustrating the effectiveness of

neural network CLMs (Sutskever et al., 2011) and

word-level LMs for speech recognition (Mikolov et

al., 2010), we train and evaluate two variants of neu-

ral network CLMs: standard feedfoward deep neu-

ral networks (DNNs) and a recurrent neural network

(RNN). The RNN CLM takes one character at a time

as input, while the non-recurrent CLM networks use

a context window of 19 characters. All neural net-

work CLMs use the rectified linear activation func-

tion, and the layer sizes are selected such that each

has about 5M parameters (20MB).

The DNN models are trained using standard back-

propagation using Nesterov’s accelerated gradient

with a learning rate of 0.01 and momentum of 0.95
and a batch size of 512. The RNN is trained using

backpropagation through time with a learning rate of

0.001 and batches of 128 utterances. For both model

types we halve the learning rate after each epoch.

The DNN models were trained for 10 epochs, and

the RNN models for 5 epochs.

All neural network CLMs were trained using a

combination of the Switchboard and Fisher train-

ing transcripts which in total contain approximately

23M words. We also performed experiments with

CLMs trained from a large corpus of web text,

but found these CLMs to perform no better than

transcript-derived CLMs for our task.

4.4 Results

After training the DBRNN and CLMs we run de-

coding on the Eval2000 test set to obtain CER and

WER results. For all experiments using a CLM

we use our beam search decoding algorithm with

α = 1.25, β = 1.5 and a beam width of 100. We

found that larger beam widths did not significantly

improve performance. Table 1 shows results for the

DBRNN as well as baseline systems.

The DBRNN performs best with the 3 hidden

layer DNN CLM. This DBRNN+NN-3 attains both

CER and WER performance comparable to the

HMM-GMM baseline system, albeit substantially

below the HMM-DNN system. Neural networks

provide a clear gain as compared to standard n-gram

models when used for DBRNN decoding, although

the RNN CLM does not produce any gain over the

best DNN CLM.

Without a language model the greedy DBRNN

decoding procedure loses relatively little in terms of

CER as compared with the DBRNN+NN-3 model.

However, this 3% difference in CER translates to a

16% gap in WER on the full Eval2000 test set. Gen-

erally, we observe that small CER differences trans-

late to large WER differences. In terms of character-

level performance it appears as if the DBRNN

alone performs well using only acoustic input data.

Adding a CLM yields only a small CER improve-

ment, but guides proper spelling of words to produce

a large reduction in WER.

5 Analysis

To better see how the DBRNN performs transcrip-

tion we show the output probabilities p(c|x) for an

example utterance in Figure 2. The model tends to

output mostly blank characters and only spike long

enough for a character to be the most likely sym-

bol for a few frames at a time. The dominance of

the blank class is not forced, but rather learned by

the DBRNN during training. We hypothesize that

this spiking behavior results in more stable results

as the DBRNN only produces a character when its

confidence of seeing that character rises above a cer-

tain threshold. Note that this a dramatic contrast to

HMM-based LVCSR systems, which, due to the na-

ture of generative models, attempt to explain almost

all timesteps as belonging to a phonetic substate.

Next, we qualitatively compare the DBRNN and

HMM-GMM system outputs to better understand

how the DBRNN approach might interact with SLU

systems. This comparison is especially interesting

because our best DBRNN system and the HMM-

GMM system have comparable WERs, removing

the confound of overall quality when comparing hy-

potheses. Table 2 shows example test set utterances

along with transcription hypotheses from the HMM-



# Method Transcription

(1)

Truth yeah i went into the i do not know what you think of fidelity but

HMM-GMM yeah when the i don’t know what you think of fidel it even them

CTC+CLM yeah i went to i don’t know what you think of fidelity but um

(2)

Truth no no speaking of weather do you carry a altimeter slash barometer

HMM-GMM no i’m not all being the weather do you uh carry a uh helped emitters last

brahms her

CTC+CLM no no beating of whether do you uh carry a uh a time or less barometer

(3)

Truth i would ima- well yeah it is i know you are able to stay home with them

HMM-GMM i would amount well yeah it is i know um you’re able to stay home with them

CTC+CLM i would ima- well yeah it is i know uh you’re able to stay home with them

Table 2: Example test set utterances with a ground truth transcription and hypotheses from our method

(CTC+CLM) and a baseline HMM-GMM system of comparable overall WER. The words fidelity and

barometer are not in the lexicon of the HMM-GMM system.

0 10 20 30
time (t)

0.5

1.0

p
(c
|x

t
)

s:

κ(s):

_____o__hh__________ ____y_eahh___

oh yeah

p( |xt)

p(¬ |xt)

Figure 2: DBRNN character probabilities over time

for a single utterance along with the per-frame most

likely character string s and the collapsed output

κ(s). Due to space constraints we only show a dis-

tinction in line type between the blank symbol and

non-blank symbols.

GMM and DBRNN+NN-3 systems.

The DBRNN sometimes correctly transcribes

OOV words with respect to our audio training cor-

pus. We find that OOVs tend to trigger clusters of

errors in the HMM-GMM system, an observation

that has been systematically explored in previous

work (Goldwater et al., 2010). As shown in ex-

ample utterance (3), HMM-GMM errors can intro-

duce word substitution errors which may alter mean-

ing whereas the DBRNN system outputs word frag-

ments or non-words which are phonetically similar

and may be useful input features for SLU systems.

Unfortunately the Eval2000 test set does not offer a

rich set of utterances containing OOVs or fragments

to perform a deeper analysis. The HMM-GMM and

best DBRNN system achieve identical WERs on the

subset of test utterances containing OOVs and the

subset of test utterances containing fragments.

Finally, we quantitatively compare how character

probabilities from the DBRNN align with phonetic

segments from the HMM-GMM system. We gener-

ate HMM-GMM forced alignments on a large sam-

ple of the training set, and separate utterances into

monophone segments. For each monophone, we

compute the average character probabilities from the

DBRNN by aligning the beginning of each mono-

phone segment, treating it as time 0. We measure

time using feature frames rather than seconds. Fig-

ure 3 shows character probabilities over time for the

phones k, sh, w, and uw.

Although the CTC model does not explicitly com-

pute a forced alignment as part of training, we

see significant rises in character probabilities corre-

sponding to particular phones during HMM-GMM-

aligned monophone segments. This indicates that

the CTC model automatically learns a reasonable

alignment of characters to the audio. Generally, the

CTC model tends to produce character spikes to-

wards the beginning of monophone segments. This

is especially evident in plosive consonants such as

k and t. For liquids and glides (r, l, w, y), the CTC

model does not produce characters until later in the

monophone segment. For vowels the CTC character
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Figure 3: Character probabilities from the CTC-trained neural network averaged over monophone segments

created by a forced alignment of the HMM-GMM system. Time is measured in frames, with 0 indicating the

start of the monophone segment. The vertical dotted line indicates the average duration of the monophone

segment. We show only characters with non-trivial probability for each phone while excluding the blank

and space symbols.

probabilities generally rise slightly later in the phone

segment as compared to consonants. This may occur

to avoid the large contextual variations in vowel pro-

nunciations at phone boundaries. For certain conso-

nants we observe CTC probability spikes before the

monophone segment begins, as is the case for sh.

The probabilities for sh additionally exhibit multiple

modes, suggesting that CTC may learn different be-

haviors for the two common spellings of the sibilant

sh: the letter sequence “sh” and the letter sequence

“ti”.

6 Conclusion

We presented an LVCSR system consisting of two

neural networks integrated via beam search decod-

ing that matches the performance of an HMM-GMM

system on the challenging Switchboard corpus. We

built on the foundation of Graves and Jaitly (2014)

to vastly reduce the overall complexity required for

LVCSR systems. Our method yields a complete

first-pass LVCSR system with about 1,000 lines of

code — roughly an order of magnitude less than

high performance HMM-GMM systems. Operat-

ing entirely at the character level yields a system

which does not require assumptions about a lexicon

or pronunciation dictionary, instead learning orthog-

raphy and phonics directly from data. We hope the

simplicity of our approach will facilitate future re-

search in improving LVCSR with CTC-based sys-

tems and jointly training LVCSR systems for SLU

tasks. DNNs have already shown great results as

acoustic models in HMM-DNN systems. We free

the neural network from its complex HMM infras-

tructure, which we view as the first step towards

the next wave of advances in speech recognition and

language understanding.
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